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Abstract

Gene sequences sampled at different points in time can be used to infer molecular phylogenies on a natural timescale of
months or years, provided that the sequences in question undergo measurable amounts of evolutionary change between
sampling times. Data sets with this property are termed heterochronous and have become increasingly common in several
fields of biology, most notably the molecular epidemiology of rapidly evolving viruses. Here we introduce the cross-platform
software tool, TempEst (formerly known as Path-O-Gen), for the visualization and analysis of temporally sampled sequence
data. Given a molecular phylogeny and the dates of sampling for each sequence, TempEst uses an interactive regression ap-
proach to explore the association between genetic divergence through time and sampling dates. TempEst can be used to (1)
assess whether there is sufficient temporal signal in the data to proceed with phylogenetic molecular clock analysis, and (2)
identify sequences whose genetic divergence and sampling date are incongruent. Examination of the latter can help iden-
tify data quality problems, including errors in data annotation, sample contamination, sequence recombination, or align-
ment error. We recommend that all users of the molecular clock models implemented in BEAST first check their data using
TempEst prior to analysis.
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1. Introduction

Gene sequences are denoted ‘heterochronous’ (or measurably
evolving) if they have been obtained from natural populations
at evolutionarily distinct points in time. In this context, two
sampling times are ‘evolutionarily distinct’ if genetic sequences
sampled at those times differ by a measurable amount of nu-
cleotide or amino acid substitution within the sampled popula-
tion (Drummond et al. 2003a). Such data sets have become
increasingly common in a range of biological disciplines,

including infectious disease epidemiology, molecular ecology,
molecular taxonomy, archaeology, and anthropology (e.g.,
Willerslev and Cooper 2005; Pybus and Rambaut 2009; Biek et al.
2015). In the past, most heterochronous data sets comprised
gene sequences from either RNA viruses or ancient DNA studies
of animal populations. Many RNA viruses evolve so rapidly that
sequences sampled only weeks or months apart may be evolu-
tionarily distinct, whereas ancient DNA sequences can be re-
covered from preserved biological material many thousands of
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years old, such that they are genetically different from those ob-
tained from contemporary animal populations. More recently
the concept of heterochronous data has been extended to
slower-evolving micro-organisms, including DNA viruses (e.g.,
Firth et al. 2010) and bacteria (e.g., Lowder et al. 2009), in part as
a result of the increasing availability of whole-genome se-
quences for these species (Biek et al. 2015). It seems very likely
that heterochronous data sets will continue to grow in popular-
ity as sequencing technologies increase in power and decline in
cost.

The evolutionary and phylogenetic analysis of gene or gen-
ome sequences from different points in time necessitates the
use of methods distinct from those typically applied to ‘isoch-
ronous’ data sets (i.e., alignments that contain sequences
sampled simultaneously, or over a time range whose duration
is trivial compared to the evolutionary timescale of the species
under investigation). Most importantly, the sampling dates of
heterochronous sequences contain information about the rate
of sequence evolution and consequently such data sets can be
used to directly infer molecular phylogenies on a natural time-
scale of months, years, or millennia. By contrast, the branches
of phylogenies estimated from isochronous data sets represent
genetic distance only, and the independent effects of evolution-
ary rate and divergence time on genetic distances cannot be
separated without external information about one or the other.
Phylogenies whose branch lengths represent time (‘time trees’
or ‘clock trees’) have advantages over those measured as gen-
etic distance, as the timescale provides a common frame of ref-
erence that enables evolutionary change to be directly
compared with known historical events. For example, Shapiro
et al. (2004) used heterochronous ancient mtDNA sequences
sampled across a period of 60,000 years to suggest that the rapid
decline in the genetic diversity of North American bison began
before, not after, the first evidence of human hunters in the
region.

In order to estimate phylogenies (and other evolutionary
parameters, such as effective population sizes or speciation
rates) on a natural timescale of years requires a ‘molecular
clock’ model, which, in essence, is a statistical description of
the relationship between observed genetic distances and time.
The early development of the ‘molecular clock’ concept is inter-
twined with historical debates over the applicability of Kimura’s
Neutral Theory of Evolution to empirical data (e.g., Gojobori,
Moriyama, and Kimura 1990). However, it is important to note
that it is not necessary to assume the absence of natural selec-
tion in order to infer phylogenies on a natural timescale. A suite
of models, generally referred to as relaxed or local molecular
clocks, have been developed that allow the rate of evolution to
vary (for whatever reason) among the branches of a phylogen-
etic tree (e.g., Huelsenbeck, Larget, and Swofford 2000; Kishino,
Thorne, and Bruno 2001; Drummond et al. 2006; Drummond
and Suchard 2010). Time-scaled trees can be estimated using
many statistical approaches, including Bayesian inference (e.g.,
Drummond et al. 2012), maximum likelihood (e.g., Rambaut
2000; Sanderson 2003; Yang 2007), or heuristic methods (e.g.,
Drummond and Rodrigo 2000).

Before using a molecular clock model to infer a time-scaled
tree from heterochronous sequences, it is advisable to confirm
that the sequences under investigation contain sufficient ‘tem-
poral signal’ for reliable estimation. In other words, there must
be sufficient genetic change between sampling times to recon-
struct a statistical relationship between genetic divergence and
time. This is particularly important for Bayesian inference
approaches such as those implemented in BEAST, because the

molecular clock models employed are statistically conditioned
on having an evolutionary rate greater than zero, and will usu-
ally allow inference to proceed even when the alignments being
analysed contain little or no temporal information. In such
cases, the software may give the appearance of a statistically
well-supported timescale even when none exists. Ideally, in
such circumstances, the posterior estimates of the rate of evolu-
tion should reflect the prior distribution, but in reality random
error and model misspecification may result in misleading con-
clusions being drawn.

It is therefore important for researchers to explore the de-
gree of temporal signal in heterochronous sequences before pro-
ceeding to inference using formal molecular clock models. This
can be achieved using a simple regression-based approach.
Suppose we have a rooted molecular phylogeny (whose branch
lengths represent genetic distance) estimated from heterochro-
nous sequences. For the moment we will assume the tree is
rooted correctly. For each sequence i let ti be the sampling time
of that sequence, and let dr,i be the genetic distance between
that tree tip and the tree root (the so-called ‘root-to-tip’ dis-
tance). If all branches evolve at the same rate (i.e., according to
a strict clock), then the phylogenetic timescale can be estimated
using the following linear regression model

E½dr;i� ¼ u ti–trð Þ; (1)

where u is the rate of sequence evolution and tr is the time of
the tree root. If dr,i is plotted against ti, then the gradient of the
regression line represents u and the x-intercept represents tr

(Buonagurio et al. 1986; Gojobori, Moriyama, and Kimura 1990;
Drummond, Pybus, and Rambaut 2003b). A heterochronous
alignment with strong temporal information will generate a
notable correlation between dr,i and ti (interpretation of the stat-
istical significance of this regression is not straightforward; see
below).

Regression of root-to-tip genetic distance against sampling
time can be used as a simple diagnostic tool for molecular clock
models. Specifically, a linear trend with small residuals indi-
cates that evolution will be adequately represented by a strict
molecular clock. The same trend with greater scatter from the
regression line suggests a relaxed molecular clock model may
be most appropriate. A strong non-linear trend suggests that
evolutionary rate has systematically changed through time,
whereas no trend at all indicates that the data contain little
temporal signal and is unsuitable for inference using phylogen-
etic molecular clock models. Evidence for local clock models
may be found by selecting tree tips that correspond belong to a
specific phylogenetic group or lineage, then visualizing the pos-
ition of the regression points that correspond to the selected
taxa.

In addition to the problem of poor temporal signal, molecu-
lar clock analyses can be hampered by data quality issues.
Annotation errors can be introduced into large sequence align-
ments and sequences obtained from GenBank or other public
databases may be labelled with incorrect sampling dates. A
further problem present in some viral or bacterial sequences
alignments is the possible inclusion of laboratory or vaccine ref-
erence strains that have spent many years in frozen storage.
From a molecular clock perspective, the ‘correct’ sampling date
of these is the date they were placed in storage, not the date
they were ultimately sequenced. Inference methods such as
those implemented in BEAST are dependent upon the sampling
dates provided by the user and thus results will be affected by
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data quality issues without giving any indication that they
might be present (e.g., Graur and Pupko 2001; Worobey 2008).
Fortunately, the regression approach outlined above can be also
used as a quality control step before undertaking computation-
ally intensive phylogenetic analyses.

Although regressions of sampling time versus root-to-tip
genetic distance can be used to investigate temporal signal and
data quality in heterochronous alignments, they are not suit-
able for statistical hypothesis testing because the individual
data points are not independently distributed, and are instead
partially correlated due to their phylogenetic shared ancestry.
This effect is particularly strong if sequences from different
sampling times are genetically distinct from one another
(Murray et al. 2016). Therefore the r2 value, P-value, and param-
eter confidence limits of the regression model are not valid stat-
istical estimates (see Drummond et al. 2003a for further
discussion). The regression should therefore be used as a data
exploration tool rather than for formal hypothesis testing.

2. TempEst

The program TempEst (TEMPoral Exploration of Sequences and
Trees) is a cross-platform, open source, graphical program for
exploring heterochronous data, freely available from http://tree.
bio.ed.ac.uk/. During its development TempEst was formerly
known as Path-O-Gen. Its name has been changed to reflect the
fact that the software can be applied to all heterochronous
alignments, not just those from pathogenic micro-organisms.

As input, TempEst takes a ‘non-clock’ phylogenetic tree (i.e.,
one whose branch lengths are scaled as genetic distances),
which can be estimated using standard neighbour-joining, max-
imum likelihood, or Bayesian approaches (Felsenstein 2003).
Once loaded, the user provides sampling dates or ages for each
sequence. The dates can be manually entered, extracted from
fields embedded in the sequence labels, or loaded from a tab-
delimited table. The ‘Root-To-Tip’ analysis panel (Fig. 1) is then
displayed, showing a linear regression of root-to-tip genetic dis-
tance against sampling time for each tip (see Equation 1).

Various parameters are presented in a table to the left of the
plot, including an estimate of the rate of evolution (i.e., the gra-
dient of the regression), and the intercept with the time-axis,
which is a valid point estimate of the age of the phylogeny root
(Fig. 1).

When a phylogeny is initially loaded, TempEst assumes that
the tree is rooted at a position chosen by the user. However,
most methods for reconstructing ‘non-clock’ phylogenies de-
liver a tree that is arbitrarily rooted, so the user should actively
root the tree before loading it into TempEst. Alternatively,
TempEst provides an option to locate a ‘best-fit’ root position.
If this option is selected, then TempEst finds the root location
that minimizes the sum of the squared residuals from the re-
gression line. Although other criteria have been employed
to find a best-fit root (Drummond et al. 2003a; Maljkovic Berry
et al. 2009) we have found, anecdotally, that minimizing the
residuals is a robust criterion under moderate levels of among-
branch rate heterogeneity. Although this procedure finds the
root for which the data appear most ‘clock-like’, it does
allow the possibility of a negative slope being offered. This is
not a problem, because the estimation of a negative evolution-
ary rate indicates that the data set contains little or no temporal
signal.

TempEst provides two further data views. The ‘Tree’ analysis
panel shows the phylogeny itself. External phylogeny branches
are coloured according the position of their respective tips in
the corresponding regression plot. By default, blue branches
represent points below the regression line, indicating sequences
that are less divergent (for their sampling date) than average.
Red branches represent the opposite situation. The ‘Residuals’
analysis panel contains a histogram and scatterplot of the re-
siduals of the linear regression. Importantly, all four analysis
panels are linked, so that data points (tree tips) selected in one
panel are automatically highlighted in the other two (see Fig. 1).
This enables easy investigation of outliers and sequences or
clades of interest.

TempEst can also be used to explore isochronous phyloge-
nies, that is, those whose tips are sampled at the same time. In

Figure 1. User interface of TempEst. (A) The ‘tree’ panel and (B) the ‘root-to-tip’ regression panel. If a user selects a taxon or group of taxa in one panel, then the corres-

ponding sequences or points will be highlighted in other panels (e.g., the four taxa highlighted in the tree panel are shown in blue in the root-to-tip panel).

Components of the user interface discussed in the text are highlighted. (1) Button that initiates estimation of the best-fitting root location. (2) Regression analysis par-

ameter estimates. (3) Tabs to switch between different data visualization panels. (4) Options to adjust how the tree is displayed. (5) Option to show ancestor traces

(thin green lines). Ancestor traces for a subset of taxa are also shown if some taxa are highlighted.
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such cases, the sampling date input step is omitted and the
‘Root-to-tip’ panel presents a histogram of the genetic distance
of each tip from the tree root. As the amount of time between
the root and each tip in an isochronous tree is identical, this
plot gives a measure of the variation in evolutionary rate across
the tree (although, as explained above, this measure is not suit-
able for hypothesis testing because the regression points are
not statistically independent). If the ‘best-fitting root’ option is
selected when an isochronous tree is loaded, then TempEst will
attempt to find the root that minimizes the variance of root-to-
tip distances.

2.1 Example 1: exploring temporal signal

Here we use three example data sets to illustrate how TempEst
allows users to explore temporal signal in sequence alignments.
The three data sets comprise: (1) haemagglutinin gene se-
quences of human influenza A/H3N2 viruses (Russell et al.
2008), (2) whole-genome sequences of the hepatitis C virus, and
(3) modern and ancient mtDNA sequences obtained from bison,
recovered from preserved biological samples of varying ages,
the oldest being >60,000 years before present (Shapiro et al.
2004). Figure 2 shows the regressions of root-to-tip genetic dis-
tance against sampling time for each of these four data sets.
This is what users see in the ‘Root-to-tip’ panel of TempEst
(Fig. 1).

The three data sets demonstrate different levels of temporal
signal, as assessed by visual inspection or by the correlation co-
efficient, R2. The R2 value can be used as an informal measure of
dispersion around the best-fit line but should not be used to
test the statistical significance of the regression (Drummond,
Pybus, and Rambaut 2003b; see above). The human influenza
virus phylogeny (Fig. 2A) exhibits the strongest association be-
tween genetic distances and sampling dates (R2¼ 0.80). The
bison mtDNA (Fig. 2C) and hepatitis C virus (Fig. 2B) trees have
more diffuse regression plots (R2¼ 0.21 and R2¼ 0.13, respect-
ively). All data sets exhibit a positive correlation between gen-
etic divergence and sampling time and appear to be suitable for
phylogenetic molecular clock analysis in BEAST or other pro-
grams. Formal model selection (undertaken using likelihood
ratios or Bayes Factors, e.g.) will be necessary to determine, for
each data set, whether a strict, relaxed or local clock model is
the most appropriate model for analysis.

2.2 Example 2: heterochronous data quality control

TempEst can help to identify sequences whose sampling date is
incongruent with their genetic divergence and phylogenetic
position, and can provide clues as to the potential cause of such
anomalies. Investigation begins by selecting the ‘Show ancestor
traces’ button in the ‘Root-to-tip’ panel. Once activated, this tool
draws a line from each data point on the regression plot (i.e.,
each tip) to a position on the regression line; the latter is deter-
mined by the root-to-tip genetic distance of the phylogenetic
node that is immediately ancestral to the selected tip (Fig. 3).
This allows the user to distinguish between two situations:

a. A sequence/tip lies substantially above (or below) regression
line (large y-axis residual). This indicates that the tip has
considerably more (or less) genetic divergence from the root
than one would expect given its date of sampling. This scen-
ario is illustrated in Fig. 3A by the tip highlighted in blue.
This situation may indicate a problem with the sequence it-
self, such as (1) low sequencing quality, (2) errors in se-
quence assembly, (3) an alignment error in part of the

sequence, (4) an error in phylogenetic inference, (5) exces-
sive passaging of a micro-organism leading to the accumula-
tion of cell-line adaptations, or (6) a biological process such
as recombination or hypermutation.

b. When a sequence/tip lies substantially to the left or right of
the regression line (large x-axis residual). This indicates that
the specified date of sampling does not match the observed
genetic divergence and is illustrated in Fig. 3B by the tip
highlighted in green. Possible causes of this situation in-
clude (1) sequences that are mislabelled and have been
ascribed an incorrect date of sampling during data collation
and processing, (2) biological contamination by a sample
from a different time, (3) an error in phylogenetic inference,
and (4) the use of incorrect sampling dates for archived, ref-
erence or vaccine virus strains. An example of the latter
situation is given in Fig. 3A (red points); vaccine or labora-
tory reference strains undergo little to no evolution while in
storage and therefore their root-to-tip divergence is lower
than their sampling date would suggest.

3. Discussion

The phylogenetic molecular clock methods implemented in
BEAST and other software packages are powerful and often
easy to use, but they make significant biological assumptions
and are dependent on the quality of the sequence data used.
We recommend that TempEst is always used to investigate het-
erochronous sequence alignments before they are subjected to
model-based inference in BEAST. We hope that by using the
tools implemented in TempEst researchers will avoid reporting
evolutionary rate estimates that are either invalid (due to an ab-
sence of temporal signal) or biased (due to the inclusion of se-
quences with wrong sampling dates, alignment errors, etc.). As
with all phylogenetic methods, TempEst assumes that recom-
bination is rare or absent within the sample under investiga-
tion, although, as noted above, it may sometimes detect
isolated recombinant sequences within an alignment of non-re-
combinant sequences.

TempEst is a tool for qualitative data exploration and should
not be used to test hypotheses or undertake statistical model
selection. Because sequences are statistically non-independent,
these tasks should be performed in a phylogenetic framework
that explicitly incorporates shared ancestry. Research is
ongoing into the development of statistical methods that can
formally test for the presence of temporal signal in heterochro-
nous alignments. Drummond et al. (2003a) sketched, in the con-
text of two sequences, a simple likelihood ratio test of the null
hypothesis that there is zero measurable molecular evolution
between sampling times. Firth et al. (2010) introduced an alter-
native randomization approach. Specifically, sampling dates
are randomized on tree tips multiple times, then each random-
ization replicate is subjected to phylogenetic molecular clock in-
ference using BEAST. The distribution of rates estimated from
the randomization replicates is then compared to the estimate
obtained from the empirical data (Firth et al. 2010). Duchene
et al. (2015) suggest that this procedure can be improved by ran-
domising clusters of sequences sampled at the same time ra-
ther than individual taxa. Although such randomization
approaches can demonstrate that the empirical sampling times
are more informative than random sampling times, they can be
very time consuming to compute for large data sets.

At present, the regression analysis in TempEst is based on a
single phylogeny and therefore does not take into account un-
certainty arising from phylogenetic estimation. To explore this
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Figure 2. Root-to-tip regression analyses. Plots of the root-to-tip genetic distance against sampling time are shown for phylogenies estimated from three alignments:

(A) 1,441 HA gene sequences belonging to seasonal human influenza A/H3N2 virus, sampled between 2001 and 2006. (B) Whole-genome sequences of 167 HCV subty-

pe1b strains, sampled between 1988 and 2008. (C) A mtDNA control region fragment from 182 bison samples, sampled from >60,000 years before the present to the pre-

sent day (time¼0). Sampling dates are given as years before the present.
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uncertainty, multiple trees can be sampled from a phylogenetic

posterior distribution or bootstrap distribution, each of which is
then analysed separately in TempEst (see Gray et al. 2013 for an
example). However, this approach will be automated in future
versions of the software.
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