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Abstract — In AFM based nano-manipulation, the tip 

position uncertainties still exist due to the parameter 

inaccuracies in the open-loop compensation of the piezo 

scanner, the noise in the closed-loop control and thermal drift. 

These spatial uncertainties are very challengeable to be directly 

estimated owing to the lack of real time feedback, and its 

effects are more significant in performing an automatic 

nano-manipulation/assembly task than macro world 

manipulations. In this paper, we propose a stochastic 

framework for feature-based localization and planning in 

nano-manipulations to cope with these uncertainties. In the 

proposed framework, some features in the sample surface are 

identified to calculate their positions in statistics, and then 

detected by using the AFM tip as the sensor itself through a 

local-scan based motion. In the localization, the Kalman filter is 

used through incorporating the tip motion model and the 

local-scan based observation model to estimate the on-line tip 

position in the task space. The simulation and experiments 

about tip positioning are carried out to illustrate the validity and 

feasibility of the proposed algorithm. Finally, a carbon 

nanotube is followed to show that the proposed method can 

provide a great potential for improving the position accuracy. 
Index Terms— AFM based Nano-manipulation, AFM Tip 

Localization, Feature based Localization, Kalman Filter. 

I. INTRODUCTION 

BSERVATION and manipulation at nano-scale using 

Atomic Force Microscopy (AFM) as an executive robot 

have been developed for over a decade, and provide promising 

potential for manufacturing nanostructures and nano-devices 

[1-9]. The AFM uses the tip as an end effector of the robot to 

image the nano-objects with its high resolution and manipulate 

them with its high alignment precision [10]. The critical 
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technology to achieve this manipulation is to accurately 

position the tip around the target objects. However, there are 

large uncertainties of the tip position due to the hysteresis, 

creep, and other nonlinearities of the piezoelectric scanners as 

well as the system thermal drift. These factors have extreme 

influences on the tip positioning at nano-scale. Therefore, it is 

full of challenge to effectively and accurately observe and 

manipulate the nano-objects based on AFM, for the tip position 

cannot be accurately guaranteed in the task space.   

Spatial uncertainties are partially caused by the PZT scanner 

[11]. To reduce the hysteretic and creep effects of piezo 

material (PbZrTiO3: PZT), two types of methods are developed: 

sensor based closed-loop control and model based 

compensation. These methods can only improve the expanding 

and contracting accuracy between the tip and the PZT central 

axis. The tip position in the sample surface cannot be 

guaranteed because of thermal drift, which is caused by the 

contraction and expansion of AFM mechanical components 

due to temperature change, humidity change, etc[10,12]. 

Several methods [12, 15-17] are proposed to predict the thermal 

drift between the tip frame and the sample surface frame (task 

frame), and then indirectly estimating the tip position. 

In contrast to abovementioned methods, the represented 

approach directly localizes the on-line tip position by 

intermittently observing the feature (landmark) in the sample 

surface (task frame), referring to the macro robotic localization 

[18]. And our previous work [19] has been done to estimate the 

tip position by using local scan based observation. Furthermore, 

the uncertainties of the landmark position and the tip motion 

due to the PZT scanner control need to be considered in the 

deeper research. The effects of these uncertainties are more 

significant in performing a nano-manipulation/assembly task 

than macro world manipulations, because the uncertainties are 

relatively large at the size of nano-objects and the scale of 

manipulation motion. In addition, sensors in AFM control 

system are only able to be equipped on the PZT or the 

cantilever of an AFM as a joint space sensor, and current 

technology cannot directly provide online sensing the tip 

position in the task space. This may bring further difficulty to 

perceive the tip position precisely in both tip motion control 

and nano-object manipulation. A Stochastic Approach for 

Feature-based Localization and Planning (SAFLP) is 

proposed in the paper. The main idea of this strategy is to 

incorporate a stochastic approach with a probabilistic filter 

based localization algorithm that is similar to SLAM 

algorithms for macro robot localization [20-21]. This algorithm 

is developed by combining observation data of perceiving a 

feature with the tip motion control input [22].  

In this research, the tip position uncertainties are represented 
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by probability distribution. The feature based observation is 

developed to correct the tip position with higher accuracy [23] 

by using local scan. A nano-particle is typically selected as a 

feature to build an observation model. Upon observing the 

nano-particle, the tip position is optimally updated by 

combining with the tip motion control input. In this paper, 

many experiments are included to estimate the probabilistic 

parameters of the tip motion model and the observation model. 

Then simulations and corresponding experimental results are 

represented to illustrate the validity of the proposed method. 

Finally, a carbon nanotube is followed to show that the 

proposed method can provide a great potential for improving 

the position accuracy. 

The structure of this paper is arranged as follows. A general 

framework of the tip position updating algorithm is given in 

Section II. In Section III, the stochastic feature-based 

observation model based on local scan is proposed. The 

simulation and SAFLP based localization experiments results 

are introduced in Section IV. Positioning accuracy is further 

discussed through following carbon nanotube in section V. 

Section VI are conclusion and the future work. 

 

II. THE PROPOSED FRAMEWORK OF SAFLP  

In recent years, many kinds of AFM Based nano-manipulation 

systems[4-7],[10-11],[24-31] have been developed to perform 

manipulation. The force model based AFM nano-manipulation 

[4] is proposed to continuously push the nano-particle until that 

the particle is maneuvered to the target position, by monitoring 

the contact status between the tip and the nano-particle. The 

method in [24] performs image scan and nano-manipulation in 

parallel through the collaboration of two cantilevers: one 

cantilever acts as an imaging sensor and the other is used as a 

manipulating tool. Those works do not consider the importance 

of the tip position accuracy related to the maneuvered object. 

For reducing the spatial uncertainties, this paper proposes a 

new framework of stochastic approach for the AFM based 

manipulation (Fig.1). The tip in the task frame is used as an 

observer sensing itself position as well as a manipulation 

effector. This sensing procedure couples the tip observation 

with its motion, and is not similar to the macro robot 

performing detection using outer sensors. The tip position is 

estimated by using Kalman filter in the observation procedure 

coupled with the tip motion, and this procedure widely exists in 

the ‘touch’ mode application such as scanning probe 

microscopy, and force tactile sensing instrument.  

During nano-manipulations, the AFM tip is usually used to 

push the nano-objects to their target positions. Fig.2 (a) shows 

an example of nano-assembly task in which a nano-rod is 

moved to bridge the two electrodes for building a nano-device. 

As the various uncertainties exist in the nano-environments, the 

tip position can be described with the probability distribution. 

This distribution will become larger with the tip moving and 

time increasing. Fig.2 (b) shows that the uncertainty of tip 

position will increase larger when it is moved to the position for 

pushing the nano-rod. Since the AFM tip can only apply force 

through contact point, the uncertainty of the pushing point will 

lead to larger uncertainties of the position and orientation of the 

pushed nano-object. As the result, the nano-rod may not 

correctively bridge the two electrodes, and the AFM needs to 

repeat scanning and nano-rod pushing. This is considered as a 

main reason that current nano-assemblies cannot be applied in 

the factory automation. 

 

For reducing and limiting the spatial uncertainties of the tip at 

the target position under a predefined allowance, a trajectory of 

the AFM tip is planned as follows (see Fig.2 (c)). First, a 

feature near the target position for pushing nano-object is 

selected and the tip is moved around it. Then the local-scan 

actions on two perpendicular directions are performed for 

observing the feature position and the tip position is updated 

stochastically. By using the updated position with higher 

accuracy, the tip is moved to the target position for pushing the 

nano-rod to bridge the electrodes. This maneuver will lead to a 

higher success rate of nano-assembly.  

The new architecture is considered in the SAFLP including a 

kind of feedback control on the AFM tip motion during 

nano-manipulations (Fig.3). It should be emphasized that the 

SAFLP architecture has two very different points from general 

feedback control systems. The first point is that two types of 

data are incorporated in the feedback loop: the motion 

estimation data and the observation data based on local scan. 

The feedback loop associated with tip position estimation by 

using motion model is executed in high sampling frequency, 

but the uncertainty of the tip position distribution will increase, 

Fig.2. AFM based nano-manipulation with the stochastic feature based 

localization and planning 

(b) (a) 
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Fig.1. Architecture of AFM based nano-manipulation system by using 

stochastic approach for feature-based localization and planning 
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because the uncertainties of the estimation are accumulating. 

On the other hand, the feedback loop associated with observing 

features in the task space and updating position by using 

probabilistic filter will improve the estimation accuracy. This 

updating process can only be executed in a very low frequency, 

because it is based on the local scan actions. The second point is 

that a probabilistic trajectory planner is included into the 

control loop for planning one or more local scan motions before 

a motion to the final target. This is a key component for 

realizing the tip position control under a desired allowance at 

the target position.  

 

III. FEATURE AND LOCAL SCAN BASED OBSERVATION   

The spatial uncertainty of the AFM tip is increasing with the 

tip motion. In order to reduce the uncertainty, the center of the 

nano-particle is intermittently observed to estimate the tip 

observation position at the nano-particle center by using the 

Kalman filter. Then the tip current position relative to the center 

of the nano-particle is calculated according to the motion model. 

Finally, the tip position is estimated in the task frame.  

 

A. Maps and Stochastic Feature Definitions 

The AFM tip perceives features in the nano-manipulation 

region. M denotes features such as nano-particles, nano-rods, 

etc. in the target region map. m describes the location of a 

feature, and N is the total number of features in the region. 

1 2 3{ , , ,..., }N NM m m m m                                              (1) 

Expression 1 shows the stochastic feature map generated 

from the image of nano-manipulation region. 

, ~ (0, )j j xy map map mapm m v v N Q                           (2) 

where mj,xy is a two dimension vector expressing the center 

position of the particle j in the image frame. It can be obtained 

by calculating the center of the cluster of the pixels in the 

scanning image (see Fig.4(a)), and these pixels are higher than 

a predefined height threshold. vmap is an error random variable 

with zero mean Gaussian distribution Qmap. This error variable 

mainly depends on the errors from scanning motion, such as 

effect of thermal drift, and the errors from imaging procedure, 

and the uncertainties caused by image resolution limitation. Its 

distribution can be calibrated by processing multiple scanning 

images of the same particle, as introduced in [23] 

B. Local Scan Based Observation 

Feature observation during nano-manipulation is performed 

by using a local scan including a horizontal scan and a vertical 

scan shown in Fig.4 (a) and (b). Fig.4(c) shows that the 

nanoparticle center xkp in horizontal scan is calculated by using 

xka and xkb, and then nanoparticle center mj_xy is obtained 

similarly in the vertical scan. Fig.4(d) shows that the horizontal 

observation during a local scan period from xk to xk+1 will be 

defined as obtaining the nano-particle center xkp in a scan 

profile. 

The observation process is analyzed in detail (see Fig.5). The 

whole scan profile can be divided into two parts: first, scan 

profile 1 from xk to xkp , second, scan profile 2 from xkp to xk+1. 

The tip posterior distribution ( | )x kp kp  at xkp is estimated by 

using the Kalman filter through combining the motion control 

( | )x kp k with the observation data ( , )kp jh x m .Then the tip 

position belief ( 1| 1)x k k   at xk+1 is calculated according to 

the motion control ukp from xkp to xk+1.  

In comparison with the macro robot localization in the 

physical world, the local scan based observational strategy 

possesses two important characteristics: 

First, the macro robot observation is achieved through the 

position sensor onsite, therefore the macro observation does not 

rely on the motion. Since the observation in the study depends 

on the tip motion path, this characteristic is distinct from the 

macro robot localization. 

Second, when observing the feature, SALFP does not update 

the tip distribution at xk+1 directly, but the observation position 

xkp. Then the current distribution at xk+1 after xkp is estimated 

according to the motion model. 

In general, zk is associated with information of tip position xk 

and the feature j in the map. However, the nano-observation is 

different from the general sensing that occur at a certain 

position, and it is associated with a path from previous tip 

position xk to the current tip position xk+1 for locally scanning 

Fig.3. The architecture of stochastic feature based localization and 

planning 

Fig.4. The feature exists in the sample surface and is observed by using 
local scan trajectory. (a)The location of features is calculated in the 

priori imaging map. (b) The tip trajectory is planned for observing 

landmark in 3D. (c) The landmark location is estimated by using local 
scan trajectory including the first horizontal scan and the second 

vertical scan. The first scan cross the nanoparticle bounder at xka and xkb, 

then their center xkp is calculated for determining vertical scan to 

estimate nanoparticle center mj_xy.  (d) Horizontal scan profile is shown. 

(a) (b) 

Nanoparticles

The height 
threshold

1μm

Map features 
with location error 

distribution 

0 nm

380 nm

X

m1

m2

m3

X

Y

Y

200

0

Z
(n

m
)

-200

-1000

-600Y
 (nm

)

1200

800

400 X (n
m

)

Horiz
ontal

 

sc
an

Vert
ica

l 

sc
an

xk

xk+1xkp

(c) (d) 

Particle center
 xkp

Max contour
Horizontal 
scan line

xk xk+1

Scan line

Particle

xk xk+1xka xkb
xkp

mj_xy



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4 

the nano-particle, and the measurement zkp at the observation 

position is defined as follows: 

1 , , ,( , , ) ~ (0, )kp k k j z kp z kp z kpz h x x m v v N Q                  (3) 

where, h(*,*,*) is the observation function and vz,kp is the error 

variable from measurement. Without losing generality, we can 

assume that the AFM tip takes exactly one measurement at each 

local scan, because it is possible to select a feature particle 

which is adjacent to other features. Thus the sequence of 

measurements is: 

0 1 2{ , , ,..., }k kZ z z z z                                                       (4) 

 
A scan trajectory can be obtained when the AFM tip 

performs a scan across the particle in Fig.5. The tip predictable 

position ( | )x kp k  at nano-particle center on the scan profile is 

calculated by:  

,

1

,

( | ) ~ (0, )
k kp

k k kp kp kp

k kp

x
x kp k x l w w N R

x






            (5) 

where lk1 is a scalar variable denoting scan length ( tip motion 

control ) from xk to xkp in the scan profile in Fig.5, 
1kl
  is the 

mean of lk1,  xk, kp is a random variable vector from xk to xkp, and 

,|| ||k kpx is the norm of the mean value of xk,kp, i.e. lk1. 

, ,/ || ||k kp k kpx x   denotes the unit vector in the direction of the 

local scan in the task frame. wkp is an error random variable that 

is the linear superposition of error random variables wk from the 

tip position at xk and wk1 from tip motion control between xk and 

xkp.  

For accurately calculating xkp, lkp can be computed as the 

middle point of xka and xkb that are two intersection points 

between the scan trajectory and the line of height threshold (see 

Fig.5) defined to search the clustered pixels of the particles in 

the image. In general, this computation has stable result 

comparing with finding highest point directly from the height 

scan profile, because small height error near xkp may lead to the 

big changes of the highest point position. lk1 is calculated as 

follows: 

1 1 1 1

1

1

1
( ) ~ (0, )

2

~ (0, )

1
( )

2

k ka kb k k k

kp k k kp kp

k ka kb ka kb

l x x w w N R

w w w w N R

w w w r r

  

 

   

          (6) 

where, wka and wkb are error random variables of tip motions 

from xk to xka, and to xkb respectively in the scan frame. rka and 

rkb are error random variables from calculating two intersection 

points xka and xkb respectively. Since the observation at time kp 

is practically performed for obtaining the tip distribution at xkp. 

 
Eq.3 can be given by: 

, , ,( , ) ~ (0, )kp kp j z kp z kp z kpz h x m v v N Q            (7) 

To use the Kalman filter to localize the tip position, the 

observation function can be derived by:  

( , ) ( | )kp jh x m x kp k                                                         (8) 

while the observation data is actually obtained by assuming that 

the nano-particle center (xkp) of the scan profile has the same 

weight value of the particle center (mj,xy) in the local scan 

direction. Then the observation formula can be defined as 

following: 

,( , ) ( )T

kp j x j xy y kph x m R S R m S R x  
                               (9) 

where 2 2R R

 is the rotational matrix of local scan direction, 

Sx and Sy are selection matrixes: 

1 0 0 0
,

0 0 0 1
x yS S

   
    
   

                                                 (10) 

It is easy to know that a local scan action only provides 

one-dimension observation and two non-parallel local scan 

Fig.6.  Observation model based on the scanning line 
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actions are requested to have a full observation of 

two-dimension position information in the task fame. In general, 

we simply design these two local-scan directions as horizontal 

and vertical direction in task frame. This is convenient for 

setting motion commands, and also simplifying the observation 

calculation function, for the rotational matrix Rθ  is simply. 

The uncertainties of local scan based observation mainly 

consists of three parts of error sources that are independent 

mutually: errors in the map (vmap), errors of the different 

nano-particle centers in various local scan lines (vz_kl) and errors  

from local scan direction deviation (vz_θ). The combined 

random variable for these three errors is the linear superposition 

as follow: 

, _ _z kp map z kl zv v v v                                                     (11) 

C. Tip Position Estimation Based on the Kalman Filter 

The Kalman filter is used to estimate the tip optimal position 

based on the tip motion model and the feature measurement 

model.  

Given the tip motion control u(k), AFM tip position is 

estimated at the nano-particle center xkp. The prediction of the 

tip position based on the motion model is expressed by: 

( | ) ( ( | ), ( ))

( | ) ( | ) ( )T

x kp k g x k k u k

P kp k g P k k g R kp



   
                                (12) 

P is the covariance matrix of state x. If tip motion is not 

associated with local scan, there is no observation being 

performed and current estimation result ( 1| )x k k  will be 

used as the state ( 1| 1)x k k  .  

 
A full local-scan consists of four steps, which includes two 

one-dimension observations on scanning a landmark in 

perpendicular direction (see Fig.7). The Kalman filter based 

estimation based on observation and match is described as 

follows: 

( ) ( ( | ), ) 1,...,

( ) ( ) ( )

( ) ( ( | ), )

i j

ij j i

j j

z kp h x kp k m i N

v kp z kp z kp

z kp h x kp k m

 

   

                              

(13) 

( ) ( ) ( )

( | ) ( )

K

ij ij ij

K

j

S kp E v kp v kp

h P kp k h Q kp

   

   
                                 (14) 

where S is the covariance matrix for local scan based 

observation. By applying the corresponding check condition: 

1 2( ) ( ) ( )K

ij ij ijv kp S kp v kp g  , the associated feature particle will 

be identified. Then the tip position estimation is performed as 

follows: 
1( ) ( | ) ( )

( | ) ( | ) ( ) ( )

( | ) ( | ) ( ) ( ) ( )

K

ij

K

W kp P kp k h S kp

x kp kp x kp k W kp v kp

P kp kp P kp k W kp S kp W kp

 

 

 
       

        (15) 

Once the position at xkp is calculated, its position at xk+1 and 

its covariance is estimated by: 

1k kp kpx x u    

1 1( ) ( )k kp kP x P x R                                                   (16) 

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

The motion and observation models are incorporated to 

estimate the tip position by using the Kalman filter. The 

parameters for these models are calibrated through designed 

experiments or referring to the manuals. These model 

parameters of motion and observation are calibrated for the 

PZT without sensor based control. Then the algorithm is 

verified by simulation and the corresponding experimental 

results.  

To illustrate the validity of the proposed algorithm, the 

following simulation and experiment are designed, and 

performed with veeco Dimension 3100. The parameters of 

motion model and observation model are calibrated by using 

the abovementioned methods. 

Fig.8 shows a simulation procedure of a tip motion control 

from a start position x0 to a target position x8. Assuming the tip 

initial distribution is at x0, if the tip is moved to x8 directly 

without observing the feature by path x0 → xd_1→ x8 marked by 

dash line, then its position distribution at x8 will go beyond the 

predefined allowance. For improving the accuracy of AFM tip 

position, a nano-particle near the target position is used as the 

feature for local-scan based observation and position estimation, 

and the path of the AFM tip motion is marked by solid line.  

 
In the direct move or SAFLP based experiments, the real 

AFM tip positions are recorded at x0 and x8 in common, and one 

waypoint (xd_1) or three waypoints (x2, x5, x6) respectively by 

punching small dents on the CD substrate surface. For the latter 

experiment, the tip position at x6 is estimated by observing the 

Fig.8. AFM tip path for landmark based localization experiments 
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feature. Then the motion control input is calculated to move the 

tip to the target position x8 for obtaining higher accuracy. In 

order to obtain probabilistic distribution of the abovementioned 

positions, a certain amount of experiments designed with the 

same tip motion pattern are needed to statistically count the 

distribution. Because the tip position distribution is relatively 

small, it is possible that two dents punched are overlapped 

partially or even fully if we do two or more experiments by 

using the same particle as the feature for localization. To obtain 

correct position results, all experiments are performed on 

different particles to avoid position overlapping of dents 

punched by the AFM tip. 

In the experiments, multiple polystyrene nano-particles with 

the diameter about 200nm are scattered on the CD substrate. An 

area including at least one nano-particle is selected and 

pre-imaged. Then we stop imaging and move the tip to the 

center of the scanning region. Next, we need to move the tip to 

x0 stochastically with the same distribution for each experiment.   

This procedure is realized by the following steps: first, moves 

the AFM tip from the center to x2; second, performs local-scan 

based localization by path x2 → x3 → ∙∙∙ → x6; third, updates the 

tip position x6, plans and moves the tip to x8 with high accuracy 

by path x6 → x7→ x8; Finally, moves to x0 by path x8→ xd_1→ x0 

which is marked by dotted line in Fig.8 and punches the dent at 

x0. Due to the long moving distance from x8, the uncertainties of 

the tip position at x0 will increase. 

 

The simulation for direct move based experiments and SAFLP 

based experiments are performed, the distribution of tip 

position on waypoints are shown in Fig.9 (a) and (b). The 

uncertainty of the tip position at the target position is reduced 

significantly by applying SALFP approach. 

These statistic experimental results illustrate the validity and 

the feasibility of SAFLP approach. At the same time, it should 

be noted that the standard deviation of the tip position at the 

target position is with the very similar values between 

simulation and the experiments. This result also illustrates that 

the calibration methods for motion model and observation 

models are valid. 

Fifty of direct move based experiments have been performed, 

and the result of one experiment is shown in Fig.10. The center 

position of the nano-particle is set at the coordinate (0.801 μm, 

-0.684 μm). The punched dents can be observed inside the 

white dash line circles in Fig.10. Compared with direct move 

based experiment, fifty of SAFLP based experiments have been 

performed and one experiment result is shown in Fig.11. The 

punched dents inside the white dash line circles are used to 

mark the AFM tip positions. 

Fifty of direct move based data sets and fifty of SAFLP based 

data sets are shown in Table 1 and Table 2 respectively. Both 

simulations and experiments use the same parameters of 

motion model and observation model calibrated by 

abovementioned experiments.  

Table 1 shows that the standard deviation of the tip position 

distribution apparently increases to ~20 nm at x8 with a long 

distance tip motion without using the SAFLP algorithm. Table 

2 represents that after the local-scan based localization, 

uncertainty of tip position is effectively reduced to smaller 

distribution with standard deviation near and less than 6nm at x6, 

and 9nm at x8. As for other waypoints, the simulation results 

and experimental results in Table 1 and Table 2 are similar 

under one order of magnitude.  

 

 

1μm

Punched 
dent

x0

xd_1 x8

Direct move based 
experimental result

Fig.10. The tip is directly moved from x0 to x8. The tip positions at 

x0, x8 and the way point xd_1 are recorded by punching the indents. 

Scanning image shows that these punched indents observed in the 
white dash line circles marks the tip positions in the different way 

points. 50 experiments have been performed. 

 

1μm

Punched 
dentx0

x2

x5

x6

x8

SAFLP based 
experimental result

Fig.11. The tip is moved from x0 to x8 by using the SAFLP based 

algorithm. The tip positions at x0, x8 and the waypoints are recorded 

by punching the dents. Scanning image shows that these punched 
dents observed in the white dash line circles marks the tip positions 

in the different way points. 50 experiments have been performed. 

 

Fig.9. (a) Simulation result of moving the tip to its target position through 
direct moving without SAFLP algorithm. (b) Simulation result of moving 

the tip to its target position through local scan with SAFLP algorithm. 
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Fig.12 (a) and (b) plot the tip position data recorded by the 

dents punched on substrates in two kind experiments. Fig.13 

and Fig.14 show and contrast experimental results in 3D 

histogram, and the Gaussian fitted curves for the distributions 

in X and Y directions at start position x0 and target position x8. 

Especially according to histogram results (see Fig.13 (b) and 

Fig.14 (b)), the uncertainty distribution of the tip position is 

significantly reduced by SAFLP based method. 

 
 

 

 

V.  EVALUATION ON POSITIONING ACCURACY 

A. Positioning Accuracy 

In SAFLP approach, high accuracy of tip positioning will be 

realized by following three strategies. The first is incorporating 

a motion model with higher accuracy that is depending on both 

performance of the AFM itself and the modeling quality 

including calibration accuracy. The second one is building high 

accuracy feature map and observation model that is the most 

essential to position estimation updating.  The positioning 

accuracy just after the observation could be significantly 

improved to the level near to the observation accuracy, even for 

the prior tip position with relatively large uncertainty. The third 

strategy is to keep short moving distance after the local scan 

 

based feature observation and position updating, since long 

distance motion will lead bigger uncertainty of the tip position. 

This can be realized by choosing a feature that is near enough to 

the target position of manipulation task.  

B. Experiment on High Accurate Tip Position Estimation 

An experiment is performed for demonstrating the high 

accurate tip position estimation by using the local scan based 

feature observation and tip position updating. A carbon 

nano-tube (see Fig.15(a)) is selected as the feature of 

Fig.14. Gaussian fitted results for the tip distribution at x0 and x8 in local 

scan based moving. (a) and (b) are the distributions zoomed in at x0 and 

x8. (c) and (d) are the fitted curves for the distributions in x and y 

directions at x0, respectively. (e) and (f) are the fitted curves for the 

distributions in x and y directions at x8, respectively. 
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Fig.13. Gaussian fitted results for the tip distribution at x0 and x8 in 

direct moving experiment. (a) and (b) are the tip distributions zoomed 
in at x0 and x8.  (c) and (d) are the fitted curves for the distributions in x 

and y directions at x0, respectively. (e) and (f) are the fitted curves for 

the distributions in x and y directions at x8, respectively. 

 

Note: the empty cells in the table mean that there is no punching dent or 
the tip performs no positioning on y direction 

 

Table 2. Simulation and experimental results based on local scan with 

SAFLP algorithm. (μm) 

 

Fig.12. (a) Experiment Result: Tip distributions of direct move based 

experiment (50 experiments).  (b) Experiment Result: Tip distributions 

of the SAFLP based experiment (50 experiments). 
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Table 1. Simulation and experimental results based on direct move 

without applying SAFLP algorithm. (μm) 

μ x μ y σ x σ y μ x μ y σ x σ y

x 0 -1.245 1.316 0.013 0.016 -1.333 1.435 0.014 0.018

x d , 1 -1.245 -1.381 0.013 0.021 -1.346 -1.324 0.014 0.024

x 8 1.031 -1.434 0.018 0.021 1.087 -1.374 0.021 0.025

Simulation data Experimental data
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one-direction local scan by using the accurate map and motion 

model described in this session.  

Not only for convenience on obtaining zoom-in rescan image 

of experiment results, but also for having the relatively constant 

initial tip distribution within the same experiment, we designed 

an experiment plan shown in Fig.15(b). The tip initially starts 

from position x0. It scans up first to position x1, then scans down 

to position x2, then x3, the target position without horizontal 

motion, and punches a dent on the substrate. The scanning up 

motion is with a fixed distance of 500nm, and the relative 

position to the scanned point of the nano-tube has been 

estimated by using the local scan based observation. Based on 

the estimated position x1, the tip motion is planned to move to 

the position x2 that is 50nm away from the center of the 

nano-tube. In this moving-down, the tip position updating has 

been performed again. Based on this updated position, the tip is 

moved to position x3 where is 130nm away from position x2,kp, 

the center of the scanned nano-tube. After punching a dent to 

record the tip position, the tip moved a certain distance 

horizontally and repeat the abovementioned x0-x1-x3 vertical 

loop motion with local scans. In this experiment, we repeated 

this motion 6 times. 

200nm

Nanotube

 
         (a) The carbon nano-tube as the features and 6 dents punched 

200nm

x0

x1

x3

Nanotube
  

1

2 3
4

5 6

x0

x1

x2,kp

x2

x3
x0

x3

x2,kp

x1

x3
x3 x3

x3

x2,kp

x2,kp x2,kp
x2,kp

x1
x1 x1 x1

 
      (b) Path of the tip motion    (c) Calculated tip position and distribution  
  

 

 

 

 

 

Fig.15 (c) is the simulation result of the position distribution 

of the AFM tip in waypoints of 6 up-and-down scanning 

motions. Fig.16 is the experiment result and statistic data of the 

distance from the punched dent to the center position of the 

carbon-nano tube where the tip has scanned over. The error of 

the distance mean value is 0.4nm and the maximum error from 

the target distance is 2.2nm. 

From the results, it is easy to know that in the meaningful 

accuracy, 1 digit of the sub-nm order, there is no difference 

among three cases on standard deviation of the tip position 

distribution. When checking the results of the 1 digits under the 

sub-nm order, there are some small differences at the position 

x1 after the first scanning and updating, but no difference can be 

observed at position x2, and at the target position x3 after the 

second scan and updating. Of course, the difference at 1 digits 

under sub-nm is not really necessary to be cared. These results 

indicated that after two scanning and updating motions, there is 

no difference in the positioning results of the AFM tip even 

with different initial distribution of the tip. Based on this, we 

only focus the vertical distance between the nano-tube center 

position and the punched dents, and discuss the tip position 

accuracy by counting 6 up-and-down scanning results 

statistically. The results shown in Fig.16 and Table 3 illustrate 

that tip position distribution in experiments is in the same order 

and smaller than the distribution obtained from the numerical 

calculation. This result illustrates that the proposed SALFP 

based algorithm is able to be used for planning the tip motion 

during nano-manipulations.  

200nm

d1 d2

d3
d4 d5

d6

Dents

Nanotube

Unit: nm

127.0 129.0 131.0
0.0

0.5

1.0

d =129.6nm

σ = 1.5nm

d (nm)
133.0

d 1 d 2 d 3 d 4 d 5 d 6

131.1 129.5 129.3 129.7 128.1 132.2  
 

 

 

 

u y σ y u y σ y u y σ y

x 0 0.0 20.0 0.0 15.0 0.0 5.0

x 1 507.5 3.7 507.4 3.7 507.2 3.7

x 2,kp 251.5 1.2 251.5 1.2 251.5 1.2

x 2 208.2 1.9 208.2 1.9 208.2 1.9

x 3 122.0 2.8 122.0 2.8 122.0 2.8

Case  1 (σ y_0 =20) Case  2  (σ y_0 =15) Case  3  (σ y_0 =5)

 

VI. CONCLUSIONS 

The tip position uncertainties in the AFM based 

nano-manipulation exist due to the thermal drift, the 

nonlinearity of the AFM scanner and other error sources. This 

study proposes a stochastic approach for feature-based 

localization and plan in nano-manipulations. The spatial 

uncertainties of the tip position are first described by 

probability distribution at nano-scale. For reducing the spatial 

uncertainties, the feature is intermittently perceived to 

stochastically estimate the tip distribution by local scan based 

observation. At the same time, the tip motion model is first 

statistically built by integrating the PI model, the creep model 

and the thermal drift model, and used to combine with the 

observation model for optimally updating the tip position by 

using the Kalman filter. Furthermore, for calibrating the 

probabilistic parameters of the observation model and motion 

model, several experiments are designed and performed. 

Finally, the simulation and corresponding experiments are 

carried out to illustrate the validity of the calibrated parameters 

and the SAFLP based algorithm. The experimental results 

demonstrate that the stochastic approach successively applied 

Fig.15. Experiment setting, scanning path, and calculated tip position 
and distribution. (a) The carbon nano-tube used as the feature for tip 

positioning, and 6 dents punched under the nano-tube as the tip 
positioning results. (b) The experiment consists of 6 scanning and 

positioning experiment sub-paths which are stopped at 130nm away 

from the nano-tube. (c) Numerical calculation results of tip position and 
distribution in 6 experiments.  

Fig.16. Experiment results and their statistic evaluation of 6 scanning 

and positioning motions recorded by dents punched at the position of 

130nm from the nano-tube. 

 The tip input-output motion function and covariance function are 

obtained by three group repeating motions which punching the 

substrate with different steps...   

Table 3. Simulation results of tip positioning in three cases with 

different initial position distribution of the AFM tip.  (nm) 
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in macro-robotics can also be appropriate for nano-robotics, 

because the uncertainties in the nano-environment have more 

influence on manipulation, and are very difficult to be clearly 

clarified and accurately modeled.   

As for the unpredictable nano-environment, high accurate 

positioning method with long term stabilization is a key 

technology to achieve nano-manipulation. In the long run, 

novel nano-devices and nano-structures will be developed with 

higher precision and even massively fabricated with an 

automatic way to increase the manufacture efficiency. The 

proposed method, with reducing the tip uncertainties caused by 

thermal drift, PZT nonlinearity and other errors sources, lays 

the foundation for long term automated manufacture strategy, 

and will extend its range of applications in the future. 
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