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Bio-syncretic robots consisting of both living biological materials and non-living systems possess
desirable attributes such as high energy efficiency, intrinsic safety, high sensitivity, and self-repairing
capabilities. Compared with living biological materials or non-living traditional robots based on elec-
tromechanical systems, the combined system of a bio-syncretic robot holds many advantages.
Therefore, developing bio-syncretic robots has been a topic of great interest, and significant progress
has been achieved in this area over the past decade. This review systematically summarizes the develop-
ment of bio-syncretic robots. First, potential trends in the development of bio-syncretic robots are
discussed. Next, the current performance of bio-syncretic robots, including simple movement and con-
trollability of velocity and direction, is reviewed. The living biological materials and non-living materials
that are used in bio-syncretic robots, and the corresponding fabrication methods, are then discussed. In
addition, recently developed control methods for bio-syncretic robots, including physical and chemical
control methods, are described. Finally, challenges in the development of bio-syncretic robots are
discussed from multiple viewpoints, including sensing and intelligence, living and non-living materials,
control approaches, and information technology.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the expanding requirements of society, robotic technolo-
gies have developed rapidly in recent decades alongside
electromechanical engineering technology and information tech-
nology. Robots are an integral component of human society and
play very important roles in various fields. The first industrial
robot, based on the fluid drive, was developed in the 1950s. With
the development of electromechanical engineering and informa-
tion technology, industrial robots based on electromechanical
systems were then extensively and widely applied [1]. Various
types of robots, including medical robots [2], service robots [3,4],
bio-inspired robots [5], and humanoid robots [6], have attracted
considerable attention from an increasing number of scientists.

However, critical issues that limit the development and applica-
tion of robots remain to be solved. Most current robots are
composed of electromechanical systems. Several energy transfor-
mations occur from the available energy to the electricity required
for the electromechanical systems, thus greatly decreasing the
energy efficiency. As previously reported, traditional electrome-
chanical systems have a low transformation efficiency (< 30%) for
mechanical work, leading to large heat losses [7]. In addition, most
traditional robots based on electromechanical systems are made of
metals, wires, and other hard materials. These artificial materials
and structures mean that the robots lack intrinsic safety, flexibility,
and adaptability in applications that require human–robot
interaction.

Biological entities offer many functional advantages that are
difficult to achieve using artificial materials. For example, most
biological materials are soft and environmentally safe [8] for
human–machine collaboration and integration. Furthermore,
biological muscles can be directly driven by chemical energy;
therefore, as long as the appropriate nutrients are supplied in the
growing environment, these biological muscles can convert chemi-
cal energy into mechanical work [9] at much higher efficiencies
(� 50%) than those of synthetic non-living actuators [7,10]. Biologi-
cal materials also possess functional environmental compatibility
as well as self-repair and self-assembly capabilities. Moreover,
biological materials have developed excellent smart sensing,
intelligence systems, and actuation systems, which are difficult
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to replicate using artificial materials with the currently available
technologies [11].

Therefore, a new type of robot can be developed by merging
electromechanical systems with biological materials at various
scales of molecules, cells, and tissues, in order to obtain desirable
functions that integrate the attributes of living biological materials
(e.g., high energy efficiency [10], high power-to-weight ratio [12],
and large energy storage [8]) with those of non-living systems
(e.g., high accuracy [13], high strength, favorable repeatability,
and controllability [14]) (Fig. 1). Due to the advantages of a
combined system, compared with living biological materials or
non-living traditional robots based on electromechanical systems,
developing this new generation of robots—called bio-bots, bio-
hybrid robots, or bio-syncretic robots—has been a topic of great
interest. Significant progress has been achieved in this area over
the past decade.

In this paper, we review existing studies relevant to bio-
syncretic robots, including cardiomyocyte-actuated robots, skele-
tal muscle cell-based robots, and swimming cell-powered robots.
We also summarize the development of bio-syncretic robots from
various viewpoints. First, we review the performance development
of bio-syncretic robots. The capabilities of bio-syncretic robots
have been promoted using various materials, fabrication methods,
and control strategies. Second, we identify various relevant living
biological materials, along with their corresponding characteriza-
tion. These biological materials provide different properties, such
as cellular force, size, and controllability. Third, we identify the
non-living materials that are currently used in bio-syncretic
robots. The properties and fabrication methods of these artificial
materials determine not only the performance of the living biologi-
cal materials, including differentiation, contractility, and
survivability, but also the properties of the bio-syncretic robots,
including velocity, force, and manipulation. Fourth, we review
Fig. 1. Bio-syncretic robots consisting of both
the control methods—including electrical stimulation, photic
stimulation, temperature stimulation, and chemical stimulation,
and magnetic stimulation—that are currently used in bio-syncretic
robots, along with their corresponding features. Finally, we examine
challenges facing the further development of bio-syncretic robots.

2. An overview of the development of bio-syncretic robots

Over the past decade, many researchers have promoted the
development of bio-syncretic robots. One current type of bio-
syncretic robot with asymmetric structures can perform simple
unidirectional movement actuated by the spontaneous contraction
of cardiomyocytes [15]. Bio-syncretic robots with velocity control-
lability have also been studied with controllable living biological
materials. Furthermore, to enable bio-syncretic robots to execute
certain functions, controllability of the movement velocity and
direction has been developed. Details on the development of bio-
syncretic robots based on muscle cells are listed in Table 1 [15–31].

Bio-syncretic robots can implement spontaneous movement
that is actuated by living spontaneously contractile bio-actuators,
such as cardiomyocytes [15,21,26] and insect heart tissues (also
called dorsal vessels (DVs)) [17,19,20]. Xi et al. [15] fabricated
the first self-assembled walking bio-syncretic robot that can move
autonomously; the movement of this robot was powered by the
contractility of beating cardiomyocytes. This bio-syncretic robot
was composed of a silicon backbone fabricated with single-
crystal reactive etching, a connected chromium/gold (Cr/Au) film
fabricated using metallization processes, and a cardiomyocyte
tissue growing on the metal film. The leg of the robot was
138 lm long, 40 lm wide, and 20 nm/300 nm (Cr/Au) thick. By
taking advantage of the cell growth inhibition of poly
(N-isopropylacrylamide) (PNIPAAm), the cardiomyocytes were
aligned on the patterned metal film. The contraction force of the
living biological and non-living systems.



Table 1
Development of bio-syncretic robots based on muscle cells.

Time Description Biomaterials Non-living materials Functions Parameters Partial control methods Ref.

2005 Walker Cardiomyocytes Silicon, Cr/Au Walking, spontaneity Speed: 38 lm�s�1 No control [15]
2007 3D film Cardiomyocytes PDMS Gripping, pumping, walking, swimming,

spontaneity
Speed: 3 mm�min�1

Force: 4 mN�mm�2
Electric control [16]

2009 Manipulator DV tissue PDMS Deflection, robustness, spontaneity,
working in air

Deflection: 60 lm
Force: 100 lN
Frequency: 0.5 Hz

No control [17]

2011 Device C2C12 Silicon, collagen Displacement Displacement: 8 lm Electric control [18]
2012 Walker DV tissue PDMS Walking, robustness, spontaneity Speed: 3.5 lm�s�1

Force: 20 lN
No control [19]

2012 Walker DV tissue PDMS Walking, robustness, spontaneity Speed: 532 lm�s�1 Chemical control [20]
2012 Walker Cardiomyocytes Hydrogel Walking, spontaneity Speed: 236 lm�s�1 No control [21]
2012 Swimmer Cardiomyocytes PDMS Swimming, spontaneity Speed: 2.4 mm�s�1 Electric control [22]
2013 Manipulator C2C12 PDMS, gelatin Deflection Deflection: 5 lm Human skin electrical

signal control
[23]

2013 Manipulator DV tissue PDMS Deflection, robustness, spontaneity,
working in air

Deflection: 250 lm
Working 5 days in air

No control [24]

2014 Walker Optogenetics C2C12 Hydrogel, Matrigel, fibrin collagen Walking Speed: 156 lm�s�1 Optical control [25]
2014 Swimmer Cardiomyocytes PDMS Movement in a low Reynolds number

environment, spontaneity
Speed: 81 lm�s�1 No control [26]

2016 Swimmer Cardiomyocytes PDMS, micro-balloons, nickel powder,
magnetic particles

Swimming, spontaneity, stability Speed: 142 lm�s�1 No control [27]

2016 Swimmer I2 muscle from the buccal mass of
Aplysia

Photocurable resin, collagen isolated from
the Aplysia skin

Swimming Speed: 4.3 mm�min�1

Force: 58.5 mN
Electric control [28]

2016 Walker Optogenetics C2C12 Hydrogel, Matrigel, fibrin collagen Walking Speed: 310 lm�s�1 Optical control [29]
2016 Swimmer Optogenetics cardiomyocytes Sylgard 184, Sylgard 527, Au Swimming, turning, spontaneity Speed: 3.2 mm�s�1

Distance: 250 mm
Optical control [30]

2017 Walker Neuromuscular tissue circuits from
Aplysia californica

Photocurable resin Walking Speed: 0.54 cm�min�1 Electric and nervous
system control

[31]

PDMS: polydimethylsiloxane; DV: dorsal vessel.
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aligned tissue was 14 mN�mm�2. After culturing for three days, the
bio-syncretic robot was released by cooling the entire structure at
room temperature in order to take advantage of the temperature
response of PNIPAAm. The bio-syncretic robot was then able to
walk automatically due to the actuation of the spontaneous
contraction of the living cardiomyocyte tissue. The walker robot
was able to move at a maximum velocity of 38 lm�s�1, with an
average step frequency of 1.8 Hz. Akiyama et al. [19] fabricated a
moving polypod bio-syncretic robot that can walk autonomously;
this robot was driven by the spontaneous contraction of DV tissue
at a wide range of temperatures. This bio-syncretic robot consisted
of a polydimethylsiloxane (PDMS) structure that was fabricated
using a casting method, and a DV tissue excised from an inchworm
and then assembled onto the microstructure. The walker robot
dimensions were 12.5 mm long, 1.35 mm wide, and 0.2 mm thick.
After 10 days of culturing, the micro-walker was able to move at an
average velocity of 3.5 lm�s�1; the contraction force of the DV
tissue was 20 lN.

Living biological materials with controllable contraction, such
as cardiomyocytes [30] and engineered skeletal muscle tissues
[25,29], have been used as bio-actuators to control the movement
velocity of bio-syncretic robots. Based on the intrinsic and modi-
fied features of biological entities, different methods such as elec-
tric stimulation [22], photic stimulation [29,30], chemical
stimulation [32,33], and magnetic stimulation [34,35] can be used
to control bio-syncretic robots. For example, Feinberg et al. [16]
fabricated a bio-syncretic robot consisting of engineered cardiomy-
ocyte tissues and PDMS thin films. To promote the actuation per-
formance by controlling the spatially ordered, two-dimensional
(2D) myogenesis of the beating cells, extracellular matrix proteins
(fibronectin) were used to pattern the cardiomyocytes on the thin
films. The temperature response of PNIPAAm was used to release
the films and form three-dimensional (3D) structures. Using an
electric pulse (10 V, 10 ms pulse width) as a control, the
centimeter-scale 3D structure can perform various functions, such
as gripping, pumping, walking, and swimming (3 mm�min�1) with
a contraction force of 4 mN�mm�2. Cvetkovic et al. [25] developed a
bio-syncretic robot powered by engineered muscle tissue that can
be controlled by electrical stimulation. To fabricate the robotic
structure, stereolithographic 3D printing technology was used
based on the geometric design of the robotic body and the material
properties’ analysis of the hydrogel. To promote the actuation force
of the engineered skeletal muscle tissue, collagen I and fibrin extra-
cellular matrix proteins and insulin-like growth factor 1 were used
in the cell culturing. After the myoblasts differentiated to form the
contractile myotube tissues, the bio-syncretic robot was able to
walk with a maximum velocity of approximately 156 lm�s�1. The
movement was actuated by electrical stimulation triggered by
the contraction of cells in the muscle strip. Modeling and simula-
tion were used to study the movement mechanism and the effects
of different design parameters on the bio-syncretic robot.

Recently, some researchers have attempted to control the
movement direction of a bio-syncretic robot with no other elec-
tromechanical mechanism [30,36,37]. For example, Park et al.
[30] fabricated a bio-syncretic robot of an artificial ray by studying
the inner structure of actual rays. The tissue-engineered artificial
ray was able to swim and turn with an optical controlling stimulus.
To form the biomimetic structure for this bio-syncretic robot, mul-
tilayer PDMS films with different concentrations were assembled
with a metal skeleton, which improved the shape retention of
the structure. To replicate the swimming performance of a ray,
the muscle tissues on the fins were organized by patterning the
structure surface using a micro-stamp method. Based on the mus-
cle structure of an actual ray, the muscle circuits were designed
and patterned with fibronectin. After culturing the engineered car-
diomyocytes on the structure and releasing the bio-syncretic robot
by dissolving the sacrificial dextran layer, the swimmer robot could
be guided to swim and turn through an obstacle course by control-
ling the optical stimulation position on each fin.
3. Living materials used for bio-syncretic robots

To take advantage of the special features of biological entities,
various living biological materials have been used to implement
desirable functions, such as actuation [7,8,38–40], sensing
[34,35], and supplying energy [41]. Popular biological materials
used for the development of bio-syncretic robots are cardiomy-
ocytes [15,16,21,22,26,27,30], skeletal muscle cells [18,25,29,42],
insect DV tissues [17,19,20,23,33], flagellate swimming microor-
ganisms [36,37,43–47], and others [11,28,31]. Each of these
materials possesses suitable properties, such as size, force, control-
lability, and safety, for different applications.

3.1. Cardiomyocytes

Cardiomyocytes possess spontaneous contractility, which is
caused by the electrical stimulation created by a sequence of ion
fluxes through specialized channels in their membrane
(sarcolemma) [48]. A single adult-cardiomyocyte is approximately
100 lm long, and the length of heart cell sheets can range frommil-
limeters to centimeters. Once the cardiomyocytes grow to touch
each other, the electrical gap junctions enable synchronous contrac-
tion [7,49]. The contraction force of a single cardiomyocyte is at least
1 lN [50–53], and cardiomyocyte clusters can generate contraction
forces ranging from 1 to 4 kPa [16], which is comparable to actual
cardiac muscle. The contraction force of cardiomyocytes is related
to the concentration of the cells [54]. Moreover, to acquire more
actuation force, cardiomyocytes can be engineered to form cell tis-
sues with biocompatible materials, such as Matrigel and hydrogel
[55–62]. In addition to the spontaneous contraction, the contraction
frequency and force of the cardiomyocytes can be controlled by var-
ious external factors, such as electrical pulse stimulation [63,64],
optical stimulation [30,65–67], and chemical stimuli [68–73].
Considering its size, a single cardiomyocyte can be used as an
onboard actuator to power a microrobot, which is smaller than
100 lm. For example, Williams et al. [26] developed a microscale
self-propelled bio-syncretic swimmer that was able to swim in a
low Reynolds number environment and was actuated by a sponta-
neous beating cardiomyocyte. To achieve the microscale bionic
spermrobotic structure, a unique fabricationprocesswasused. First,
dry etchingwas used to carve the siliconmodel; the PDMSwas then
poured into the micro channels by capillary draw [74]. After curing,
the model and PDMS structures were inundated with ethanol to
facilitate the release of the filament from the channel. The PDMS
microstructures were then manually released and transferred to a
35 mm Petri dish. To replicate the movement of a sperm, the car-
diomyocytes were selectively seeded on the PDMS microstructure
by selectively functionalizing the filaments with gelatin mask,
fibronectin, and F127. Two to three days after seeding the cells, the
swimmers could be propelled at a maximum velocity of 81 lm�s�1.
Fabricating a bio-syncretic robotwith cardiomyocytes is convenient
because cardiomyocytes can spontaneously beat with no external
stimulation [25]. However, for the same reason, accurately control-
ling the timing and amplitude of the contraction, and thereby the
movement of the bio-syncretic robot, is difficult [27].

3.2. Skeletal muscles

Skeletal muscles can generate contraction forces under neural
stimulation or external stimulation [75]. Therefore, electrical
stimulation is used to control the contraction of engineered skele-
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tal muscle tissues for bio-syncretic robots [76]. Skeletal muscle tis-
sue may provide a more powerful force than cardiac tissue [18],
with the contraction force of skeletal muscle cells being approxi-
mately 400 lN [25,29]. In general, contractile myotubes are
achieved by differentiating the myoblast (C2C12) with the induc-
tion of horse serum [77–79]. To improve the contraction force of
biological materials, the contractility of engineered skeletal muscle
tissues has been studied using various approaches including elec-
trical stimulation [64,79–81], physical stimulation [82–85], optical
stimulation and optogenetics [42,86,87], chemical stimulation
[88], magnetic stimulation [89–91], and biological regulation
[92]. These studies showed that the abovementioned external
stimulation methods can increase the myotube differentiation rate,
cell alignment, cellular force, and cell maturation. For example,
Ahadian et al. [80] presented an interdigitated array of platinum
(Pt) electrodes to promote engineered muscle tissues. To achieve
3D arrays of engineered muscle tissue, a synthetic hydrogel with
grooves was fabricated on an electrode substrate. One day after
electrical stimulation with a voltage of 6 V, a frequency of 1 Hz,
and a duration of 10 ms, the myotube characteristics and gene
expression were analyzed and quantified. The results showed that
the engineered muscle tissues stimulated by the proposed elec-
trode substrate demonstrated superior performance and matura-
tion compared with those simulated by a conventional Pt wire
electrode substrate. In particular, the engineered muscle tissue in
the experimental group demonstrated a higher degree of C2C12
myotube alignment (approximately 80%) than the muscle tissue
stimulated with Pt wires (approximately 65%). Moreover, higher
amounts of C2C12myotube coverage area, myotube length, muscle
transcription factors, and protein biomarkers were found in the
engineered muscle tissue that was stimulated with the proposed
electrodes than in the tissue stimulated by the Pt wires. Due to
the size, contraction force, and controllability of the engineered
skeletal muscle cells, centimeter-scale robotic structures can be
actuated by C2C12 cells [18,25,29]. However, mammalian muscle
cells require a strictly controlled culturing environment [11]. To
keep the cells alive, the culture conditions must be 37 �C with a
pH of 7.4 and 5% carbon dioxide in a sterile incubator. To maintain
sufficient nutrients and the necessary liquid environment, the cul-
ture medium must be replaced every few days [20,93,94].

3.3. DV tissues

DV tissue is the alternative bio-actuator for bio-syncretic
robots. These tissues can contract spontaneously and can be con-
trolled by external stimulation; however, they do not require the
strict culturing conditions that are necessary for living mammalian
tissues [33]. In addition, DV tissue is more environmentally robust
for the applications of bio-syncretic robots. As shown by previous
reports, DV tissue can survive for more than 90 days without
changing the culture medium [95] and can maintain its contractil-
ity in temperatures from 5 to 40 �C [94,96]. Moreover, similar to
mammalian skeletal muscle cells, DV tissues can contract sponta-
neously and meet the controllability requirement for bio-
syncretic robots. Relevant studies have demonstrated that insect
muscle cells can be controlled by an external electrical pulse
[23,97]. A single DV tissue can reach dimensions of up to centime-
ter scale [20], and its contraction force is approximately 100 lN
[17,98]. Due to their size, contraction force, robustness, and
controllability, insect muscle cells have been widely studied as a
viable alternative bio-actuator to power bio-syncretic robots
[19,20,24,32,94,97,99–101]. For example, Akiyama et al. [24]
developed an atmospheric-operable bio-actuator powered by
insect muscle cells packaged with medium. The bio-syncretic
manipulator consisted of a micro-tweezer, a capsule, and living
DV tissue. The micro-tweezer and the capsules were made of
PDMS. As the executor, the micro-tweezer was used to manipulate
objects and was powered by the contraction force of the DV tissue
attached to it. The capsule was used to fix the micro-tweezer and
store the culture medium (40 lL) for the living tissue. To extend
the maximum lifespan of the DV tissue, the medium was evapo-
rated with paraffin. The gap between the tips of the tweezer could
vary by approximately 250 lm under the actuation of the living DV
tissue. When the bio-syncretic manipulator grasped a ring made of
PDMS with a diameter of 250 lm, the ring was deformed by 37 lm
in the vertical direction and 48 lm in the lateral direction. More-
over, the proposed bio-syncretic manipulation robot was able to
work for five days in air.

3.4. Microorganisms

Microorganisms can move and respond to external stimulation,
and can be used as bio-actuators for bio-syncretic robots [11].
Many types of microorganisms, such as flagellated bacterial species
(e.g., Escherichia coli, Serratia marcescens, and Salmonella typhimur-
ium), gliding bacterial species (e.g., Mycoplasma mobile), protozoa
(e.g., Paramecium caudatum, Vorticella convallaria, and Tetrahymena
pyriformis), and algae (e.g., Chlamydomonas reinhardtii), have been
used to develop bio-syncretic robots [11,36]. These moving
microorganisms can swim in a liquid environment or move on a
substrate by themselves. The propelling force is provided by their
bio-molecular motors, which consume simple nutrition (e.g., glu-
cose) [9,49]. In addition, the movement of a single microorganism
or group of microorganisms can be steered using various control
approaches based on the taxis response, which is a movement in
response to environmental stimulation. A wide range of stimula-
tion control approaches have been studied and utilized to control
different types of microorganisms that are sensitive to various
types of stimulation, which include chemotaxis (chemicals), mag-
netotaxis (magnetic field), galvanotaxis (electric field), phototaxis
(light), thermotaxis (temperature), and aerotaxis (oxygen) [102].
Beyond the generally small size and accessible controllability of
bio-syncretic robots that are based on microorganisms, the key
advantage of using microorganisms as living biological actuators
is that most can live in a wide range of environmental conditions.
Some microorganisms can withstand high temperatures (more
than 100 �C), and some can survive in environments with pH
values as low as 2 or as high as 11.5 [103]. Because microorganisms
possess so many advantages, including their small size, strong
swimming ability, easy controllability, extensive survivability,
and high energy efficiency, many researchers have developed
microorganisms for various applications, such as detecting agents
[104–109], manipulating micro-objects [36,44–46,110–112], and
delivering drugs [102,109,113–115]. For example, Cho et al. [115]
developed a biomedical bio-syncretic microrobot actuated by flag-
ellate bacteria for delivering anti-cancer drugs and therapeutic
bacteria. To form the polyethylene glycol (PEG) microbeads of
the bio-syncretic microrobots, the PEG droplets were polymerized
by ultraviolet (UV) radiation in a cross-junction microfluidic chan-
nel. To achieve effective movement of the bio-syncretic micro-
robots powered by the living bacteria, the microbeads were
selectively modified. In this process, the PEG microbeads were first
half submerged in agarose gel based on the submerging property.
Uncured PDMS was then poured on top of the agarose gel to create
the other half of the surface. Next, the microbeads attached to the
PDMS were dipped in poly-L-lysine (PLL) solution to modify the
uncovered surface of the microbeads. Because of their hydrophilic-
ity, the bacteria do not attach to the hydrophobic surface of the
PEG material. Therefore, after the selective surface modification,
the attenuated Salmonella typhimurium only attach to the PLL-
modified hemisphere of the PEG microbeads. Under the actuation
of the swimming bacteria, the selectively modified bio-syncretic
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robots showed an average velocity that was 12.33 and 7.40 times
higher than those of the unmodified and completely modified
bio-syncretic microrobots, respectively.
4. Non-living materials and fabrication methods used for
bio-syncretic robots

As an important part of bio-syncretic robots, non-living materi-
als provide the structural support, growing environment, and
attachment substrate for the living biological materials. Previous
studies have shown that the mechanical properties of the non-
living materials determine the robot performance, such as the float
[27], deformation [25], and velocity [30]. Moreover, properties
such as the microscopic structure, Young’s modulus, hydrophilic-
ity, biocompatibility, and conductance affect the state of the living
biological materials, such as the adherence [15,26,36,109,114–
116], proliferation [29], differentiation [25,59,65,80,82,117–119],
alignment [16,22,30,120], and contractility [63,73,82,84,121–
123]. For example, Bhana et al. [124] demonstrated the influence
of substrate stiffness on the phenotype of heart cells by character-
izing the influence of the substrate stiffness on the cardiomyocyte
phenotype and functional properties. Collagen-modified polyacry-
lamide substrates with different Young’s moduli (3, 22, 50, and
144 kPa) and collagen-coated glass coverslips (infinite stiffness)
were used to culture cardiomyocytes from neonatal rats based on
the elasticity of the native rat heart tissue (ranging from 4 to
46.2 kPa). After culturing for 120 h, the cells on the intermediate
stiffness substrates, which were comparable to those of the native
adult rat myocardium (22–50 kPa), displayed optimal cellular mor-
phology, function, and differentiation, such as well-developed stri-
ations, reasonable excitation threshold, superior elongation, and
high contraction force.

Common non-living materials used in bio-syncretic robots
include structural materials (e.g., PDMS [16,17,19,20,22,24,
26,27,30], hydrogel [21,25,29], resin materials [28,36,46,114], and
SU-8 [125]) and growing materials (e.g., Matrigel [25], fibrinogen
[78,84,85,126,127], fibronectin [16,22,30], and collagen [60,128]).
Different materials possess different mechanical and biological
properties, which require correspondingly different fabrication
methods. PDMS is a popular non-living material for bio-syncretic
robots because its stiffness can be tuned to the optimal substrate
stiffness for muscle tissue (approximately 10 kPa [25]) and because
of its many fabrication methods. Commonly used PDMS structures
are cured from the solution mixed in 10:1 ratio of the base and the
curing agent; the Young’s modulus of the cured structures changes
with varying ratios, heating temperatures, and curing times
[129,130]. In general, structures made of PDMS are manufactured
by casting with molds [17,19,20,24,26], spin-coating on a surface
[27,30], cutting the films [16,22] or 3D printing [73]. Moreover,
the biocompatibility and hydrophilicity of PDMS can be adjusted
by modifying the growing materials or by plasma treatment [54].
For example, Holley et al. [27] fabricated a type of bio-syncretic
micro-swimmer actuated by living cardiomyocytes on PDMS films
using the fin-based propulsion mechanism. This bio-syncretic
robot was able to achieve self-stabilizing swimming by maintain-
ing its submersion depth, pitch, and roll without external interven-
tion. The robot was composed of a triangular head made from two
composite PDMS materials and a thin PDMS tail with many living
cardiomyocytes. Under the actuation of the contraction force of the
beating PDMS film actuator, the bio-robot was able to stably swim
at a maximum velocity of 142 lm�s�1, even withstanding a distur-
bance within a certain angle.

Biocompatible hydrogel is an alternative material for the
development of bio-syncretic robots. With the development of
3D stereolithographic printing technology, photo polymer hydro-
gel liquid can be selectively cured in individual layers using a UV
laser or another light source according to the designed 3D struc-
ture [131,132]. To meet the requirements of the living biological
materials, the Young’s modulus can be regulated by changing the
molecular structure of the polymers and the cross-linking agent.
The chemical properties can be spatially modified using a 3D prin-
ter [133]. Moreover, the porousness of the hydrogel can promote
the survival of the living biological materials growing on or in
the hydrogel by providing sufficient nutriment and the necessary
gas environment. In addition, the microstructure of hydrogel mate-
rials can contribute to the proliferation and differentiation of the
cells [134,135]. Given the advantages of hydrogel materials, a great
deal of research has attempted to use these materials to fabricate
the structures of bio-syncretic robots [21,25,29,37,131]. For exam-
ple, Chan et al. [21] fabricated a locomotive bio-syncretic robot
called a ‘‘bio-bot,” which was made of hydrogel materials and car-
diomyocytes, and was constructed using a 3D stereolithographic
printer. The bio-bot consisted of a ‘‘tail” that served as the actuator
to provide power for the bio-bot and a ‘‘leg” that served as the
main body of the bio-bot in order to define the asymmetric struc-
ture for locomotion. Living cardiomyocytes were seeded on the tail
and spontaneously deformed the tail to provide the propelling
force of the bio-bot. Under the actuation force of the beating cells,
the bio-bot was able to move at a maximum velocity of
236 mm�s�1, with a mean beating frequency of 1.5 Hz.

Combining multiple materials, such as stiff materials, soft mate-
rials, and conductive materials, may be helpful for achieving key
robot functions, including sensing, intelligence, and actuation.
Therefore, multi-material 3D fabrication technology has been stud-
ied by researchers. For example, Lind et al. [73] developed a device
made of multiple non-living materials and heart cells that was con-
structed using a multi-material 3D printer. The non-living struc-
ture consisted of six functional inks, including piezoresistive,
high-conductance, and biocompatible soft materials, according to
the requirements of the device. The soft structure of the device
was actuated by the living cells, without the non-living materials
influencing the living biological materials. Therefore, multi-
material 3D printing technology can be used in the fabrication of
bio-syncretic robots in the future. To achieve multifunctional
bio-syncretic robots, many newmaterials and fabrication methods,
including intelligent materials and four-dimensional (4D) printing
technology, should be studied and used.
5. Methods for the control of bio-syncretic robots

Controllability is one of the main attributes needed in order for
bio-syncretic robots to perform tasks—such as transportation,
manipulation, and navigation—under human control or as part of
a self-autonomous system. In general, bio-syncretic robots can be
controlled by a wide variety of control approaches based on the
intrinsic program of the living biological materials, through inte-
grated sensing and control pathways or an external control force.

Control approaches based on the intrinsic program of the living
biological materials utilize the special properties of the biological
entities. Many living biological cells and tissues can respond to
external factors, such as mechanical force and strain [136–138],
chemical gradients, electrical stimulation [22,73,80], optical stimu-
lation [29,30,66,86], and magnetic fields [34,35,90]. Neural stimu-
lation is one of the major factors in controlling the contraction of
muscle cells and tissues in animal bodies [31,139,140]. Neural sig-
nals can be simulated by electrical stimulation to recreate the exci-
tation–contraction process of muscle cells or tissues [75,141].
Therefore, many researchers have used electrical stimulation to
improve the development of bio-syncretic robots in recent
decades. This form of stimulation can be used to optimize the state
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of living biological materials; promote cell proliferation, matura-
tion, and differentiation; control the contraction (frequency and
force) of muscle cells or tissues; and guide the movement direction
of bacteria. Previous studies have demonstrated that cardiomy-
ocytes can respond to electrical fields, leading to optimal cellular
morphology and function [124]. In addition, the application of
electrical stimulation can induce synchronous contraction of car-
diac myocytes after more than eight days of culture [142]. For
example, Nawroth et al. [22] reverse-engineered an electrically
controlled bio-syncretic robot called a ‘‘biomimetic medusoid.”
This swimmer was composed of a PDMS film and a sheet of living
cardiomyocytes, which provided the propelling force for the bio-
syncretic robot. To replicate the swimming mode of native jelly-
fish, the proposed bio-syncretic swimmers were designed using
computer simulations and experiments. The design aimed to
match the major swimming motions of jellyfish by quantitatively
mimicking the structural design, stroke kinematics, and animal–
fluid interactions. Under the actuation of living biological materi-
als, the artificial medusoids were able to swim in a manner similar
to a jellyfish in a liquid environment, and their velocity could be
controlled by external electrical pulse stimulation. Under electrical
pulses of 1 Hz, 2.5 V�cm�1, and 10 ms, the bio-syncretic swimmer
could move with a maximum velocity of 2.4 mm�s�1. Although
electrical stimulation has been widely used to promote and control
the behavior of the living biological materials in bio-syncretic
robots with high temporal resolution, the spatial resolution of elec-
trical stimulation cannot be accurately controlled due to the prop-
agation of the action potentials in a liquid environment. The spatial
resolution depends only on the gap between the electrodes and the
biological materials [63]. This issue can be solved by integrating
the stimulation electrodes into the substrate, or by requiring the
stimulation electrodes to be attached to the muscle cells or tissues.
However, this approach requires the integration of soft electrodes
and may damage the living biological materials.

Optical stimulation has also been widely used in bio-syncretic
robots and offers the advantages of control location precision and
non-invasion. Optical control can be directly used to guide pho-
totropic living biological materials, such as algae and photosyn-
thetic bacteria. We have previously proposed a bio-syncretic
tweezer system to flexibly and accurately manipulate micro-
objects using the swimming force of local light-induced high-
concentration microorganisms [37]. In that study, living swimming
Pandorina and Chlamydomonas reinhardtii were used to provide the
propelling force of the bio-syncretic tweezer, and a light source
(500 nm wavelength) was focused and controlled to guide the
movement of the swimming microorganisms. Two different
manipulation modes were implemented: a light-spot-induced
mode and a geometric shape-induced mode. In the first manipula-
tion mode, the micro-objects could be moved in the 2D plane by
the bio-actuation controlled by the focused light spot; in the sec-
ond manipulation mode, the micro-object shapes could be actu-
ated to rotate due to the impact force of the group of swimming
microorganisms. The experiment showed that the micro-objects
could be actuated to move at a maximum velocity of 7.59 lm�s�1

and to rotate at a maximum angular rate of 0.032 rad�s�1.
In addition to heliotropic living biological materials that can

easily be controlled using optical stimulation, other biological cells
and tissues, such as cardiomyocytes and skeletal muscle cells, can
be enhanced to become light sensitive using optogenetics. Optoge-
netics permits the user-defined spatiotemporal activation of
muscle actuators by genetically programming the cells to express
light-sensitive proteins [65,86,87]. Light can then be accurately
focused onto different regions of the muscle cells or tissues in
order to selectively control the contraction of the living biological
materials. A previous experiment showed that the contractile
pattern and magnitude of the skeletal muscle stimulated by optics
(blue light with intensity of 0.12 mW�mm�2 and 100 ms pulse
width) were almost the same as those of the muscle motivated
by electrical stimulation (0.8 V�mm�1 and 100 ms pulse width)
[87]. Moreover, most phototactic cells, muscle cells, and tissues
can respond to optical stimulation within short periods of time
(i.e., dozens of milliseconds) [36,86,87]. Using optogenetics and
optical stimulation, many researchers have achieved the simple
optical control of bio-syncretic robots actuated by living cardiomy-
ocytes [30,65] and skeletal muscle cells [29,86,143]. For example,
Raman et al. [29] developed a bio-syncretic robot, bio-bot, actuated
by skeletal muscle cell tissue controlled by noninvasive optical
stimulation. This bio-syncretic robot was composed of a hydrogel
structure and muscle tissue containing many differentiated myo-
tubes. The hydrogel skeleton structure of the bio-syncretic robot
was fabricated with a 3D printer. To achieve a controllable bio-
actuator, the existing lentiviral transduction protocol was used to
engineer C2C12 murine myoblast cells with a mutated variant of
the blue light-sensitive ion channel, Channelrhodopsin-2 (ChR2).
The cells were mixed with Matrigel basement membrane, fibrino-
gen, and thrombin to form the 3D muscle tissue. When optical
stimulation was used, the skeletal muscle-powered actuator could
generate up to 300 lN (0.56 kPa) of active tensile force. When
skeletal muscle tissue was assembled into a 3D printed flexible
skeleton, the bio-syncretic robot could move at a velocity of
310 lm�s�1 and demonstrated 2D rotational steering at an angular
rate of 2��s�1 using optical stimulation.

Although optical stimulation has been extensively studied and
used for the development of bio-syncretic robots due to its high
spatiotemporal resolution, some drawbacks limit the application
of optical control. For example, living biological materials may be
damaged by the heat from the focused light being used for stimu-
lation [144]; moreover, some light sources, such as UV, may dam-
age the DNAs and proteins in living biological materials, including
microorganisms and cells. Therefore, optical stimulation with cer-
tain special light sources should be limited to a short exposure
time when used to control bio-syncretic robots [145]. Furthermore,
the effective penetration depth of light (470 nm wavelength) into
biological tissues is less than 740 lm [146,147]. Therefore, the con-
trol light cannot penetrate through opaque screens such as the
human body.

Chemical stimulation has been widely studied as another con-
trol approach for the development of bio-syncretic robots. Because
disease cells and tissues can change the microenvironment around
a nidus in the body [109], bio-syncretic robots used for in vivo ther-
apy may be able to achieve automatic control using chemical
responses. To study the control of bio-syncretic robots using chem-
ical stimulation, many drugs have been used to control the magni-
tude and frequency of the contraction in muscle cells and tissues
[71] and cardiomyocytes [148], and the swimming velocity and
direction of bacteria [109,114]. For example, Park et al. [109] pro-
posed and investigated a bio-syncretic robot ‘‘bacteriobot” to
achieve active drug delivery, active tumor targeting, bacteria-
mediated tumor diagnosis, and therapy. The microrobots were
actuated by selectively adhered flagellar bacteria (Salmonella typhi-
murium) on the polystyrene (PS) microbeads, which were selec-
tively patterned with bovine serum albumin (BSA). The results
showed that many bacteria could be selectively attached on only
the unpatterned surface of the PS microbeads. The bio-syncretic
robots were able to sense the chemical gradient in the microfluidic
chamber consisting of two different drugs (bacterial chemoattrac-
tant (L-aspartic acid) and chemorepellent (NiSO4)). Most bio-
syncretic robots automatically guided the swimming direction
toward L-aspartic acid using the actuation force of the living bacte-
ria based on chemical stimulation. However, the low spatiotempo-
ral resolution and potential toxic effects of chemical stimulation
may limit its application in the control of bio-syncretic robots.
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Moreover, if a bio-hybrid device is located far away from the chem-
ical source, the chemical concentration could be weakened during
the diffusion process, decreasing the control effect.

Magnetic control methods offer the advantages of being non-
toxic, non-contact, and highly penetrating techniques. These meth-
ods have been used to control the behavior of living biological
materials such as protein molecules [35], cells, and nematodes
[34], as well as the direction and velocity of strains of magnetotac-
tic bacteria [102,149–152]. For example, Martel et al. [152] demon-
strated that the displacement speed, direction, and behavior of a
single magnetotactic bacterium could be controlled using a
closed-loop computer system. Moreover, external force control
can be achieved using a remote magnetic field to control micro-
nano magnetic particles embedded in bio-syncretic robots in order
to control the velocity of bio-syncretic robots and assist with the
actuation of biological materials [153,154]. In addition, a remote
magnetic field can steer the movement direction of bio-syncretic
robots [116,155]. For example, Carlsen et al. [116] demonstrated
a remote magnetic field control method to control the movement
of a bio-syncretic robot and reduce the stochasticity of the motion.
The proposed bio-syncretic micro-swimmers were made of many
Serratia marcescens bacteria adhered onto a superparamagnetic
microparticle (6 lm in diameter). The living bacteria provided
the propelling force for actuating the bio-syncretic robot, and the
magnetic microparticle was used to steer the bio-syncretic robots
under the action of a remote magnetic field. By researching the
relationship between the magnetic control parameters and the
motion of the micro-swimmers, the control strategy could be opti-
mized. A weak magnetic field (� 10 mT) was used to control the
micro-swimmers along 2D trajectories at a maximum speed of
7.3 lm�s�1. However, magnetic control methods require a large,
complicated external control algorithm.

Although various control methods have been studied and used
to promote the performance of bio-syncretic robots, the require-
ments of each control approach limit the application of the current
bio-syncretic robots. Therefore, in order to control bio-syncretic
robots in multiple work environments, new types of control stim-
ulation approaches may be needed with novel action mechanisms
and tools that involve both engineering and biology.
6. Challenges in the development of bio-syncretic robots

The development of bio-syncretic robots has been greatly
promoted by studies in various fields, including micro-
electromechanical systems (MEMSs), micro-/nano-fabrication,
biology, and pharmacy. The early integration of biological entities
with non-living materials has already been realized. Previous
studies have presented bio-syncretic robots with the functions of
simple movement, turning, and manipulation, powered by living
biological materials. However, many important challenges, which
may prevent the further development of bio-syncretic robots,
must be considered and studied in the future. These potential
challenges are listed below.
6.1. Lack of bio-syncretic sensing and intelligence for the development
of bio-syncretic robots

Sensing, intelligence, and actuation are the key functions of
robots, and future bio-syncretic robots should incorporate these
three elements. However, most of the current work on developing
bio-syncretic robots is focused only on movement actuated by
living biological materials. Few studies have considered the pro-
cess of information acquisition using biological sensing capabilities
or intelligent processing using the natural functions of living
materials. Therefore, based on the same principle of utilizing living
biological materials, such as cardiomyocytes and skeletal muscle
cells, in the development of bio-actuation, bio-syncretic sensing
and intelligence using living materials should be thoroughly
investigated. In the future, a bio-syncretic robot will possess
sensitive perception, intelligent response, and efficient actuation
capabilities.
6.2. The living biological materials of bio-syncretic robots

Living biological materials are a basic part of bio-syncretic
robots, and are used to execute the main functions, such as actua-
tion and sensing. The properties of the living materials determine
the performance of bio-syncretic robots. However, obtaining living
biological cells or tissues for bio-syncretic robots can be difficult.
For example, most of the cardiomyocytes used for biological actu-
ation are extracted from the hearts of neonatal rats. Therefore, the
amount of living cardiomyocytes depends on the number of avail-
able rats. The facial pits of snakes are temperature sensitive and
could be used in the sensing systems of bio-syncretic robots in
the future. However, each snake has only two facial pits, and the
pits are easily damaged during the extraction process. To achieve
multipotency of bio-syncretic robots, such as smell, memory, and
learning, new living biological materials and technologies should
be studied and used. Moreover, biomaterials with powers such as
actuation force and sensitivity need to be studied with new tools,
such as biological integration and genetic engineering, for the
development of bio-syncretic robots.
6.3. Long-term maintenance and supply of energy and nutrients for
living materials in bio-syncretic robots

Most living biological entities are wet materials that need to be
soaked in appropriate culture media in order to maintain their
bioactivity, thus limiting the application of bio-syncretic robots
in other environments. When bio-syncretic robots are used in air,
the temperature, nutrition, gas, and sterility of the environment
must be maintained within narrow condition-ranges. In natural
biological bodies, the skin and circulation system provide protec-
tion and maintenance for the tissues and organs.

However, obtaining smart materials similar to skin and fabricat-
ing artificial blood capillaries is difficult in bio-syncretic robots. In
addition, the heat generated by metabolism needs to be extracted.
Therefore, new materials for the structure and culture environ-
ment, and the corresponding fabrication technologies—such as
smart biomaterials, 4D printing technology, and constant-
temperature approaches—urgently need to be developed for the
further development and application of bio-syncretic robots.
6.4. The control of bio-syncretic robots

The controllability of robots is one of the main evaluation indi-
cators, and many research groups have implemented simple
control of bio-syncretic robots using optics, electricity, and chem-
istry. However, some factors still limit the existing control
approaches. For example, electrical stimulation using action poten-
tial propagation has a poor spatial resolution; electrical stimula-
tion using contact electrodes may damage the biological
materials; optical control requires a transparent environment;
chemical control has a low spatiotemporal resolution because of
diffusivity; and magnetic control requires a complicated external
equipment and computer algorithms. Therefore, universal control
methods that can be used in various work environments need to
be investigated.
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6.5. The information interface, acquisition, and processing of
bio-syncretic robots

Information technology, including information acquisition,
transmission, and processing, is the determinant of intelligent
robots. The information acquired by the information acquisition
modules should be nondestructively transmitted to the intelligent
module to be processed and recorded. Next, the output information
should be used to control the execution module. Information inter-
face technology is the critical factor for intelligent robots. However,
few of the current studies have considered information issues.
Introducing information technologymay improve the development
of intelligent bio-syncretic robots. In addition, the integration of the
information module, sensing part, and execution unit needs to be
studied for the further development of bio-syncretic robots.

7. Conclusion

Bio-syncretic robots, which offer the advantages of both living
biological materials and non-living systems, may be a potential
development trend due to their high energy efficiency, intrinsic
safety, and high sensitivity. This review described the recent devel-
opment of bio-syncretic robots based on their functions, living
biological materials, non-living materials, and control methods.
The development challenges facing bio-syncretic robots were also
discussed from various viewpoints, including sensing and intelli-
gence, living and non-living materials, control approaches, and
information technology. This review mentioned only some of the
relevant studies on bio-syncretic robots; in addition, studies in
many other fields, including cell culture, tissue engineering, opto-
genetics, micro-fabrication, 3D printing, and MEMSs, have greatly
contributed to the development of bio-syncretic robots. Exploring
the opportunities and overcoming the development challenges of
bio-syncretic robots requires concerted efforts in different research
fields, including robotics, mechanics, biology, pharmacy, and
chemistry. Although most current bio-syncretic robots have mag-
nitudes of millimeters or microns, micro bio-syncretic robots that
are actuated by living cells have some advantages when compared
with traditional microrobots. For example, cardiomyocytes have
the capability for self-actuation because they consume the envi-
ronment’s chemical energy; this may lay the foundation for resolv-
ing the challenges of energy supply and control for microrobots in
special (e.g., in vivo) working environments. In the future, bio-
syncretic robots may possess multiple features, such as intrinsic
safety, high-sensitivity sensing, rapid information processing, high
intelligence, high-efficiency execution, and self-repairing capabili-
ties, in order to serve people in various fields.
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