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ABSTRACT 21 

Background: Climate change not only increases global mean temperature, but also changes 22 

short- (e.g. diurnal) and long-term (e.g. intraseasonal) temperature variability. Numerous studies 23 

have shown that mean temperature and short-term temperature variability are both associated 24 

with increased respiratory morbidity or mortality. However, data on the impact of long-term 25 

temperature variability is sparse.  26 

Objective: We aimed to assess the association of intraseasonal temperature variability with 27 

respiratory disease hospitalizations among elders. 28 

Methods: We ascertained the first occurrence of emergency hospital admissions for respiratory 29 

diseases in a prospective Chinese elderly cohort of 66820 older people (≥ 65 years) with 10 to 13 30 

years of follow up. We used an ordinary kriging method based on 22 weather monitoring stations 31 

in Hong Kong to spatially interpolate daily ambient temperature for each participant’s residential 32 

address. Seasonal temperature variability was defined as the standard deviation (SD) of daily 33 

mean summer (June-August) or winter (December-February) temperatures. We applied Cox 34 

proportional hazards regression with time-varying exposure of seasonal temperature variability 35 

to respiratory admissions. 36 

Results: During the follow-up time, we ascertained 12689 cases of incident respiratory diseases, 37 

of which 6672 were pneumonia and 3075 were chronic obstructive pulmonary disease (COPD). 38 

The hazard ratios per 1oC increase in wintertime temperature variability were 1.20 (95% 39 

confidence interval: 1.08, 1.32), 1.15 (1.01, 1.31), and 1.41 (1.15, 1.71) for total respiratory 40 
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diseases, pneumonia, and COPD, respectively. The associations were not statistically significant 41 

for summertime temperature variability. 42 

Conclusion: Wintertime temperature variability was associated with higher risk of incident 43 

respiratory diseases. 44 

 45 

What is the key question? 46 

Is seasonal temperature variability associated with increased risk of respiratory disease 47 

hospitalizations among elders? 48 

 49 

What is the bottom line? 50 

Wintertime temperature variability was associated with higher risks of incidence of total 51 

respiratory diseases, pneumonia, and chronic obstructive pulmonary disease, and such 52 

associations were stronger in females and participants in a lower social-economic position. 53 

 54 

Why read on? 55 

This large prospective cohort study is the first to show the impact of seasonal temperature 56 

variability on respiratory diseases admissions, and it highlights the potential role of changing 57 

seasonal temperature variability introduced by climate change on respiratory system.58 
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INTRODUCTION  59 

Respiratory diseases, including pneumonia and chronic obstructive pulmonary disease (COPD), 60 

contribute to substantial health burden worldwide. Pneumonia affects approximately 450 million 61 

people a year, and is a leading cause of hospitalization and death worldwide.1 A total of 3.2 62 

million people died of COPD in 2015, which is the fourth leading cause of death in the world.2 63 

 64 

It is now well recognized that climate change has increased global temperature over the past few 65 

decades, primarily due to the increased emissions of anthropogenic greenhouse gases (GHGs).3 66 

Climate change is also projected to cause changes in the frequency, severity, and duration of 67 

extreme weather events, including changing temperature variability in short-term (e.g. diurnal 68 

temperature range) and long-term (e.g. intraseasonal) ways.4-7 It is expected that climate change 69 

will impact respiratory diseases significantly through influencing viral activity and transmission 70 

(e.g. respiratory syncytial virus), altering vectors and the host immune response, and changing in 71 

allergen disposition.8 9 72 

 73 

Mean and variability are two main characteristics of temperature. Numerous time-series and 74 

case-crossover studies have reported that short-term exposure to both cold and hot temperatures 75 

were associated with increased risks of respiratory mortality10 and hospital admissions.11 Most of 76 

those studies focused on the adverse health effects of short-term mean temperature. A few 77 

studies also assessed the health effects of short-term temperature variability (e.g. diurnal 78 
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temperature range and temperature change between neighboring days or diurnal temperature 79 

range). For example, Lim et al. (2012) reported that diurnal temperature range were significantly 80 

associated with respiratory hospitalizations using four metropolitan areas in Korea with total 81 

population of 18.3 million.12 To the best of knowledge, no study has been conducted to 82 

investigate the impacts of seasonal (long-term) temperature variability on incident respiratory 83 

disease hospital admissions.  84 

 85 

The present study aimed to estimate the association between seasonal temperature variability, the 86 

standard deviation (SD) of daily mean summer (June-August) or winter (December-February) 87 

temperatures, and the incidence of respiratory disease hospital admissions in a prospective 88 

Chinese elderly cohort in Hong Kong. We also assessed whether the associations were modified 89 

by age, sex, marital and socioeconomic status, and housing type to identify vulnerable 90 

subpopulations. 91 

 92 

METHODS 93 

Study population 94 

The Chinese elderly cohort in Hong Kong is a prospective cohort, into which all residents of 95 

Hong Kong aged 65 years or older (≥ 65 years) were eligible to enroll. From 1998 to 2001, 96 

66820 elders, about 9% of older people in Hong Kong, enrolled in the 18 Elderly Health Centres 97 

of the Department of Health, one in each of the 18 districts in Hong Kong, and were followed up 98 
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till December 2010. Each participant had physical examinations and face-to-face interviews by 99 

registered nurses or doctors using a standardized structured questionnaire during each year of 100 

follow up.13 The collected information included demographic characteristics (e.g. age and sex), 101 

socioeconomic status (e.g. personal monthly expenditure), lifestyle (e.g. smoking status and 102 

physical activity) and body mass index (BMI). Details of this cohort profile were described 103 

elsewhere.13 Ethics approval was obtained from the Ethics Committee of the Faculty of Medicine, 104 

The University of Hong Kong and of the Department of Health of Hong Kong. 105 

 106 

Health outcomes 107 

We used a common unique identifier (the Hong Kong identity card number) to link the cohort 108 

with the Hospital Authority Corporate Data Warehouse, which covers all publicly funded 109 

hospitals that provide 24-hour accident and emergency services and covers 90% of hospital beds 110 

for Hong Kong residents.14 Hospital admissions were identified using primary discharge 111 

diagnoses for emergency hospital admissions for respiratory diseases (International 112 

Classification of Diseases, 9th revision: 460:519), pneumonia (480:486, 487.0), and COPD 113 

(490:492, 494:496). Incident cases for respiratory diseases were ascertained as the first 114 

occurrence of emergency hospital admissions after enrollment. 115 

 116 

Ambient temperature 117 
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We extracted daily mean ambient temperature data from the 22 weather monitoring stations in 118 

Hong Kong within a land area of 1104 km2 from 1998-2010 (Figure 1). Among various 119 

algorithms (e.g. kriging, inverse distance weighting, and trend surface analysis) to spatial 120 

interpolate daily mean ambient temperature, the kriging method yields a more realistic spatial 121 

behavior of the climatological variable of interest.15 16 Ordinary kriging is the most commonly 122 

used kriging method, which estimates daily temperature at locations without monitors based on 123 

the weighted average of adjacent observed sites within a given area. Ordinary kriging has been 124 

described as the “anchor algorithm of geostatistics” because of its remarkable robustness under a 125 

range of conditions.17 We used ordinary kriging to interpolate the daily ambient temperature 126 

based on the 22 weather monitoring stations for each participant according to his/her residential 127 

address. The performance of the ambient temperature prediction model was validated by leave-128 

one-out cross-validation. The R2 of leave-one-out cross-validation was found to be very high 129 

(R2=0.93). We then calculated the standard deviation (SD) of daily mean summer (June–August) 130 

temperature (summertime temperature variability) and the SD of daily mean winter (December–131 

February) temperature (wintertime temperature variability) for each participant’s address. High 132 

or low temperature variability was dichotomously defined as higher or lower than the median of 133 

seasonal temperature variability. 134 

 135 

PM2.5 Exposure  136 
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We estimated fine particulate matter (PM2.5) exposure based on Surface Extinction Coefficients 137 

(SEC) from Aerosol Optical Depth (AOD) retrieved from remote sensing data of the two 138 

National Aeronautics and Space Administration (NASA) Earth Observing System satellites.18  139 

AOD data were originally retrieved at a 10×10 km resolution, and were refined into 1×1 km 140 

resolution by modifying the Moderate Resolution Imaging Spectroradiometer (MODIS) 141 

algorithm.19 The relationship between SEC and PM2.5 for each year from 1998 to 2010 was 142 

calibrated using grid cells with both SEC and PM2.5 measurements. This yearly calibration was 143 

then used to estimate PM2.5 at the residential location of each participant. The estimated PM2.5 144 

concentrations have been used in earlier studies in this cohort to reveal the association of PM2.5 145 

with mortality or hospital admissions. 20-22 146 

 147 

Individual and ecological covariates  148 

We controlled for individual-level potential confounders, including age, sex, marital status, BMI, 149 

physical activity, housing type, education attainment, smoking status, medication taken, and 150 

personal monthly expenditure. As Tertiary Planning Units (TPUs) are the most commonly used 151 

units in the population census report in Hong Kong, we calculated the Social Deprivation Index 152 

(SDI) to control for TPU-level social deprivation. Details for the calculation of SDI were 153 

described elsewhere.23 24 We also controlled for smoking rate (>15 years of age) at district-level.  154 

 155 

Statistical Analysis 156 



 9 

We used Cox proportional hazards models to estimate the association between seasonal 157 

temperature variability and incident respiratory diseases. Survival time was calculated from 158 

enrollment date to first hospital admission to respiratory diseases or death or 31 December 2010 159 

(censoring), whichever came first. In order to separate the independent effects of summertime or 160 

wintertime temperature variability, we included yearly mean temperature and summertime and 161 

wintertime temperature variability simultaneously in the model and treated them as time-varying 162 

exposures. To do this, we used the counting process approach to the Cox proportional hazards 163 

model.25 We controlled for individual-, TPU-, and district-level risk factors as mentioned above 164 

and included a linear term for year of follow-up to adjust for time trends. To allow for possible 165 

non-proportionality of hazard, age in year was treated as the stratification variable. We also 166 

examined age (≤70 y and >70 y), sex (female and male), marital status (married and unmarried), 167 

education attainment (below primary, primary, and secondary or above), personal monthly 168 

expenditure (low, medium, and high), and housing type (public and aided, private, and others) as 169 

the potential modifiers of the effects of seasonal temperature variability by including an 170 

interaction term between seasonal temperature variability and one effect modifier at a time in the 171 

model, and p-value of the interaction term was used to indicate statistical significance.  172 

 173 

We performed a number of sensitivity analyses to test the robustness of our results. First, we 174 

used inverse distance weighting to spatially interpolate daily temperature for each participant, 175 

and then refitted the Cox proportional hazards regression model. Second, to control for 176 
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competing diseases, we excluded participants who died or who had incidence of respiratory 177 

diseases during the first year after enrolment or excluded those who self-reported COPD/asthma 178 

at the baseline. Third, considering PM2.5 concentration may vary from year to year, we further 179 

controlled for time-varying PM2.5 in addition to all potential confounders mentioned above. We 180 

did not control for PM2.5 in the main analysis as the role of air pollution on the association 181 

between ambient temperature and morbidity or mortality is complex and has not be fully 182 

elucidated.26 Fourth, participants may move their homes during the 10 to 13 years of follow-up, 183 

so we excluded participants who changed their home addresses. We also tested the assumption of 184 

linearity for seasonal temperature variability by using natural cubic spline functions with three 185 

degrees of freedom. 186 

 187 

The results were expressed as hazard ratio (HR) per 1oC increase in seasonal temperature 188 

variability. All analyses were conducted in R statistical environment version 3.3.0, with packages 189 

“geoR” to interpolate individual’s daily ambient temperature using ordinary kriging methods, 190 

and “survival” for survival analysis to estimate the hazard ratio. 191 

 192 

RESULTS 193 

A total of 66820 older people was enrolled in the initial study cohort. After excluding 194 

participants without sufficient address information for geocoding or with missing covariates, a 195 
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final sample of 61446 (92.0%) was included in the final analyses. The spatial distribution of 196 

these 61446 older people is shown in Figure 1.  197 

 198 

Table 1 shows the baseline descriptive characteristics of the 61446 participants included in this 199 

study. The mean age at entry of this cohort was 72 years old and female participants accounted 200 

for 65.9%. A total of 14168 (23.1%) participants’ BMI were less than 21.6, and 16100 (26.2%) 201 

participants’ BMI were greater than 26.3. The majority of participants did physical activity 7 202 

times/week. About one-fifth (19.3%) were former smokers, and 9.6% were current smokers. 203 

About half the participants (46.0%) had education attainment below primary. Nearly half the 204 

participants (53.1%) took regular medication. Participants who were exposed to a higher 205 

wintertime temperature variability were more likely to be older, female, smokers, and have lower 206 

personal monthly expenditure but less likely to have a secondary or higher education and live in 207 

private house when compared with those exposed to a lower wintertime temperature variability 208 

(Table 1). There were no apparent long-term trends for yearly mean and seasonal mean 209 

temperatures from 1998 to 2010 based on temperatures monitored by the 22 weather stations 210 

(Supplementary Figure S1). 211 

 212 

During the study period, summertime and wintertime temperature variability both approximated 213 

a normal distribution (Figure 2) with mean SDs of 1.4oC and 3.2 oC for summertime and 214 

wintertime, respectively. After 10-13 years of follow-up (from 1998 to 2010), there were 12689 215 
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emergency hospital admissions for respiratory diseases, among them pneumonia and COPD 216 

accounted for 52.6% (6672) and 24.2% (3075), respectively (Table 2). 217 

 218 

Seasonal temperature variability and incident respiratory diseases 219 

The associations of summertime and wintertime temperature variabilities with total incident 220 

respiratory diseases, pneumonia, and COPD were presented in Table 2. In the basic models 221 

stratified by age in years and adjusted for sex and year of follow-up, summertime temperature 222 

variability was not associated with increased risks of total incident respiratory diseases, 223 

pneumonia or COPD. The associations between wintertime temperature variability and incident 224 

respiratory diseases were all statistically significant. The HRs were modestly attenuated for 225 

summertime temperature variability in the fully adjusted models with additional adjustment for 226 

yearly mean temperature, marital status, housing type, BMI, education attainment, personal 227 

monthly expenditure, physical activity, medication taken, smoking status, SDI, and smoking rate 228 

at district level. For example, the fully adjusted HR for total respiratory diseases was 1.02 (0.80, 229 

1.29) compared to 1.12 (0.91, 1.39) in the basic model. Results for wintertime temperature 230 

variability were also modestly attenuated in the full models but remained statistically significant. 231 

The HR was 1.20 (1.08, 1.32) for total incident respiratory diseases, 1.15 (1.01, 1.31) for 232 

pneumonia, and 1.41 (1.15, 1.71) for COPD per 1oC change in wintertime temperature variability 233 

in the fully adjusted models.  234 

 235 
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In this Hong Kong elderly cohort, about 11.1% elders changed home addresses during the 236 

follow-up period. Excluding those participants from the analysis did not change the Cox 237 

regression results substantially (Supplementary Table S1). Sensitivity analyses excluding 238 

participants according to other criteria or further controlling for time-varying PM2.5 exposure 239 

gave similar results (Table 3). We also used inverse distance weighting to spatially interpolate 240 

daily temperature for each participant and refitted the Cox proportional hazards regression, and 241 

we found results were similar to those using the ordinary kriging method (Supplementary Table 242 

S2). By comparing the linear and natural cubic spline models, we did not find any evidence of 243 

departure from linearity for the association between seasonal temperature variability and 244 

respiratory diseases hospitalizations. 245 

 246 

Effect modification for seasonal temperatures variability 247 

We examined associations of seasonal temperature variability with incident respiratory diseases 248 

in the fully adjusted models stratified by age (≤70 y and >70 y), sex (female and male), marital 249 

status (married and unmarried), education attainment (below primary, primary, and secondary or 250 

above), personal monthly expenditure (low, medium, and high), and housing type (public and 251 

aided, private, and others). No significant difference was observed by stratified characteristics, 252 

except for sex and personal monthly expenditure for the wintertime temperature variability 253 

(Table 4). Female and those with lower personal monthly expenditures had greater hazard ratios 254 

when exposed to wintertime temperature variability. Female also exhibited increased risk of 255 
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respiratory hospitalizations after exposure to summertime temperature variability 256 

(Supplementary Table S3). 257 

 258 

DISCUSSION   259 

We found an association between wintertime temperature variability and total incident 260 

respiratory diseases, pneumonia, and COPD among a prospective Chinese elderly cohort that 261 

accounted for about 9% of all elders in Hong Kong. Such associations were stronger in females 262 

and participants in a lower social-economic position. We did not find any association between 263 

summertime temperature variability and incident respiratory diseases.  264 

 265 

In the literature, temperature variability within a day or a few neighboring days has been 266 

consistently associated with respiratory mortality or hospitalizations.12 27-30 For example, diurnal 267 

temperature change was generally associated with emergency hospital admissions for total 268 

respiratory, pneumonia, and COPD in four largest cities in Korea using a temperature-matched 269 

case-crossover study design.12 Zhan et al. (2017) used the National Morbidity, Mortality, and Air 270 

Pollution Study (NMMAPS) data from 106 communities of the United States during 1987 to 271 

2000 to investigate the effect of temperature change between neighboring days (TCNs) on 272 

mortality, and found that prominent effects of TCNs on mortality for total respiratory, 273 

pneumonia, and COPD diseases.28 274 

 275 
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Temperature variability over a longer time duration (e.g. intraseasonal), however, has rarely been 276 

studied for its potential health effects. We identified three epidemiological studies that had 277 

previously examined the health impacts of seasonal temperature variability, measured as the SD 278 

of intraseasonal temperature, and all of these studies focused on mortality.31-33 To our knowledge, 279 

this is the first study to link seasonal temperature variability with incident respiratory 280 

hospitalizations, thus our findings may enrich our understanding towards the health impacts of 281 

seasonal temperature variability. 282 

 283 

In our study, we found a positive association between wintertime temperature variability and 284 

incident respiratory diseases. This is consistent with previous studies using mortality as the 285 

health outcome. For example, Shi et al. (2016) reported that for each 1oC increase in SD of 286 

winter temperature associated with 4.1% (95% CI, 3.0-5.2%) increases in annual deaths using 287 

Medicare data with 2.7 million residents aged 65 years and older for the years 2000-2008 in the 288 

New England region of the USA.32 289 

 290 

Summertime temperature variability was not associated with incident respiratory diseases in our 291 

analyses, which is inconsistent with previous studies.31 33 This difference may be due to 292 

differences in city climates. Multi-city studies have suggested that warm regions or areas with 293 

moderate winter climates have more significant cold effects than hot effects.34 35 This 294 

phenomenon can be explained by long-term adaptation, as people in warm areas are generally 295 
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more sensitive to cold weather.36 Hong Kong has a subtropical climate, of which the summer is 296 

hot and humid.  Epidemiological studies have suggested that heat effects in Hong Kong are not 297 

that evident,14 37 38 possibly due to extensive use of air conditioning.  298 

 299 

The biological mechanisms linking seasonal temperature variability with incident respiratory 300 

diseases have not been elucidated, although plausible explanations have been postulated. 301 

Temperature variability has been shown to affect the immune system’s capability to resist 302 

infectious agents and cause more inflammatory nasal responses in patients with persistent 303 

allergic rhinitis, which may trigger respiratory events.39 40 Also, exposure to seasonal temperature 304 

variability has been reported to impede one’s ability to adapt to local climate, which may 305 

increase the likelihood of adverse health outcomes like respiratory diseases. 41 42 For example, 306 

locations with larger seasonal temperature variability produced stronger associations between 307 

daily temperature and mortality.35 43 308 

 309 

We found greater effects of wintertime temperature variability among females, which is 310 

consistent with previous short-term temperature variability studies.44-46 The reason for that is 311 

probably due to biological difference. We found elders with lower personal monthly expenditure 312 

were more sensitive to increased wintertime temperature variability. Low personal monthly 313 

expenditure is regarded as an indicator of low socioeconomic position. The increased 314 
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vulnerability of people with low socioeconomic status may be related to poor baseline health 315 

status, limited access to health care and poor living condition.46 47 316 

 317 

This study has some limitations.  First, we obtained first occurrence of hospital admissions for 318 

respiratory diseases after enrollment. Respiratory disease hospitalizations prior to enrollment 319 

were not available so we could not identify participants who previously had respiratory diseases. 320 

However, sensitivity analysis excluding the participants with self-reported COPD/asthma at 321 

baseline gave similar estimates, which confirm the robustness of our findings. Second, as the 322 

subject recruitment was on a volunteering basis.13 The participants in this study cohort could be 323 

more health conscious than the rest of the elderly population in Hong Kong. Third, the observed 324 

association between seasonal temperature variability might relate to the residents’ perception of 325 

temperature modified by humidity and wind chill, for which not any fine resolution spatial data 326 

are available yet. Finally, individual household adaptation behaviors, such as heater or air 327 

conditioner usage, may affect the residents’ personal exposure to seasonal temperature variability, 328 

measured only by outdoor weather stations. Although we did include house type in the 329 

regression model, it is still possible that the observed associations might be affected by 330 

temperature exposure misclassification.  Despite these limitations, this is one of the few studies 331 

to examine the impacts of seasonal temperature variability on hospitalizations.  Our findings 332 

might help us to better understand the impacts of climate change. 333 

 334 
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In conclusion, this study provides evidence that wintertime temperature variability increases the 335 

risks of incident total respiratory, pneumonia, and chronic obstructive pulmonary diseases in 336 

older people. These findings should help better understand the health impacts of climate change.  337 
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Table 1. Descriptive characteristics of the prospective Chinese elderly cohort at baseline 463 

(1998-2001) by seasonal temperature variability.  464 

Characteristic (%) Total 

Summertime temperature 

variability* 

Wintertime temperature 

variability† 

(mean±SD: 1.4±0.2) (mean±SD: 3.2±0.5) 

Low High Low High 

(1.2±0.1) (1.6±0.1) (3.0±0.2) (3.4±0.1) 

Participants, n 61446 30723 30723 30722 30724 

Individual-level 

covariates 

     

Age at entry, yr      

      ≤ 70 29038 (47.3) 14450 (47.0) 14588 (47.5) 14848 (48.3) 14190 (46.2) 

      > 70 32408 (52.7) 16273 (53.0) 16135 (52.5) 15874 (51.7) 16534 (53.8) 

Sex      

      Male  20933 (34.1) 10384 (33.8) 10549 (34.3) 10930 (35.6) 10003 (32.6) 

      Female  40513 (65.9) 20339 (66.2) 20174 (65.7) 19792 (64.4) 20721 (67.4) 

BMI quartiles      

      1st [<21.6] 14168 (23.1) 7100 (23.1) 7068 (23.0) 7143 (23.3) 7025 (22.9) 

      2nd- 3rd [21.6-26.3]  31178 (50.7) 15574 (50.7) 15604 (50.8) 15616 (50.8) 15562 (50.7) 

      4th [>26.3]  16100 (26.2) 8049 (26.2) 8051 (26.2) 7963 (25.9) 8137 (26.5) 

Smoking status      

      Never  43668 (71.1) 21946 (71.4) 21722 (70.7) 22058 (71.8) 21610 (70.3) 

      Former  11871 (19.3) 5830 (19.0) 6041 (19.7) 5791 (18.8) 6080 (19.8) 

      Current  5907 (9.6) 2947 (9.6) 2960 (9.6) 2873 (9.4) 3034 (9.9) 

Exercise in days/week      

      Never [0] 9406 (15.3) 4667 (15.2) 4739 (15.4) 4784 (15.6) 4622 (15.0) 

      Medium [1-6] 7788 (12.7) 3996 (13.0) 3792 (12.3) 4172 (13.6) 3616 (11.8) 

      High [7] 44252 (72.0) 22060 (71.8) 22192 (72.2) 21766 (70.8) 22486 (73.2) 

Education attainment      

      Below primary 28241 (46.0) 14201 (46.2) 14040 (45.7) 13268 (43.2) 14973 (48.7) 

      Primary 22656 (36.9) 11434 (37.2) 11222 (36.5) 11162 (36.3) 11494 (37.4) 

      Secondary or 

above 

10549 (17.2) 5088 (16.6) 5461 (17.8) 6292 (20.5) 4257 (13.9) 

Housing type      

    Private 32458 (52.8) 16359 (53.2) 16099 (52.4) 18239 (59.4) 14219 (46.3) 

    Public and aided 25096 (40.8) 12503 (40.7) 12593 (41.0) 10664 (34.7) 14432 (47.0) 

    Other 3892 (6.3) 1861 (6.1) 2031 (6.6) 1819 (5.9) 2073 (6.7) 

Expenses/month in 

USD$  

     

      Low [<128] 10122 (16.5) 5021 (16.3) 5101 (16.6) 5169 (16.8) 4953 (16.1) 

      Medium [128-384] 42151 (68.6) 21092 (68.7) 21059 (68.5) 20576 (67.0) 21575 (70.2) 

      High [≥385] 9173 (14.9) 4610 (15.0) 4563 (14.9) 4977 (16.2) 4196 (13.7) 

Medication taken      

      Yes 32627 (53.1) 16397 (53.4) 16230 (52.8) 16430 (53.5) 16197 (52.7) 

      No 28819 (46.9) 14326 (46.6) 14493 (47.2) 14292 (46.5) 14527 (47.3) 

TPU-level covariates      

    SDI (mean ± SD) 13.8 (2.0) 13.9 (2.1) 13.8 (2.0) 14 (2.3) 13.7 (1.8) 

District-level covariate      

    Smoking rate (mean 

± SD) 

11.6 (0.4) 11.6 (0.3) 11.5 (0.4) 11.6 (0.3) 11.5 (0.4) 
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Abbreviation: BMI = body mass index; TPU = tertiary planning units; SDI = social deprivation 465 

index. 466 

*High and low summertime temperature variability was defined by the median (1.4oC) of the 467 

standard deviation of daily mean summer temperature; 468 

†High and low wintertime temperature variability was defined by the median (3.2 oC) of the 469 

standard deviation of daily mean winter temperature.470 
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Table 2. Hazard ratio (HR) and 95% CI per 1oC increase of seasonal temperature 471 

variability on incident respiratory diseases in the prospective Chinese elderly cohort in 472 

Hong Kong. 473 

Incident Diseases Cases 

Summertime temperature 

variability 

Wintertime temperature 

variability 

Basic model* Full model† Basic model* Full model† 

Total respiratory 

diseases 

12689 1.12 (0.91, 1.39) 

 

1.02 (0.80, 1.29) 

 

1.50 (1.39, 1.62) 1.20 (1.08, 1.32) 

   Pneumonia 6672 1.06 (0.78, 1.43) 1.04 (0.75, 1.44) 1.31 (1.18, 1.46) 1.15 (1.01, 1.31) 

   COPD 3075 1.14 (0.75, 1.74) 1.05 (0.65, 1.69) 1.96 (1.67, 2.30) 1.41 (1.15, 1.71) 

Abbreviations: COPD=chronic obstructive pulmonary disease. 474 

*Stratified by age in years, adjusting for sex and year of follow-up, and summertime temperature 475 

variability and wintertime temperature variability were mutual adjusted. 476 

†Additionally adjusted for yearly mean temperature, marital status, housing type, BMI, education 477 

attainment, personal monthly expenditure, physical activity, medication taken, smoking status, 478 

social deprivation index (SDI), and smoking rate at the district level. 479 
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Table 3. Hazard ratio (HR) and 95% CI per 1oC increase of seasonal temperature 480 

variability on incident respiratory diseases in the sensitivity analyses. 481 

Incident Diseases Cases 

Summertime temperature 

variability 
Wintertime temperature 

variability 

Basic model* Full model† Basic model* Full model† 

Excluding those with incident respiratory diseases or died in the first year 

Total respiratory 

diseases 

12110 1.11 (0.89, 1.38) 1.01 (0.79, 1.30) 1.47 (1.36, 1.60) 1.18 (1.07, 1.31) 

   Pneumonia 6591 1.07 (0.79, 1.45) 1.06 (0.76, 1.48) 1.31 (1.18, 1.46) 1.16 (1.01, 1.32) 

   COPD 2877 1.14 (0.73, 1.76) 1.05 (0.64, 1.71) 1.92 (1.63, 2.26) 1.36 (1.11, 1.66) 

Excluding those with self-reported COPD/asthma at baseline 

Total respiratory 

diseases 

10794 1.02 (0.81, 1.29) 0.96 (0.74, 1.25) 1.44 (1.32, 1.57) 1.17 (1.05, 1.30) 

   Pneumonia 5890 1.10 (0.80, 1.52) 1.12 (0.79, 1.59) 1.28 (1.14, 1.43) 1.13 (0.98, 1.31) 

   COPD 1896 1.07 (0.62, 1.85) 1.03 (0.56, 1.90) 1.78 (1.45, 2.17) 1.30 (1.01, 1.67) 

Further adjusted for time-varying PM2.5 

Total respiratory 

diseases 

12689 1.12 (0.91, 1.39) 1.08 (0.84, 1.40) 1.50 (1.39, 1.62) 1.18 (1.06, 1.31) 

   Pneumonia 6672 1.06 (0.78, 1.43) 1.07 (0.75, 1.52) 1.31 (1.18, 1.46) 1.17 (1.02, 1.34) 

   COPD 3075 1.14 (0.75, 1.74) 1.15 (0.69, 1.92) 1.96 (1.67, 2.30) 1.41 (1.15, 1.74) 

Abbreviations: COPD=chronic obstructive pulmonary disease. 482 

*Stratified by age in years, adjusting for sex and year of follow-up, and summertime temperature 483 

variability and wintertime temperature variability were mutual adjusted. 484 

†Additionally adjusted for yearly mean temperature, marital status, housing type, BMI, education 485 

attainment, personal monthly expenditure, physical activity, medication taken, smoking status, 486 

social deprivation index (SDI), and smoking rate at the district level. 487 

 488 
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Table 4. Hazard ratio (HR) and 95% CI per 1oC increase in wintertime temperature variability stratified by population 489 

characteristics in the prospective Chinese elderly cohort in Hong Kong, 1998 – 2010. 490 

Stratified 

Characteristics 

Total respiratory (n=12689) Pneumonia (n=6672) COPD (n=3075) 

Cases  HR (95% CI) 
PIntera

ction 
Cases  HR (95% CI) 

PInteract

ion 
Cases  HR (95% CI) 

PInteract

ion 

Age at entry, yr          

  ≤70 3596 1.26 (1.10, 1.45)  1599 1.27 (1.04, 1.55)  855 1.46 (1.10, 1.94)  

  >70 9093 1.17 (1.05, 1.30) 0.28 5073 1.12 (0.97, 1.28) 0.19 2220 1.38 (1.12, 1.71) 0.69 

Sex          

  Male 5368 1.13 (1.02, 1.26)  2901 1.06 (0.92, 1.22)  1792 1.34 (1.09, 1.66)  

  Female 7321 1.24 (1.12, 1.38) 0.01 3771 1.22 (1.06, 1.40) 0.002 1283 1.49 (1.20, 1.85) 0.18 

Marital status          

  Unmarried 6802 1.20 (1.09, 1.34)  3607 1.17 (1.02, 1.35)  1536 1.46 (1.18, 1.80)  

  Married 5887 1.19 (1.07, 1.32) 0.68 3065 1.13 (0.98, 1.30) 0.40 1539 1.35 (1.09, 1.68) 0.34 

Education attainment          

  Below Primary 6350 1.22 (1.10, 1.35)  3300 1.19 (1.04, 1.37)  1398 1.44 (1.16, 1.78)  

  Primary 4557 1.17 (1.05, 1.31) 0.28 2388 1.10 (0.95, 1.28) 0.13 1268 1.37 (1.10, 1.71) 0.55 

  Secondary or above 1782 1.14 (1.00, 1.31) 0.22 984 1.11 (0.93, 1.32) 0.30 409 1.38 (1.05, 1.82)  0.73 

Housing type          

  Public and aided 5544 1.19 (1.07, 1.33)  2862 1.22 (1.05, 1.41)  1403 1.43 (1.14, 1.79)  

  Private 5714 1.22 (1.10, 1.35) 0.53 3002 1.11 (0.97, 1.28) 0.06 1340 1.43 (1.16, 1.77) 0.98 

  Other 1431 1.15 (1.00, 1.32) 0.56 808 1.15 (0.96, 1.37) 0.44 332 1.27 (0.96, 1.69) 0.37 

Expenses/money in USD$         

  Low [<128] 1857 1.32 (1.16, 1.50)  1001 1.25 (1.05, 1.48)  427 1.34 (1.02, 1.75)  

  Medium [128-384] 8700 1.18 (1.07, 1.31) 0.03 4508 1.14 (1.00, 1.31) 0.17 2181 1.45 (1.19, 1.78) 0.43 

  High [≥385] 2132 1.17 (1.03, 1.33) 0.06 1163 1.12 (0.95, 1.32) 0.18 467 1.22 (0.93, 1.59) 0.51 
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Legend of figures 

 

Figure 1. Locations of participants in the prospective Chinese elderly cohort (n=61446) at 

baseline (1998 to 2001) and weather monitoring stations (n=22) in Hong Kong. 

 

Figure 2. Distribution of the standard deviation of daily mean summer and winter temperatures. 

 

 

 


