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Abstract

The analysis of capital injection strategy in the literature of insurance risk models (e.g. Pafumi
(1998), and Dickson and Waters (2004)) typically assumes that whenever the surplus becomes negative,
the amount of shortfall is injected so that the company can continue its business forever. Recently,
Nie et al. (2011) has proposed an alternative model in which capital is immediately injected to restore
the surplus level to a positive level b when the surplus falls between zero and b, and the insurer is still
subject to a positive ruin probability. Inspired by the idea of randomized observations in Albrecher
et al. (2011b), in this paper we further generalize Nie et al. (2011)’s model by assuming that capital
injections are only allowed at a sequence of time points with inter-capital-injection times being Erlang
distributed (so that deterministic time intervals can be approximated using the Erlangization technique
in Asmussen et al. (2002)). When the claim amount is distributed as a combination of exponentials,
explicit formulas for the Gerber-Shiu expected discounted penalty function (Gerber and Shiu (1998))
and the expected total discounted cost of capital injections before ruin are obtained. The derivations
rely on a resolvent density associated with an Erlang random variable, which is shown to admit an
explicit expression that is of independent interest as well. We shall provide numerical examples,
including an application in pricing a perpetual reinsurance contract that makes the capital injections
and demonstration of how to minimize the ruin probability via reinsurance. Minimization of the
expected discounted capital injections plus a penalty applied at ruin with respect to the frequency of
injections and the critical level b will also be illustrated numerically.

Keywords: Compound Poisson risk model; Periodic capital injections; Gerber-Shiu expected discounted
penalty function; Resolvent measure; Perpetual reinsurance.

1 Introduction

The classical compound Poisson risk process U = {Ut}t≥0 for an insurance company is defined by

Ut = u+ ct−
Nt∑

i=1

Xi, t ≥ 0, (1.1)

where u = U0 ≥ 0 is the initial surplus, and c > 0 is the incoming premium rate per unit time.
Furthermore, the number of claims process N = {Nt}t≥0 is assumed to be a Poisson process with
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intensity λ > 0, whereas the claim amounts {Xi}
∞
i=1, independent of N , are positive continuous random

variables that form an independent and identically distributed (i.i.d.) sequence with common density
fX(·) and Laplace transform f̂X(s) =

∫∞

0 e−sxfX(x)dx. The time of ruin is the first time when the surplus
process falls below zero, and the safety loading condition c > λEX ensures that the (infinite-time) ruin
probability is less than one.

In order to keep the business alive forever, Pafumi (1998) and Dickson and Waters (2004, Sections
6.2 and 6.3) considered models in which the necessary amount of capital is injected to restore the surplus
process to zero whenever it becomes negative, where the capital injections are made by a reinsurer upon
purchase of a reinsurance contract. They utilized the Gerber-Shiu expected discounted penalty function
(Gerber and Shiu (1998)) to compute the expected present value of capital injections until ruin. Under
the reinsurance setting, it is important to note that the payment of reinsurance premium reduces the
company’s initial surplus. In this case, the net single premium for the perpetual default reinsurance is
related to the expected discounted capital injections until ruin via (5.6) (see e.g. Cheung (2012) and Liu
and Cheung (2014) for such a pricing formula in the context of the dual risk model). Interested readers
are also referred to e.g. Kulenko and Schmidli (2008) and Eisenberg and Schmidli (2011) for optimal
dividend and reinsurance strategies in the compound Poisson model with capital injections. Recently, Nie
et al. (2011) has proposed a variant of the model such that whenever the surplus falls between zero and
a fixed critical level b > 0, capital injection is made to bring the surplus level back to b (instead of zero).
In this alternative model, the insurer has a positive ruin probability because capital is not injected when
the surplus falls below zero. Nie et al. (2011) derived the ruin probability and the expected discounted
capital injections until ruin, and applied these results to determine an optimal reinsurance contract that
minimizes the ruin probability numerically. The finite-time ruin probability was then studied by Nie et
al. (2015), and this was extended by Dickson and Qazvini (2016) who further incorporated the number
of claims until ruin into the analysis. Due to the spatial homogeneity of the compound Poisson process
with constant premium rate, by shifting the process downward by b units, Nie et al. (2011)’s model is
also equivalent to one that restores the surplus level to zero if it falls between zero and −b but declares
ruin if the surplus becomes less than −b. In this case, −b can be regarded as a lower bankruptcy barrier
such that the business is deemed hopeless once its surplus is below −b, so that capital is only injected
when the shortfall is less than b with the hope that the business can recover in time.

Apart from the most common understanding that capital is injected by a reinsurer, another possible
interpretation is that the injections are made by the shareholders of the insurance company. Following
Dickson and Waters (2004, Section 6.1), one can argue that the shareholders are responsible for (1)
injecting capital when the insurer’s surplus falls below the critical level b but the company still survives;
and (2) covering a penalty applied at the ruin time. This leads to the research problem of minimizing
the sum of these two contributions, which will be considered in this paper as well.

Traditionally, most contributions to continuous-time insurance risk processes are made on the grounds
of continuous monitoring of the surplus over time. For mathematical tractability, cash flows as a result
of tax reporting and strategic decisions on dividends and fund raising are usually assumed to occur
immediately as long as the surplus level is at its running maximum or falls within a pre-specified region
(like all the above works on capital injections). However, in practice it is more reasonable for the tax
authority, the board of directors or the reinsurer to inspect the insurer’s surplus regularly for taxation,
dividend payments and/or capital injections. These led Albrecher et al. (2011b, 2013) to propose the idea
of only acting on the process at the discrete time points {Zi}

∞
i=1 (known as ‘observation times’) where

dividend decisions are made or ruin may be declared. Let Ti = Zi − Zi−1 be the i-th inter-observation
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time for i = 1, 2, . . . (with Z0 = 0−). Although the surplus level is often checked at deterministic
intervals in practical applications, it is generally very difficult to obtain explicit results for various ruin-
related quantities when each Ti is a constant. Therefore, Albrecher et al. (2011b, 2013) assumed that
{Ti}

∞
i=1 (independent of other attributes of the surplus process U) form an i.i.d. sequence with common

Erlang(m,β) density

fT (t) =
βmtm−1e−βt

(m− 1)!
, t > 0, (1.2)

where the shape parameter m is a positive integer, and β > 0 is a scale parameter. The choice of the
Erlang(m,β) distribution is motivated by the Erlangization technique frequently used in finite-time ruin
problems (e.g. Asmussen et al. (2002), Stanford et al. (2005, 2011), and Ramaswami et al. (2008)). It
is known that if we fix the mean of the generic inter-observation time T to be ET = m/β = h and let
m→ ∞, then the random variable T converges in distribution to a point mass at h. In other words, one
can approximate the situation of e.g. monthly, quarterly or annual observation by increasing m (and β
at the same time). Since then, some other variants of Albrecher et al. (2011b)’s model with periodic
observations have also been analyzed by others. For example, Avanzi et al. (2013), Zhang (2014) and
Zhang and Cheung (2016) worked with a periodic dividend barrier strategy where ruin is monitored
continuously, and they respectively looked at the dual risk model, the perturbed compound Poisson risk
model and the Markov additive risk process. Moreover, Choi and Cheung (2014) considered a model
in which the event of ruin is checked at {Zi}

∞
i=1 but dividend decisions are only made at {Zij}

∞
i=1 for

some positive integer j, thereby allowing for e.g. monthly checking of ruin and quarterly or semi-annual
dividend announcements. We remark that the case of a Poissonian observer (i.e. {Zi}

∞
i=1 are the arrival

epochs of a Poisson process) has been studied by e.g. Boxma et al. (2010), Albrecher and Ivanovs (2013,
2017), Albrecher et al. (2016), and Zhang et al. (2017), and such a model is known to yield simpler
formulas and interesting identities. We also refer interested readers to e.g. Albrecher et al. (2011a) and
Avanzi et al. (2014) for the study of optimal periodic dividend strategies.

With the idea of randomized observations in mind, this paper aims to propose a periodic capital
injection strategy in the classical compound Poisson risk model (1.1), which extends the work by Nie et
al. (2011). At the observation times (or capital injection times) {Zi}

∞
i=1, if the observed surplus level x is

such that x ∈ [0, b) for some pre-specified critical level b > 0, then a capital amount of b−x is injected so
that the surplus returns to the level b that is deemed safe (see Figure 1). Denoting the modified process

as U b = {U b
t }t≥0, its dynamics can be jointly described with the auxiliary processes U (i) = {U

(i)
t }t≥Zi−1

by

U
(i)
t =

{
Ut, i = 1; t ≥ 0,
U b
Zi−1

+ Ut − UZi−1
, i = 2, 3, . . . ; t ≥ Zi−1,

and for i = 1, 2, . . .,

U b
t =

{
U

(i)
t , Zi−1 < t < Zi.

max(U
(i)
Zi
, b), t = Zi.

(1.3)

Without loss of generality, we have assumed that Z0 = 0− (i.e. time zero is not a capital injection time)
so that U b

0 = U0 = u even if 0 ≤ u < b (see Remark 1). Assuming that the event of ruin is monitored
continuously, the ruin time of U b is defined by τb = inf{t ≥ 0 : U b

t < 0} with the convention inf ∅ = ∞.
It is instructive to note that Nie et al. (2011)’s model can be retrieved by letting β → ∞ (with m fixed)
so that the generic inter-capital-injection time T converges to a point mass at zero. In this paper, we are
interested in the Gerber-Shiu function

φ(u; b) = E[e−δτbw(|U b
τb
|)1(τb<∞)|U

b
0 = u], u ≥ 0, (1.4)
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where δ ≥ 0 is the Laplace transform argument of the ruin time or the force of interest, w(·) is a non-
negative penalty function on (0,∞) that satisfies some mild integrability conditions (see Proposition 4),
and 1A is the indicator function of the event A. Another quantity of interest is expected total discounted
cost of capital injections before ruin given by

V (u; b) = E

[
∞∑

i=1

e−δZiχ(b− U b
Zi−

)1(Zi<τb)

∣∣∣∣U
b
0 = u

]
, u ≥ 0, (1.5)

where the function χ(·) is a non-negative cost function that associates a cost of χ(x) to an injected capital
of size x ∈ (0, b], with the definition χ(x) = 0 for x ≤ 0. For example, if χ(x) = x for x ∈ (0, b], then
V (u; b) represents the expected discounted capital injections until ruin. But if δ = 0 and χ(x) = 1 for
x ∈ (0, b], then V (u; b) becomes the number of times a positive capital is injected.

U
t 

t 

capital injections 

Z2 Z3 
Z4 

Z1 0 

b 

u 

b 

b 
τ

 

Figure 1: Sample path of {U b
t }t≥0

Remark 1 Suppose that the initial surplus is such that 0 ≤ u < b. If capital can be injected at time
zero, then it is clear that the resulting Gerber-Shiu function and expected total discounted cost of capital
injections are simply φ(b; b) and χ(b− u) + V (b; b) respectively. �

In order to obtain explicit formulas for φ(u; b) and V (u; b), we assume for the rest of the paper that
the generic claim amount X is distributed as a combination of exponentials with density

fX(x) =
a∑

i=1

ηiαie
−αix, x > 0, (1.6)

where a is a positive integer, αi’s are distinct positive parameters, and ηi’s are non-zero constants (which
are possibly negative) such that fX(·) is a proper density function. The above distributional assumption
is not restrictive since any positive continuous distribution can be approximated arbitrarily closely by
a combination of exponentials (see e.g. Dufresne (2007) for its fitting). See concluding remarks for the
discussion of the case where claims have rational Laplace transform.
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This paper is organized as follows. In Section 2, preliminary results concerning a resolvent density
associated with an Erlang random variable are obtained. Such a resolvent density is shown to admit
an explicit expression in Proposition 1, and this plays a crucial role in Sections 3 and 4 to derive full
solutions to the Gerber-Shiu function φ(u; b) and the expected total discounted cost of capital injections
before ruin V (u; b) respectively. Although the proofs are tedious, the main results are stated in the form
of Propositions for easy reference. The computational procedure of φ(u; b) and V (u; b) involves recursive
calculations of some constant coefficients as well as solving systems of linear equations, which can be
readily implemented in software packages like Mathematica. Section 5 utilizes the theoretical results to
provide some numerical illustrations. In particular, under the reinsurance set-up, a perpetual reinsurance
contract that injects the capital is priced and it is applied to determine the optimal reinsurance strategy
that minimizes the ruin probability, thereby complementing the results in Nie et al. (2011, Example
5.1.1). On the other hand, under the ‘shareholders’ interpretation, we aim at minimizing the sum of the
expected discounted capital injections and a penalty at ruin, namely V (u; b)+Kφ(u; b) for some constant
K ≥ 0. Because of the periodicity of capital injections introduced in this paper, the minimization of
V (u; b) + Kφ(u; b) can also be done with respect to the frequency β of injections (in addition to the
critical level b done in the more classical manner). The performance of Erlangization is demonstrated
as well. Section 6 ends the paper with some concluding remarks, and the proofs of some intermediate
results are collected in the Appendices.

2 A resolvent density at an Erlang time

For q ≥ 0, the q-scale function associated with the compound Poisson process U , denoted by W (q)(·), is
a continuous function on [0,∞) such that W (q)(x) = 0 for x < 0. For x ≥ 0 it is characterized by the
Laplace transform ∫ ∞

0
e−sxW (q)(x)dx =

1

ψ(s)− q
, (2.1)

where ψ(s) = cs − λ(1 − f̂X(s)) is the Laplace exponent of U . See Kyprianou (2013, Chapter 4). Since
f̂X(s) =

∑a
i=1 ηiαi/(αi + s) under the claim assumption (1.6), one can write the right-hand side of (2.1)

using partial fractions as

1

ψ(s)− q
=

∏a
i=1(s+ αi)

c
∏a+1

i=1 (s− ρq,i)
=

a+1∑

i=1

Cq,i

s− ρq,i
. (2.2)

Here {ρq,i}
a+1
i=1 are the (assumed distinct) roots of the Lundberg’s fundamental equation (in ξ)

cξ − (λ+ q) + λ
a∑

i=1

ηiαi

αi + ξ
= 0, (2.3)

and

Cq,i =

∏a
j=1(ρq,i + αj)

c
∏a+1

j=1,j 6=i(ρq,i − ρq,j)
, i = 1, 2, . . . , a+ 1. (2.4)

Therefore, by Laplace transform inversion, we obtain

W (q)(x) =
a+1∑

i=1

Cq,ie
ρq,ix, x, q ≥ 0. (2.5)
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It is well known that (2.3) has a unique non-negative root, denoted by ρq,a+1, which is also called the
right inverse of ψ(·) (see Kyprianou (2013, Chapter 2)). All other roots of (2.3), namely {ρq,i}

a
i=1, have

negative real parts.

Further define τ = inf{t ≥ 0 : Ut < 0} to be the ruin time of process U without capital injections.
Then the q-resolvent measure of U killed on exiting [0,∞) is defined by

R(q)(u, dx) =

∫ ∞

0
e−qt

P(Ut ∈ dx, τ > t|U0 = u)dt, u, x, q ≥ 0. (2.6)

From Kyprianou (2013, Theorem 5.2), there exists a density r(q)(u, x) such thatR(q)(u, dx) = r(q)(u, x)dx,
and it is given by

r(q)(u, x) = e−ρq,a+1xW (q)(u)−W (q)(u− x) =

a+1∑

i=1

Cq,i(e
ρq,iu−ρq,a+1x − eρq,i(u−x)1(u≥x)), u, x, q ≥ 0,

(2.7)
where the last equality follows from (2.5). When q is positive, it is noted that the definition (2.6) can be
rewritten as

R(q)(u, dx) =
1

q
P(Ueq ∈ dx, τ > eq|U0 = u), u, x ≥ 0; q > 0,

where eq is an independent exponential random variable with mean 1/q. For positive integer n, the above
resolvent measure is extended to

R(q)
n (u, dx) =

1

qn
P

(
U∑n

i=1
eq,i

∈ dx, τ >
n∑

i=1

eq,i

∣∣∣∣U0 = u

)
, u, x ≥ 0; q > 0, (2.8)

where {eq,i}
∞
i=1, independent of U , are i.i.d. with the same distribution as eq. Note that R

(q)
1 (u, dx) =

R(q)(u, dx). By Markov property, one has the recursive relationship

r(q)n (u, x) =

∫ ∞

0
r
(q)
n−1(u, y)r

(q)
1 (y, x)dy, n = 2, 3, . . . , (2.9)

with the starting point r
(q)
1 (u, x) = r(q)(u, x), where r

(q)
n (u, x) = R

(q)
n (u, dx)/dx is the resolvent density

of the resolvent measure R
(q)
n (u, ·).

In the remainder of this paper, we will only encounter the case q = β+ δ > 0 (since β > 0 and δ ≥ 0).
For convenience, the abbreviations ρβ+δ,i = ρi and Cβ+δ,i = Ci will be used for i = 1, 2, . . . , a + 1. The

following Proposition gives explicit results for the resolvent density r
(β+δ)
n (u, x), and the proof is given in

Appendix A.

Proposition 1 Suppose that each claim amount in the surplus process (1.1) is distributed as a combi-

nation of exponentials with density (1.6). Then the resolvent measure r
(β+δ)
n (u, x) admits the represen-

tations, for u < x,

r(β+δ)
n (u, x) =

a∑

i=1

n∑

j=1

n+1−j∑

k=1

Dn,i,j,k
uj−1

(j − 1)!

xk−1

(k − 1)!
eρiu−ρa+1x−

n∑

j=1

En,a+1,j
(u− x)j−1

(j − 1)!
eρa+1(u−x), (2.10)
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and for u ≥ x,

r(β+δ)
n (u, x) =

a∑

i=1

n∑

j=1

n+1−j∑

k=1

Dn,i,j,k
uj−1

(j − 1)!

xk−1

(k − 1)!
eρiu−ρa+1x +

a∑

i=1

n∑

j=1

En,i,j
(u− x)j−1

(j − 1)!
eρi(u−x). (2.11)

The constants in (2.10) and (2.11) for the starting point n = 1 are given by

D1,i,1,1 = Ci, i = 1, 2, . . . , a, (2.12)

E1,i,1 =− Ci, i = 1, 2, . . . , a+ 1. (2.13)

For n = 1, 2, . . ., the constants can be computed recursively via

Dn+1,i,j,k =

n+1−j∑

l=1

a∑

z=1

Dn,i,j,lCz

(ρa+1 − ρz)l
1(k=1) +Dn,i,j,k−1Ca+11(k 6=1) −

n+1−j∑

l=k

a∑

z=1

Dn,i,j,lCz

(ρa+1 − ρz)l+1−k

+ En,i,j−1Ci1(j 6=1,k=1) +
n∑

l=1

a∑

z=1,z 6=i

En,z,lCi

(ρi − ρz)l
1(j=1,k=1) −

a+1∑

z=1,z 6=i

n∑

l=j

En,i,lCz

(ρz − ρi)l+1−j
1(k=1)

+
n∑

l=1

En,a+1,lCi

(ρi − ρa+1)l
1(j=1,k=1), i = 1, 2, . . . , a; j = 1, 2, . . . , n; k = 1, 2, . . . , n+ 1− j,

(2.14)

Dn+1,i,j,n+2−j = Dn,i,j,n+1−jCa+1, i = 1, 2, . . . , a; j = 1, 2, . . . , n, (2.15)

Dn+1,i,n+1,1 = En,i,nCi, i = 1, 2, . . . , a, (2.16)

En+1,i,j =− En,i,j−1Ci1(j 6=1) −
n∑

l=1

a∑

k=1,k 6=i

En,k,lCi

(ρi − ρk)l
1(j=1) +

a+1∑

k=1,k 6=i

n∑

l=j

En,i,lCk

(ρk − ρi)l+1−j
1(j 6=n+1)

−
n∑

k=1

En,a+1,kCi

(ρi − ρa+1)k
1(j=1), i = 1, 2, . . . , a; j = 1, 2, . . . , n+ 1, (2.17)

En+1,a+1,j =−
n∑

l=1

a∑

k=1

En,k,lCa+1

(ρa+1 − ρk)l
1(j=1) − En,a+1,j−1Ca+11(j 6=1)

+
a∑

k=1

n∑

l=j

En,a+1,lCk

(ρk − ρa+1)l+1−j
1(j 6=n+1), j = 1, 2, . . . , n+ 1. (2.18)

3 Analysis of the Gerber-Shiu function

To analyze the Gerber-Shiu function φ(u; b) defined in (1.4) for the process U b with capital injections,
we condition on whether or not ruin occurs before the first capital injection time, leading to

φ(u; b) =

∫ ∞

0
e−δt

∫ ∞

0
[φ(b; b)1(0≤x≤b) + φ(x; b)1(x>b)]P(Ut ∈ dx, τ > t|U0 = u)fT (t)dt

+

∫ ∞

0
E[e−δτw(|Uτ |); τ < t|U0 = u]fT (t)dt, u ≥ 0. (3.1)
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Under the Erlang density (1.2), it is clear from the definition (2.8) and the fact that R
(β+δ)
m (u, dx) =

r
(β+δ)
m (u, x)dx one can write

∫ ∞

0
e−δt

P(Ut ∈ dx, τ > t|U0 = u)fT (t)dt =

(
β

β + δ

)m ∫ ∞

0
P(Ut ∈ dx, τ > t|U0 = u)

(β + δ)mtm−1e−(β+δ)t

(m− 1)!
dt

= βmr(β+δ)
m (u, x)dx. (3.2)

In addition, we define, for positive integer m,

ζm(u) = E

[
e−δτw(|Uτ |); τ <

m∑

j=1

eβ,j

∣∣∣∣U0 = u

]
, u ≥ 0, (3.3)

which is the Gerber-Shiu function in the classical model U for ruin occurring before an independent
Erlang(m,β) time. With (3.2) and (3.3), the integral equation (3.1) becomes

φ(u; b) = βmφ(b; b)

∫ b

0
r(β+δ)
m (u, x)dx+ βm

∫ ∞

b
r(β+δ)
m (u, x)φ(x; b)dx+ ζm(u). (3.4)

To solve the above integral equation satisfied by φ(·; b), we turn our focus to the quantity ζm(u)
appearing there. Using Markov property and (3.2), we arrive at

ζm(u) =
m−1∑

n=1

E

[
e−δτw(|Uτ |);

n∑

j=1

eβ,j < τ <
n+1∑

j=1

eβ,j

∣∣∣∣U0 = u

]
+ E[e−δτw(|Uτ |); τ < eβ,1|U0 = u]

=
m−1∑

n=1

βn
∫ ∞

0
r(β+δ)
n (u, x)ζ1(x)dx+ ζ1(u). (3.5)

It is instructive to note that

ζ1(u) = E[e−(β+δ)τw(|Uτ |); τ <∞|U0 = u] (3.6)

is simply the Gerber-Shiu function in U under the force of interest β + δ. Therefore, it follows from
Kyprianou (2013, Theorem 5.5) along with the claim density (1.6) and the resolvent density (2.7) that

ζ1(u) = λ

∫ ∞

0

∫ ∞

0
w(y)r(β+δ)(u, x)fX(x+ y)dydx =

a∑

j=1

ληjαj

(∫ ∞

0
w(y)e−αjydy

)(∫ ∞

0
e−αjxr(β+δ)(u, x)dx

)

=

a∑

j=1

ληjαj

(∫ ∞

0
w(y)e−αjydy

)( a∑

l=1

Cl
ρl − ρa+1

(αj + ρl)(αj + ρa+1)
eρlu + e−αju

a+1∑

l=1

Cl

αj + ρl

)

=

a∑

l=1

Fw,le
ρlu, (3.7)

where

Fw,l = Cl

a∑

j=1

ληjαj(ρl − ρa+1)

(αj + ρl)(αj + ρa+1)

∫ ∞

0
w(y)e−αjydy, l = 1, 2, . . . , a. (3.8)
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(The subscript ‘w’ emphasizes the dependence of Fw,l on the choice of penalty function w(·), and similar
notation will be used for other constants that subsequently appear.) In the final step of (3.7), we have
used (2.4) to see that

a+1∑

l=1

Cl

αj + ρl
=

1

c

a+1∑

l=1

∏a
k=1,k 6=j(ρl + αk)∏a+1
k=1,k 6=l(ρl − ρk)

= 0, j = 1, 2, . . . , a,

where the last identity follows from e.g. Cheung (2010, p.444). Then, applying (2.10), (2.11) and (3.7),
the integral in (3.5) is evaluated as

∫ ∞

0
r(β+δ)
n (u, x)ζ1(x)dx =

a∑

i=1

n∑

j=1

n+1−j∑

k=1

a∑

l=1

Dn,i,j,kFw,l
uj−1

(j − 1)!
eρiu

∫ ∞

0

xk−1

(k − 1)!
e−(ρa+1−ρl)xdx

+
a∑

i=1

n∑

j=1

a∑

l=1

En,i,jFw,l

∫ u

0

(u− x)j−1

(j − 1)!
eρi(u−x)+ρlxdx

−
n∑

j=1

a∑

l=1

En,a+1,jFw,l

∫ ∞

u

(u− x)j−1

(j − 1)!
eρa+1(u−x)+ρlxdx

=
a∑

i=1

n∑

j=1

n+1−j∑

k=1

a∑

l=1

Dn,i,j,kFw,l

(ρa+1 − ρl)k
uj−1

(j − 1)!
eρiu +

a∑

i=1

n+1∑

j=2

En,i,j−1Fw,i
uj−1

(j − 1)!
eρiu

+
a∑

i=1

n∑

l=1

a∑

k=1,k 6=i

En,k,lFw,i

(ρi − ρk)l
eρiu −

a∑

i=1

n∑

j=1

a∑

l=1,l 6=i

n∑

k=j

En,i,kFw,l

(ρl − ρi)k+1−j

uj−1

(j − 1)!
eρiu

+

a∑

i=1

n∑

l=1

En,a+1,lFw,i

(ρi − ρa+1)l
eρiu

=
a∑

i=1

n+1∑

j=1

Gw,n,i,j
uj−1

(j − 1)!
eρiu, (3.9)

where

Gw,n,i,j =

n+1−j∑

k=1

a∑

l=1

Dn,i,j,kFw,l

(ρa+1 − ρl)k
+ En,i,j−1Fw,i1(j 6=1) +

n∑

l=1

a∑

k=1,k 6=i

En,k,lFw,i

(ρi − ρk)l
1(j=1)

−
a∑

l=1,l 6=i

n∑

k=j

En,i,kFw,l

(ρl − ρi)k+1−j
+

n∑

l=1

En,a+1,lFw,i

(ρi − ρa+1)l
1(j=1), i = 1, 2 . . . , a; j = 1, 2, . . . , n,

Gw,n,i,n+1 = En,i,nFw,i, i = 1, 2, . . . , a.

Some details have been omitted in obtaining the second equality of (3.9) since the steps are very similar
to the analysis of I1(u, x) and I2(u, x) in the proof of Proposition 1. Consolidating (3.5)-(3.9), it is found
that ζm(u) can be represented as

ζm(u) =
m−1∑

n=1

a∑

i=1

n+1∑

j=1

βnGw,n,i,j
uj−1

(j − 1)!
eρiu +

a∑

i=1

Fw,ie
ρiu =

a∑

i=1

m∑

j=1

Hw,m,i,j
uj−1

(j − 1)!
eρiu, (3.10)

where

Hw,m,i,j =

m−1∑

n=max(1,j−1)

βnGw,n,i,j + Fw,i1(j=1), i = 1, 2, . . . , a; j = 1, 2, . . . ,m. (3.11)
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Now we return to the Gerber-Shiu function φ(u; b). It is important to note that when 0 ≤ u < b
equation (3.4) simply expresses φ(u; b) in terms of {φ(x; b) : x ≥ b}. Therefore, it suffices to solve
the integral equation (3.4) for {φ(u; b) : u ≥ b}. The following Proposition shows that (3.4) can be
transformed into an ordinary differential equation when u ≥ b.

Proposition 2 Suppose that each claim amount in the surplus process (1.3) is distributed as a combina-
tion of exponentials with density (1.6). Then the Gerber-Shiu function φ(u; b) satisfies the homogeneous
ordinary differential equation

[
a+1∏

k=1

(
d

du
− ρk

)m
]
φ(u; b) =

a+1∑

i=1

m∑

j=1

βmEm,i,j

[
a+1∏

k=1,k 6=i

(
d

du
− ρk

)m
](

d

du
− ρi

)m−j

φ(u; b), u ≥ b,

(3.12)
where Em,i,j’s are given in Proposition 1.

Proof. Throughout the proof we consider the domain u ≥ b. We begin with the analysis of the first
term in (3.4). By applying a binomial expansion to the term involving (u − x)j−1 in (2.11) followed by
a change of order of summations, we arrive at

βm
∫ b

0
r(β+δ)
m (u, x)dx =

a∑

i=1

m∑

j=1

m+1−j∑

k=1

βmDm,i,j,k
uj−1

(j − 1)!
eρiu

∫ b

0

xk−1

(k − 1)!
e−ρa+1xdx

+
a∑

i=1

m∑

j=1

j∑

k=1

βmEm,i,j
uk−1

(k − 1)!
eρiu

∫ b

0

(−x)j−k

(j − k)!
e−ρixdx

=
a∑

i=1

m∑

j=1

Pm,i,j(b)
uj−1

(j − 1)!
eρiu, (3.13)

where

Pm,i,j(b) =

m+1−j∑

k=1

βmDm,i,j,k

∫ b

0

xk−1

(k − 1)!
e−ρa+1xdx+

m∑

k=j

βmEm,i,k

∫ b

0

(−x)k−j

(k − j)!
e−ρixdx (3.14)

=

m+1−j∑

k=1

βmDm,i,j,k

(
1

ρka+1

−
k∑

l=1

1

ρk+1−l
a+1

bl−1

(l − 1)!
e−ρa+1b

)

+
m∑

k=j

βmEm,i,k(−1)k−j

(
1

ρk−j+1
i

−

k−j+1∑

l=1

1

ρk−j+2−l
i

bl−1

(l − 1)!
e−ρib

)
,

i = 1, 2, . . . , a; j = 1, 2, . . . ,m. (3.15)

Next, using (2.10) and (2.11), the second term in (3.4) can be written as

βm
∫ ∞

b
r(β+δ)
m (u, x)φ(x; b)dx =

a∑

i=1

m∑

j=1

(
m+1−j∑

k=1

βmDm,i,j,k

∫ ∞

b

xk−1

(k − 1)!
e−ρa+1xφ(x; b)dx

)
uj−1

(j − 1)!
eρiu

+
a∑

i=1

m∑

j=1

βmEm,i,j

∫ u

b

(u− x)j−1

(j − 1)!
eρi(u−x)φ(x; b)dx
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−
m∑

j=1

βmEm,a+1,j

∫ ∞

u

(u− x)j−1

(j − 1)!
eρa+1(u−x)φ(x; b)dx. (3.16)

We shall proceed by applying the operator
∏a+1

k=1(d/du− ρk)
m to (3.4). Thanks to the Erlang repre-

sentations (3.10) and (3.13) along with the fact that (d/du− ρi)
j(uj−1eρiu) = 0, one has that

[
a+1∏

k=1

(
d

du
− ρk

)m
]
ζm(u) = 0, (3.17)

[
a+1∏

k=1

(
d

du
− ρk

)m
]
βm
∫ b

0
r(β+δ)
m (u, x)dx = 0. (3.18)

Similarly, as the first summation term in (3.16) also vanishes after operation, we obtain
[
a+1∏

k=1

(
d

du
− ρk

)m
]
βm
∫ ∞

b
r(β+δ)
m (u, x)φ(x; b)dx

=
a∑

i=1

m∑

j=1

βmEm,i,j

[
a+1∏

k=1

(
d

du
− ρk

)m
]∫ u

b

(u− x)j−1

(j − 1)!
eρi(u−x)φ(x; b)dx

−
m∑

j=1

βmEm,a+1,j

[
a+1∏

k=1

(
d

du
− ρk

)m
]∫ ∞

u

(u− x)j−1

(j − 1)!
eρa+1(u−x)φ(x; b)dx

=
a+1∑

i=1

m∑

j=1

βmEm,i,j

[
a+1∏

k=1,k 6=i

(
d

du
− ρk

)m
](

d

du
− ρi

)m−j

φ(u; b). (3.19)

In the last equality, we have used the fact that
(
d

du
− ρi

)j ∫ u

b

(u− x)j−1

(j − 1)!
eρi(u−x)φ(x; b)dx = φ(u; b),

(
d

du
− ρa+1

)j ∫ ∞

u

(u− x)j−1

(j − 1)!
eρa+1(u−x)φ(x; b)dx = − φ(u; b),

which can be readily verified by successive differentiation. Hence, incorporating (3.17)-(3.19) to (3.4),
the result (3.12) follows.

The ordinary differential equation (3.12) has characteristic equation (in ξ)

a+1∏

k=1

(ξ − ρk)
m =

a+1∑

i=1

m∑

j=1

βmEm,i,j

[
a+1∏

k=1,k 6=i

(ξ − ρk)
m

]
(ξ − ρi)

m−j , (3.20)

which has a total of m(a+1) roots. The following Proposition provides an equivalent equation to (3.20)
such that m of the roots are on the right half of the complex plane. The proof is given in Appendix B.

Proposition 3 With the claim amount distributed as a combination of exponentials with density (1.6),
the characteristic equation (3.20) is equivalent to

(
β

β + δ − ψ(ξ)

)m

= 1, (3.21)

and has exactly m roots with non-negative real parts.
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Equation (3.21) can be regarded as the Lundberg’s fundamental equation for the present model with
periodic capital injections. Although (3.20) and (3.21) are equivalent, it is usually more convenient to
solve (3.21) for the Lundberg’s roots: (3.21) only involves the Laplace exponent ψ(·) and the model
parameters β and δ whereas (3.20) requires the constants Em,i,j ’s computed recursively from Proposition

1. The roots of (3.20) or (3.21) are denoted by {sm,n}
m(a+1)
n=1 and assumed to be distinct. Without loss

of generality, we let {sm,n}
m(a+1)
n=ma+1 be the m roots with non-negative real parts. The solution to the

Gerber-Shiu function φ(u; b) is given in the next Proposition.

Proposition 4 Suppose that each claim amount in the surplus process (1.3) is distributed as a combi-
nation of exponentials with density (1.6), and the regular condition limu→∞ φ(u; b) = 0 holds. Then the
Gerber-Shiu function φ(u; b) admits the explicit representation

φ(u; b) =
ma∑

n=1

Aw,m,n(b)e
sm,nu, u ≥ b, (3.22)

where {sm,n}
ma
n=1 are the roots of (3.21) with negative real parts, and the constants {Aw,m,n(b)}

ma
n=1 can

be solved from the system of ma linear equations comprising

ma∑

n=1

Aw,m,n(b)(Pm,i,j(b)e
sm,nb +Qm,n,i,j(b)) +Hw,m,i,j = 0, i = 1, 2, . . . , a; j = 1, 2, . . . ,m. (3.23)

In (3.23), the constants Qm,n,i,j(b)’s are defined by

Qm,n,i,j(b) =

m+1−j∑

k=1

k∑

l=1

βmDm,i,j,k

(ρa+1 − sm,n)k+1−l

bl−1

(l − 1)!
e−(ρa+1−sm,n)b −

m∑

k=j

k∑

l=j

βmEm,i,k

(sm,n − ρi)k+1−l

(−b)l−j

(l − j)!
e(sm,n−ρi)b,

i = 1, 2, . . . , a; j = 1, 2, . . . ,m, (3.24)

whereas Pm,i,j(b)’s and Hw,m,i,j’s are given by (3.15) and (3.11) respectively.

Proof. The solution form (3.22) is a direct consequence of Propositions 2 and 3 and the assump-
tion limu→∞ φ(u; b) = 0. A sufficient condition for the regular condition to hold is that the penalty
function w(·) is bounded (say, by a non-negative constant W ). Then, it is immediate that φ(u; b) ≤
WE[e−δτb1(τb<∞)|U

b
0 = u] ≤ WE[e−δτ1(τ<∞)|U0 = u], and the last quantity tends to zero as u → ∞

under δ > 0 or the loading condition c > λEX.

Now, it remains to determine the unknown constants {Aw,m,n(b)}
ma
n=1. To this end, we shall use the

integral equation (3.4) for u ≥ b. Since the first and third terms on the right-hand side of (3.4) are
already explicitly known from (3.13) and (3.10), we focus on using (3.22) to compute the second term,
or equivalently (3.16). By (A.7), the first summation term in (3.16) equals

a∑

i=1

m∑

j=1

m+1−j∑

k=1

k∑

l=1

ma∑

n=1

Aw,m,n(b)
βmDm,i,j,k

(ρa+1 − sm,n)k+1−l

bl−1

(l − 1)!
e−(ρa+1−sm,n)b uj−1

(j − 1)!
eρiu.

Next, applying (A.6) along with a binomial expansion and a change of order of summations, the second
summation term in (3.16) is found to be

a∑

i=1

m∑

j=1

ma∑

n=1

Aw,m,n(b)β
mEm,i,je

sm,nu

∫ u−b

0

xj−1

(j − 1)!
e−(sm,n−ρi)xdx
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=
a∑

i=1

m∑

j=1

ma∑

n=1

Aw,m,n(b)
βmEm,i,j

(sm,n − ρi)j
esm,nu −

a∑

i=1

m∑

j=1

ma∑

n=1

j∑

k=1

Aw,m,n(b)
βmEm,i,je

(sm,n−ρi)b

(sm,n − ρi)j+1−k

(u− b)k−1

(k − 1)!
eρiu

=
a∑

i=1

m∑

j=1

ma∑

n=1

Aw,m,n(b)
βmEm,i,j

(sm,n − ρi)j
esm,nu

−
a∑

i=1

m∑

j=1

m∑

k=j

ma∑

n=1

k∑

l=j

Aw,m,n(b)
βmEm,i,k

(sm,n − ρi)k+1−l

(−b)l−j

(l − j)!
e(sm,n−ρi)b

uj−1

(j − 1)!
eρiu.

Finally, the third summation term in (3.16) (including the minus sign) is

m∑

j=1

ma∑

n=1

Aw,m,n(b)
βmEm,a+1,j

(sm,n − ρa+1)j
esm,nu.

Combining the above three expressions, (3.16) becomes

βm
∫ ∞

b
r(β+δ)
m (u, x)φ(x; b)dx =

a∑

i=1

m∑

j=1

ma∑

n=1

Aw,m,n(b)Qm,n,i,j(b)
uj−1

(j − 1)!
eρiu

+
a+1∑

i=1

m∑

j=1

ma∑

n=1

Aw,m,n(b)
βmEm,i,j

(sm,n − ρi)j
esm,nu, (3.25)

where Qm,n,i,j(b)’s are given by (3.24).

With (3.10), (3.13), (3.22) and (3.25), the integral equation (3.4) reduces to

ma∑

n=1

Aw,m,n(b)e
sm,nu =

a+1∑

i=1

m∑

j=1

ma∑

n=1

Aw,m,n(b)
βmEm,i,j

(sm,n − ρi)j
esm,nu +

a∑

i=1

m∑

j=1

Hw,m,i,j
uj−1

(j − 1)!
eρiu

+

a∑

i=1

m∑

j=1

ma∑

n=1

Aw,m,n(b)(Pm,i,j(b)e
sm,nb +Qm,n,i,j(b))

uj−1

(j − 1)!
eρiu,

which is true for u ≥ b. Comparing the coefficients of esm,nu leads to no information because each sm,n is

a root of the characteristic equation (3.20). On the other hand, by matching the coefficients of uj−1

(j−1)!e
ρiu,

one asserts that {Aw,m,n(b)}
ma
n=1 satisfy (3.23).

4 Analysis of expected discounted cost of capital injections

In this section, we study the expected total discounted cost incurred by capital injections V (u; b) defined
in (1.5). Since much of the derivation is very similar to that in Section 3, some details will be omitted.
But we require the following Lemma which is concerned with the limiting behaviour of V (u; b) as u→ ∞.
The proof is provided in Appendix C.

Lemma 1 Suppose that the cost function χ(·) is bounded on (0, b]. If δ > 0 or the loading condition
c > λEX holds, then

lim
u→∞

V (u; b) = 0. (4.1)
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Next, using the logic leading to (3.4), it is clear that V (·; b) satisfies the integral equation

V (u; b) = βm
∫ b

0
r(β+δ)
m (u, x)[χ(b− x) + V (b; b)]dx+ βm

∫ ∞

b
r(β+δ)
m (u, x)V (x; b)dx, u ≥ 0. (4.2)

Although the above equation is valid for u ≥ 0, following the comments before Proposition 2, we only
need to solve it for {V (u; b) : u ≥ b}. The next two Propositions are the analogues of Propositions 2 and
4.

Proposition 5 Suppose that each claim amount in the surplus process (1.3) is distributed as a combi-
nation of exponentials with density (1.6). Then the expected discounted cost of capital injections V (u; b)
satisfies the homogeneous ordinary differential equation
[
a+1∏

k=1

(
d

du
− ρk

)m
]
V (u; b) =

a+1∑

i=1

m∑

j=1

βmEm,i,j

[
a+1∏

k=1,k 6=i

(
d

du
− ρk

)m
](

d

du
− ρi

)m−j

V (u; b), u ≥ b,

(4.3)
where Em,i,j’s are given in Proposition 1.

Proof. To prove (4.3), the operator
∏a+1

k=1(d/du − ρk)
m is applied to (4.2). We start with the integral

term in (4.2) involving χ(·). By slightly modifying (3.13) and (3.14), we obtain

βm
∫ b

0
r(β+δ)
m (u, x)χ(b− x)dx =

a∑

i=1

m∑

j=1

Hχ,m,i,j(b)
uj−1

(j − 1)!
eρiu, (4.4)

where

Hχ,m,i,j(b) =

m+1−j∑

k=1

βmDm,i,j,k

∫ b

0
χ(b− x)

xk−1

(k − 1)!
e−ρa+1xdx+

m∑

k=j

βmEm,i,k

∫ b

0
χ(b− x)

(−x)k−j

(k − j)!
e−ρixdx,

i = 1, 2, . . . , a; j = 1, 2, . . . ,m, (4.5)

depend on the choice of cost function χ(·). The Erlang form of (4.4) implies that this term vanishes
after applying the operator

∏a+1
k=1(d/du − ρk)

m. In addition, following the proof of Proposition 2, it is
immediate to see that (3.19) is still valid (with φ(·; b) replaced by V (·; b)), and so is (3.18). Combining
these observations yields (4.3).

Proposition 6 Suppose that each claim amount in the surplus process (1.3) is distributed as a com-
bination of exponentials with density (1.6), and the regular condition limu→∞ V (u; b) = 0 in Lemma 1
holds. Then the expected total discounted cost of capital injections before ruin V (u; b) admits the explicit
representation

V (u; b) =
ma∑

n=1

Bχ,m,n(b)e
sm,nu, u ≥ b, (4.6)

where {sm,n}
ma
n=1 are the roots of (3.21) with negative real parts, and the constants {Bχ,m,n(b)}

ma
n=1 can

be solved from the system of ma linear equations comprising

ma∑

n=1

Bχ,m,n(b)(Pm,i,j(b)e
sm,nb +Qm,n,i,j(b)) +Hχ,m,i,j(b) = 0, i = 1, 2, . . . , a; j = 1, 2, . . . ,m. (4.7)

In (4.7), the constants Pm,i,j(b)’s, Qm,n,i,j(b)’s and Hχ,m,i,j(b)’s are given by (3.15), (3.24) and (4.5)
respectively.
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Proof. As the characteristic equation of the homogeneous differential equation (4.3) is identical to (3.20)
(and also (3.21) according to Proposition 3), the solution form (4.6) follows from condition (4.1). To
determine the unknown constants {Bχ,m,n(b)}

ma
n=1, (4.6) is substituted back into (4.2). Note that (3.25)

still holds true but with φ(·; b) and Aw,m,n(b) replaced by V (·; b) and Bχ,m,n(b) respectively. Further

utilizing (3.13), equating the coefficients of uj−1

(j−1)!e
ρiu in the substituted (4.2) results in (4.7).

5 Numerical examples

In this section, we shall apply the theoretical results derived in Sections 2-4 to provide some numerical
examples. For u ≥ b, the Gerber-Shiu function φ(u; b) and the expected discounted cost of capital
injections before ruin V (u; b) are calculated by Propositions 4 and 6. Then, for 0 ≤ u < b, the values of
φ(u; b) and V (u; b) are computed via (3.4) and (4.2). (Although the integrals in (3.4) and (4.2) can be
evaluated explicitly since the components involved are known functions, the tedious but straightforward
details are omitted for brevity.)

5.1 Poissonian observer and exponential claims

We start with the simplest case where both the inter-capital-injection times and the claim amounts are
exponentially distributed, i.e. their densities are fT (t) = βe−βt and fX(x) = α1e

−α1x respectively by
letting m = 1 and a = 1 in (1.2) and (1.6). Due to the memoryless property of exponential claims (and
the fact that the event of ruin is always monitored continuously), given that ruin occurs the deficit at
ruin |U b

τb
| follows the same exponential distribution as the individual claim. Therefore, as far as the

Gerber-Shiu function φ(u; b) is concerned, it is sufficient to consider the special case w(·) ≡ 1 so that
φ(u; b) corresponds to the Laplace transform of the ruin time.

5.1.1 Exact results for continuous observation

Note that if β → ∞ then the surplus process U b is observed continuously for capital injections, i.e.
whenever the surplus falls below the critical level b, capital is injected immediately to restore it to b,
which is exactly the model considered by Nie et al. (2011). At the limit, the functions φ(u; b) and
V (u; b) will be respectively denoted by φ∞(u; b) and V∞(u; b), which are provided below for the sake
of completeness. Under the cost function χ(x) = x for x ∈ (0, b], the quantity V∞(u; b) becomes the
expected present value of capital injected before ruin, which was derived by Nie et al. (2011, Section 5.1)
as

V∞(u; b) = φ(u− b)

{
1

α1
[1− e−α1b(1 + α1b)] + V∞(b; b)(1− e−α1b)

}
, u ≥ b, (5.1)

where

V∞(b; b) =
φ(0) 1

α1
[1− e−α1b(1 + α1b)]

1− φ(0)(1− e−α1b)
.

Here

φ(u) =
α1 + s1,1

α1
es1,1u, u ≥ 0, (5.2)

is the Laplace transform of the ruin time pertaining to the classical model U without capital injections
given by Gerber and Shiu (1998, Equation (5.38)), where

s1,1 = −
(cα1 − λ− δ) +

√
(cα1 − λ− δ)2 + 4cα1δ

2c
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is the negative root of (3.21) (which is now a quadratic equation). For Laplace transform of the ruin time
φ∞(u; b), we need to slightly modify the results in Nie et al. (2011) who considered the ruin probability.
Omitting the details, it is found that φ∞(u; b) admits the explicit expression

φ∞(u; b) = φ(u− b)
{
e−α1b + φ∞(b; b)(1− e−α1b)

}
, u ≥ b, (5.3)

where

φ∞(b; b) =
φ(0)e−α1b

1− φ(0)(1− e−α1b)
.

For 0 ≤ u < b, capital is immediately injected at time zero if the surplus starts below b under continuous
checking for capital injections. Hence, one has the definitions

V∞(u; b) = b− u+ V∞(b; b), 0 ≤ u < b, (5.4)

and
φ∞(u; b) = φ∞(b; b), 0 ≤ u < b. (5.5)

5.1.2 Impact of injection frequency β and optimization from shareholders’ viewpoint

We begin by looking at the impact of the parameter β on φ(u; b) and V (u; b) in Example 1, where β can
be interpreted as the frequency of checking the process for capital injections.

Example 1 (Impact of β on φ(u; b) and V (u; b)) In this example, the Poisson claim arrival rate is
assumed to be λ = 1 and each claim size is exponential with parameter α1 = 1. Let c = 1.2 be the
premium rate (so that the loading condition holds). The critical level for capital injections is chosen to
be b = 5, and both the Laplace transform argument in φ(u; b) and the force of interest used to discount
the injections are δ = 0.1. In Figure 2, φ(u; b) (under the penalty w(·) ≡ 1) and V (u; b) (under the cost
function χ(x) = x for x ∈ (0, b]) are plotted against u ≥ 0 for exponential inter-capital-injection times
with parameters β = 1, 5, 10, 50, 100, and the curves for φ∞(u; b) and V∞(u; b) computed by (5.1) and
(5.3)-(5.5) are also provided and labelled as β = ∞.
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Figure 2: The impact of the parameter β: (a) the Laplace transform of the ruin time; (b) the expected
discounted capital injections until ruin
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For fixed initial surplus u, we first observe from Figure 2(a) that φ(u; b) is decreasing in β while
V (u; b) in Figure 2(b) is increasing in β. The reason is clear: a larger β means more frequent (check for)
capital injections and hence the event of ruin is delayed. As β → ∞, one retrieves the case of continuous
checking, and it is noted that φ(u; b) → φ∞(u; b) and V (u; b) → V∞(u; b) for u ≥ 0.

From Figure 2(a), it is seen that for each fixed β the Laplace transform of the ruin time φ(u; b) is
decreasing in u. This must be the case because (for the same realization of the aggregate claims process
{
∑Nt

i=1Xi}t≥0 and capital injection times {Zi}
∞
i=1) an insurer possessing a larger amount of initial surplus

must ruin no earlier than one with smaller initial surplus. However, Figure 2(b) shows that V (u; b) is
decreasing in u only for β = 5, 10, 50, 100,∞, but it first increases and then decreases in u when β = 1.
Intuitively, when the initial surplus u increases, there are two opposing effects to the amount of injected
capital. On one hand, with a larger initial surplus the process is more likely to be above the critical level
b at the capital injection times, thereby reducing the need for capital injections. On the other hand, a
larger u also means that the surplus process survives longer and hence there could be potentially more
capital injections at later times. Under these competing factors, V (u; b) is not necessarily monotone in
u. Figure 2(b) suggests that the former effect always dominates when β = 5, 10, 50, 100,∞. However,
when β = 1 the latter effect dominates for small initial surplus. This is because when u is quite small
and checking for capital injections occurs infrequently, the process may just ruin before the surplus is
ever checked for capital injections, but a slight increase in u could increase the chance of ever having a
capital injection and the amount of the first injection in such case could be large as the surplus starts
far below the critical level b. Although each curve in both Figures 2(a) and 2(b) seemingly has a kink at
u = 5, we have zoomed in the figures (which are not reproduced here) and found that the functions are
indeed smoothly pasted at u = 5 when β = 5, 10, 50, 100 but not when β = ∞ (see Remark 2 below for
more explanations). �

Remark 2 The smooth pasting property can indeed be analyzed for general claim density fX(·) and
Erlang(n) inter-capital-injection times using the same steps as in Avanzi et al. (2013, Sections 2.1 and
3.1). While φ′(b−; b) = φ′(b+; b) is found to be valid for any penalty function w(·), the smooth pasting
V ′(b−; b) = V ′(b+; b) holds true only when the cost function is such that χ(0+) = 0, which is satisfied
by χ(x) = x in the case of expected discounted capital injections. (It is understood that the above
derivatives are taken with respect to the first argument.) The details are omitted here for brevity. �

As discussed in the introduction, it is of the shareholders’ interest to minimize V (u; b) + Kφ(u; b)
for some constant K ≥ 0 as the owners of the insurance company are responsible for making capital
injections and paying a penalty applied at ruin that possibly depends on the deficit. See Dickson and
Waters (2004) for related discussions. The constant K can be regarded as a weight assigned to φ(u; b): if
K is small then one puts more emphasis on minimizing the expected discounted cost of capital injections;
but if K is set to be large then the insurer is more concerned about the penalty in the event of ruin. The
optimization with respect to the injection frequency is performed in the next example.

Example 2 (Minimizing capital injections plus penalty at ruin with respect to β) We follow the same
model parameters as in Example 1 in that λ = 1, α1 = 1, c = 1.2, b = 5, δ = 0.1, w(·) ≡ 1 and
χ(x) = x for x ∈ (0, b]. The initial surplus is fixed to be u = 4 throughout. (Note that in this setting
φ(u; b) also represents the expected discounted deficit since the deficit follows an independent exponential
distribution with mean 1 given that ruin occurs.)

Figure 3(a) plots V (u; b) + Kφ(u; b) as a function of β for fixed K = 0, 10, 20, 30, 40. Recall from
Example 1 that φ(u; b) is decreasing while V (u; b) is increasing in β. When K = 0, 10, the increasing
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Figure 3: Plot of V (4; 5) + Kφ(4; 5) against β: (a) K = 0, 10, 20, 30, 40; (b) optimization at a positive
finite β when K = 20

pattern of V (4; 5) dominates and hence V (4; 5) + Kφ(4; 5) is increasing in β so that β∗ = 0 (i.e. the
process is never checked for capital injections) will minimize V (4; 5) + Kφ(4; 5). On the other hand,
when K is large at K = 30, 40, the decreasing pattern of φ(4; 5) dominates such that V (4; 5) +Kφ(4; 5)
is decreasing in β and therefore β∗ = ∞ (i.e. continuous check for capital injections) will minimize
V (4; 5) + Kφ(4; 5). Among the five values of K chosen, V (4; 5) + Kφ(4; 5) first decreases and then
increases in β only when K = 20. Since this is not obvious from Figure 3(a), such a case is plotted again
in Figure 3(b) with a magnified y-axis in order to depict that there is a positive finite value β∗ that
minimizes V (4; 5)+20φ(4; 5). It is found that β∗ = 2.5874 and the minimized value of V (4; 5)+20φ(4; 5)
equals 3.0895. �

5.1.3 Optimal reinsurance to minimize ruin probability

We shall first demonstrate how V (u; b) can be applied to price a perpetual reinsurance contract. The
idea of perpetual reinsurance was proposed by Pafumi (1998) and Dickson and Waters (2004), where a
reinsurer immediately makes the necessary payments to bring the insurer’s surplus back to zero whenever
it drops below zero due to a claim. In this paper, the above perpetual reinsurance is readily modified as
follows. At each capital injection time Zi, if the surplus process drops below the critical level b > 0, then
the reinsurer will make the payments to restore the surplus to level b provided that ruin has not occurred
in the interim. Assume that the insurance company possesses an initial surplus of U∗ ≥ 0, and it pays
part of U∗ as a net single premium to a reinsurer at time zero in return for the reinsurance payments.
Taking into account the fact that paying the reinsurance premium reduces the insurer’s initial surplus
and denoting the price of the perpetual reinsurance by RP, then RP∈ (0, U∗] (if it exists) satisfies the
equation

RP = V (U∗ − RP; b), (5.6)

where V (u; b) is calculated under a cost function χ(·) agreed by the insurer and the reinsurer. Note that
the insurer effectively starts at the surplus level U∗ − RP after purchasing reinsurance. In general, the
above equation has to be solved numerically although explicit expressions for V (u; b) is available.
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Example 3 (Pricing reinsurance contract) We follow similar parameter settings as in Example 1, and
set λ = 1 and c = 1.2 and assume exponential claims with α1 = 1. The inter-capital-injection times are
also exponential but with parameter β = 2. We are interested in calculating the reinsurance premium RP
using (5.6). Assuming that the reinsurer has a 50% loading factor, V (u; b) appearing in (5.6) is computed
under the cost function χ(x) = 1.5x for x ∈ (0, b], and a force of interest δ = 0.1 is used to discount the
injections.

Table 1: Exact values of reinsurance premium
b \ U∗ 2 4 6 8 10 12 14 16 18 20

1 0.10816 0.05455 0.02778 0.01419 0.00727 0.00373 0.00191 0.00098 0.00050 0.00026
2 NA 0.38060 0.18295 0.09110 0.04607 0.02348 0.01201 0.00615 0.00316 0.00162
3 NA 3.43539 0.55877 0.25966 0.12757 0.06413 0.03258 0.01664 0.00852 0.00437
4 NA NA 1.46495 0.55543 0.25827 0.12692 0.06381 0.03242 0.01656 0.00848
5 NA NA NA 1.10256 0.45638 0.21629 0.10708 0.05401 0.02749 0.01405
6 NA NA NA 7.74752 0.77389 0.34432 0.16661 0.08320 0.04213 0.02148
7 NA NA NA NA 1.38925 0.53685 0.25054 0.12329 0.06202 0.03152
8 NA NA NA NA 9.93625 0.85310 0.37325 0.17966 0.08951 0.04528
9 NA NA NA NA NA 1.49204 0.56181 0.26091 0.12816 0.06442
10 NA NA NA NA NA NA 0.87654 0.38158 0.18339 0.09131
11 NA NA NA NA NA NA 1.52225 0.56875 0.26378 0.12950
12 NA NA NA NA NA NA NA 0.88292 0.38383 0.18439

Table 2: Combinations of (U∗, b) with multiple reinsurance premiums
(U∗, b) RP1 RP2 RP3

(10,7) 1.38925 5.25865 9.11847
(12,9) 1.49204 4.87474 11.51230
(14,10) 0.87654 8.27653 12.97092
(14,11) 1.52225 4.78336 13.68106
(16,11) 0.56875 12.01898 14.03225
(16,12) 0.88292 8.13849 15.30299

The exact values of the reinsurance premium RP for various pairs of (U∗, b) are presented in Table
1. The word ‘NA’ indicates cases where RP does not exist, i.e. even the entire initial surplus U∗ is
insufficient to purchase reinsurance. These entries happen mostly when the critical level b is no less than
U∗. Although V (u; b) is not always decreasing in u (see the blue line in Figure 4 as well as the discussions
in Example 1), within Table 1 one observes that RP is decreasing in U∗ across each row, suggesting that
an insurer with higher initial surplus pays less reinsurance premium. Furthermore, from each column of
Table 1, we see that RP is increasing in b, meaning that it is more expensive for the insurer to purchase
a reinsurance contract that injects capital to bring the surplus to a higher level b at a capital injection
time. Interestingly, it is found that the RP value exists but is not unique for six pairs of (U∗, b), and
the corresponding cells are in bold in Table 1 (where we have chosen the smallest value of RP). In each
case, there are three values of RP satisfying (5.6) (denoted by RPi for i = 1, 2, 3 in increasing order),
and the results are summarized in Table 2. In particular, to see how multiple solutions occur when
(U∗, b) = (10, 7), we plot x and V (U∗−x; b) as function of x in Figure 4, and the intersections of the two
curves satisfy (5.6). (The plots for the other five cases are very similar and thus omitted.) For each of
the six cases, after paying RP1 as reinsurance premium, the process still starts above the critical level b

19



2 4 6 8 10
x

2

4

6

8

10

VH10-x;7L

x
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Table 3: Ruin probabilities after reinsurance
b \ U∗ 2 4 6 8 10 12 14 16 18 20

Classical 0.59711 0.42785 0.30657 0.21966 0.15740 0.11278 0.08081 0.05790 0.04149 0.02973
1 0.59243 0.42072 0.30012 0.21456 0.15356 0.10996 0.07877 0.05643 0.04043 0.02897
2 NA 0.38955 0.27008 0.19058 0.13554 0.09675 0.06919 0.04953 0.03547 0.02541
3 NA 0.44419 0.22057 0.15036 0.10539 0.07472 0.05326 0.03806 0.02724 0.01950
4 NA NA 0.17446 0.10742 0.07325 0.05135 0.03641 0.02595 0.01855 0.01327
5 NA NA NA 0.07348 0.04727 0.03254 0.02290 0.01626 0.01160 0.00829
6 NA NA NA 0.25285 0.02957 0.01972 0.01372 0.00970 0.00690 0.00493
7 NA NA NA NA 0.01891 0.01176 0.00803 0.00563 0.00400 0.00285
8 NA NA NA NA 0.25407 0.00706 0.00467 0.00324 0.00229 0.00163
9 NA NA NA NA NA 0.00444 0.00272 0.00186 0.00130 0.00092
10 NA NA NA NA NA NA 0.00162 0.00107 0.00074 0.00052
11 NA NA NA NA NA NA 0.00101 0.00062 0.00042 0.00030
12 NA NA NA NA NA NA NA 0.00037 0.00024 0.00017

as U∗−RP1 > b, and this leads to the lowest ruin probability (given in Table 3) compared to paying RP2

or RP3. But if the insurer instead chooses to pay RP2 or RP3, then its surplus will go below the critical
level b at the beginning. (Recall that time zero is not assumed to be a capital injection time.) This not
only results in higher ruin probability but also brings more extremes to the amount of injection: there
could potentially be a big injection especially at the first capital injection time if ruin has not occurred
yet; but the process may have ruined before the first capital injection time due to insufficient surplus and
then no capital will ever be injected.

Finally, the resulting ruin probabilities after applying the reinsurance premium in Table 1 are given
in Table 3, and these are calculated as φ(U∗ −RP; b) under the penalty w(·) ≡ 1 and Laplace transform
argument δ = 0. For comparison, we have additionally provided the ruin probabilities φ(U∗) for the
classical case without reinsurance computed via (5.2) under δ = 0. (One may regard each ‘NA’ entry in
Table 3 to follow the classical ruin probability in the same column, since the non-existence of RP means
that no reinsurance is purchased.) When RP exists, we note that reinsurance (compared to the absence
of reinsurance) always reduces the ruin probability except for three pairs of (U∗, b), namely (4, 3), (8, 6)
or (10, 8), which are in bold. Further examination of Table 1 reveals that these exceptions are the only
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cases where purchasing reinsurance brings the initial surplus below the critical level b (i.e. U∗−RP < b).
In these three cases, RP is unique but it is so big such that the value of U∗ − RP is quite small, which
gives rise to a higher ruin probability than without reinsurance. �

Understanding from the above Example 3 that ruin probability can be reduced via reinsurance, it is
of the insurer’s interest to find the reinsurance contract that minimizes the ruin probability. This can be
formulated as follows. At time zero, the insurer holds an amount of capital U∗ and decides to allocate
u as the initial surplus. The remaining U∗ − u = V (u; b) is used to buy a reinsurance with critical level
b (that is described before Example 3). Therefore, we would like to search for the optimal pair of (u, b),
namely (u∗, b∗), that minimizes the ruin probability φ(u; b) (under w(·) ≡ 1 and δ = 0) subject to the
constraint U∗ = u+ V (u; b). See also Nie et al. (2011, Section 4) for the descriptions of such an optimal
reinsurance strategy under continuous check for injections. Intuitively, a higher (resp. lower) reinsurance
premium V (u; b) can be used to purchase better (worse) reinsurance contract which leads to higher (resp.
lower) safety, but at the same time this results in a lower (resp. higher) retained capital u which makes
the process more (resp. less) dangerous. Such a trade-off makes optimization possible. More idea is
illustrated in the next example, which complements Nie et al. (2011, Example 5.1.1).

Example 4 (Optimal reinsurance strategy) We use the same parameters as in Example 3 and set λ = 1,
c = 1.2, α1 = 1 and β = 2. The price of reinsurance V (u; b) is calculated under χ(x) = 1.5x (for
x ∈ (0, b]) and δ = 0.1 whereas the ruin probability is computed from the Gerber-Shiu function φ(u; b)
with w(·) ≡ 1 and δ = 0.
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Figure 5: Ruin probabilities subject to the constraint U∗ = u+ V (u; b)

Table 4: Optimal reinsurance strategy (u∗, b∗)
U∗ u∗ b∗ φ(u∗; b∗) φ(U∗)

2 1.5734 1.6026 0.58618 0.59711
4 2.8013 2.8532 0.35888 0.42785
6 4.1651 4.1845 0.17101 0.30657
8 5.8319 5.7482 0.05957 0.21966
10 7.7200 7.5495 0.01612 0.15740

For U∗ = 2, 4, 6, 8, 10, the ruin probabilities under the constraint U∗ = u + V (u; b) are plotted in
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Figure 5, where the dotted lines represent the values of φ(U∗) (i.e. ruin probabilities without reinsurance).
Specifically, to obtain each curve (fixed U∗) in Figure 5, we first fix u ∈ [0, U∗] and find the value of b
(say bu) such that U∗ − u = V (u; b). Since V (u; b) is increasing in b (see also Example 6), we always find
a unique value of bu, and then the ruin probability is given by φ(u; bu). (Note that if u = U∗ then no
money is allocated for reinsurance and therefore bU∗ = 0.) It is found that the curves in Figure 5 are first
decreasing and then increasing in u (and they are all convex in u). Hence, for fixed U∗ the ruin probability
φ(u; bu) is minimized at a unique point u = u∗ and the resulting critical level is bu∗ (i.e. the optimal
pair of (u, b) is (u∗, b∗) = (u∗, bu∗)). The values of (u∗, b∗) and the resulting ruin probabilities φ(u∗, b∗)
are presented in Table 4, where the ruin probabilities φ(U∗) without reinsurance are also provided for
easy reference. It is clear that the ruin probabilities can be significantly reduced after pursuing optimal
reinsurance (except when U∗ = 2). �

Remark 3 Indeed, the optimal reinsurance strategy can in principle be determined by following the
steps in Example 3 as well. More precisely, for fixed U∗, one can first compute RP via (5.6) as a function
of b and then calculate the resulting ruin probability as φ(U∗ − RP; b). The optimal value b∗ is chosen
to minimize φ(U∗ − RP; b) with respect to b. (For example, when U∗ = 8, 10, by examining Table 3 one
sees that the optimal values b∗ should not be far from 5 and 7 respectively.) Finally, u∗ is calculated as
U∗ − RP where RP is the reinsurance premium under the optimal critical level b∗. Although this will
lead to the same optimal reinsurance strategy as in Example 4, it is more straightforward to implement
the procedure in Example 4 because solving (5.6) (which is the starting point of Example 3) may result
in no solution or multiple solutions. �

5.2 Erlang inter-capital-injection times

In this subsection, we assume Erlang inter-capital-injection times. The Erlangization technique discussed
in Section 1 will be first demonstrated with the following numerical example.

5.2.1 Performance of Erlangization

Example 5 (Erlangization) In this example, three claim size distributions will be considered, namely

(1) a sum of two exponentials with means 1/3 and 2/3 (i.e. fX(x) = 3e−1.5x − 3e−3x);

(2) an exponential distribution with mean 1 (i.e. fX(x) = e−x); and

(3) a mixture of two exponentials: with mixing probability 1/3 it is exponential with mean 2 and with
mixing probability 2/3 it is exponential with mean 1/2 (i.e. fX(x) = (1/6)e−(1/2)x + (4/3)e−2x).

Note that the above distributions all belong to the class of combinations of exponentials, and therefore
our results in earlier sections are applicable. The common mean of these distributions is 1 but their
variances are 0.56, 1 and 2 respectively. Furthermore, we set c = 1.5, λ = 1, and b = 8. As mentioned in
Section 1, the Erlangization procedure can be used to approximate deterministic inter-capital-injection
times by fixing the mean ET = m/β and increasing m (and β at the same time). For illustration, we fix
m/β = 1 and set m = 1, 2, . . . , 9.

For the initial surplus levels u = 0, 5, 10, 15, 20, the exact values of ruin probabilities (i.e. φ(u; b)
with w(·) ≡ 1 and δ = 0) are presented in Tables 5-7 whereas those for the expected discounted capital
injections until ruin (calculated as V (u; b) under χ(x) = x for x ∈ (0, b] and δ = 0.1) are given in Tables
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Table 5: Ruin probabilities when fX(x) = 3e−1.5x − 3e−3x

m \ u 0 5 10 15 20
1 0.36085080 0.0072682848 0.00072917712 0.000079851108 0.0000087444241
2 0.40163573 0.0064666971 0.00049601606 0.000053758142 0.0000058851280
3 0.41786679 0.0061486253 0.00041714467 0.000045065247 0.0000049337279
4 0.42651947 0.0059774340 0.00037783915 0.000040760897 0.0000044627259
5 0.43187283 0.0058703580 0.00035436570 0.000038199470 0.0000041824512
6 0.43550242 0.0057970267 0.00033878157 0.000036502784 0.0000039967961
7 0.43812127 0.0057436479 0.00032768847 0.000035296946 0.0000038648484
8 0.44009800 0.0057030493 0.00031939238 0.000034396186 0.0000037662818
9 0.44164195 0.0056711299 0.00031295518 0.000033697875 0.0000036898670

Table 6: Ruin probabilities when fX(x) = e−x

m \ u 0 5 10 15 20
1 0.33865446 0.019699285 0.0040982776 0.00077406465 0.000146201930
2 0.37380968 0.018176075 0.0032574347 0.00061009063 0.000115153970
3 0.38773077 0.017582094 0.0029547935 0.00055177613 0.000104138550
4 0.39515265 0.017264898 0.0027992449 0.00052196332 0.000098511248
5 0.39975293 0.017067357 0.0027045919 0.00050387716 0.000095098617
6 0.40287930 0.016932437 0.0026409505 0.00049174085 0.000092809107
7 0.40514054 0.016834412 0.0025952335 0.00048303490 0.000091166944
8 0.40685130 0.016759961 0.0025608065 0.00047648576 0.000089931719
9 0.40819039 0.016701493 0.0025339487 0.00047138064 0.000088968909

Table 7: Ruin probabilities when fX(x) = (1/6)e−(1/2)x + (4/3)e−2x

m \ u 0 5 10 15 20
1 0.33833838 0.074895097 0.033979610 0.012217314 0.0043908496
2 0.36523397 0.072193550 0.031298192 0.011220800 0.0040295346
3 0.37564407 0.071129991 0.030283847 0.010846282 0.0038941495
4 0.38110808 0.070556952 0.029750311 0.010649856 0.0038232294
5 0.38445773 0.070197345 0.029421214 0.010528895 0.0037795852
6 0.38671583 0.069950206 0.029197946 0.010446919 0.0037500200
7 0.38833903 0.069769768 0.029036533 0.010387699 0.0037286680
8 0.38956117 0.069632206 0.028914398 0.010342914 0.0037125242
9 0.39051412 0.069523949 0.028818794 0.010307863 0.0036998905

8-10. In these tables, the values are converging as one moves down along each column, showing the
effect of Erlangization. Looking across Tables 5-7, it is noted that the ruin probability appears to be
higher when the variance of the claim amount is larger (except when u = 0). This is natural since a
larger claim variance represents a higher risk to the insurer. For u = 0, although the ruin probabilities
are in reverse order of the claim variances, they are still quite close to each other. This is due to the
possibility that when u = 0 there is considerable chance the process ruins before the first capital injection
time, and the ruin probability with zero initial surplus in the classical model without capital injections
equals P(τ < ∞|U0 = 0) = λEX/c (i.e. independent of the individual claim distribution). Next, when
comparing Tables 8-10, the expected present value of injected capital is mostly increasing with the claim
variance. Intuitively, the surplus process is likely to fall below critical level b more frequently under a
higher claim variance, thereby increasing the chance for capital injections to occur. However, we also
note the exceptional case of u = 5 when moving from Table 8 to Table 9 where V (u; b) decreases as
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Table 8: V (u; 8) under χ(x) = x when fX(x) = 3e−1.5x − 3e−3x

m \ u 0 5 10 15 20
1 4.6320339 2.9181685 0.23338436 0.015408883 0.0010173399
2 4.2157705 2.9122645 0.24809564 0.016470958 0.0010877590
3 4.0502436 2.9111756 0.25365974 0.016866332 0.0011138429
4 3.9620409 2.9109585 0.25656756 0.017071356 0.0011273467
5 3.9074828 2.9109844 0.25834997 0.017196438 0.0011355787
6 3.8704962 2.9110851 0.25955283 0.017280579 0.0011411138
7 3.8438104 2.9112044 0.26041869 0.017341005 0.0011450878
8 3.8236677 2.9113217 0.26107151 0.017386483 0.0011480781
9 3.8079345 2.9114298 0.26158120 0.017421940 0.0011504092

Table 9: V (u; 8) under χ(x) = x when fX(x) = e−x

m \ u 0 5 10 15 20
1 4.8919184 3.0119179 0.36270548 0.043552111 0.0052295498
2 4.5114376 3.0106634 0.38626730 0.046649690 0.0056054608
3 4.3605839 3.0117011 0.39529091 0.047822708 0.0057468776
4 4.2800769 3.0127717 0.40004638 0.048437707 0.0058208240
5 4.2301410 3.0136779 0.40297872 0.048815802 0.0058662198
6 4.1961864 3.0144228 0.40496632 0.049071583 0.0058969021
7 4.1716178 3.0150347 0.40640185 0.049256064 0.0059190177
8 4.1530242 3.0155408 0.40748702 0.049395379 0.0059357111
9 4.1384665 3.0159633 0.40833602 0.049504288 0.0059487566

Table 10: V (u; 8) under χ(x) = x when fX(x) = (1/6)e−(1/2)x + (4/3)e−2x

m \ u 0 5 10 15 20
1 5.1598654 3.0004264 0.55194624 0.13973267 0.035424000
2 4.8293697 2.9951112 0.59128302 0.15038064 0.038188492
3 4.7012623 2.9949608 0.60664039 0.15450608 0.039253211
4 4.6338259 2.9956075 0.61482248 0.15669623 0.039816974
5 4.5923805 2.9963593 0.61990458 0.15805378 0.040165893
6 4.5643836 2.9970581 0.62336746 0.15897754 0.040403089
7 4.5442250 2.9976703 0.62587847 0.15964674 0.040574802
8 4.5290263 2.9981957 0.62778226 0.16015381 0.040704852
9 4.5171577 2.9986381 0.62927238 0.16055102 0.040806734

claim variance increases. This is attributed to the fact that a higher ruin probability resulting from
increased claim variance could lead to less capital injections in the long run since injections stop after
ruin occurrence. See Example 1 for similar comments on Figure 2(b) where there are two competing
factors. �

5.2.2 Impact of critical level b and optimization from shareholders’ viewpoint

In the final two examples, we study the impact of the parameter b on φ(u; b) and V (u; b) as well as
the minimization of V (u; b) + Kφ(u; b). The interpretation of the minimization has been given before
Example 2 (except that optimization in Example 2 is done with respect to the injection frequency).

Example 6 (Impact of b on φ(u; b) and V (u; b)) In this example, it is assumed that each claim is
exponentially distributed with density fX(x) = e−x and each inter-capital-injection time is Erlang with
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parameters m = 5 and β = 2. Let c = 1.5 and λ = 1. The Laplace transform of the ruin time (i.e. φ(u; b)
with w(·) ≡ 1) and the expected discounted capital injections until ruin (i.e. V (u; b) with χ(x) = x for
x ∈ (0, b]), both calculated under δ = 0.1, are depicted in Figure 6 for u = 2, 4, 6, 8 and b ∈ [0, 20].
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Figure 6: The impact of the parameter b: (a) the Laplace transform of the ruin time; (b) the expected
discounted capital injections until ruin

For each fixed u, Figure 6(a) shows that φ(u; b) decreases as b increases. This is because a higher
critical level b means that the surplus process is brought to a higher and hence safer level whenever
capital is injected, and therefore ruin is less likely to occur (or occurs later). On the other hand, V (u; b)
in Figure 6(b) is increasing in b when u is fixed. Clearly, a larger b implies that (1) a larger amount of
capital needs to be injected to restore the surplus to b when capital injection occurs; and (2) there could
be more injections in the long run as the surplus process survives for a longer period. As b increases
further, φ(u; b) tends to a constant independent of b (which is denoted by φ(u;∞)) whereas each curve in
Figure 6(b) approaches a straight line with positive slope. Indeed, when b is very large, a huge amount
of capital (at the order of b) will be injected at the first Erlang capital injection time as long as ruin has
not occurred before that. Then, the surplus process (at the high level b) is very unlikely to ruin after the
first injection. As a result, if ruin occurs it has to happen before the first injection time, so that φ(u;∞)
is the Laplace transform of the ruin time for ruin occurring before an independent Erlang(m,β) time,
namely E[e−δτ1(τ<T )|U0 = u], which equals ζm(u) (when w(·) ≡ 1) given in (3.3) or (3.10). For similar

reason, we can argue that V (u; b) ∼ E[e−δT1(τ>T )|U0 = u]b as b→ ∞ since the first injection (which is of
order b) will dominate subsequent ones. This explains the linearity of V (u; b) for large b in Figure 6(b).
For fixed b, we also note from Figure 6 that φ(u; b) is decreasing in u but V (u; b) is not always monotone
in u. The reasons have been discussed in Example 1 and are not repeated here. �

Example 7 (Minimizing capital injections plus penalty at ruin with respect to b) We aim at searching
for an optimal level bopt that minimizes V (u; b)+Kφ(u; b) with respect to b under identical parameters as
in Example 6. In Figure 7, the function V (u; b)+Kφ(u; b) is plotted against b for K = 1 and K = 30. It
is found that bopt depends on K but is independent of the initial surplus u for each fixed K. Specifically,
our numerical results suggest that bopt equals 0 and 4.455 for K = 1 and K = 30 respectively. When
K = 1, the shape of the function V (u; b) always dominates that of φ(u; b) such that V (u; b) + φ(u; b) is
increasing in b and therefore bopt = 0. When K = 30, the decreasing pattern of φ(u; b) first dominates
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Figure 7: Plot of V (u; b) +Kφ(u; b) against b: (a) K = 1; (b) K = 30

V (u; b) for small values of b and then the increasing behaviour of V (u; b) dominates φ(u; b) for large b,
and consequently V (u; b) + 30φ(u; b) attains minimum at a positive value of b, namely bopt = 4.455. �

6 Concluding remarks

In the context of the classical compound Poisson risk model, we have extended Nie et al. (2011)’s model so
that capital injections are only possible at the arrival epochs {Zi}

∞
i=1 of an Erlang renewal process. Even

we have assumed that each claim amount follows a combination of exponentials with probability density
(1.6), our results are indeed applicable to the case where the claims have rational Laplace transform (of
order a). In such a case, the Lundberg’s equation ψ(ξ) = q also has a+ 1 (assumed distinct) roots, and
the scale function W (q)(x) is still in the form of (2.5) but the constants Cq,i’s will not be as explicit

as (2.4). Consequently, the resolvent density r
(β+δ)
n (u, x) given in Proposition 1 is still valid. Another

modification that needs to be made is that although ζ1(u) in (3.6) still takes on the form (3.7) according
to Landriault and Willmot (2008, Corollary 4), the coefficients Fw,l’s will be solved from a system of
linear equations (see Landriault and Willmot (2008, Theorem 6)) instead of being given explicitly in
(3.8). With the afore-mentioned adjustments, our main results (namely Propositions 4 and 6) concerning
the Gerber-Shiu function and the expected discounted cost of capital injections still hold true.

In this paper, we have assumed that solvency is continuously checked, i.e. ruin is declared immediately
when the insurer’s surplus level becomes negative. On the other hand, for the case where the event of
ruin is only monitored at the time points {Zi}

∞
i=1, it is clear that the discounted increment of the process

observed at Erlang intervals (e.g. Albrecher et al. (2011, 2013)) can be utilized to solve the problem.
More generally, one may consider the case where capital injection may only be made every j times ruin is
checked (e.g. monthly balancing of books but annual capital injection if necessary). See Choi and Cheung
(2014) for a similar dividend-ruin problem. The derivations, however, will be much more tedious.

Throughout this paper, it is assumed that the critical level b is pre-specified. It will be interesting
to analyze optimal control problems involving periodic capital injection. This includes e.g. finding the
optimal dividend and capital injection strategies that maximize the expected discounted dividends minus
the expected discounted capital injections if both types of payments are only made periodically. We leave
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these as open problems for future research.
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A Appendix: Proof of Proposition 1

Proposition 1 can be proved by mathematical induction. To begin, the starting point (2.7) can be
reexpressed as

r
(β+δ)
1 (u, x) =

{ ∑a+1
i=1 Cie

ρiu−ρa+1x, u < x.∑a
i=1Cie

ρiu−ρa+1x −
∑a

i=1Cie
ρi(u−x), u ≥ x.

(A.1)

Hence, (2.10) and (2.11) hold true for n = 1 with the constants given by (2.12) and (2.13). Assuming

that r
(β+δ)
n (u, x) is given by (2.10) and (2.11) for some positive integer n, we shall look at r

(β+δ)
n+1 (u, x).

By the first equality of (2.9) along with the induction assumption, one can write

r
(β+δ)
n+1 (u, x) = I0(u, x) + I1(u, x)− I2(u, x), (A.2)

where

I0(u, x) =

a∑

i=1

n∑

j=1

n+1−j∑

k=1

Dn,i,j,k
uj−1

(j − 1)!
eρiu

∫ ∞

0

yk−1

(k − 1)!
e−ρa+1yr

(β+δ)
1 (y, x)dy, (A.3)

I1(u, x) =

a∑

i=1

n∑

j=1

En,i,j

∫ u

0

(u− y)j−1

(j − 1)!
eρi(u−y)r

(β+δ)
1 (y, x)dy, (A.4)

I2(u, x) =

n∑

j=1

En,a+1,j

∫ ∞

u

(u− y)j−1

(j − 1)!
eρa+1(u−y)r

(β+δ)
1 (y, x)dy. (A.5)

To evaluate these three terms, the identities (which are valid for positive integer k)

∫ u

0

yk−1

(k − 1)!
e−γydy =

1

γk
−

k∑

l=1

1

γk+1−l

ul−1

(l − 1)!
e−γu, γ 6= 0, (A.6)

∫ ∞

u

yk−1

(k − 1)!
e−γydy =

k∑

l=1

1

γk+1−l

ul−1

(l − 1)!
e−γu, ℜ(γ) > 0, (A.7)

will be useful. First, substitution of (A.1) into (A.3) yields

I0(u, x) =
a∑

i=1

n∑

j=1

n+1−j∑

k=1

a∑

l=1

Dn,i,j,kCl
uj−1

(j − 1)!
eρiu−ρa+1x

∫ ∞

0

yk−1

(k − 1)!
eρly−ρa+1ydy

+
a∑

i=1

n∑

j=1

n+1−j∑

k=1

Dn,i,j,kCa+1
uj−1

(j − 1)!

xk

k!
eρiu−ρa+1x

−
a∑

i=1

n∑

j=1

n+1−j∑

k=1

a∑

l=1

Dn,i,j,kCl
uj−1

(j − 1)!
eρiu−ρlx

∫ ∞

x

yk−1

(k − 1)!
e−ρa+1y+ρlydy
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=
a∑

i=1

n∑

j=1

n+1−j∑

k=1

a∑

l=1

Dn,i,j,kCl

(ρa+1 − ρl)k
uj−1

(j − 1)!
eρiu−ρa+1x

+
a∑

i=1

n∑

j=1

n+2−j∑

k=2

Dn,i,j,k−1Ca+1
uj−1

(j − 1)!

xk−1

(k − 1)!
eρiu−ρa+1x

−
a∑

i=1

n∑

j=1

n+1−j∑

k=1

n+1−j∑

l=k

a∑

z=1

Dn,i,j,lCz

(ρa+1 − ρz)l+1−k

uj−1

(j − 1)!

xk−1

(k − 1)!
eρiu−ρa+1x, (A.8)

where we have changed the order of summations in the third term. Second, due to (2.7) the quantity
I1(u, x) defined in (A.4) is given by

I1(u, x) =

{
I1,1(u, x), u < x,
I1,1(u, x)− I1,2(u, x), u ≥ x,

(A.9)

where

I1,1(u, x) =

a∑

i=1

n∑

j=1

a+1∑

k=1

En,i,jCk

∫ u

0

(u− y)j−1

(j − 1)!
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En,i,jCke
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∫ u

0
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=
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j=1
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uj
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eρiu−ρa+1x +

a∑
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En,i,jCk

(ρk − ρi)j
eρku−ρa+1x

−
a∑

i=1

n∑

j=1

a+1∑

k=1,k 6=i
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l=1

En,i,jCk

(ρk − ρi)j+1−l

ul−1

(l − 1)!
eρiu−ρa+1x

=
a∑

i=1

n+1∑

j=2

En,i,j−1Ci
uj−1

(j − 1)!
eρiu−ρa+1x +

a+1∑

i=1
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k=1,k 6=i

En,k,jCi

(ρi − ρk)j
eρiu−ρa+1x

−
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i=1
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En,i,lCk
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(j − 1)!
eρiu−ρa+1x, (A.10)

and similarly

I1,2(u, x) =
a∑

i=1

n∑

j=1

a+1∑

k=1

En,i,jCk

∫ u

x

(u− y)j−1

(j − 1)!
eρi(u−y)+ρk(y−x)dy

=

a∑

i=1
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En,i,j−1Ci
(u− x)j−1

(j − 1)!
eρi(u−x) +

a+1∑
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k=1,k 6=i

En,k,jCi

(ρi − ρk)j
eρi(u−x)

−
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En,i,lCk
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(u− x)j−1

(j − 1)!
eρi(u−x). (A.11)

Note that (A.6) has been applied along with a change of order of summations in obtaining the above two
expressions. Third, we consider I2(u, x) in (A.5) and utilize (A.1) and (A.7). Omitting some details, it
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is found that, for u < x,

I2(u, x) =
a∑

i=1

n∑

j=1

En,a+1,jCi
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u

(u− y)j−1

(j − 1)!
eρa+1(u−y)+ρiy−ρa+1xdy

+
n∑
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x

(u− y)j−1

(j − 1)!
eρa+1(u−y)+ρi(y−x)dy

=−
a∑

i=1

n∑

j=1

En,a+1,jCi

(ρi − ρa+1)j
eρiu−ρa+1x −

n+1∑

j=2

En,a+1,j−1Ca+1
(u− x)j−1

(j − 1)!
eρa+1(u−x)

+
n∑

j=1

a∑

k=1

n∑

l=j

En,a+1,lCk

(ρk − ρa+1)l+1−j

(u− x)j−1

(j − 1)!
eρa+1(u−x), (A.12)

and for u ≥ x,

I2(u, x) =
a∑

i=1

n∑

j=1

En,a+1,jCi(e
ρiu−ρa+1x − eρi(u−x))

∫ ∞

u

(u− y)j−1

(j − 1)!
e−(ρa+1−ρi)(y−u)dy

=
a∑

i=1

n∑

j=1

En,a+1,jCi

(ρi − ρa+1)j
eρi(u−x) −

a∑

i=1

n∑

j=1

En,a+1,jCi

(ρi − ρa+1)j
eρiu−ρa+1x. (A.13)

Finally, combining (A.2) and (A.8)-(A.13) and collecting the coefficients of the terms uj−1

(j−1)!
xk−1

(k−1)!e
ρiu−ρa+1x,

(u−x)j−1

(j−1)! e
ρi(u−x) and (u−x)j−1

(j−1)! e
ρa+1(u−x), one asserts that the representations (2.10) and (2.11) hold true

for the case n+ 1 with the constants given by (2.14)-(2.18). This completes the proof.

B Appendix: Proof of Proposition 3

First, we derive a differential equation that is equivalent to (3.12). For u ≥ 0 and j = 1, 2, . . . ,m,
let φ(u; b, j) be the Gerber-Shiu function for a modified process that is identical to U b except that the
first capital injection time is Erlang(j, β) distributed (so that φ(u; b) = φ(u; b,m)). By treating an
Erlang(m,β) distribution as the sum of m i.i.d. exponential random variables each with mean 1/β,
analogous to (3.1) or (3.4) we obtain

φ(u; b, j) = β

∫ ∞

0
r(β+δ)(u, x)φ(x; b, j − 1)dx+ ζ1(u), j = 2, 3, . . . ,m,

φ(u; b, 1) = β

∫ ∞

0
r(β+δ)(u, x)[φ(b; b)1(0≤x≤b) + φ(x; b)1(x>b)]dx+ ζ1(u).

Using (2.7) and (3.7), the above two equations can be rewritten as

φ(u; b, j) =
a+1∑

i=1

βCie
ρiu

∫ ∞

0
e−ρa+1xφ(x; b, j − 1)dx−

a+1∑

i=1

βCi

∫ u

0
eρi(u−x)φ(x; b, j − 1)dx

+

a∑

i=1

Fw,ie
ρiu, j = 2, 3, . . . ,m,
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φ(u; b, 1) =
a+1∑

i=1

βCie
ρiu

∫ ∞

0
e−ρa+1x[φ(b; b)1(0≤x≤b) + φ(x; b)1(x>b)]dx

−
a+1∑

i=1

βCi

∫ u

0
eρi(u−x)[φ(b; b)1(0≤x≤b) + φ(x; b)1(x>b)]dx+

a∑

i=1

Fw,ie
ρiu.

Application of the operator
∏a+1

k=1(d/du− ρk) to them yields

[
a+1∏

k=1

(
d

du
− ρk

)]
φ(u; b, j) =−

a+1∑

i=1

βCi

[
a+1∏

k=1,k 6=i

(
d

du
− ρk

)]
φ(u; b, j − 1), j = 2, 3, . . . ,m,

[
a+1∏

k=1

(
d

du
− ρk

)]
φ(u; b, 1) =−

a+1∑

i=1

βCi

[
a+1∏

k=1,k 6=i

(
d

du
− ρk

)]
φ(u; b).

Hence, recursively these lead to the ordinary differential equation

[
a+1∏

k=1

(
d

du
− ρk

)m
]
φ(u; b) =

[
−

a+1∑

i=1

βCi

a+1∏

k=1,k 6=i

(
d

du
− ρk

)]m
φ(u; b), (B.1)

which has characteristic equation (in ξ)

a+1∏

k=1

(ξ − ρk)
m =

[
−

a+1∑

i=1

βCi

a+1∏

k=1,k 6=i

(ξ − ρk)

]m
. (B.2)

Since the differential equations (3.12) and (B.1) must be equivalent for u ≥ b, their characteristic
equations (3.20) and (B.2) are also identical. Dividing both sides of (B.2) by

∏a+1
k=1(ξ − ρk)

m results in

(
a+1∑

i=1

βCi

ρi − ξ

)m

= 1.

Further application of (2.2) leads the above equation to (3.21). It follows from Albrecher et al. (2013,
Appendix A) that (3.21) has exactly m roots with non-negative real parts, and the proof is completed.

C Appendix: Proof of Lemma 1

Without loss of generality, we assume u ≥ b in the entire proof (as we will let u → ∞ at the end). Let
Lb = inf{Zi : U

b
Zi−

< b} = inf{Zi : UZi
< b} be the first time when U drops below b at some observation

time point (which is also the first time when a positive capital is injected into the surplus process U b if
ruin has not yet occurred). Conditioning on the time Lb yields

V (u; b) = E

[
e−δLbχ(b− ULb

); inf
0≤t≤Lb

Ut ≥ 0, Lb <∞
∣∣U0 = u

]
+ E

[
e−δLb ; inf

0≤t≤Lb

Ut ≥ 0, Lb <∞
∣∣U0 = u

]
V (b; b)

≤ E

[
e−δLb ; inf

0≤t≤Lb

Ut ≥ 0, Lb <∞
∣∣U0 = u

]
(χmax + V (b; b)), (C.1)
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where χmax is the upper bound of χ(·), i.e. χ(x) ≤ χmax for x ∈ (0, b]. Note that

E

[
e−δLb ; inf

0≤t≤Lb

Ut ≥ 0, Lb <∞
∣∣U0 = u

]
≤ E[e−δLb ;Lb <∞|U0 = u] ≤ E[e−δτ1(τ<∞)|U0 = u− b], (C.2)

where the last inequality follows from the fact that Lb must be no less than the first time when the process
U falls below b, which is in turn equivalent to the ruin time of U but with initial surplus u− b thanks to
the spatial homogeneity of U . Since the process U b returns to level b after each capital injection, V (b; b)
appearing in (C.1) can be represented as

V (b; b) =
∞∑

k=1

(
E

[
e−δLb ; inf

0≤t≤Lb

Ut ≥ 0, Lb <∞
∣∣U0 = b

])k−1

E

[
e−δLbχ(b− ULb

); inf
0≤t≤Lb

Ut ≥ 0, Lb <∞
∣∣U0 = b

]

≤ χmax

∞∑

k=1

(
E

[
e−δLb ; inf

0≤t≤Lb

Ut ≥ 0, Lb <∞
∣∣U0 = b

])k

. (C.3)

Under δ > 0 or c > λEX, one must have E[e−δτ1(τ<∞)|U0 = 0] < 1. Combining this with (C.2) (at
u = b) confirms that the summation in (C.3) is finite as

V (b; b) ≤
χmaxE[e

−δLb ; inf0≤t≤Lb
Ut ≥ 0, Lb <∞|U0 = b]

1− E[e−δLb ; inf0≤t≤Lb
Ut ≥ 0, Lb <∞|U0 = b]

<∞,

i.e. V (b; b) is bounded. Finally, incorporating (C.2) into (C.1) and using the boundedness of V (b; b) as
well as the fact that limu→∞ E[e−δτ1(τ<∞)|U0 = u − b] = 0 under δ > 0 or c > λEX, the result (4.1)
follows by taking the limit u→ ∞.
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