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Short duration and high intensity acoustic exposures can lead to temporary hearing loss and

auditory nerve degeneration. This study investigates central auditory system function following

such acute exposures after hearing loss recedes. Adult rats were exposed to 100 dB sound pressure

level noise for 15 min. Auditory brainstem responses (ABRs) were recorded with click sounds to

check hearing thresholds. Functional magnetic resonance imaging (fMRI) was performed with tonal

stimulation at 12 and 20 kHz to investigate central auditory changes. Measurements were

performed before exposure (0D), 7 days after (7D), and 14 days after (14D). ABRs show an �6 dB

threshold shift shortly after exposure, but no significant threshold differences between 0D, 7D, and

14D. fMRI responses are observed in the lateral lemniscus (LL) and inferior colliculus (IC) of the

midbrain. In the IC, responses to 12 kHz are 3.1 6 0.3% (0D), 1.9 6 0.3% (7D), and 2.9 6 0.3%

(14D) above the baseline magnetic resonance imaging signal. Responses to 20 kHz are 2.0 6 0.2%

(0D), 1.4 6 0.2% (7D), and 2.1 6 0.2% (14D). For both tones, responses at 7D are less than those at

0D (p< 0.01) and 14D (p< 0.05). In the LL, similar trends are observed. Acute exposure leads to

functional changes in the auditory midbrain with timescale of weeks.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5030920
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I. INTRODUCTION

Effective hearing is one of the key factors for humans

and animals to survive and prosper in an increasingly com-

petitive world. The auditory system enables us to detect and

process sounds, including sounds with fine temporal and

spectral differences. This facilitates verbal communication

and, for non-human animals, distinguishing predators from

prey. The auditory system can be damaged by high sound

pressure level (SPL) exposures, which are present in many

developed and developing regions. Possibly the most recog-

nized form of damage is noise-induced hearing loss (NIHL),

which is a major health issue (NIDCD, 2014). NIHL

involves a permanent elevation of hearing thresholds, result-

ing in reduced hearing sensitivity. Permanent threshold shifts

are typically due to prolonged exposures to high SPL sounds.

To protect against permanent hearing loss, the National

Institute for Occupational Safety and Health recommends

against noise exposures exceeding 85 dBA for 8 h/day

(NIOSH, 1998).

Prolonged and acute acoustic exposures (short duration

and high SPL) may also lead to a temporary threshold shift

that disappears 16–48 h later (NIDCD, 2014). Recent

research suggests that temporary hearing loss may be more

harmful than previously thought (Liberman, 2015). In a

landmark series of studies, Kujawa, Liberman, and col-

leagues exposed mice (and other rodents) to 100 dB SPL

noise for 2 h (Kujawa and Liberman, 2009; Lin et al., 2011).

This exposure induced a temporary hearing loss with time-

scale of weeks. However, significant loss of auditory nerve

synapses was seen after one day. The rest of the auditory

nerve, including the cell body and axons projecting to the

brain, degenerated over the coming months. This degenera-

tion showed no signs of recovery. This permanent damage

(hidden hearing loss) does not significantly affect the ability

to detect sounds, but may hamper the ability to process more

complicated acoustic signals (Liberman, 2015). This, in turn,

can affect the ability to process the subtle signals in speech.

The above understanding of the impact of acute acoustic

exposures is primarily of the auditory periphery. Considering

that sound detection is largely unaffected, we investigate the

impact of acute exposure on the central auditory system. In

particular, we focus on the time period after the temporary

threshold shift recedes. The central auditory studies will be

performed primarily with functional magnetic resonance

imaging (fMRI). fMRI is a non-invasive technique with large

field of view (FOV) that is able to simultaneously investigate

multiple brain structures with relatively high spatiala)Electronic mail: condon.lau@cityu.edu.hk
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resolution. fMRI is well suited to longitudinal studies.

Further, fMRI can complement electrophysiological and

immunohistochemistry studies by directing the investigation

sites and facilitating the translation of results to humans,

where fMRI is regularly performed. Blood oxygenation level

dependent (BOLD) contrast fMRI (Ogawa et al., 1990) has

been widely adopted for different types of sensory and cogni-

tive investigations. For the auditory system, BOLD fMRI

studies have been conducted to investigate auditory informa-

tion processing (Friederici et al., 2000; Maeder et al., 2001;

Koelsch et al., 2005; Holland et al., 2008; Wu and Lin,

2008). A number of studies have applied BOLD fMRI in

humans to investigate the underlying mechanism of hearing

loss and hearing disorders such as tinnitus (Bilecen et al.,
2000; Jancke et al., 2001; Schmithorst et al., 2005; Smits

et al., 2007; Lanting et al., 2008; Gu et al., 2010). Relatively

fewer animal auditory fMRI studies have been reported so far

(Van Meir et al., 2005; Boumans et al., 2007; Kayser et al.,
2007; Voss et al., 2007; Tanji et al., 2010; Baumann et al.,
2011; Bach et al., 2013; Brown et al., 2013; Butler et al.,
2015; Hall et al., 2016; Ortiz-Rios et al., 2017). The results

from these studies demonstrate that auditory fMRI studies on

animals can provide valuable insights into hearing mecha-

nisms, especially in subcortical structures such as the inferior

colliculus (IC). Our group has developed functional and

structural magnetic resonance imaging (MRI) methods for

auditory investigations in the experimentally versatile rat

model (Cheung et al., 2012a; Cheung et al., 2012b; Lau

et al., 2013; Zhang et al., 2013; Gao et al., 2014; Gao et al.,
2015a; Lau et al., 2015a; Lau et al., 2015b; Abdoli et al.,
2016; Wong et al., 2017).

In this study, adult rat subjects were exposed to broad-

band acoustic noise at 100 dB SPL for 15 min. Auditory

fMRI was performed on each subject at three time points:

immediately before the acute exposure (0D), 7 days after the

exposure (7D), and 14 days after (14D). Auditory brainstem

responses (ABRs) were also acquired at the three time

points, plus an additional time point shortly after the expo-

sure (0Dþ), to check for significant hearing threshold shifts.

This will allow fMRI findings from the central auditory sys-

tem to be interpreted without the confound of a significant

threshold shift. The results of this study are important for

understanding the impact of acute noise exposures on central

auditory function.

II. METHODS

A. Animal subjects

All animal experiments were approved by the animal

research ethics committees of the City University of Hong

Kong, the University of Hong Kong, and the Department of

Health of the Hong Kong Special Administrative Region.

Adult female Sprague-Dawley rats (250–260 g, N¼ 14) were

employed in this study. Females were chosen to minimize size

change during the course of the 14 days study. Figure 1 illus-

trates the study design. Upon entering the study, subjects first

underwent brain imaging or ABR testing, followed by acute

noise exposure, before being placed in housing. Imaging was

performed before the exposure (0D), 7 days after (7D), and 14

days after (14D). Subjects were housed in pairs in standard

cages throughout the study. Food and water were provided ad
libitum and the holding room had a 12 h light/dark cycle. The

background SPL in a cage was <40 dB.

B. Acute acoustic noise exposure

The acute exposure was a broadband acoustic noise,

peaked between 8 and 16 kHz, at 100 dB total SPL (SPLt) pre-

sented binaurally for 15 continuous minutes. The bandwidth

and SPL of the exposure were measured and calibrated with a

50 kHz microphone (M50, Earthworks Audio, Milford, NH)

and a 192 kHz recorder (FR2, Fostex, Norwalk, CA). SPLt

¼ 10 log ð
Pn

k¼1 10SPLðkÞ=10Þ, where k¼ 1–n are the sampling

frequencies of the microphone. Figure 1 shows the acoustic

power spectrum of the noise. During exposure, subjects were

placed individually within a cage and the cage was placed

inside of an enclosed chamber. A loudspeaker (H-600Q,

T&T, Shenzhen, China) was placed 15 cm above the center of

the cage. Microphone measurements were performed before

each exposure session with the microphone placed in the cen-

ter of the cage at the height of the subject’s ears.

C. ABR

ABRs were recorded at 0D, shortly after noise exposure

(0Dþ), 7D, and 14D (N¼ 4). Note that 0D and 0Dþ

FIG. 1. (A) Study design showing the three time points where fMRI and

ABR recording are performed. The first time point (day 0, 0D) occurs just

before the 15 min, 100 dB SPL acute acoustic noise exposure. Time points

7D and 14D are 7 and 14 days after the exposure, respectively. In between

time points, the subjects are in standard housing. ABRs are recorded at an

additional time point (0Dþ) shortly after the noise exposure. (B) Acoustic

power spectra of the noise exposure and acoustic stimuli. The exposure is a

100 dB total SPL broadband noise peaked between 8 and 16 kHz. The two

stimuli are 12 and 20 kHz tones at 90 and 80 dB SPL, respectively. (C)

Representative fMRI block-design stimulation paradigm with four 20 s ON

periods interleaved between 40 s OFF periods. During ONs, one of the tones

is played. During OFFs, there is no stimulation. The order of tone presenta-

tion is pseudorandom (see Sec. II, Methods). MRI image acquisition occurs

every 1 s throughout the 280 s paradigm.
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recordings were made from two subjects and 0D, 7D, and

14D recordings were made from two separate subjects.

Subjects were anesthetized by intraperitoneal injection of

sodium pentobarbital (50 mg/kg). Recordings were per-

formed inside a sound attenuating chamber (IAC Acoustics,

Winchester, UK). Body temperature was maintained by plac-

ing the subject in contact with a heat pad. Three subdermal

needle electrodes were inserted about the ear for recording

the ABR. The positive electrode was inserted at the vertex,

the negative electrode below the pinna of the left ear facing

the speaker (ALT-800, ProAudio, Hong Kong, China), and

the ground electrode at the back of the subject. Note that for

the two subjects with recordings at 0Dþ, anesthetic was

administered and the electrodes inserted prior to noise expo-

sure such that recordings began less than 10 min after the

exposure. Click sounds of 0.1 ms duration were used to stim-

ulate the ear every 100 ms. The SPL at the position of the ear

canal was measured and calibrated with the 50 kHz micro-

phone and 192 kHz recorder. The SPL was decreased in at

least 6 dB steps by lowering speaker output. Below 25 dB,

SPL was decreased by increasing the distance between the

speaker and the subject as this method led to more consistent

microphone measurements. Each subject was stimulated

with 1024 clicks at each SPL and the average response at

each SPL was recorded. The threshold was defined as the

lowest SPL setting with a consistent, clearly discernible

response. The amplitudes of waves I and IV at 50 dB SPL

was defined as the peak-to-peak amplitude.

D. Subject preparation for imaging

Subjects were prepared for imaging sessions at each time

point (0D, 7D, and 14D) in a similar manner to our previous

studies (Lau et al., 2013; Gao et al., 2014; Gao et al., 2015a;

Gao et al., 2015b; Lau et al., 2015a; Lau et al., 2015b; Wong

et al., 2017). Subjects (N¼ 10) were anesthetized with 1% iso-

flurane (3% to induce anesthesia) and mechanically ventilated

(TOPO, Kent Scientific, Torrington, CT) via oral intubation.

They were then placed on a body holder in the prone position

with a tooth bar and nose cone to restrict head motion. A cus-

tom 165 cm long rigid sound tube with a 6.5 cm flexible distal

end was placed in the left ear canal of the subject. The right

ear was occluded with cotton wool and Vaseline (Unilever,

Rotterdam, Netherlands). A pulse oximeter was connected to a

hind paw to monitor heart rate and saturation of peripheral

oxygen. A rectum thermometer was used to monitor body

temperature, which was maintained by circulating warm water

through the holder. A pressure sensor was positioned on the

subject to monitor respiration rate. A capnograph was con-

nected to the exhaust port of the ventilator to monitor end-

tidal CO2. All vital signs sensors were from SA Instruments

(Stony Brook, NY). The MRI surface coil was placed over the

head, centered between the ears and above the midbrain, and

the entire setup was placed inside of the scanner.

E. Acoustic stimulation

Acoustic stimulation during fMRI was produced by

a broadband magnetic speaker (MF1, Tucker-Davis

Technologies, Alachua, FL) driven by a matching amplifier

(SA1, Tucker-Davis Technologies). The speaker was

placed at the proximal end of the sound tube to deliver

monaural stimulation. Two tonal stimuli of 12 and 20 kHz

were employed in this study. Figure 1 shows the acoustic

power spectra of the tones. The SPLs of the tones were

approximately 90 and 80 dB, respectively. These SPLs cor-

responded to the maximum output of the speaker at the

respective frequencies. SPL measurements were performed

by placing the 50 kHz microphone at the distal end of the

tube, which enters the ear canal. Note that the low fre-

quency tone was at higher SPL as the speaker’s output had

to propagate down the long sound tube. The tones were pre-

sented in a block design paradigm temporally synchronized

with image acquisition. The paradigm consisted of an ini-

tial 40 s without stimulation (OFF) followed by four blocks

of 20 s with stimulation (ON) and 40 s OFF. The total para-

digm duration was 280 s. During each ON period, the 12 or

20 kHz tone was presented to the subject. The paradigm is

illustrated in Fig. 1. The tones were amplitude modulated

with 100% modulation depth and 50% duty cycle. The

paradigm was presented ten times to each subject at each

time point with one minute rest intervals. The tones were

presented in pseudorandom order, with the constraint that

each frequency was presented in an equal number of ON

periods after the ten paradigm presentations.

F. Image acquisition

Imaging was performed by placing the subject inside of

a 7 T MRI scanner (PharmaScan, Bruker Biospin, Billerica,

MA) using a transmit-only birdcage coil in combination with

an actively decoupled receive-only surface coil. Scout

images were first acquired to determine the orientation of the

brain relative to the scanner. A 1.2 mm coronal slice was

then positioned to be centered on the IC of the midbrain

according to the rat brain atlas (Paxinos and Watson, 2005).

A set of four coronal slices, spaced 0.2 mm apart, was posi-

tioned with the above slice second from the posterior of the

brain. The scan geometry is illustrated in Fig. 2 on a sagittal

view of the brain at midline. An anatomical image was

acquired for reference using the following sequence parame-

ters: rapid acquisition with relaxation enhancement (RARE),

RARE factor¼ 8, FOV¼ 32� 32 mm2, data

matrix¼ 256� 256, echo time (TE)¼ 32 ms, and repetition

time (TR)¼ 4.2 s. fMRI images were acquired using the fol-

lowing sequence parameters: single-shot gradient-echo

echo-planar imaging (GE-EPI), FOV¼ 32� 32 mm2, data

matrix¼ 64� 64, flip angle ¼ 56�, TE¼ 20 ms,

TR¼ 1000 ms, and repetitions¼ 280 (total of 280 s). Each

fMRI acquisition was temporally synchronized with stimulus

presentation and constituted a fMRI scan. Ten scans were

performed at each time point separated by one minute.

G. Image processing

The image processing procedures were adapted from

our recent rat auditory fMRI studies (Cheung et al., 2012a;

Cheung et al., 2012b; Lau et al., 2013; Zhang et al., 2013;

Gao et al., 2014; Gao et al., 2015a; Gao et al., 2015b; Lau

et al., 2015a; Lau et al., 2015b; Wong et al., 2017). The

2186 J. Acoust. Soc. Am. 143 (4), April 2018 Yang et al.



images from all ten fMRI scans at each time point (0D, 7D,

and 14D) were realigned to the mean image of the first scan

with Statistical Parametric Mapping (SPM) (Wellcome Trust

Centre, London, UK). Images from different subjects were

than registered to the mean image of a subject at 0D, which

served as the template. For registration, images were

smoothed in-plane with a 0.5 mm Gaussian filter and only

brain structures were included. The images were split into 60

images long sets (60 s) starting 5 s before a 20 s ON period

and ending 35 s after the ON period. Sets with the same stim-

ulation frequency (12 or 20 kHz) and from the same time

point were averaged, resulting in one 60 images set for each

subject at each frequency and time point. Functional activa-

tion (t-value) maps were computed from the image sets using

SPM and custom MATLAB (The Mathworks, Natick, MA)

scripts. Voxels with p< 0.001 and cluster size �3 were

defined as activated voxels.

Regions of interest (ROIs) were functionally defined to

quantify the amplitude of fMRI responses from activated

structures in the central auditory system. For this purpose,

average t-value maps were computed after averaging image

sets from the same stimulation frequency across all subjects

and time points. This resulted in two average t-value maps,

one for each stimulation frequency (12 and 20 kHz). ROIs

were defined for the contralateral (right) lateral lemniscus

(LL) and IC as those were the structures with large t-values

across all time points. Only voxels with p< 0.001 and within

one voxel width of an auditory structure, according to the rat

brain atlas (Paxinos and Watson, 2005), were included in the

ROI of that structure. The one voxel margin was used to

account for smoothing during image processing. This ROI

definition ensured that ROIs spanned the same voxels in

images acquired from different time points. Separate ROIs

were defined for 12 and 20 kHz responses to account for the

tonotopic organization of the auditory system.

BOLD signals were computed for each structure, sub-

ject, time point, and stimulation frequency by averaging the

60 s time courses from all voxels in the ROI. The corre-

sponding BOLD signal amplitude was defined as [(average

value of signal during the ON period)/(average value of sig-

nal during the 5 s before the ON period) � 1] � 100%. This

definition presented the signal amplitudes in units of % base-

line MRI signal.

Center of activation (COA) was computed for the IC at

12 and 20 kHz stimulation at each time point, and after aver-

aging across time points. rCOA ¼ ð1=
PV

i¼1 SiÞ
PV

i¼1 Siri,

where �r is the coordinate relative to the interaural line

(Paxinos and Watson, 2005), V is the number of activated

voxels in the IC, and S is the BOLD signal (Lau et al.,
2015a).

H. Statistical analysis

One-way repeated measures analysis of variance

(ANOVA) followed by Tukey’s honest significant difference

(HSD) test was employed to quantify differences between

signal amplitudes and COAs from different time points.

III. RESULTS

A. ABRs

Figure 3 shows the near-threshold ABRs recorded from

two subjects before acute acoustic noise exposure (0D) and

immediately after (0Dþ). ABRs were recorded from supra-

threshold SPLs down to near the hearing threshold.

Responses are largest at SPLs well above threshold and

become smaller near the threshold. SPL of 11 dB was the

lowest at which consistent responses were observed at any

time point using our ABR system. This is the threshold for

all subjects at 0D. At 0Dþ, the threshold is 17 dB for all sub-

jects, indicating a 6 dB threshold shift.

Figure 4 shows the near-threshold and suprathreshold

ABRs from two subjects at 0D, 7 days after noise exposure

(7D), and 14 days after (14D). The threshold for all subjects

at 0D, 7D, and 14D is 11 dB SPL. Comparing across the

three time points at 11 dB, there is little difference in

FIG. 2. (Color online) (A) fMRI scan geometry overlaid on a sagittal view

of the brain at midline. The dorsal, ventral, anterior, and posterior sides of

the brain are shown. (B) and (C) fMRI t-value maps averaged across all sub-

jects (N¼ 10) and time points. Average activation maps acquired with 12

(B) and 20 kHz (C) acoustic stimulation are overlaid on an anatomical

image. The top image slice is centered on the IC and the lower slice is

1.4 mm anterior. Monaural acoustic stimulation primarily activates the LL

and IC, in the hemisphere contralateral to the simulated ear (left), of the

midbrain. The IC response during 12 kHz stimulation is slightly dorsal of

the 20 kHz response, reflecting the tonotopic organization of the IC. ROIs

are defined spanning the LL and IC during 12 and 20 kHz stimulation (four

ROIs in total, see Sec. II, Methods). The ROIs are color coded and used to

compute the BOLD signals. The t-values in the LL (blue) and IC (red) are

coded by the shade of each color.
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responses. The acute noise exposure employed in this study

causes a short lasting temporary threshold shift and does not

significantly affect the amplitude of near-threshold ABRs

one and two weeks later. The suprathreshold ABRs, recorded

during 50 dB SPL stimulation, show multiple waves. The

amplitude of wave I at 0D is 9.2/5.4 lV (subject 1/2). For

7D and 14D, the amplitudes are 15.3/16.2 and 6.2/0.6 lV,

respectively. Wave I amplitudes measured at 7D are larger

than those measured at 0D. Amplitudes at 14D are smaller

than those at 0D. The wave IV amplitudes at 0D, 7D, and

14D are 26.0/16.6, 30.5/17.1, and 23.8/13.7 lV, respectively.

Wave IV amplitudes are largest at 7D and lowest at 14D.

The ratios of wave amplitudes (I divided by IV) at 0D, 7D,

and 14D are 0.35/0.33, 0.50/0.95, and 0.26/0.04,

respectively.

B. Auditory midbrain responses

Figures 2(B) and 2(C) show the average t-value maps

(averaged across subjects and time points) for 12 and 20 kHz

stimulation, respectively. Significant responses are observed

in the midbrain structures LL and IC in the hemisphere con-

tralateral to the simulated ear. This is consistent with earlier

auditory fMRI studies of the rat midbrain (Cheung et al.,
2012b; Lau et al., 2013; Gao et al., 2014; Gao et al., 2015a;

Gao et al., 2015b; Lau et al., 2015a). LL responses are larg-

est in the dorsal nucleus while IC responses are largest in the

central nucleus and external cortex. The 12 and 20 kHz ROIs

were defined according to the responsive regions in these t-
value maps and the rat brain atlas (Paxinos and Watson,

2005). The ROIs were used to compute the BOLD signals

from different structures. Comparing the 12 and 20 kHz

responses in the IC, lower sound frequencies activate more

dorsal regions while higher frequencies activate more ventral

regions [F(1,78)¼ 4.71, p¼ 0.033]. This is quantified by the

COAs computed in Table I.

C. Reduction in fMRI signals

Figure 5 shows the fMRI t-value maps acquired at 0D,

7D, and 14D. The maps were averaged across all subjects

and overlaid on an anatomical image. The largest responses

in both the LL and IC are observed at 0D for both 12 and

20 kHz stimulation. At 7D, the responses are smaller in the

LL and IC. At 14D, there is partial recovery in the responses

toward 0D levels. Supplementary Fig. 1 shows the BOLD

signals from the LL and IC at each time point and stimula-

tion frequency.1 The observed response reduction and recov-

ery occur across all sound activated nuclei in the midbrain.

Acute exposure leads to a reduction in auditory midbrain

responses with timescale of weeks.

Table I shows the COAs in the IC during 12 and 20 kHz

stimulation at 0D, 7D, and 14D. The trend of lower sound

frequencies activating more dorsal regions is consistent with

the time point averaged calculation. However, statistical sig-

nificance is not reached for individual time points.

Figure 6 shows the t-value difference maps during 12

and 20 kHz stimulation averaged across all subjects and

overlaid on an anatomical image. The difference maps were

obtained by computing the difference between two of the

0D, 7D, and 14D t-value maps of Fig. 5. For the 7D–0D

map, most of the auditory midbrain has negative values,

indicating smaller responses one week after exposure.

For the 14D–7D map, most of the auditory midbrain has pos-

itive values, indicating recovery of responses toward pre-

exposure values two weeks after. Slightly negative values

are observed in parts of the LL at 12 and 20 kHz stimulation,

suggesting LL recovery may take a longer time or be less

FIG. 4. ABR recordings from subjects

(N¼ 2, different from the two in Fig.

3) at 0D, 7D, and 14D. ABRs recorded

at 0D, 7D, and 14D near the threshold

are similar, with responses clearly dis-

cernible down to 11 dB stimulation

SPL. Therefore, the noise exposure

causes a temporary threshold shift and

thresholds recover by 7D when fMRI

is performed. In the suprathreshold

recording (50 dB SPL), waves I–IV

(labeled I and IV) are discernible in

most of the ABRs. Wave I amplitudes

are largest at 7D and smallest at 14D.

Similarly, wave IV amplitudes are

largest at 7D and smallest at 14D, but

the relative change with time is less.

FIG. 3. ABR recordings from subjects (N¼ 2) at 0D and 0Dþ. ABRs are

recorded with 0.1 ms click sounds from 11 dB SPL, near the hearing thresh-

old, to suprathreshold levels. At 0D, responses are clearly discernible at all

SPLs. At 0Dþ, responses are clearly discernible at 17 dB and above.

Therefore, the acute noise exposure employed in this study causes a hearing

threshold shift.
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complete than IC recovery. For the 14D–0D map, most of

the auditory midbrain has negative values close to 0, indicat-

ing partial recovery of responses two weeks after exposure.

Figure 7 shows the BOLD signal amplitudes in the IC at

0D, 7D, and 14D during 12 and 20 kHz stimulation. The sig-

nals at 0D, 7D, and 14D during 12 kHz stimulation are

3.1 6 0.3%, 1.9 6 0.3%, and 2.9 6 0.3%, respectively.

During 20 kHz stimulation, the signals are 2.0 6 0.2% (0D),

1.4 6 0.2% (7D), and 2.1 6 0.2% (14D). The IC BOLD sig-

nal is reduced at 7D and shows signs of recovery at 14D.

Using ANOVA, the signals during 12 [F(2,27)¼ 7.22,

p¼ 0.0031] and 20 kHz [F(2,27)¼ 5.26, p¼ 0.012] stimula-

tion are significantly different at the three time points.

Applying Tukey’s test to compare between time points, sig-

nals at 7D are significantly less than those at 0D (p< 0.01)

and 14D (p< 0.05) during both stimulation frequencies.

Signals at 0D and 14D are not significantly different.

Figure 8 shows the BOLD signal amplitude in the LL at

0D, 7D, and 14D during 12 and 20 kHz stimulation. The sig-

nals at 0D, 7D, and 14D during 12 kHz stimulation are

1.7 6 0.3%, 0.6 6 0.1%, and 1.4 6 0.3%, respectively.

During 20 kHz stimulation, the signals are 1.1 6 0.2% (0D),

0.5 6 0.1% (7D), and 1.0 6 0.1% (14D). In general,

responses are largest at 0D and smallest at 7D for both

frequencies. The LL BOLD signal is reduced 7 days post

exposure and shows signs of recovery by 14 days, although

pre-exposure values are not fully recovered. By ANOVA,

there are no statistically significant differences between 0D,

7D, and 14D. However, the overall trend is similar to that in

the IC. The fMRI results show that acute exposure reduces

auditory midbrain responses at 7 days post exposure and par-

tial recovery is seen at 14 days.

IV. DISCUSSION

A. Spontaneous neural activity

Acoustic trauma has been found to increase spontaneous

firing rates in the IC of a range of animal species (Ma et al.,
2006; Mulders and Robertson, 2009; Dong et al., 2010;

Manzoor et al., 2012; Coomber et al., 2014). For example,

Mulders et al. exposed guinea pigs to 124 dB SPL sound for

1 h (Mulders et al., 2010) and observed high spontaneous

activity in the IC. Such hyperactivity has been associated

with tinnitus and was observed with high SPL exposures that

caused significant hearing threshold shifts. The IC hyperac-

tivity is initially dependent on input from lower auditory

centers such as the cochlear nucleus and cochlea, but after

weeks, may become less dependent (Mulders and Robertson,

2011; Robertson et al., 2013). Similar hyperactivity has also

been observed (in IC and other brain regions) following

exposures that only induce temporary threshold shifts

(Basura et al., 2015; Hesse et al., 2016; Wu et al., 2016), as

in this study.

BOLD fMRI signals are closely related to the local neu-

ral activity (Logothetis et al., 2001; Logothetis and Wandell,

FIG. 5. (Color online) fMRI group

averaged t-value maps at 0D, 7D, and

14D. Activation maps acquired with

12 and 20 kHz acoustic stimulation are

overlaid on an anatomical image. (A)

0D, 12 kHz; (B) 7D, 12 kHz; (C) 14D,

12 kHz; (D) 0D, 20 kHz; (E) 7D,

20 kHz; (F) 14D, 20 kHz. Responses

are primarily observed in the contralat-

eral (right) LL and IC. Responses at

7D are significantly lower than those at

0D and 14D. This trend is similar dur-

ing 12 and 20 kHz stimulation. This

shows a reduction in midbrain

responses 7 days following acute noise

exposure with partial recovery seen by

14 days. t-values are color coded.

TABLE I. COAs computed for the IC at 12 and 20 kHz stimulation at each

time point (0D, 7D, 14D), and after averaging across time points. Mean and

standard error are presented. Refer to Sec. II, Methods, for more details. The

coordinates are relative to the interaural line and in units of millimeters.

Statistical details, as computed by ANOVA followed by Tukey’s HSD test,

are given for significant differences between 12 and 20 kHz. “*” indicates

p< 0.05 and “ns” indicates not significant.

Time point 12 kHz 20 kHz Significance

Dorsal of interaural

line (mm)

0D 5.9 6 0.4 5.4 6 0.3 ns

7D 5.8 6 0.3 5.5 6 0.3 ns

14D 5.7 6 0.4 5.3 6 0.4 ns

Averaged 5.8 6 0.3 5.4 6 0.2 *

Anterior of interaural

line (mm)

0D 0.6 6 0.2 0.6 6 0.2 ns

7D 0.6 6 0.2 0.6 6 0.1 ns

14D 0.6 6 0.1 0.6 6 0.1 ns

Averaged 0.6 6 0.1 0.6 6 0.1 ns

From midline (mm) 0D 2.7 6 0.4 2.7 6 0.4 ns

7D 2.6 6 0.3 2.7 6 0.3 ns

14D 2.8 6 0.3 2.6 6 0.4 ns

Averaged 2.7 6 0.2 2.6 6 0.3 ns
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2004), both spontaneous and task-evoked. The BOLD signal

amplitude due to a task, such as sound stimulation, is further

related to the amplitude of the baseline spontaneous activity.

Hyder, Smith, and colleagues measured BOLD and extracel-

lular neural activity from the somatosensory cortex of rats

(Hyder et al., 2002; Smith et al., 2002). They observed that

the task-evoked BOLD signal was smaller when the ampli-

tude of spontaneous activity was larger, and vice versa.

Relating to the results of this study, the BOLD signal

amplitudes in the LL and IC 7 days after acute noise expo-

sure are reduced but partially recover by 14 days after.

These fMRI changes at seven days are likely related to the

increased midbrain spontaneous activity reported in the

above studies (Ma et al., 2006; Mulders and Robertson,

FIG. 6. (Color online) Group averaged

t-value difference maps during 12 and

20 kHz stimulation overlaid on an ana-

tomical image. The t-value differences

were computed by subtracting group

averaged activation maps. (A) 7D–0D,

12 kHz; (B) 14D–7D, 12 kHz; (C)

14D–0D, 12 kHz; (D) 7D–0D, 20 kHz;

(E) 14D–7D, 20 kHz; (F) 14D–0D,

20 kHz. Primarily positive t-value dif-

ferences (red voxels) are observed in

14D–7D during both frequencies.

Primarily negative t-value differences

(blue voxels) are observed in 7D–0D

and 14D–0D. This shows a reduction

in midbrain responses following acute

noise exposure with timescale of a

week. The color bar indicates the t-
value difference.

FIG. 7. (A) BOLD signal amplitudes (%) in the IC (mean and standard

error) at 0D, 7D, and 14D obtained from the ROIs in Fig. 2. In general, sig-

nals are highest at 0D, lowest at 7D, and return to near pre-exposure levels

at 14D. (B) Differences in signal amplitude (%) in the IC at 0D, 7D, and

14D. There is a statistically significant reduction in fMRI responses from

the auditory midbrain 7 days following acute noise exposure and partial

recovery by 14 days after. “*,” “**,” and “***” indicate p< 0.05, p< 0.01,

and p< 0.001, respectively (computed by ANOVA followed by Tukey’s

HSD test).

FIG. 8. (A) BOLD signal amplitudes (%) in the LL (mean and standard

error) at 0D, 7D, and 14D obtained from the ROIs in Fig. 2. In general, sig-

nals are highest at 0D, lowest at 7D, and return to near pre-exposure levels

at 14D. (B) Differences in signal amplitude (%) in the LL at 0D, 7D, and

14D. There is a reduction in fMRI responses from the auditory midbrain 7

days following acute noise exposure and partial recovery by 14 days after.

The trends are similar to those in the IC.
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2009; Dong et al., 2010; Mulders et al., 2010; Mulders and

Robertson, 2011; Manzoor et al., 2012; Robertson et al.,
2013; Coomber et al., 2014; Basura et al., 2015; Hesse et al.,
2016; Wu et al., 2016). By 14 days, the increased activity

likely receded as the relatively mild noise exposure induced

only a short duration temporary threshold shift (see Fig. 3).

These changes in spontaneous activity occur without signifi-

cant hearing threshold shift at the time of measurement and

across multiple auditory nuclei of the midbrain.

B. Central gain

Central gain is another mechanism that may contribute

to the BOLD signal changes following acute acoustic noise

exposure. Acute exposure leads to degeneration of auditory

nerve synapses within 24 h of exposure and these nerves stop

responding to sound (Kujawa and Liberman, 2009).

However, subjects are still able to detect sounds. This likely

reflects increased gain in the central auditory system follow-

ing exposure (Auerbach et al., 2014; Chambers et al., 2016).

Early evidence for increased central gain came from electri-

cal stimulation of the cochlear nucleus and IC coupled with

behavioral measurements of the stimulation threshold

(Gerken et al., 1984). The response threshold following

110 dB SPL, 48 h exposure was surprisingly decreased rela-

tive to that before exposure. More direct evidence for

increased central gain came from evoked response studies

(Popelar et al., 1987; Salvi et al., 1990; Syka et al., 1994). A

broadband 120 dB SPL, 1 h exposure temporarily shifted

response thresholds in the auditory nerve, IC, and auditory

cortex (AC). In the AC, the response amplitude to high

intensity sound stimulation was larger than before exposure

and persisted at least 24 h post exposure (Popelar et al.,
1987). A 2 kHz, 105 dB SPL exposure induced a permanent

threshold shift from 2 to 8 kHz (Salvi et al., 1990). In the IC,

the response amplitude during 0.5 kHz stimulation was

enhanced.

In this study, suprathreshold ABR wave IV amplitude is

increased at 7D compared with 0D (see Fig. 4). This may

reflect increases in central gain in the midbrain. However,

BOLD signals are affected by both spontaneous activity and

central gain. Therefore, spontaneous activity changes may

partially mask central gain changes in fMRI. Also note that

the hours and days long timescales of the early studies in the

above paragraph were considerably shorter than the weeks

long timescale in this study. Recently, near complete lesion-

ing of synapses in mice was found to eliminate the ABR and

acoustic startle reflex, but subjects were still able to perceive

tones (Chambers et al., 2016). Lesioning progressively

reduced sound evoked auditory nerve responses over the

course of weeks. In the midbrain, however, multi-unit activ-

ity was greatly reduced 7 days post-lesioning but partial

recovery was observed at 30 days. In the AC, the activity at

30 days was even above those of control subjects. Increased

central gain with weeks long timescale may be partly respon-

sible for the recovery of midbrain responses observed in this

study.

C. Synaptopathy

A recently discovered danger of acute acoustic expo-

sures that cause temporary threshold shifts is rapid loss,

within 24 h, of synapses (synaptopathy) at the junction of

inner hair cells and auditory nerve fibers (Plack et al., 2014;

Kujawa and Liberman, 2015). This synaptopathy occurs

without hair cell loss and the spiral ganglion cells of the

auditory nerve degenerate only long afterward. Further, the

lost synapses concentrate in fibers with high thresholds and

low spontaneous discharge rates (Furman et al., 2013). This

condition has been named hidden hearing loss (Plack et al.,
2014). Hidden hearing loss may cause subjects with a history

of noise exposure to have speech discrimination difficulties,

especially in noise, and sound temporal processing difficul-

ties. Further, hidden hearing loss may also be associated

with tinnitus. The synaptopathy was originally observed to

be permanent, but different species or exposure levels may

allow partial recovery (Liu et al., 2012; Shi et al., 2016).

However, the recovered synapses still suffer from functional

deficits.

In this study, decreased suprathreshold ABR wave I

amplitude at 14D (see Fig. 4), relative to 0D, agrees with

rodent studies of acute noise induced synaptopathy (Kujawa

and Liberman, 2009; Lin et al., 2011; Furman et al., 2013;

Hickox and Liberman, 2014). Further, the small increase of

wave IV at 7D, and small decrease at 14D, agrees with ear-

lier rodent studies which observed that wave IV is similar,

and sometimes increased, after noise (Ruttiger et al., 2013;

Mohrle et al., 2016). Since the acoustic stimulus during

fMRI was at a high 80–90 dB SPL, the loss of high threshold

auditory nerve fibers would be expected to reduce the input

to the midbrain and reduce BOLD signals, as observed at 7D

and 14D. However, this mechanism likely occurs alongside

changes in midbrain spontaneous activity and central gain.

The increased suprathreshold wave I amplitude at 7D

(see Fig. 4) may be related to forward masking of the click

sound by the preceding click sound (100 ms earlier). Loss of

low spontaneous rate fibers in synaptopathy has recently

been postulated to increase wave I amplitude in a forward

masking situation (see Fig. 1 of Mehraei et al., 2017)

because such fibers slow down recovery of the wave after

the masker (Mehraei et al., 2017). Note that 7D is before the

majority of wave I measurement time points reported

(Kujawa and Liberman, 2009; Lin et al., 2011; Furman

et al., 2013; Hickox and Liberman, 2014), which typically

range from 1 to 8 weeks post exposure. Also, the exposure in

this study is of relatively short duration (15 min) compared

with exposures in earlier synaptopathy studies.

D. Technical considerations

fMRI generates acoustic noise which may affect hearing

and processing of the acoustic stimulus. In this study, there

are two sources of acoustic exposure during fMRI, scanner

acoustic noise and the acoustic stimuli. The SPL of the stim-

uli are 90 (12 kHz) and 80 (20 kHz) dB. Each subject hears

each stimulus for a total of 10 min after the three time points.

The SPL of the scanner noise is difficult to measure as such

a measurement would have to be done in the ear canal and
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inside the scanner. Considering that robust fMRI responses

are observed, the scanner SPL likely does not exceed 80 dB.

Each subject hears the scanner for 140 min. In comparison,

the study’s acute acoustic exposure is 100 dB SPL for

15 min. Converting from dB to acoustic energy, the acute

exposure delivered 15.0 times more energy than the 12 kHz

stimulus, 150.0 times more energy than the 20 kHz stimulus,

and 10.7 times more energy than the scanner. Therefore,

fMRI acoustic noise is small compared with the acute

exposure.

Also, the setup in this study has been used to study the

rat central auditory system and obtained results that agreed

with previous understanding and added new insight. For

example, fMRI responses to acoustic stimulation has been

observed in the cochlear nucleus, superior olivary complex,

LL, IC, medial geniculate body, and AC (Cheung et al.,
2012a). Tonal stimuli enabled mapping the dorsal to ventral

arrangement of tonotopic organization in the IC (Cheung

et al., 2012b). Varying the SPL of the stimulus enabled

observing different SPL dependences across the auditory sys-

tem (Zhang et al., 2013). Binaural stimulation with different

SPLs in the two ears enabled studying interaural level differ-

ence processing across multiple auditory nuclei (Lau et al.,
2013). More recently, we have begun investigating the

impact of long-term, moderate SPL noise exposure (no hear-

ing loss) across the auditory system (Lau et al., 2015a; Lau

et al., 2015b). Therefore, fMRI can complement existing

methods, such as electrophysiology, and help advance the

understanding of important problems such as noise exposure.

The subjects used in fMRI (N¼ 10) and ABR (N¼ 4) in

this study were separate. Also, ABRs were recorded with

0.1 ms click sounds in this study. Recording with clicks instead

of pure tones does not permit the hearing threshold to be mea-

sured at specific frequencies. However, the clicks stimulate

much of the rat audible frequency range. This enables detect-

ing the presence (or absence) of significant threshold shifts,

which is the primary purpose for recording ABRs in this study.

Hearing threshold elevations can reduce fMRI responses

in the central auditory system. In this study, the BOLD sig-

nal in the IC at 7D during 12 kHz stimulation was 39%

smaller than that at 0D. BOLD signals in the IC have been

observed to increase almost linearly with acoustic stimulus

SPL (see Fig. 5 of Zhang et al., 2013). Assuming that thresh-

old elevation is equivalent to stimulus SPL reduction, and

assuming that the 39% BOLD difference were due solely to

threshold elevation, the required elevation would be �30 dB

(Zhang et al., 2013). Such a large elevation is not observed

in the ABRs between 0D and 7D or 14D. Therefore, the sig-

nal reduction is primarily due to central auditory changes.

This study employed female rats as subjects, and males

and females differ in their susceptibility to high intensity

noise (Ward, 1966; McFadden et al., 1999). Males experi-

ence more hearing loss at low frequencies while females

experience more loss at high frequencies. These differences

may be closely related to the sex hormones, such as estrogen,

as hearing declines rapidly during menopause (Svedbrant

et al., 2015) and noise induced threshold shifts fluctuate with

the menstrual cycle (Davis and Ahroon, 1982). The estrogen

receptor b has been demonstrated to protect against noise

induced threshold shifts (Meltser et al., 2008). Considering

the gender differences, future studies can examine central

auditory changes following acute noise exposures in males

and females.

V. CONCLUSION

fMRI was performed on rat subjects that received noise

exposure of high SPL and short duration. The acute acoustic

exposure reduced fMRI signals from the auditory midbrain at 7

days after exposure, compared with pre-exposure levels. By 14

days after, partial recovery of signals is seen. At these time

points, near-threshold ABRs did not differ significantly from

pre-exposure levels. Therefore, acute exposure leads to func-

tional changes in the auditory midbrain with timescale of weeks.
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