
Journal of
open research software

SOFTWARE METAPAPER

A Random-Dot Kinematogram for Web-Based Vision
Research
Sivananda Rajananda1,2, Hakwan Lau1,3,4 and Brian Odegaard1

1	University of California-Los Angeles, US
2	University of California-Riverside, US
3	Brain Research Institute (UCLA), US
4	University of Hong Kong, HK
Corresponding author: Sivananda Rajananda (vrsivananda@gmail.com)

Web-based experiments using visual stimuli have become increasingly common in recent years, but
many frequently-used stimuli in vision research have yet to be developed for online platforms. Here,
we introduce the first open access random-dot kinematogram (RDK) for use in web browsers. This fully
customizable RDK offers options to implement several different types of noise (random position, random
walk, random direction) and parameters to control aperture shape, coherence level, the number of dots,
and other features. We include links to commented JavaScript code for easy implementation in web-based
experiments, as well as an example of how this stimulus can be integrated as a plugin with a JavaScript
library for online studies (jsPsych).

Keywords: Random-dot kinematogram; random dot motion; moving dot stimulus; web-based experiments;
online experiments; visual psychophysics; vision research; visual stimuli; JavaScript; jsPsych

(1) Overview
Introduction
Over the last several decades, random-dot kinematograms
(RDKs) have emerged as an effective psychophysical
stimulus to evaluate low-level motion processing [1–5].
While different versions of this type of stimulus have been
created across several software platforms (e.g., MATLAB [6]
and PsychoPy [7, 8]), currently, no implementation of this
stimulus exists for public use in web-based experiments
where the subjects complete the experimental task using
web browsers. Recently, our research group developed an
RDK in JavaScript to be used for presentation in standard
web browsers. This RDK incorporates several distinct
features that have emerged in different versions used by
researchers, and allows users to customize noise types
and other parameters for different paradigms. In this
short article, we explain a few important elements of this
stimulus and provide links to both code and web-based
examples to guide implementation for vision scientists in
future experiments.

Implementation and architecture
In RDKs, a certain percentage of dots are designated
as “signal” to move in one coherent direction, and the
remaining percentage of dots are designated as “noise”
to move in random directions. However, as noted by
[9], several options exist regarding how signal and noise
can be drawn in frame-by-frame presentations. To create

the “signal,” dots can either move in the direction of
coherent motion in all frames (referred to as the “same”
rule), or move in the direction of coherent motion in
only a specified proportion of frames (referred to as the
“different” rule). To create the “noise,” dots can either be
drawn in a random position in the aperture on each frame
(“random position”), move to an adjacent position in a
random direction in each frame (“random walk”), or have
a consistent direction of motion, designated randomly at
the beginning of the trial (“random direction”). Modelling
our stimulus after the random-dot kinematogram from
the software PsychoPy [7, 8], we parameterized these
different combinations of signal and noise to yield six
different display options.

Additionally, dots in RDKs have a “dot lifespan,” which
determines the number of frames that pass before a dot
disappears and reappears somewhere else within the
aperture. However, if a dot reaches the end of the aperture
and its dot lifespan has not ended, then a dot can either
reappear randomly in the aperture, or be reinserted from
an opposite edge. We include features to customize dot
lifespan length, the reinsertion rule, as well as the number
of dot sets to cycle through (with each set being presented
in one frame), adapting procedures from established RDK
versions in MATLAB [10].

Finally, we also include links to code that integrates this
RDK as a plugin with jsPsych, a library for creating and
running experiments in web browsers [11]. This code can

Rajananda, S, et al. 2018 A Random-Dot Kinematogram
for Web-Based Vision Research. Journal of Open Research
Software, 6: 6. DOI: https://doi.org/10.5334/jors.194

mailto:vrsivananda@gmail.com
https://doi.org/10.5334/jors.194

Art. 6, p. 2 of 4 Rajananda et al: A Random-Dot Kinematogram for Web-Based Vision Research

be found in the “Software location” section of this article
(see below). We include parameters to control motion
direction, coherence level, the total number of dots, dot
size, dot color, background color, aperture shape, aperture
size, the location of the aperture on the screen, the
fixation cross, and how far dots move from one frame to
the next. While our raw code can be implemented on any
platform that uses JavaScript, incorporating our plugin
with the jsPsych library may be particularly advantageous
for researchers looking to use this RDK in experiments
assessing reaction times; a comparison of reaction times
assessed with jsPsych and a standard software package
(e.g., PsychToolbox in MATLAB), revealed that while
reaction times measured by jsPsych tended to be slightly
slower than PsychToolbox, response time variability
was quite comparable between both software packages
[12]. This indicates that response time measurements in

jsPsych are sensitive enough to detect differences caused
by experimental manipulations.

Quality control
One primary concern in conducting visual psychophysical
experiments on the web is that timing issues in the display
could arise due to differences in internet connectivity
speeds, monitor types (i.e., liquid crystal displays vs.
cathode ray tubes), hardware, or web browsers used by
participants. In testing our software, we have found that
running the exact same code for our RDK in different
browsers yields slightly different results. For example,
we have identified small differences in the average
frames per second when testing our RDK using Google
Chrome, Firefox, and Safari on the same computer
(Figure 1A). In a test of 10,000 presentations of the
RDK in each browser, Chrome was the most consistent

Figure 1: The average frame rate and number of frames shown per trial across three different web browsers. In this
analysis, we presented our RDK 10,000 times in each web browser for 200 ms per presentation. Each panel shows the
timing differences that emerge when displaying the stimulus on the same computer in the current versions of three
different web browsers: Chrome, Firefox, and Safari. Each column denotes a different browser. (A) The average frame
rate for each presentation of the stimulus. In these histograms, each bin is 1 ms wide and centered around the .667
mark (note that the ideal frame rate of a 60hz monitor is ~16.667 ms). (B) The number of frames that were used in
each 200 ms stimulus presentation. The ideal number of frames is 12 using our monitor’s 60Hz refresh rate.

Art. 6, p. 3 of 4 Rajananda et al: A Random-Dot Kinematogram for Web-Based Vision Research

(mean: 16.632 milliseconds, sd: 0.364) in presenting the
stimuli at the intended frame rate (16.667 milliseconds),
followed by Firefox (mean: 17.217, sd: 0.898) and Safari
(mean: 17.757, sd: 1.796).

What is needed to ensure accuracy and precision when
conducting web-based psychophysics are not only real-
time measures of the average frame rate of the display,
but also the number of frames that are actually presented
on each trial. Our RDK records the number of frames
used in each presentation, which serves as a valid index
of presentation clarity and coherence (Figure 1B). We
recommend that users analyze this data in one of two
ways: offline, to exclude particular trials from relevant
analyses, or online, to re-present trials with missed
frames to ensure balanced numbers of trials across
conditions. In our tests of this stimulus, Chrome had the
most consistent presentation (mean: 11.937, sd: 0.258),
followed by Firefox (mean: 11.448, sd: 0.594) and Safari
(mean: 11.136, sd: 0.902). We did not notice visible
differences between trials when 11 or 12 frames were
used, but a visible stutter was apparent when the number
of frames was 10 or lower. Quality checks on other aspects
of our stimulus (e.g., the locations where dots were
re-drawn after disappearing, the number of dots drawn in
the stimulus, whether the colors were rendered properly)
demonstrated its viability, but we welcome feedback from
users if issues arise.

Finally, we also recommend that users give explicit
instructions to subjects to only have one browser window
open when participating in experiments with this stimulus
and to close other programs while it is being used, as we
have noticed slight timing idiosyncrasies that emerge
when other browser tabs and programs are running in the
background.

(2) Availability
Operating system
This plugin is functional in the most recent versions of
Safari, Firefox, and Chrome (i.e., the most up-to-date
versions available for use in November, 2017). However,
based on our tests, Chrome appears to be the most reliable
browser in presenting an equal number of frames across
trials for this stimulus. We welcome feedback from users if
compatibility issues exist in older web browsers.

Programming language
JavaScript/CSS/HTML.

Additional system requirements
None.

Dependencies
The code for the RDK posted on CodePen works without
any additional frameworks or libraries. The jsPsych RDK
plugin requires the jsPsych library, jQuery, and a jsPsych
CSS stylesheet to work properly. These scripts and links for
the jsPsych version are added in the header of the main
experiment file (see the identifier of (3) under ‘Software
location’ below).

List of contributors
•	 Sivananda Rajananda – Development & Design.
•	 Hakwan Lau – Design.
•	 Brian Odegaard – Design & Code Review.

Software location
(1) Demonstration of the RDK stimulus with
modifiable parameters
Code repository

Name: CodePen
Identifier: https://codepen.io/vrsivananda/pen/

xLORQe
Licence: GNU General Public License version 3
Date published: 14/09/17
Description: This CodePen link provides users with a

visual demonstration of different stimulus attributes. By
changing the RDK parameters, users can see (for example)
how different signal & noise rules change the appearance
of the stimulus. We recommend that users change values
in the “Set Parameters” section of the code to visualize
different features of this stimulus.

(2) jsPsych plugin for use in visual experiments
Code repository

Name: GitHub
Identifier: https://github.com/vrsivananda/RDK/

blob/master/jspsych-5.0.3/plugins/jspsych-RDK.js
Licence: GNU General Public License version 3
Date published: 14/09/17
Description: This link leads to our RDK code that is

integrated as jsPsych plugin. Please note that this jsPsych
plugin is unable to work on its own, and requires use of
the jsPsych framework to function properly. The user can
download the raw code by clicking the “Raw” button and
then copy-pasting the code, or simply right-clicking and
selecting “Save as.”

(3) Sample jsPsych experiment implementing the
RDK stimulus
Code repository

Name: GitHub
Identifier: https://github.com/vrsivananda/RDK.git
Licence: GNU General Public License version 3
Date published: 14/09/17
Description: This link leads to our repository on GitHub

with an example experiment that shows a functional
implementation of our jsPsych-integrated RDK plugin.

Language
JavaScript/CSS/HTML

(3) Reuse potential
Recently, platforms have been created which make
it possible to conduct psychological and perceptual
experiments on the web, including the “jsPsych” JavaScript
library [11] and Amazon’s mTurk website [13] for subject
recruitment. RDKs are a commonly-used stimulus to
evaluate motion perception thresholds in vision research;
our release of the first open access RDK for web-based

https://codepen.io/vrsivananda/pen/xLORQe
https://codepen.io/vrsivananda/pen/xLORQe
https://github.com/vrsivananda/RDK/blob/master/jspsych-5.0.3/plugins/jspsych-RDK.js
https://github.com/vrsivananda/RDK/blob/master/jspsych-5.0.3/plugins/jspsych-RDK.js
https://github.com/vrsivananda/RDK.git

Art. 6, p. 4 of 4 Rajananda et al: A Random-Dot Kinematogram for Web-Based Vision Research

experiments will be of use to any researcher interested
in investigating motion perception in large numbers of
subjects.

We think use of this stimulus in web-based
experiments will be of particular value to researchers
interested in studying populations that may be difficult
to access (e.g., the elderly, individuals in various
worldwide locations, individuals living far from testing
sites, etc.). This RDK also facilitates fast and efficient
data collection in motion perception experiments. In
addition, researchers will be able to develop and extend
our code under the GNU GPLv3 license to improve or
modify the RDK to serve specific research purposes.
We hope our creation here is of use to the greater
vision science community and researchers interested
in studying motion perception, and that efforts can
be taken to adapt other types of visual psychophysical
stimuli (Gabor patches, etc.) for web-based presentation
as well.

Competing Interests
The authors have no competing interests to declare.

References
1.	 Williams, D W and Sekuler, R 1984 Coherent

global motion percepts from stochastic local motions.
Vision Res., 24: 55–62. Available: https://www.ncbi.
nlm.nih.gov/pubmed/6695508. DOI: https://doi.
org/10.1016/0042-6989(84)90144-5

2.	 Britten, K H, Shadlen, M N, Newsome, W T and
Movshon, J A 1992 The analysis of visual motion:
a comparison of neuronal and psychophysical
performance. J Neurosci, 12: 4745–4765. Available:
https://www.ncbi.nlm.nih.gov/pubmed/1464765.

3.	 Roitman, J D and Shadlen, M N 2002 Response of
neurons in the lateral intraparietal area during a
combined visual discrimination reaction time task.
J Neurosci, 22: 9475–9489. Available: https://www.
ncbi.nlm.nih.gov/pubmed/12417672.

4.	 Law, C-T and Gold, J I 2008 Neural correlates of
perceptual learning in a sensory-motor, but not a
sensory, cortical area. Nat Neurosci, 11: 505–513. DOI:
https://doi.org/10.1038/nn2070

5.	 Watamaniuk, S N, Sekuler, R and Williams, D
W 1989 Direction perception in complex dynamic
displays: the integration of direction information. Vision
Res., 29: 47–59. DOI: https://doi.org/10.1016/0042-
6989(89)90173-9

6.	 The MathWorks Inc. MATLAB. Natick, Massachusetts,
United States. Available: https://www.mathworks.
com/products/matlab.html.

7.	 Peirce, J W 2007 PsychoPy—Psychophysics software
in Python. J Neurosci Methods, 162: 8–13. DOI: https://
doi.org/10.1016/j.jneumeth.2006.11.017

8.	 Peirce, J W 2008 Generating Stimuli for Neuroscience
Using PsychoPy. Front Neuroinform, 2: 10. DOI: https://
doi.org/10.3389/neuro.11.010.2008

9.	 Scase, M O, Braddick, O J and Raymond, J E 1996
What is Noise for the Motion System? Vision Res.,
36: 2579–2586. DOI: https://doi.org/10.1016/0042-
6989(95)00325-8

10.	Kiani, R, Churchland, A K and Shadlen, M N 2013
Integration of direction cues is invariant to the temporal
gap between them. J Neurosci, 33: 16483–16489. DOI:
https://doi.org/10.1523/JNEUROSCI.2094-13.2013

11.	de Leeuw, J R 2015 jsPsych: a JavaScript library for
creating behavioral experiments in a Web browser.
Behav Res Methods, 47: 1–12. DOI: https://doi.
org/10.3758/s13428-014-0458-y

12.	de Leeuw, J R and Motz, B A Psychophysics in a
Web browser? Comparing response times collected
with JavaScript and Psychophysics Toolbox in a visual
search task. Behav Res Methods, 48: 1–12. DOI: https://
doi.org/10.3758/s13428-015-0567-2

13.	Crump, M J C, McDonnell, J V and Gureckis, T M
2013 Evaluating Amazon’s Mechanical Turk as a tool for
experimental behavioral research. PLoS One, 8: e57410.
DOI: https://doi.org/10.1371/journal.pone.0057410

How to cite this article: Rajananda, S, Lau, H and Odegaard, B 2018 A Random-Dot Kinematogram for Web-Based Vision
Research. Journal of Open Research Software, 6: 6. DOI: https://doi.org/10.5334/jors.194

Submitted: 22 September 2017 Accepted: 05 January 2018 Published: 27 January 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://www.ncbi.nlm.nih.gov/pubmed/6695508
https://www.ncbi.nlm.nih.gov/pubmed/6695508
https://doi.org/10.1016/0042-6989(84)90144-5
https://doi.org/10.1016/0042-6989(84)90144-5
https://www.ncbi.nlm.nih.gov/pubmed/1464765
https://www.ncbi.nlm.nih.gov/pubmed/12417672
https://www.ncbi.nlm.nih.gov/pubmed/12417672
https://doi.org/10.1038/nn2070
https://doi.org/10.1016/0042-6989(89)90173-9
https://doi.org/10.1016/0042-6989(89)90173-9
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.3389/neuro.11.010.2008
https://doi.org/10.3389/neuro.11.010.2008
https://doi.org/10.1016/0042-6989(95)00325-8
https://doi.org/10.1016/0042-6989(95)00325-8
https://doi.org/10.1523/JNEUROSCI.2094-13.2013
https://doi.org/10.3758/s13428-014-0458-y
https://doi.org/10.3758/s13428-014-0458-y
https://doi.org/10.3758/s13428-015-0567-2
https://doi.org/10.3758/s13428-015-0567-2
https://doi.org/10.1371/journal.pone.0057410
https://doi.org/10.5334/jors.194
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Code repository
	Code repository
	Code repository

	Language

	(3) Reuse potential
	Competing Interests
	References
	Figure 1

