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Abstract

This paper proposes the linear double autoregression, a conditional heteroscedas-

tic model with a conditional mean structure but compatible with the quantile re-

gression. The existence of a strictly stationary solution is discussed, for which a

necessary and sufficient condition is established. A doubly weighted quantile re-

gression estimation procedure is introduced, where the first set of weights ensures

the asymptotic normality of the estimator and the second set improves its effi-

ciency through balancing individual quantile regression estimators across multiple

quantile levels. Bayesian information criteria are proposed for model selection, and

two goodness-of-fit tests are constructed to check the adequacy of the fitted condi-

tional mean and conditional scale structures. Simulation studies indicate that the

proposed inference tools perform well in finite samples, and an empirical example

illustrates the usefulness of the new model.
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1 Introduction

Since the appearance of autoregressive conditional heteroscedastic (ARCH) and the

generalized autoregressive conditional heteroscedastic (GARCH) models (Engle, 1982;

Bollerslev, 1986), conditional heteroscedastic models have become extremely popular

in volatility and financial risk modeling. In particular, they have been widely used

for the prediction of quantile-based risk measures, e.g., the value at risk. Hence, it is

natural to consider the quantile regression (Koenker and Bassett, 1978) for conditional

heteroscedastic models; see, e.g., Engle and Manganelli (2004).

In the literature of quantile regression methods for conditional heteroscedastic models,

for numerical feasibility, it is often assumed that the conditional standard deviation

rather than the conditional variance of the model has a linear structure, which allows

the linear programming (Koenker, 2005) to be used for efficient optimization; see, e.g.,

the linear ARCH model studied by Koenker and Zhao (1996), the linear GARCH model

by Xiao and Koenker (2009) and the double-threshold ARCH model by Jiang et al.

(2014). Moreover, this structure can result in more robust inference than the linear

structure for the conditional variance (Xiao and Koenker, 2009). Nevertheless, when

there is a conditional mean component, new challenges will arise. To see this, consider

a simple autoregressive (AR) model with linear ARCH errors: yt = φyt−1 + et, et = εtσt,

σt = β0 + β1|et−1|. The corresponding quantile regression can be defined as

min
θ

n∑
t=1

ρτ (yt − φyt−1 − bβ0 − bβ1|yt−1 − φyt−2|),

where θ = (b, β0, β1, φ)′, τ ∈ (0, 1) is the quantile level, and ρτ (x) = x{τ − I(x < 0)}

is the check function. Because of the term |yt−1 − φyt−2|, the above objective function

is non-convex, causing difficulties for statistical inference and numerical optimization.

This paper proposes a new conditional heteroscedastic model with a conditional mean

structure but highly tractable for the quantile regression. The corresponding inference

requires no moment restriction on the observed process or the innovations, and hence

can realize the full potential of the quantile regression from a robustness perspective.

The proposed model is the linear double AR model, which adopts the basic form

of the double autoregression introduced by Ling (2007) to make the conditional mean

structure especially tractable for quantile inference and, at the same time, assumes a
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linear structure for the conditional standard deviation. Recently the double AR model

has attracted growing interest; see Ling and Li (2008), Zhu and Ling (2013) and the

references therein. It has the form of

yt =

p∑
i=1

φiyt−i + εt

√√√√β0 +

p∑
j=1

βjy2
t−j, (1.1)

where β0 > 0, βj ≥ 0 for 1 ≤ j ≤ p, and {εt} are independent and identically distributed

(i.i.d.) innovations with mean zero and variance one. Model (1.1) has two novel proper-

ties. First, it has a larger parameter space than conventional AR models. For example,

model (1.1) with p = 1 may still be stationary even when |φ1| ≥ 1 (Ling, 2004), which

is impossible for AR-ARCH models. Second, it usually requires no moment condition

on {yt} for the asymptotic normality of its parameter estimator (Ling, 2007). In con-

trast, for the ARMA-GARCH model, a finite fourth moment of the observed process is

required for the asymptotic normality of the Gaussian quasi-maximum likelihood estima-

tor (Francq and Zakoian, 2004), resulting in a much narrower parameter space (Li and

Li, 2009). Similar to the double AR model, the proposed linear double AR model enjoys

both novel properties. In particular, we establish a necessary and sufficient stationarity

condition by borrowing the linearity of the random coefficient AR model.

Although the quantile regression is well known for its robustness against heavy tails,

its efficiency at certain quantile levels can be arbitrarily low. The composite quantile

regression (CQR) was proposed to improve the efficiency by combining multiple quantile

levels (Koenker, 1984; Zou and Yuan, 2008). As argued in Jiang et al. (2012), by choosing

the optimal weights, the weighted CQR estimator can be nearly as efficient as the maxi-

mum likelihood estimator (MLE); see also Jiang et al. (2014). However, the CQR for the

proposed model is time-consuming due to the non-convexity of the objective function.

Zhao and Xiao (2014) suggested using weighted averages of quantile regression estima-

tors at different quantile levels and their simulation studies showed that the averaging

estimator is more efficient than the CQR estimator. Chen et al. (2016) considered more

general weights and the resulting estimator is hence supposed to be even more efficient.

On the other hand, the consistency of the usual quantile regression estimator for the

proposed model requires the observed process to have a finite first moment; see Section

3.1. To avoid such moment conditions, Ling (2005) proposed a self-weighted estimation
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method for the infinite variance AR model; see also Zhu and Ling (2011). Motivated by

Ling (2005) and Chen et al. (2016), we eliminate any moment condition on the observed

process or the innovations by introducing a double weighting scheme, where the first

set of weights guarantees the asymptotic normality, while the second set improves the

efficiency through balancing the information across multiple quantile levels. As a result,

the proposed model can handle more heavy-tailed data, as opposed to existing inference

tools for conditional heteroscedastic models which all require the innovations to have

at least a finite second moment. Moreover, the optimal doubly weighted estimator can

approach the efficiency of the MLE under certain conditions.

To select the order of the proposed model in practice, Bayesian information criteria

(BIC) are proposed in the quantile regression context. Furthermore, based on the quan-

tile autocorrelation function (Li et al., 2015) for transformed residuals, two goodness-

of-fit tests are constructed to detect misspecifications in the conditional mean and the

conditional scale separately for the fitted model. Along the lines of robust inference,

no further moment condition is required by the information criteria and goodness-of-fit

tests. In this paper, for a matrix or column vector A, we define ‖A‖ =
√

tr(AA′), where

tr(·) denotes the trace of a square matrix. For two matrices A = (Aij) and B = (Bij)

with the same dimension, we define the element-wise product A◦B by (A◦B)i,j = AijBij,

and define A > B if A−B is positive definite.

2 Linear double autoregression

Consider the linear double AR model,

yt =

p∑
i=1

φiyt−i + εt

(
1 +

p∑
j=1

βj|yt−j|

)
, (2.1)

where the integer p is the order, βj ≥ 0 for 1 ≤ j ≤ p, and {εt} is a sequence of i.i.d.

innovations. When E(ε2
t ) <∞, by further assuming that E(εt) = 0, the innovations can

be standardized to have variance one, and model (2.1) can be rewritten as

yt =

p∑
i=1

φiyt−i + ε∗t

(
σ +

p∑
j=1

%j|yt−j|

)
, (2.2)

where σ = {E(ε2
t )}1/2, ε∗t = εt/σ, %j = σβj, E(ε∗t ) = 0 and E(ε∗2t ) = 1. The linear

double AR model in the form of (2.2) is hence an extension of the double AR model in
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(1.1) along the lines of the linear GARCH model. We aim to study model (2.1) without

any moment or location restriction on εt.

We first consider the case where εt follows the Cauchy distribution with location zero

and scale σ > 0, whose density function is f(x) = σ/{π(x2 + σ2)} for x ∈ R. Note that

E(|εt|) =∞ and E(|εt|κ) <∞ for any 0 < κ < 1. Let {ξit, 1 ≤ i ≤ p, t ∈ Z} be a double

array of independent random variables which have the same distribution as εt and are

independent of {εt}. Consider the random coefficient AR model,

y∗t =

p∑
i=1

(φi + βiξit)y
∗
t−i + εt, (2.3)

where the φi’s, βi’s and εt are from model (2.1). Let Yt = (yt, . . . , yt−p+1)′ and Y ∗t =

(y∗t , . . . , y
∗
t−p+1)′, where {yt} and {y∗t } are generated by models (2.1) and (2.3), respec-

tively. Noting that the characteristic function of εt is E{exp(isεt)} = exp(−σ|s|), we can

verify that {Yt} and {Y ∗t } are Markov chains with the same transition probability. This

observation enables us to derive a necessary and sufficient condition for the existence of

a strictly stationary solution to model (2.1) by borrowing the linearity of model (2.3).

Let {At} be a sequence of random matrices with

At =

(
φ1 + β1ξ1t · · · φp−1 + βp−1ξp−1,t φp + βpξpt

Ip−1 0

)
,

where Im is the m×m identity matrix, and 0 is a zero vector or matrix with compatible

dimensions. We define the top Lyapounov exponent of {At} as

γ = inf

{
1

n
E(ln ‖A1 · · ·An‖), n ≥ 1

}
.

It can be shown that E(ln+ ‖A1‖) < ∞, where ln+(x) = max{ln(x), 0}. Then, by

the subadditive ergodic theorem (Kingman, 1973), γ = limn→∞ n
−1 ln ‖A1 · · ·An‖ with

probability one. In particular, γ = E(ln |φ1 + β1ξ1t|) when p = 1.

Theorem 1. If εt follows the Cauchy distribution with location zero and scale σ > 0,

then there exists a strictly stationary solution {yt} to model (2.1) if and only if γ < 0, and

this solution is unique and geometrically ergodic with E(|yt|κ) <∞ for some 0 < κ < 1.

For other distributions for εt, it is generally challenging to derive a necessary and

sufficient condition for the strict stationarity, as model (2.1) is actually nonlinear. Al-

ternatively, a sufficient condition is provided below.
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Figure 1: Stationarity regions of model (2.1) of order one. Left: E(|φ1 + β1εt|κ) < 1,

where κ = 0.1 and εt follows the standard normal (solid line), Student’s t5 (dashed line)

or Student’s t3 (dotted line) distribution. Right: E(ln |φ1 + β1εt|) < 0 (solid line), or

E(|φ1 + β1εt|κ) < 1 with κ = 0.1 (dashed line) or 0.9 (dotted line), where εt follows the

standard Cauchy distribution.

Assumption 1. The density function of εt is continuous and positive everywhere on R,

and E(|εt|κ) <∞ for some 0 < κ ≤ 1.

Theorem 2. Under Assumption 1, if
∑p

i=1 max{E(|φi − βiεt|κ), E(|φi + βiεt|κ)} < 1,

then there exists a strictly stationary solution {yt} to model (2.1), and this solution is

unique and geometrically ergodic with E(|yt|κ) <∞.

The stationarity region in Theorem 2 depends on the distribution of εt and implies a

moment condition on yt. In addition, when εt has a symmetric distribution, it simplifies

to
∑p

i=1E(|φi + βiεt|κ) < 1. For illustration, the left panel of Figure 1 shows that model

(2.1) with order p = 1 can be stationary even if |φ1| ≥ 1, a feature inherited from the

double AR model (Ling, 2004), and the right panel of the figure displays the different

stationarity regions given by Theorems 1 and 2.

3 Doubly weighted quantile regression estimation

3.1 Self-weighted quantile regression estimation

Let λ = (β′, φ′)′ be the parameter vector of model (2.1), where β = (β1, . . . , βp)
′ and φ =

(φ1, . . . , φp)
′. We assume that the true parameter vector λ0 = (β′0, φ

′
0)′ is in the interior
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of the parameter space Λ, where Λ is a compact subset of Rp
+ × Rp with R+ = (0,∞).

Let Yt = (yt, ..., yt−p+1)′, Ya,t = (|yt|, ..., |yt−p+1|)′ and xt = (1, Y ′a,t−1, Y
′
t−1)′. Denote

the density and distribution functions of εt by f(·) and F (·), respectively. For any

τ ∈ (0, 1), let bτ be the τth quantile of εt. Let Ft be the σ-field generated by {ys, s ≤ t}.

Then the τth conditional quantile of yt can be written as

Qτ (yt | Ft−1) = bτ + bτY
′
a,t−1β0 + Y ′t−1φ0, (3.1)

which motivates us to consider the self-weighted quantile regression estimator

(̃bτn, λ̃
′
τn) = argmin

b,λ

n∑
t=p+1

wtρτ (yt − b− bY ′a,t−1β − Y ′t−1φ), (3.2)

where λ̃τn = (β̃′τn, φ̃
′
τn)′, ρτ (x) = x{τ − I(x < 0)} is the check function and {wt} are

random weights; see also Ling (2005). Numerically, we can first compute the weighted

linear quantile regression estimator

θ̃τn = argmin
θ

n∑
t=p+1

wtρτ (yt − x′tθ), (3.3)

where θ̃τn = (̃b∗τn, β̃
∗′
τn, φ̃

∗′
τn)′. Then it follows that b̃τn = b̃∗τn, β̃τn = b̃∗−1

τn β̃
∗
τn if b̃∗τn 6= 0,

and φ̃τn = φ̃∗τn.

When wt = 1 for all t, the weighted estimator becomes the common quantile regres-

sion estimator, and its consistency requires that E(|εt|) < ∞ and E(|yt|) < ∞, since

yt − Qτ (yt | Ft−1) = (εt − bτ )(1 + Y ′a,t−1β0). If E(y2
t ) = ∞, the estimator will have a

slower convergence rate than
√
n and a more complicated asymptotic distribution than

the normal distribution; see Gross and Steiger (1979), An and Chen (1982) and Davis

et al. (1992) for the least absolute deviations estimation of infinite variance AR models.

Let σt = 1 + Y ′a,t−1β0, and define the matrices Ω0(w) = E(σ−1
t wtxtx

′
t) and Ω1(w) =

Ω−1
0 (w)[E(w2

t xtx
′
t)]Ω

−1
0 (w), where w in Ωi(·) indicates dependence on the weights {wt}.

Assumption 2. The sequence of random weights {wt} is strictly stationary and ergodic,

and wt is nonnegative and measurable with respect to Ft−1 for each t. Moreover, Ω0(w)

is a positive definite matrix and E(‖wtYt−1‖2) <∞.

Assumption 3. The density function f(·) is bounded, positive and uniformly continuous

on {x ∈ R : 0 < F (x) < 1}.
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The matrix Ω0(w) is degenerate if yt is non-negative (or non-positive) with probabil-

ity one, and hence its positive definiteness requires 0 < F (0) < 1. For a fixed τ ∈ (0, 1),

restrictions on f(·) in a neighborhood of bτ will be sufficient to derive asymptotic prop-

erties for the self-weighted estimator (Li et al., 2015). In fact, Assumption 3 is imposed

mainly for the discussion in the next subsection.

Lemma 1. Under Assumptions 2 and 3,
√
n(θ̃τn−θτ0)→ N {0, τ(1− τ)[f(bτ )]

−2Ω1(w)}

in distribution as n→∞, where θτ0 = (bτ , bτβ
′
0, φ
′
0)′.

When bτ = 0, since Qτ (yt | Ft−1) = Y ′t−1φ0, the parameter vector β0 is not estimable,

although φ̃τn is still asymptotically normal. By Lemma 1 and the Delta method (van der

Vaart, 1998, Chapter 3), we have the following theorem.

Theorem 3. Suppose that Assumptions 2 and 3 hold. If bτ 6= 0, then
√
n(λ̃τn − λ0)→

N
{

0, τ(1− τ)Σ−1
1 (τ)Ω2(w)Σ−1

1 (τ)
}

in distribution as n→∞, where

Σ1(τ) = f(bτ )

(
bτIp 0

0 Ip

)
and Ω2(w) =

(
−β0 Ip 0

0 0 Ip

)
Ω1(w)

(
−β0 Ip 0

0 0 Ip

)′
.

Moreover, the matrices Ω1(w) and Ω2(w) are minimized if wt = σ−1
t for all t.

For the random weights wt, one feasible choice is wt = 1/(1 +
∑p

i=1 |yt−i|), which

satisfies Assumption 2. However, from Theorem 3, λ̃τn is asymptotically most efficient

when wt = σ−1
t . Thus, in practice, when the sample size is relatively large, we may

use the weights {σ̃−1
t } with σ̃t = 1 + Y ′a,t−1β̃

int, where β̃int is an initial estimator with

β̃int − β0 = Op(n
−1/2); e.g., we may use

β̃int =

∑K
k=1 |̃bτkn||β̃τkn|∑K

k=1 |̃bτkn|
=

∑K
k=1 |β̃∗τkn|∑K
k=1 |̃bτkn|

, (3.4)

where b̃τkn and β̃τkn for 1 ≤ k ≤ K are the self-weighted estimators computed based

on the initial weights wintt = 1/(1 +
∑p

i=1 |yt−i|) for different quantile levels; see also

Zhao and Xiao (2014). Although Assumption 2 does not hold for {σ̃−1
t }, we can show

that the weights {σ−1
t } and {σ̃−1

t } will lead to the same asymptotic distribution of λ̃τn.

On the other hand, when the sample size is relatively small, the weights {wintt } may be

preferable to {σ̃−1
t }; see the simulation experiments in the supplementary materials. In

the rest of the paper, we will use {σ̃−1
t } unless otherwise specified, and Ωi for i = 0, 1, 2

will refer to the matrices Ωi(w) with wt = σ−1
t for all t. Note that Ω1 = Ω−1

0 .
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Theorem 3 also implies that, when the value of bτ is near zero, the variance of β̃τn

can be so large that β̃τn may even be negative. This motivates us to consider a doubly

weighted quantile regression estimator in what follows.

3.2 Doubly weighted quantile regression estimation

We next introduce a more efficient estimator of λ0 by balancing the information across

K quantile levels: τk = k/(K + 1) for 1 ≤ k ≤ K, where K is a fixed integer.

Specifically, we combine the self-weighted quantile regression estimators {λ̃τkn, 1 ≤

k ≤ K} linearly to define the doubly weighted quantile regression estimator

λ̂n = (β̂′n, φ̂
′
n)′ =

K∑
k=1

πkλ̃τkn,

where the πk’s are 2p× 2p weighting matrices with possibly negative entries satisfying

K∑
k=1

πk = I2p; (3.5)

see also Chen et al. (2016). Define the K × K matrix Γ = (Γij)1≤i,j≤K , with Γij =

min(τi, τj)− τiτj, and let Γinvij be the (i, j)th element of Γ−1. Denote

V(Π) =
K∑
i=1

K∑
j=1

ΓijπiΣ
−1
1 (τi)Ω2Σ−1

1 (τj)π
′
j,

where Π = (π1, ..., πK) is a 2p× 2pK matrix.

Theorem 4. Suppose that Assumptions 2 and 3 hold. If bτk 6= 0 for 1 ≤ k ≤ K, then
√
n(λ̂n − λ0)→ N{0,V(Π)} in distribution as n→∞. Moreover, denote

πoptk =

[
K∑
i=1

K∑
j=1

Γinvij Σ1(τi)Ω
−1
2 Σ1(τj)

]−1 [ K∑
i=1

Γinvik Σ1(τi)Ω
−1
2

]
Σ1(τk), 1 ≤ k ≤ K,

and let Πopt = (πopt1 , ..., πoptK ) be a 2p × 2pK weighting matrix. Then we have Πopt =

arg minΠ V(Π), and the asymptotic variance of the optimal doubly weighted quantile re-

gression estimator is V(Πopt) =
[∑K

i=1

∑K
j=1 Γinvij Σ1(τi)Ω

−1
2 Σ1(τj)

]−1
.

For simplicity, denote g(τ) = f(bτ ) and h(τ) = bτf(bτ ). Let gK = (g(τ1), . . . , g(τK))′

and hK = (h(τ1), . . . , h(τK))′. Suppose that f(·) is twice differentiable on {x ∈ R : 0 <

F (x) < 1} and its derivative function is ḟ(·). Define the 2× 2 matrices

IK =

(
IK,s IK,ls
IK,ls IK,l

)
and I =

(
Is Ils
Ils Il

)
,
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where IK,l = g′KΓ−1gK , IK,s = h′KΓ−1hK , IK,ls = g′KΓ−1hK , Il =
∫
R [ḟ(u)]2/f(u)du, Is =∫

R [f(u) + uḟ(u)]2/f(u)du, and Ils =
∫
R ḟ(u)[f(u) + uḟ(u)]/f(u)du. Under Assumption

3, we have limK→∞ IK,s = Is and limK→∞ IK,l = Il; see Theorems 6.1 and 6.2 in Zhao

and Xiao (2014). Similarly, we can show that limK→∞ IK,ls = Ils, and hence

lim
K→∞

V(Πopt) = lim
K→∞

{[IK ⊗ ιp×p] ◦ Ω−1
2 }−1 = {[I ⊗ ιp×p] ◦ Ω−1

2 }−1,

where ⊗ is the Kronecker product, and ιm×n is an m× n matrix with all elements being

one. Denote by (σ̂MLE
n , λ̂MLE′

n ) the maximum likelihood estimator (MLE) of model (2.2),

where the parameter vector is (σ, λ′) and the density of ε∗t is assumed to be known. It

can be shown that
√
n(λ̂MLE

n − λ0)→ N(0,VMLE) in distribution as n→∞, where

VMLE =

(
−β0 Ip 0

0 0 Ip

)[(
Isι(p+1)×(p+1) Ilsι(p+1)×p

Ilsιp×(p+1) Ilιp×p

)
◦ Ω0

]−1(
−β0 Ip 0

0 0 Ip

)′
.

Moreover, limK→∞ V(Πopt) = VMLE under the conditions that E(σ−2
t Yt−1) = 0 and

E(σ−2
t Y ′a,t−1Yt−1) = 0, which is the case where parameters in the conditional mean and

conditional scale can be separately estimated without loss of efficiency. In particular,

when all φi’s in model (2.1) are zero, these conditions are satisfied as long as the distri-

bution of εt is symmetric about zero. Otherwise, V(Πopt) may not be able to attain the

Crámer-Rao lower bound. This can probably be solved by using a nonlinear combination

of the estimators, and we leave it for future research.

Theorem 4 requires that bτk 6= 0 for all 1 ≤ k ≤ K, which is not guaranteed in

practice. Let πk = (πk1, πk2), where πk1 and πk2 are 2p× p matrices. To make practical

the proposed doubly weighted estimator, in addition to (3.5), we further impose that

πk1 = 0 if bτk = 0, for all 1 ≤ k ≤ K. (3.6)

The optimal weighting matrix Πopt actually satisfies both (3.5) and (3.6), which means

that we can conduct the estimation procedure without worrying whether bτk = 0. But,

by a method similar to that of the proof of Theorem 4, it can be shown that Πopt is no

longer optimal under both constraints (3.5) and (3.6), as the matrices πoptk ’s in general are

not diagonal or even block diagonal. This may be regarded as a necessary consequence

of the lack of information about the zeroness of the quantiles bτk ’s.

To estimate the optimal weighting matrices πoptk , we can first obtain an estimator

of Ω0 using sample averages, i.e., Ω̃0 = n−1
∑n

t=p+1(1 + Y ′a,t−1β̃
int)−2xtx

′
t, where the
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method in (3.4) can be used to calculate β̃int, and similarly φ0 can be approximated by

φ̃int = K−1
∑K

k=1 φ̃τkn. The estimators of Ω1 and Ω2 can then be constructed, denoted

by Ω̃1 and Ω̃2, respectively. Define the error function

εt(λ) = (yt − Y ′t−1φ)/(1 + Y ′a,t−1β), (3.7)

and then the residuals {ε̃t} can be calculated by ε̃t = εt(λ̃
int) with λ̃int = (β̃int

′
, φ̃int

′
)′.

As a result, the density function f(·) can be estimated by the kernel density estimator

f̃(x) = (nh)−1
∑n

t=p+1K{(x − ε̃t)/h}, where K(·) is the kernel function and h is the

bandwidth. By Lemma 1, bτk can be estimated by b̃τkn, and hence an estimator of Σ1(τk)

can be obtained, denoted by Σ̃1(τk). Consequently, a consistent estimator Π̂opt of Πopt

can be obtained.

Now we are ready to compute the proposed optimal doubly weighted estimator

λ̂optn = (β̂opt′n , φ̂opt′n )′ =
K∑
k=1

π̂optk λ̃τkn.

It can be verified that
√
n(λ̂optn − λ0) → N(0,V(Πopt)) in distribution as n → ∞. Ac-

cordingly the residuals can be calculated by ε̂t = εt(λ̂
opt
n ), and an estimator of bτ can

be defined as the τth sample quantile of {ε̂t}, i.e., b̂τn = inf{x : F̂n(x) ≥ τ} with

F̂n(x) = (n− p)−1
∑n

t=p+1 I(ε̂t ≤ x). To estimate V(Πopt), we can update the estimator

of λ0 by λ̂optn and the residuals by {ε̂t}. By a method similar to that for calculating Π̂opt,

we can obtain a consistent estimator of V(Πopt), denoted by V̂(Π̂opt).

3.3 Model selection

This subsection considers the selection of the order p for model (2.1) in practice. We

first discuss the case for a certain quantile level τ ∈ (0, 1). Note that, from (3.1),

yt = bτ + bτY
′
a,t−1β0 + Y ′t−1φ0 + et, with et = (εt − bτ )σt.

Suppose that {σt} are observable and εt − bτ follows the asymmetric Laplace distri-

bution with location zero, unknown scale σ > 0 and the density function f(x) =

τ(1 − τ)σ−1 exp[−ρτ (x/σ)] (Koenker and Machado, 1999). Then, the MLE of (bτ , λ
′
0)′

will have the same formula as the self-weighted quantile regression estimator in (3.2)

with wt = σ−1
t . This motivates us to define the Bayesian information criterion (BIC):

BICτ (p) = 2(n− pmax) log σ̃τn + (2p+ 1) log(n− pmax), (3.8)

11



where p is searched over {1, . . . , pmax}, with pmax being a predetermined number, and

σ̃τn = (n − pmax)−1
∑n

t=pmax+1 wtρτ (yt − x′tθ̃τn) is the MLE of the scale σ, with θ̃τn

calculated by (3.3) and the weights defined as wt = (σ̃t + c
∑pmax

j=1 |yt−j|)−1 for a very

small but fixed positive number c.

The proposed doubly weighted estimation, however, does not have a corresponding

likelihood function since it consists of multiple quantile regressions. Nevertheless, the

BIC in (3.8) yields consistent estimators of the true order p0 for all τ ∈ (0, 1), and

this motivates us to introduce an information criterion by combining the BIC across

τ1, . . . , τK . Notice that the weights πk’s in Section 3.2 are matrices and thus cannot

be directly applied to the BIC. In practice, we may use the simple average, BIC1(p) =

K−1
∑K

k=1 BICτk(p). In addition, by replacing the self-weighted estimator θ̃τn in (3.8)

with the doubly weighted estimator (̂bτn, b̂τnβ̂
opt′
n , φ̂opt′n )′, we can define another BIC, de-

noted by BIC2(p). Let p̂1n = argmin1≤p≤pmax
BIC1(p) and p̂2n = argmin1≤p≤pmax

BIC2(p).

Theorem 5. Under Assumption 3, if pmax ≥ p0, then P (p̂1n = p0) → 1 and P (p̂2n =

p0)→ 1 as n→∞, where p0 is the true order.

In the proposed estimation procedure, the key reason that we need no moment con-

dition on yt is that the condition E(‖wtYt−1‖2) < ∞ in Assumption 2 holds true for

wt = σ−1
t when the order p is correctly specified. But, since β0j = 0 for j > p0, this is

not the case when p > p0. To ensure that no additional moment condition is required by

the proposed BIC, we add a small number c > 0 to all the β0j’s, leading to the weights

defined earlier in this subsection. In practice, the effect of c is ignorable; see the second

simulation experiment in Section 5 for details.

4 Goodness-of-fit tests

To check the adequacy of fitted linear double AR models, we adopt the quantile auto-

correlation function (QACF) in Li et al. (2015) to construct two goodness-of-fit tests to

detect misspecifications in the conditional mean and conditional scale separately.

To make the QACF robust to arbitrarily heavy-tailed innovations, we consider the

transformed innovations {G(εt)}, where G : R → R is a predetermined, bounded and

strictly increasing function. Noticing that ψτ (εt−bτ ) = ψτ [G(εt)−G(bτ )], where ψτ (x) =

12



τ − I(x < 0), the QACF of {G(εt)} at lag ` can be defined as

ρ`,τ = qcorτ{G(εt), G(εt−`)} =
E{ψτ (εt − bτ )[G(εt−`)− µG,1]}√

τ − τ 2σG,1
, ` = 1, 2, . . . ,

where µG,1 = E[G(εt)] and σ2
G,1 = var[G(εt)]. By replacing G(εt−`) with G(ε2

t−`), a

variant of ρ`,τ can be defined as

r`,τ = qcorτ{G(εt), G(ε2
t−`)} =

E{ψτ (εt − bτ )[G(ε2
t−`)− µG,2]}

√
τ − τ 2σG,2

, ` = 1, 2, . . . ,

where µG,2 = E[G(ε2
t )] and σ2

G,2 = var[G(ε2
t )]. Notice that if model (2.1) is correctly

specified, then ρ`,τ = 0 and r`,τ = 0 for all ` and all τ .

Accordingly the residual QACFs at lag ` can be defined as

ρ̂`,τ =
1√

(τ − τ 2)σ̂G,1

1

n− p

n∑
t=p+`+1

ψτ (ε̂t − b̂τn){G(ε̂t−`)− µ̂G,1}

and

r̂`,τ =
1√

(τ − τ 2)σ̂G,2

1

n− p

n∑
t=p+`+1

ψτ (ε̂t − b̂τn){G(ε̂2
t−`)− µ̂G,2},

where µ̂G,m = (n− p)−1
∑n

t=p+1G(ε̂mt ) and σ̂2
G,m = (n− p)−1

∑n
t=p+1{G(ε̂mt )− µ̂G,m}2 for

m = 1 and 2. The two residual QACFs ρ̂`,τ and r̂`,τ will be used to construct goodness-

of-fit tests for the conditional mean and conditional scale structures, respectively; see Li

and Li (2008) for tests based on the conventional sample autocorrelation function.

To combine the information from multiple quantile levels, for any lag `, we can define

ρ̂` = max
1≤k≤K

|ρ̂`,τk | and r̂` = max
1≤k≤K

|r̂`,τk |.

Let ρ̂ = (ρ̂1, ..., ρ̂L)′ and r̂ = (r̂1, ..., r̂L)′, where L is a predetermined positive integer.

Assumption 4. G : R → R is a bounded, strictly increasing and twice-differentiable

function, with its derivatives of first and second orders, g and ġ, satisfying that (i)

supx∈R g(x) <∞; (ii) supx∈R xg(x) <∞; (iii) supx∈R ġ(x) <∞; (iv) supx∈R xġ(x) <∞;

and (v) supx∈R x
2ġ(x) <∞.

For m = 1 and 2, let Gm = (G(εmt−1), . . . , G(εmt−L))′, Ω3,m = E[σ−1
t xt(Gm − µG,m1L)′]

with 1L being an L× 1 vector of ones, and Dm(τ) = (d̃1,m(τ), . . . , d̃L,m(τ)) with

d̃`,m(τ) = f(bτ )

(
bτE

{
[G(εmt−`)− µG,m]

Y ′a,t−1

σt

}
, E

{
[G(εmt−`)− µG,m]

Y ′t−1

σt

})′
.

13



In addition, for m = 1 and 2 and 1 ≤ i, j ≤ K, let Ψm(τi, τj) be

Γijσ
2
G,mIL −D′m(τi)Σ3(τj)Ω1Ω3,m − Ω′3,mΩ1Σ′3(τi)Dm(τj) +D′m(τi)V(Πopt)Dm(τj)√

(τi − τ 2
i )(τj − τ 2

j )σG,m
,

where Ω1 and Γij are defined in Section 3, IL is the L× L identity matrix, and

Σ3(τ) =
K∑
k=1

[min(τ, τk)− ττk]πoptk Σ−1
1 (τk)

(
−β0 Ip 0

0 0 Ip

)
.

Theorem 6. Under Assumption 4 and the conditions of Theorem 4, we have
√
nρ̂ →

max1≤k≤K |B1(τk)| and
√
nr̂ → max1≤k≤K |B2(τk)| in distribution as n→∞, where |x| =

(|x1|, ..., |xL|)′ for x = (x1, ..., xL)′ ∈ RL, and Bm(τk) with 1 ≤ k ≤ K are multivariate

normal random vectors such that cov(Bm(τi), Bm(τj)) = Ψm(τi, τj), for m ∈ {1, 2}.

We can construct consistent estimators of the covariance matrix Ψm(τi, τj) by a

method similar to that for V̂(Π̂opt) in Section 3.2. Then, by generating a sequence of, say

B = 10000, multivariate normal random numbers, we can approximate the asymptotic

distributions in Theorem 6 and then obtain confidence bounds for ρ̂` and r̂`.

To check the first L lags jointly, we suggest the Box-Pierce type test statistics

QBP
1 (L) = n

∑L
`=1 ρ̂

2
` and QBP

2 (L) = n
∑L

`=1 r̂
2
` , which, as n → ∞, converge in dis-

tribution to
∑L

`=1 max1≤k≤K B
2
1,`(τk) and

∑L
`=1 max1≤k≤K B

2
2,`(τk), respectively, where

Bm(τ) = (Bm,1(τ), ..., Bm,L(τ))′ for m = 1 and 2.

In practice, we may use the distribution function of the standard Cauchy random

variable as the transformation G(·). Our simulation experiments in the supplementary

material indicate that it performs slightly better than several other transformations in

finite samples.

5 Simulation experiments

This section presents three simulation experiments to evaluate the finite-sample perfor-

mance of the proposed doubly weighted quantile regression estimator, model selection

method and goodness-of-fit tests. In all experiments, we employ the quantile levels

τk = k/10 with k = 1, . . . , 9.

The first experiment aims to examine the finite-sample performance of the doubly

14



Table 1: Biases (×10), ESDs (×10) and ASDs (×10) of the doubly weighted estimator

λ̂optn when the innovations follow the normal, Student’s t3 or Cauchy distribution.

Normal t3 Cauchy

n Bias ESD ASD Bias ESD ASD Bias ESD ASD

β 200 -0.203 1.658 1.320 0.204 2.180 1.569 1.674 4.794 2.619

500 -0.063 0.938 0.863 0.123 1.180 1.010 0.803 2.111 1.550

1000 -0.008 0.618 0.619 0.066 0.780 0.716 0.337 1.224 1.074

φ 200 -0.106 1.082 0.889 -0.082 1.115 0.856 -0.081 0.575 0.430

500 -0.057 0.630 0.592 -0.037 0.607 0.563 -0.022 0.272 0.255

1000 -0.021 0.448 0.426 -0.030 0.421 0.403 -0.005 0.173 0.170

weighted quantile regression estimator λ̂optn , for which the data generating process is

yt = 0.2yt−1 + εt(1 + 0.5|yt−1|),

where {εt} are i.i.d. normal, Student’s t3 or Cauchy random variables with location zero

and E(|εt|κ) = 1 for κ = 0.9. The sample size is set to n = 200, 500 or 1000, with 1000

replications for each sample size. The self weights {σ−1
t } are approximated by {1/(1 +

β̃int|yt−1|)}, where β̃int is calculated by (3.4). The density function of εt is estimated by

the kernel density method with the Gaussian kernel and its rule-of-thumb bandwidth,

h = 0.9n−1/5 min{s, R̂/1.34}, where s and R̂ are the sample standard deviation and

interquartile of the residuals, respectively; see Silverman (1986). Table 1 lists the biases,

empirical standard deviations (ESDs) and asymptotic standard deviations (ASDs) of

λ̂optn for different innovation distributions and sample sizes. As the sample size increases,

most of the biases, ESDs and ASDs become smaller, and the ESDs get closer to the

corresponding ASDs. Moreover, when the distribution of εt has heavier tails, all these

quantities of φ̂optn decrease, whereas those of β̂optn increase.

In the second experiment, we evaluate the performance of the proposed model selec-

tion method in Section 3.3, and the data generating process is

yt = 0.1yt−1 + 0.3yt−2 + εt(1 + 0.1|yt−1|+ 0.3|yt−2|),

where the innovations {εt} are defined as in the previous experiment. The two informa-

tion criteria, BIC1 and BIC2, in Section 3.3 are employed with c = 10−5 and pmax = 5.
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Table 2: Percentages of underfitted, correctly selected and overfitted models by BIC1

and BIC2 based on 1000 replications.

Normal t3 Cauchy

n Under Exact Over Under Exact Over Under Exact Over

BIC1 200 7.9 91.6 0.5 7.8 92.1 0.1 16.4 83.6 0

500 0 99.7 0.3 0 99.8 0.2 2.5 97.5 0

1000 0 100 0 0 100 0 0.9 99.1 0

BIC2 200 18.8 81.2 0 16.7 83.2 0.1 19.4 80.5 0.1

500 0 99.8 0.2 0 100 0 2.4 97.6 0

1000 0 100 0 0 100 0 0.9 99.1 0

Recall that BIC1 is based on the self-weighted estimators, while BIC2 is based on the

doubly weighted estimator. For i = 1 or 2, the cases of underfitting, correct selection

and overfitting by BICi correspond to p̂i,n being 1, 2 and greater than 2, respectively.

Table 2 reports the percentages of underfitted, correctly selected and overfitted models

by the two information criteria. It can be seen that both information criteria select the

correct model in most of the replications when the sample size is as small as n = 200,

while BIC1 is slightly better. We have also conducted the experiment for BIC1 with

c = 0, and have found that the resulting percentages remain the same as those of BIC1

in Table 2.

In the third experiment, we study the proposed goodness-of-fit tests, QBP
1 (L) and

QBP
2 (L). The data are generated from

yt = c1yt−2 + εt(1 + 0.2|yt−1|+ c2|yt−2|),

where the innovations {εt} are defined as in the first experiment. We fit a linear double

AR model with p = 1 using the same method as in the first experiment, so that the

case of c1 = c2 = 0 corresponds to the size of the tests, the case of c1 6= 0 corresponds

to misspecifications in the conditional mean, and the case of c2 > 0 corresponds to mis-

specifications in the conditional scale. Two departure levels, 0.1 and 0.3, are considered

for both c1 and c2, and the standard Cauchy distribution function is employed as the

transformation G(·) for the residual sequence. Table 3 reports the rejection rates of

QBP
1 (6) and QBP

2 (6) based on 1000 replications, for sample size n = 200, 500 or 1000.
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Table 3: Rejection rates of the tests QBP
1 (6) and QBP

2 (6) at the 5% significance level

when the innovations follow the normal, Student’s t3 or Cauchy distribution.

Normal t3 Cauchy

c1 c2 200 500 1000 200 500 1000 200 500 1000

QBP
1 0.0 0.0 0.041 0.046 0.052 0.042 0.044 0.050 0.047 0.053 0.051

0.0 0.1 0.042 0.035 0.051 0.049 0.050 0.044 0.055 0.049 0.044

0.0 0.3 0.054 0.048 0.064 0.054 0.050 0.066 0.084 0.081 0.070

0.1 0.0 0.076 0.178 0.386 0.110 0.303 0.586 0.551 0.972 1.000

0.3 0.0 0.639 0.991 1.000 0.822 0.998 1.000 0.993 1.000 1.000

QBP
2 0.0 0.0 0.044 0.056 0.049 0.048 0.050 0.051 0.056 0.052 0.047

0.0 0.1 0.073 0.107 0.194 0.061 0.117 0.181 0.085 0.123 0.191

0.0 0.3 0.252 0.763 0.997 0.228 0.628 0.961 0.213 0.468 0.765

0.1 0.0 0.044 0.040 0.061 0.039 0.055 0.064 0.210 0.433 0.735

0.3 0.0 0.059 0.075 0.146 0.110 0.191 0.339 0.796 0.998 1.000

It can be observed that all sizes are close to the nominal rate when the sample size n is

as small as 200, and all powers increase as n or the departure level increases. Moreover,

QBP
1 (6) performs well in detecting the misspecification in the conditional mean (i.e.,

c1 6= 0 and c2 = 0), especially when the innovation distribution is heavy-tailed, but has

little power for the misspecification in the conditional scale (i.e., c1 = 0 and c2 > 0). In

contrast, QBP
2 (6) performs well in detecting the misspecification in the conditional scale,

especially when the innovation distribution is light-tailed. This indicates that QBP
1 (L)

and QBP
2 (L) should be used in conjunction to check the adequacy of the fitted model. In

addition, the findings seem consistent with the result in the first experiment that, as the

innovation distribution becomes more heavy-tailed, the estimation performance for the

location-type parameters φ0 tends to improve, whereas that for the scale-type parameters

β0 tends to worsen. Furthermore, the performance of QBP
2 (6) for the misspecification

in the conditional mean seems mixed: it is useless when the innovation distribution is

relatively light-tailed, but is surprisingly powerful for the Cauchy distribution.
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Figure 2: Q-Q plots of the residuals against the Student’s t1.5 (left panel) or t2 (right

panel) distribution.

6 An empirical example

We illustrate the proposed inference tools using the U.S. monthly interest rates (the

effective federal funds rates) from January 1956 to December 2015. There are 720 ob-

servations in total, and we focus on their log returns, denoted by {yt}.

Based on τk = k/10 for k = 1, . . . , 9 and pmax = 10, the proposed BIC1 and BIC2

both select p = 3. By the doubly weighted estimation method in Section 3.2, the fitted

model is

yt =0.36590.0385yt−1 + 0.09380.0295yt−2 + 0.12340.0320yt−3

+ εt(1 + 27.82935.9681|yt−1|+ 6.93313.4008|yt−2|+ 14.95574.2480|yt−3|), (6.1)

where the subscripts are the standard errors of the estimated coefficients, and all the

estimated coefficients are significant at the 5% significance level. Figure 2 gives the Q-Q

plots of the residuals from the fitted model against the Student’s t1.5 or t2 distribution. It

can be seen that the left tail of the residuals is heavier than t2 yet lighter than t1.5, while

the right tail seems as heavy as t1.5, which suggests that E(ε2
t ) =∞ and E(|εt|) <∞.

For the fitted model in (6.1), the p-values of the goodness-of-fit test QBP
1 (L) for L = 6,

12 and 18 are all greater than 0.5306, and those of the test QBP
2 (L) are all greater than

0.9597. This suggests that the fitted model is adequate. In addition, as shown in Figure

3, the residual QACFs ρ̂` and r̂` fall within the corresponding 95% confidence bounds at

all the first 15 lags.
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Figure 3: Residual QACF plots for ρ̂` (left panel) and r̂` (right panel), where the dashed

lines are the corresponding 95% confidence bounds.

For comparison, the fitted double AR model is given by

yt =0.42720.0898yt−1 + 0.07070.0888yt−2 + 0.10690.0714yt−3

+ εt

√
0.00440.0004 + 1.25610.1895y2

t−1 + 0.92470.1678y2
t−2 + 0.25990.0896y2

t−3,

and the fitted AR-ARCH model is

yt = 0.36670.0537yt−1 + 0.10060.0422yt−2 + 0.15610.0393yt−3 + et, et = εt
√
ht,

ht = 0.00180.0002 + 0.76990.1240e
2
t−1 + 0.44810.0873e

2
t−2 + 0.06420.0452e

2
t−3, (6.2)

where the innovations {εt} are standardized to have mean zero and variance one. The

three fitted models have similar conditional mean structures. In the ARCH component

of (6.2), the coefficients of the e2
t−j’s add up to 1.2822, suggesting that E(e2

t ) =∞. This,

together with Figure 2, indicates that the double AR and AR-ARCH models and their

inference tools may be misused here. Moreover, the significance of the conditional mean

component implies that a linear ARCH model would not be suitable.

To examine the forecasting performance, we conduct one-step-ahead predictions using

a rolling forecasting procedure. We start from the forecast origin t = 200 and fit the

model using the data from the beginning to the forecast origin (exclusive). We compute

the forecast of the τth conditional quantile of yt+1, given by µ̂t+1 + σ̂t+1b̂τ , for τ = 1%,

5%, 10%, 90%, 95% and 99%, where µ̂t+1 and σ̂t+1 are the predicted conditional mean

and scale, respectively, and b̂τ is the τth sample quantile of the residuals. Then we
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Table 4: Empirical coverage rates (%) for two fitted models at different quantile levels.

LDAR: linear double AR model. DAR: double AR model.

1% 5% 10% 90% 95% 99%

t ∈ [200, 399] LDAR 0.5 5.0 8.0 89.5 95.5 98.5

DAR 0.5 5.5 7.5 91.0 96.5 97.5

t ∈ [400, 599] LDAR 1.5 4.0 9.0 96.0 98.0 99.5

DAR 1.5 3.5 8.5 96.5 99.0 99.5

t ∈ [600, 719] LDAR 3.3 10.8 15.0 85.0 90.0 96.7

DAR 3.3 10.8 18.3 85.8 91.7 98.3

advance the forecast origin by one and repeat the above procedure until all data are

employed.

The forecasting subsample can be divided into three periods: t ∈ [200, 399], t ∈

[400, 599] and t ∈ [600, 719], corresponding to the periods with moderate, low and high

volatilities, respectively. Table 4 reports the empirical coverage rates (ECRs) of the

one-step-ahead predictions by the fitted linear double AR model and the fitted double

AR model, for the three periods and six quantile levels. Among the totally 18 cases,

we find that the proposed model outperforms the double AR model in 10 cases, and is

as good as the latter in 5 cases. In contrast, the double AR model is more favorable

only at the three upper quantiles in the high volatility period. This is probably because

the conditional scale σ̂t+1 of the double AR model has a quadratic structure, which

makes it more sensitive to sudden jumps in the magnitude, resulting in larger and more

accurate ECRs than the proposed model in the high volatility period. Although not

reported in the table, all the ECRs for the fitted AR-ARCH model deviate farther from

the corresponding nominal rates than those for the other two models.

7 Conclusion

For conditional heteroscedastic time series models without a conditional mean compo-

nent, the quantile regression is often made tractable by assuming a linear structure for

the conditional standard deviation. However, when a conditional mean structure needs
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to be incorporated, the objective function of the quantile regression is usually no longer

convex and new challenges in the inference and optimization will arise.

This paper proposes the linear double AR model which is suitable for quantile in-

ference even when there is a conditional mean component. It can be regarded as a

modification of the double AR model along the lines of the linear GARCH model, but

enjoys greater tractability for the quantile regression than both models. The proposed

doubly weighted estimation achieves greater efficiency by optimally combining informa-

tion across the quantiles. As with the estimation, the proposed information criteria and

goodness-of-fit tests require no moment condition on the observed process or the inno-

vations, whereas existing models and inference tools usually need stronger conditions.

The necessity of such robustness is corroborated by the real data example in Section 6,

where it is founded that the innovations may even have an infinite variance.

8 Supplementary material

The supplementary material contains additional simulation experiments and detailed

proofs of all lemmas and theorems in the paper.
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Appendix

This appendix presents an auxiliary lemma, which is crucial to the proof of Theorem 6,

and gives the proof sketches of Theorems 1 and 3-5. Due to the space limit, detailed

proofs of all lemmas and theorems are provided in the supplementary material.
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Lemma 2. Under Assumptions 2 and 3, we have the Bahadur representation for b̂τn:

√
n(̂bτn − bτ ) =

1

f(bτ )

[
1√
n

n∑
t=p+1

ψτ (εt − bτ )− d′0(τ)
√
n(λ̂optn − λ0)

]
+ op(1),

where d0(τ) = f(bτ )
(
bτE(σ−1

t Y ′a,t−1), E(σ−1
t Y ′t−1)

)′
.

Proof sketch of Theorem 1. Denote Yt = (yt, yt−1, . . . , yt−p+1)′. Let Bp be the class of

Borel sets of Rp and νp be the Lebesgue measure on (Rp,Bp). By Assumption 1, we can

show that {Yt} is a homogeneous Markov chain on the state space (Rp,Bp, νp), has a

p-step transition kernel that is positive everywhere, and hence is νp-irreducible.

To prove the sufficiency, suppose that γ < 0, i.e., there is an integer s such that

E(ln ‖A1 · · ·As‖) < 0. Let Ãt =
∏s−1

i=0 At−i. By the continuity of the density f(·) and the

dominated convergence theorem, we can show that limu→0 q̇(u) = E(ln ‖Ãt‖) < 0, where

q̇(u) is the derivative of q(u) = E(‖Ãt‖u), and thus, there is a constant κ ∈ (0, 1) such

that E(‖Ãt‖κ) < q(0) = 1. Using this result and the test function g(x) = 1 + ‖x‖κ, we

can verify Tweedie’s drift criterion (Tweedie, 1983, Theorem 4) for the s-step Markov

chain {Y ∗ts} and hence that for {Yts}, since {Yt} and {Y ∗t } have the same transition

probability. We can further show that {Yts} is a νp-irreducible Feller chain, and then by

Theorem 4(ii) in Tweedie (1983) and Theorems 1 and 2 in Feigin and Tweedie (1985),

{Yts} is geometrically ergodic with a unique stationary distribution and E(|yt|κ) < ∞.

By Lemma 3.1 of Tjøstheim (1990), we conclude that {Yt} is geometrically ergodic and

is the unique strictly stationary solution to model (2.1).

To prove the necessity, suppose that there is a strictly stationary solution {yt} to

model (2.1). Then we can generate iteratively a strictly stationary and nonanticipative

solution {Y ∗t : t ∈ N} for model (2.3) by letting Y ∗0 follow the same distribution as

Yt. As a result, {Y ∗tp : t ∈ N} is a nonanticipative and strictly stationary solution to

Y ∗tp = ÃtpY
∗

(t−1)p +Btp, where Ãt =
∏p−1

i=0 At−i and Btp = etp +
∑p−1

j=1

∏j−1
r=0Atp−retp−j with

et = (εt, 0, . . . , 0)′. Moreover, it can be shown that E(ln+ ‖Ãtp‖) < ∞, E(ln+ ‖Btp‖) <

∞, and {Y ∗tp : t ∈ N} is irreducible. Finally, by Theorem 2.5 of Bougerol and Picard

(1992), the top Lyapounov exponent γ̃ = inf{t−1E(ln ‖ÃpÃ2p · · · Ãtp‖), t ≥ 1} is strictly

negative, and it follows that γ ≤ γ̃/p < 0.

Proof sketch of Theorem 3. The asymptotic normality of
√
n(λ̃τn − λ0) in Theorem 3

follows directly from Lemma 1 and the Delta method (van der Vaart, 1998, Chapter
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3). To find the minimum of Ω1(w), as in Xu (2017), we consider the regression model,

zt = σ−1
t x′tγ + et, where {et} are i.i.d. standard normal, independent of {xt}, and γ is

the unknown parameter to be estimated. The weighted least-squares estimator γ̂(λ) =

argminr
∑n

t=1 λt
(
zt − σ−1

t x′tr
)2

with the weights λt = σtwt is asymptotically normal with

mean zero and variance Ω1(w). On the other hand, by the normality of et, the estimator

is most efficient when λt ≡ 1. Thus, Ω1(w) is minimized at wt = σ−1
t , and so is Ω2(w).

Proof sketch of Theorem 4. By Lemma 1 and the Delta method, we have the Bahadur

representation
√
n(λ̃τn − λ0) = Σ2(τ)Ω−1

0 n−1/2
∑n

t=p+1 ψτ (εt − bτ )σ
−1
t xt + op(1), where

Ω−1
0 = Ω1 since wt = σ−1

t . It then follows from the central limit theorem that
√
n(λ̂n −

λ0)→ N(0,V(Π)) in distribution as n→∞. Consider a minimum distance estimator

λ̂∗n = argmin
λ
{λ̃n − (1K ⊗ I2p)λ}′Ξ{λ̃n − (1K ⊗ I2p)λ},

where Ξ is a 2pK × 2pK matrix and λ̃n = (λ̃′τ1n, ..., λ̃
′
τKn

)′. It can be verified that λ̂∗n =

Πλ̃n =
∑K

k=1 πkλ̃τkn, where Π = (π1, ..., πK) = {(1K ⊗ I2p)
′Ξ(1K ⊗ I2p)}−1(1K ⊗ I2p)

′Ξ.

As argued in Chen et al. (2016), the asymptotic variance of λ̂∗n is minimized when Ξ is

proportional to the inverse of the asymptotic variance of
√
n[λ̃n−(1K⊗I2p)λ0]. Thus, we

can obtain Πopt that corresponds to such a matrix Ξ and the results of the theorem.

Proof sketch of Theorem 5. By β̃int − β0 = Op(n
−1/2), σ̃t = 1 + Y ′a,t−1β̃

int and wt =

(σ̃t + c
∑pmax

j=1 |yt−j|)−1, it suffices to prove the theorem for the weights wt = (σt +

c
∑pmax

j=1 |yt−j|)−1 = [1 +
∑pmax

j=1 (c + β0j)|yt−j|]−1, for which Assumption 2 holds since

c+β0j > 0 for 1 ≤ j ≤ pmax. By a standard argument, we can accomplish the proof.
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Chen, X., D. Jacho-Chávez, and O. Linton (2016). Averaging of an increasing number

of moment condition estimators. Econometric Theory 32, 30–70.

Davis, R. A., K. Knight, and J. Liu (1992). M-estimation for autoregressions with infinite

variances. Stochastic Processes and their Applications 40, 145–180.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the

variance of United Kingdom inflation. Econometrica 50, 987–1007.

Engle, R. F. and S. Manganelli (2004). CAViaR: conditional autoregressive value at risk

by regression quantiles. Journal of Business and Economic Statistics 22, 367–381.

Feigin, P. D. and R. L. Tweedie (1985). Random coefficient autoregressive processes:

a markov chain analysis of stationarity and finiteness of moments. Journal of Time

Series Analysis 6, 1–14.

Francq, C. and J. M. Zakoian (2004). Maximum likelihood estimation of pure GARCH

and ARMA-GARCH processes. Bernoulli 10, 605–637.

Gross, S. and W. L. Steiger (1979). Least absolute deviation estimates in autoregresion

with infinite variance. Journal of Applied Probability 16, 104–116.

Jiang, J., X. Jiang, and X. Song (2014). Weighted composite quantile regression estima-

tion of DTARCH models. Econometrics Journal 17, 1–23.

Jiang, X., J. Jiang, and X. Song (2012). Oracle model selection for nonlinear models

based on weighted composite quantile regression. Statistica Sinica 22, 1479–1506.

Kingman, J. F. C. (1973). Subadditive ergodic theory. The Annals of Probability 1,

883–899.

Koenker, R. (1984). A note on L-estimates for linear models. Statistics and Probability

Letters 2, 323–325.

Koenker, R. (2005). Quantile regression. Cambridge: Cambridge University Press.

Koenker, R. and G. Bassett (1978). Regression quantiles. Econometrica 46, 33–49.

24



Koenker, R. and J. A. F. Machado (1999). Goodness of fit and related inference processes

for quantile regression. Journal of the American Statistical Association 94, 1296–1310.

Koenker, R. and Q. Zhao (1996). Conditional quantile estimation and inference for

ARCH models. Econometric Theory 12, 793–813.

Li, G. and W. K. Li (2008). Least absolute deviation estimation for fractionally integrated

autoregressive moving average time series models with conditional heteroscedasticity.

Biometrika 95, 399–414.

Li, G. and W. K. Li (2009). Least absolute deviation estimation for unit root processes

with GARCH errors. Econometric Theory 25, 1208–1227.

Li, G., Y. Li, and C.-L. Tsai (2015). Quantile correlations and quantile autoregressive

modeling. Journal of the American Statistical Association 110, 246–261.

Ling, S. (2004). Estimation and testing stationarity for double-autoregressive models.

Journal of the Royal Statistical Society, Series B 66, 63–78.

Ling, S. (2005). Self-weighted least absolute deviation estimation for infinite variance

autoregressive models. Journal of the Royal Statistical Society: Series B 67, 381–393.

Ling, S. (2007). A double AR(p) model: structure and estimation. Statistica Sinica 17,

161–175.

Ling, S. and D. Li (2008). Asymptotic inference for a nonstationary double AR(1) model.

Biometrika 95, 257–263.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. London:

Chapman and Hall.

Tjøstheim, D. (1990). Nonlinear time series and Markov chains. Advances in Applied

Probability 22, 587–611.

Tweedie, R. L. (1983). Criteria for rates of convergence of Markov chains, with applica-

tion to queueing and storage theory. In J. F. C. Kingman and G. E. H. Reuter (Eds.),

Probability, Statistics and Analysis, pp. 260–276. Cambridge: Cambridge University

Press.

25



van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge: Cambridge University

Press.

Xiao, Z. and R. Koenker (2009). Conditional quantile estimation for generalized au-

toregressive conditional heteroscedasticity models. Journal of the American Statistical

Association 104, 1696–1712.

Xu, Z. (2017). Efficient parameter estimation methods using quantile regression in het-

eroscedastic models. Ph. D. thesis, The Pennsylvania State University.

Zhao, Z. and Z. Xiao (2014). Efficient regressions via optimally combining quantile

information. Econometric Theory 30, 1272–1314.

Zhu, K. and S. Ling (2011). Global self-weighted and local quasi-maximum exponen-

tial likelihood estimators for ARMA-GARCH/IGARCH models. The Annals of

Statistics 39, 2131–2163.

Zhu, K. and S. Ling (2013). Quasi-maximum exponential likelihood estimators for a

double AR(p) model. Statistica Sinica 23, 251–270.

Zou, H. and M. Yuan (2008). Composite quantile regression and the oracle model selec-

tion theory. The Annals of Statistics 36, 1108–1126.

26


