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Abstract Periodic oscillations associated with Alfven waves with periods ranging from several tens of
minutes to several hours are commonly seen in the solar wind. It is not yet known how the solar wind
oscillation frequency, and thus its temporal variation, regulates the energy flow through the coupled solar
wind-magnetosphere-ionosphere-thermosphere system. Utilizing the Coupled
Magnetosphere-lonosphere-Thermosphere Model driven by solar wind and interplanetary magnetic field
(IMF), we have analyzed the magnetosphere-ionosphere-thermosphere system response to IMF B,
oscillations with periods of 10, 30, and 60 min from the perspective of energy budget. Our results indicate
that the energy flow from the solar wind to geospace depends on the IMF B, oscillation frequency. The
energy coupling efficiency, defined as the ratio of the globally integrated joule heating to Akasofu’s Epsilon
function, is higher for lower frequency IMF B, oscillations. Joule heating in the upper atmosphere depends
not only on directly driven processes due to solar wind variability but also on the intrinsic dynamics of the
magnetosphere (i.e., loading-unloading process). This work highlights the critical role of solar wind and IMF
temporal variation and the inductive inertia and resistance of coupled magnetosphere-ionosphere system in
controlling the energy transfer in the coupled solar wind-geospace system, which has not been

explored before.

1. Introduction

Solar wind energy is dissipated throughout geospace in a number of ways, including ring current dissipation,
joule heating, auroral precipitation, and energy deposited in the magnetotail such as plasmoid energy. Joule
heating in the auroral and polar regions is the major sink (Koskinen & Tanskanen, 2002; Lu et al., 1998). There
are several well-known energy coupling functions that combine different solar wind parameters to estimate
the amount of energy transferred from the solar wind into the magnetosphere-ionosphere-thermosphere
(MIT) coupled system. One of the most widely used coupling functions is the Epsilon function (Akasofu,
1979), which combines solar wind velocity and the magnitude and clock angle of the interplanetary magnetic
field (IMF). The function represents the solar wind Poynting flux transfer into the magnetosphere. Newell et al.
(2007) summarized 20 solar wind-magnetosphere coupling functions, which depend on solar wind velocity
and number density, or the strength and clock angle of the IMF. None of these studies, however, have taken
the solar wind temporal variation into consideration, even though there are a number of studies on the
temporal response of the MIT system to changes in the reconnection rate at the magnetopause (e.g.,
Coroniti & Kennel, 1973; Holzer & Reid, 1975; Lu et al., 2002; Siscoe et al., 2011). This raises a fundamental
question: Does the solar wind temporal variation make a difference in the energy coupling efficiency
between the solar wind and the coupled magnetosphere-ionosphere system? In particular, what is the total
energy input from the solar wind to this coupled system when it is driven by solar wind conditions that
oscillate quasi-periodically?

The coupled magnetosphere-ionosphere is a system, which has a significant inductive inertia, capacitance,
and resistance. The inductive inertia tends to damp the amplitude of cross polar cap potential relative to
trans-magnetosphere boundary potential (Rostoker et al, 1988). The inductive response time of the
convection circuit to an oscillation solar wind conditions is several tens of minutes (Rostoker et al., 1988).
Solar wind energy flow into this coupled system takes the form of directly driven that release energy imme-
diately and loading unloading processes that part energy is stored. How much directly energy dissipation
should depend on how rapidly the Earth’s upper atmosphere consumes electromagnetic energy through
joule heating, which lies on the ionosphere resistivity.
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Quasi-periodic IMF and solar wind velocity oscillations ranging from tens of minutes to a few hours are a
signature of Alfven waves in the solar wind, particularly in high-speed streams from coronal holes (e.g.,
Belcher & Davis Jr., 1971; Kamide et al., 1998). In corotating interaction regions and high-speed stream
events, the southward IMF component associated with these oscillations modulates magnetic reconnec-
tion, plasma entry into the magnetosphere, and prolonged recovery phases of geomagnetic storms.
Events of this type are called “high-intensity, long-duration, continuous AE activity” events (Tsurutanni
& Gonzalez, 1987). Presumably, magnetic reconnection between the southward component of the IMF
and magnetospheric magnetic fields during these events is the dominant process for the energy transfer
from the solar wind to the magnetosphere. Quasiperiodic or pulsed magnetic reconnection in this
case may lead to quasiperiodic or pulsed ionospheric convective flows and joule heating, as well as qua-
siperiodic cusp particle precipitation, polar cap patches, and periodic penetration electric fields in the
equatorial ionosphere (e.g., Prikryl et al., 1999; Rae et al, 2004; Rodriguez-Zuluaga et al., 2016; Wei
et al.,, 2008).

The objective of this work is to investigate whether the periodic oscillations in solar wind and IMF have
impacts on the energy transfer from the solar wind to the coupled MIT system, how the solar wind oscillation
frequency regulates the energy coupling efficiency, and how the MIT system responds to the periodic solar
wind driving conditions. We employ the Coupled Magnetosphere-lonosphere-Thermosphere Model (CMIT;
Wang et al., 2004; Wiltberger et al.,, 2004) to carry out this study. Model description and simulation setup
are described in the second section. The analyses of simulation results are performed in the third section, fol-
lowed by discussion and summary sections.

2. Model Description

The CMIT model is a two-way coupled model between the Lyon-Fedder-Mobarry (LFM) global magneto-
sphere magnetohydrodynamic code and the Thermosphere-lonosphere-Electrodynamics General
Circulation Model (TIEGCM) via the Magnetosphere-lonosphere Coupler/Solver module (Merkin & Lyon,
2010). LFM is an ideal magnetohydrodynamic solver for the three-dimensional solar wind-magnetosphere
interaction system (Lyon et al., 2004). TIEGCM is an ionosphere-thermosphere coupled model that solves
the three-dimensional, energy, momentum, and continuity equations for both neutrals and ions (Roble
et al, 1988). This detailed coupling scheme between LFM, TIEGCM, and Magnetosphere-lonosphere
Coupler/Solver has been documented in Wiltberger et al. (2004) and Wang et al. (2004).

This simulation is driven by idealized solar wind, IMF, and solar minimum conditions with solar wind density
Nsw = 5 cm™3, speed Vs = 500 km/s, IMF|B| = 10 nT, and Fy7 = 77. In this model setup, the solar wind is
defined in the GSM coordinates. The solar wind speed in the y and z directions is zero (V, = V, = 0), and
IMF x and z components are also set to zero (B, = B, = 0). The CMIT model is driven by the IMF B, = 0 nT con-
dition for 4 hr as an initial state and then by sinusoidally oscillating IMF B, between —10 and +10 nT, with
different periods of 10, 30, and 60 min, respectively (Figure 1a). Furthermore, all numerical simulations are
performed for the December Solstice condition when the upper atmosphere joule heating shows
hemisphere asymmetry.

3. Result Analysis

Figure 1 shows the time series of IMF B,, the Epsilon function, and joule heating from CMIT for different IMF B,
oscillation periods during the first 2 hr of model simulations. IMF B, oscillations with 10-, 30-, and 60-min per-
iods are color coded in black, blue, and red lines, respectively. The Epsilon function (), which is usually used
to represent the energy transfer from the solar wind to the magnetosphere, is calculated based on the follow-
ing equation (Akasofu, 1979):

4 6
(W) = = yB2sin® <7) 2.
Ko 2
These variables v, B, 6, and Iy are the solar wind velocity, the intensity of the solar wind magnetic field, the IMF

clock angle, and the scaling factor. The factor /y is an “effective cross-sectional area” of the magnetosphere
determined empirically to be Iy = 7 RE (Perreault & Akasofu, 1978). Southward IMF B, switches on the

LIU ET AL.

5863



Journal of Geophysical Research: Space Physics 10.1029/2017JA025154

IMF Bz (nT)

MR PR P R TS S ST S T SR [ S S S PR S PR T
04:00 04:15 04:30 04:45 05:00 05:15 05:30 05:45 06:00

Epsilon Function (GW)

0 1
04:00 04:15 04:30 04:45 05:00 05:15 05:30 05:45 06:00
500 — . — ———— ———— ——
(© — 10 min
——30 min
400 |-

Joule Heating (GW)

0 PR S S S ST S S SU T S S SR S B
04:00 04:15 04:30 04:45 05:00

UT (hour)

A S S S S N S S S S S ST S S
05:15 05:30 05:45 06:00

Figure 1. Interplanetary magnetic field (IMF) B, Epsilon function, and joule heating variabilities for different periods. IMF B,
oscillating with 10, 30, and 60 min are colored black, blue, and red lines, respectively.

energy input, whereas northward IMF B, switches it off. Total global integrated joule heating is calculated by
summing from 40° geographic latitudes to the poles for both hemispheres.

As shown in Figures 1a and 1b and described by the equation, it is not surprising to see that the ¢ function
acts as a half wave rectifier to regulate solar wind energy transfer into the magnetosphere. In other words, to
the first-order approximation, energy transfer from the solar wind to the magnetosphere occurs when IMF B,
has a southward component. The amplitude of the & function does not change with IMF B, oscillation fre-
quency. The total energy into the magnetosphere is the same for all three cases in 1-hr period, which is
8.95 x 10" J calculated from & function. However, the CMIT-calculated joule heating depends greatly on
the oscillation frequency.

Siscoe et al. (2011) discussed the difference of ionospheric convection when IMF changes from northward to
southward and vise versa. They also showed that ionospheric convection during the transient period of IMF
could be significantly different from that under persistent IMF conditions. Our study is consistent with their
results in the general sense that when studying the coupling between the solar wind and the magneto-
sphere, the temporal variation of the solar wind must be taken into account, both for ionospheric convection
configuration discussed in Siscoe et al. (2011) and energy transfer rate from the solar wind to the magneto-
sphere ionosphere system studied in this paper. As shown in Figure 1c, joule heating tends to be stronger
when IMF B, is southward for a longer period of time. The peak energy deposition in the upper atmosphere
evidently increases with an increase in the duration of southward IMF. The peak power amplitudes of joule
heating are ~400, ~280, and ~80 GW for solar wind with oscillations at periods of 60, 30, and 10 min, respec-
tively. The total globally integrated energy depositions from joule heating during 0400-0500 UT are
494 %10 3.47 x 10", 1.55 x 10'* J for the three cases of solar wind conditions. Thus, the coupling efficien-
cies of the total energy deposition in the upper atmosphere, relative to that estimated by the ¢ function, are
55.2%, 38.8%, and 17.3% for 60-, 30-, and 10-min solar wind oscillations, respectively. Another interesting fea-
ture is that joule heating for the 60-min IMF B, oscillation has an additional peak that is about half as large as
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acts more like a voltage source. Another noteworthy feature is that
hemisphere-integrated joule heating lags behind € by 10 min or so, vary-
ing with solar wind oscillation period. This time delay between IMF
changes near the magnetopause and initial ionosphere response accords
well with previous simulations or observations results (e.g., Lu et al., 2002;
Ridley et al., 1998; Ruohoniemi & Greenwald, 1998).

The total amount of open magnetic flux inside the magnetosphere is an important factor in controlling the
magnetospheric state and is determined by dayside and nightside merging rates (Siscoe & Huang, 1985).
Dayside magnetic reconnection is directly driven by the upstream solar wind and is regulated by the magni-
tude and the clock angle of the IMF. The physical process associated with nightside reconnection, for exam-
ple, the substorm phenomena, has yet to be fully resolved. In the global magnetosphere simulation, when
the oscillatory IMF switches from northward to southward, isolated substorms are generated in the simula-
tions through the magnetic flux loading-unloading process, which is a consequence of a significant imbal-
ance between dayside reconnection rate and nightside reconnection rate (Gordeev et al., 2017). In order
to know the cause of the secondary peaks of joule heating appearing in Figures 1 and 2, Figure 3 illustrates
open flux and its gradient. The open flux is calculated by identifying the open and closed magnetic field line
boundary in the polar ionosphere via tracing the magnetic field lines. To the first order, open flux is strongly
modulated by IMF B,; that is, open flux attains its maximum at the point when IMF B, starts to turn from south-
ward to northward. But for the 60-min period, we see a strong dip in the flux gradient at around 04:57 UT,
which is associated with substorm activity. After accumulating a significant
amount of open magnetic flux (>0.6 GWb) in the lobe due to the south-
ward IMF driving, an isolated substorm occurs in the simulation and results

in a dramatic decrease in open flux. In the 30-min period simulation, the
accumulated open magnetic flux was always below 0.5 GWb and no iso-
lated substorms occurred during the simulation, indicating that the imbal-
ance between the dayside and nightside reconnection is not enough to
initiate substorm-like activity in order to release the open flux. This agrees
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with Milan et al. (2007) that the average magnetosphere magnetic flux
content during 25 tail reconnection events at onset is 0.65 GWb and these
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o tail reconnection events seldom occur under 0.35 GWb.
Figure 4 presents the cross correlation between joule heating and the

Epsilon function. Joule heating is calculated from the electric field (apEz).
Neutral wind effects have been included into TIEGCM, which is a self-
consistent mode solving ion and neutral momentum equations, as well
as electrodynamo. TIEGCM model, which is the ionosphere-thermosphere
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part of CMIT, is not equal area grid. We calculated area-weighted joule
heating in each horizontal grid and then integrate them in the vertical
direction with 10-km grid resolution. The top panel shows that globally
integrated joule heating generally lags behind the & parameter by
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Figure 4. Cross correlation between joule heating and the Epsilon function.  The solar wind energy transferred into the magnetosphere takes the form

(top) Time delay and the correlation coefficient between joule heating and
the Epsilon function. (bottom) Scatterplots of joule heating versus the
Epsilon function for different periods. The solid lines show the trend of the

linear regression.

of joule heating, particle precipitation, ring current injection, and plasmoid
ejection in the tail. In order to formulate this solar wind energy partition,
different coupling functions are constructed in combination with different
solar wind parameters such as solar wind velocity, B,, and B, (e.g., Akasofu,
1979; Newell et al., 2007). Apparently, the magnitudes of these solar wind parameters have significant effects
on the energy coupling efficiency. Our research also reinforces the importance of solar wind temporal varia-
tion in regulating energy transfer in the solar wind-geospace coupled system.

Two physical processes are important in transferring solar wind energy into the upper atmosphere. One is
dayside reconnection between solar wind and magnetospheric plasmas, in which solar wind energy has a
direct dissipation in the upper atmosphere. As shown in Figure 4, it takes 6-8 min for this energy dissipation
process to occur, which is a consequence of the finite inductance of the MIT system (Holzer & Reid, 1975;
Siscoe et al.,, 2011). The other is nightside reconnection in which solar wind energy accumulates in the mag-
netotail and then is suddenly released to the Earth’s upper atmosphere, triggered either by solar wind varia-
bility or by magnetosphere internal processes. For example, in Figure 1, joule heating for the 60-min period
case has another peak in the declining phase of joule heating. Joule heating by the “driven process” is larger
than that by the “loading-unloading” process. In Figure 1, a substorm occurs only for the 60-min IMF B,
oscillation and leads to periodic magnetotail energy release into the ionosphere. This finding agrees with
the results from Blanchard and McPherron (1995) in which auroral ionospheric currents’ response to solar
wind driving for individual substorms is composed by a low-pass filter responsible for the ionospheric electric
fields due to the reconnection fields and a filter composed of a delayed delta function caused by the
magnetotail substorm.

Why do we see substorms only for the 60-min period IMF B, oscillation? Substorm is a phenomenon that is
global magnetosphere reconfiguration, which involves Earth’s magnetotail dynamics, solar wind energy
storage, and release. Its triggering mechanisms are not fully understood and could be associated with a
near-Earth dipolarization process or with magnetic reconnection at ~20 to 30 Rg. Even though disputes exist
in the substorm triggering mechanism, there is rather general agreement that the magnetosphere exhibits a
growth phase and requires energy and magnetic flux storage in the magnetotail prior to substorm onset.
CMIT is capable of capturing substorm behavior, and this substorm-related initial buildup process takes about
50 min in the LFM model (Gordeev et al., 2017). If the IMF B, oscillation between northward and southward is
too fast, the loading-unloading cycle is not completed. Thus, less energy and magnetic flux are stored in the
nightside magnetotail, reducing the chance of the occurrence of substorm.

Figure 4 shows that the energy coupling efficiency from the solar wind driver to the upper atmosphere
depends on the solar wind oscillation frequency or, in general, the temporal variation of the solar wind
and IMF B,; that is, the energy coupling efficiency tends to be higher for lower frequency IMF B, oscillations
or slow varying solar winds conditions. Why is the energy coupling efficiency higher for lower frequency IMF
B, oscillations? The energy transfer from the solar wind to the magnetosphere is caused by magnetic
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reconnection between IMF and Earth’s magnetic field (Dungey, 1961). The global rate is determined by the
product of the merging line length and the rate at which closed magnetic flux at the magnetopause merges
with the magnetosheath magnetic field. The reconnection rate is R ~ 0.1 vB at the dayside magnetopause,
where v, and B are the Alfvén speed and magnetic field intensity in the reconnection inflow region. It takes
several minutes for the southward solar wind IMF to propagate from the bow shock to the magnetopause,
and another minute or so for information to propagate to the ionosphere that merged convecting flux tubes
at the magnetopause that will drive plasma flows there (e.g., Ruohoniemi & Greenwald, 1998). In this case, if
IMF B, varies too fast, the magnetic flux accumulation at the magnetopause is diminished, and the dayside
magnetopause reconnection cannot achieve the peak energy transfer state and thus less energy flux is deliv-
ered into magnetosphere.

Presumably, a long duration of southward IMF B, allows for continuous energy and momentum transfer from
the solar wind into the magnetosphere through magnetic reconnection. As IMF B, changes from southward
to northward, it takes time for the magnetosphere to achieve a steady state. Here we can make a rough esti-
mation of the time delay between dayside magnetopause reconnection and nightside magnetotail recon-
nection. The delay is calculated by estimating the propagation time of open flux tubes to travel between
these two reconnection points. The distance between the magnetopause (~8 R on the dayside) and the
magnetotail neutral line (50-100 Rg on the nightside) is about 58-108 R Assuming that solar wind speed
is 500 km/s, and the transit time for the open flux tube to propagate from the dayside to the nightside is
about 12-23 min, which agrees with previous calculations (Cowley & Lockwood, 1992; Murr & Hughes,
2001). In addition, the reconfiguration time, which is the time required for the coupled magnetosphere-
ionosphere system to reconfigure itself into a new stable state, should also be taken into account. It takes
about 5-10 min for noon high-latitude ionosphere in response to sharp IMF turnings and longer for other
local times away from noon (Murr & Hughes, 2001). To add up, it takes about 17-32 min to complete the
dayside-to-nightside open magnetic flux propagation and energy transfer. If the change of solar wind is
too fast, nightside reconnection will barely engage and will reconnect little magnetic flux if IMF B, varies
too fast and changes its orientation. Thus, less energy will be stored and dissipated on the nightside.
Therefore, less energy is dissipated in the upper atmosphere through the joule heating process on both
the dayside and nightside, for the case of high frequency IMF B, oscillations as shown in Figure 1.

If the IMF B, changes fast, the magnetosphere is in a mixed state with both northward and southward IMF B,
driving conditions. They are more likely to cancel out each other, reducing the coupling efficiency between
the solar wind-magnetosphere and ionosphere-thermosphere system, and thus, cross polar cap potential,
field-aligned currents, and hemispheric power are also reduced (e.g., Pham et al.,, 2016). In addition, the
filed-aligned current system associated with magnetosphere-ionosphere coupling has an appreciable induc-
tive inertia which damps the CPCP amplitude relative to reconnection potential, and this attenuation effi-
ciency depends on solar wind oscillation frequency (Sanchez et al., 1991).

Coupling functions in describing the solar wind-magnetosphere-ionosphere combine the instantaneous
solar wind parameters without taking the historic temporal solar wind variation into account that cannot
precisely describe instantaneous solar wind-magnetosphere-ionosphere interactions. The ionosphere-
thermosphere coupled system has an even longer memory compared with the magnetosphere (Liu et al.,
2010). Thus preexisting solar wind condition that determines current magnetosphere-ionosphere status also
has important implication in the current step.

5. Conclusion

In order to understand energy coupling between the solar wind and the magnetosphere, and energy deposi-
tion from the magnetosphere and solar wind into the thermosphere and ionosphere, when solar wind and
IMF has strong temporal variations, a set of CMIT numerical simulations have been performed. A number
of new and interesting results are obtained from these simulations. The energy coupling efficiency for the
solar wind energy flow into thermosphere and ionosphere, in the form of joule heating, tends to be higher
for low-frequency IMF B, oscillations. The coupling efficiencies of peak power are 0.036, 0.17, and 0.32, while
the total energy transfer efficiencies are 17.3%, 38.8%, 55.2% for IMF B, oscillations with 10, 30, and 60-min
periods, respectively. Storm-time joule heating is not only determined by directly driven solar wind process
but it also exhibits “loading-unloading” dynamics for the 60-min IMF oscillations, even though the direct
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