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Abstract: In this thesis, we consider the existence of extreme solutions to a class of coupled
causal differential equations. By utilizing two comparison theorems and a monotone iterative
technique, we have obtained sufficient conditions under which the equations have extreme solutions.
One practical example is presented.
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1. Introduction

We first study the following causal differential equations:
x′(t) = Q1(x, y)(t), t ∈ I,
y′(t) = Q2(y, x)(t), t ∈ I,
g1(x(0), x(Y), y(0), y(Y)) = 0,
g2(y(0), y(Y), x(0), x(Y)) = 0,

(1)

where I = [0, Y], E = C(I2,R), Q1, Q2 ∈ C(E, E) are causal operators and g1, g2 ∈ C(R4,R) and
Q1, Q2 are bounded. The term causal operator first appeared in Volterra’s work on the integral
equations. It is a non-anticipative operator, and it was first applied by Volterra. The definition of
the operator was given by Tonelli and Tychonoff. This theory can unify many types of equations.
Peer works were reported by Drici et al. [1] and Geng [2]. Compared with traditional models,
causal differential equations are more similar to real-world problems and more widely used. It has
been tapped in depth by many authors in these years. Interested readers are referred to the monograph
[3] and article [4] for more details.

At the same time, the research of a class of coupled differential equations is also crucial as such a
system often occurs in real-life applications; it is a physical model of phenomena, in terms of the fluid
dynamic traffic model, oscillations of earthquakes and economics and has attracted much attention;
see, e.g., [5–7]. It should be noted that, in [8], Jankowski discussed coupled causal difference equations.
The author developed the monotone iterative technique and gained the existence of extreme solutions
to such equations. Affected by the above results, we study a class of coupled causal differential
equations and obtain the extreme solutions.

The following is the frame of this paper. In Section 2, two comparison theorems are presented.
In Section 3, we investigate the linear differential equations of (1). In Section 4, we establish the
existence of the extremal solutions to (1). In the end, a computed example is given to verify the outcome.
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2. Comparison Results

In this part, we set E = C(I,R) and we define:

‖ f − g‖ := max
t∈I
| f (t)− g(t)|.

Let Ω := E
⋂

C1(I,R). A pair (x, y), x, y ∈ Ω is treated as a solution to Problem (1) if it contains (1).

Definition 1. Suppose that Q ∈ C(E, E) is called a causal operator if for every pair of elements in E such that
xi(s) = yi(s), i = 1, 2 for t0 ≤ s ≤ t ≤ Y, then:

Q(x1, x2)(s) = Q(y1, y2)(s), t0 ≤ s ≤ t.

Lemma 1. Suppose that z ∈ Ω satisfies:{
z′(t) ≤ −A(t)z(t)− (Lz)(t), t ∈ I,
z(0) ≤ λz(Y),

(2)

where A ∈ C(I, [0,+∞)) and L ∈ C(E, E) is a positive linear operator satisfying:

∫ Y

0
[A(t) + L(t)]dt ≤ ε, 0 < ε ≤ 1 . (3)

then z(t) ≤ 0, t ∈ I.

Proof. Let us say z(t) ≤ 0 ∀t ∈ I is not true; one has two situations:
Case 1. There exists t̄ ∈ I that meets z(t̄) > 0, z(t) ≥ 0, t ∈ I.
Then, from (2), we have z′(t) ≤ 0 for t ∈ I; hence, z(t) is nonincreasing on I. If ε = 1, z(0) ≤ z(Y)

shows that z(t) ≡ is constant, so z′(t) ≡ 0. As z(t̄) > 0, one has 0 ≡ z′(t̄) ≤ −A(t)z(t̄)− (Lz)(t̄) < 0,
which is a conflict. If 0 < ε < 1, then z(Y) ≤ z(0) ≤ εz(Y), so it is also a conflict.

Case 2. There are tm and tn ∈ I satisfying z(tm) < 0 and z(tn) > 0.
Put inf

t∈I
z(t) = −r, r > 0. With generality, we may assume that z(tm) = −r.

Subcase (a). If tm < tn, from (2), we gain:

z(tn)− z(tm) =
∫ tn

tm
z′(t)dt ≤ −

∫ tn

tm
[A(t)z(t) + (Lz)(t)]dt

≤ r
{∫ Y

0
[A(t) + L(t)]dt

}
hence:

0 < z(tn) ≤ −r + r
∫ Y

0
[A(t) + L(t)]dt] = r[

∫ Y

0
[A(t) + L(t)]dt− 1],

which yields: ∫ Y

0
[A(t) + L(t)]dt > 1,

which contradicts (3).
Subcase (b). If tm > tn, from (2), we get:

z(Y) = z(tm) +
∫ Y

tm
z′(t)dt ≤ z(tm) + r

∫ Y

tm
[A(t) + L(t)]dt

and:

z(tn) = z(0) +
∫ tn

0
z′(t)dt ≤ z(0) + r

∫ tn

0
[A(t) + L(t)]dt.
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Using the fact z(0) ≤ εz(Y), 0 < ε ≤ 1, we obtain:

0 < z(tn)≤ ε

(
z(tm) + r

∫ Y

tm
[A(t) + L(t)]dt

)
+ r

∫ tn

0
[A(t) + L(t)]dt

≤ −rε + r
{∫ Y

0
[A(t) + L(t)]dt

}
= r

{∫ Y

0
[A(t) + L(t)]dt− ε

}
,

which is a conflict with a given condition. Therefore, z(t) ≤ 0, t ∈ J. The proving process is done.

Lemma 2. Let j, k ∈ Ω be such that:
j′(t) ≤ −A1(t)j(t) + A2(t)k(t)− (L1 j)(t) + (L2k)(t), t ∈ I,

k′(t) ≤ −A1(t)k(t) + A2(t)j(t)− (L1k)(t) + (L2 j)(t), t ∈ I,

j(0) ≤ ε1 j(Y) + ε2k(Y),

k(0) ≤ ε1k(Y) + ε2 j(Y),

(4)

where 0 < ε1 + ε2 ≤ 1, 0 < ε1− ε2 ≤ 1, A1, A2 ∈ C(I, [0,+∞)), A1(t) ≥ A2(t), t ∈ I, L1−L2 ∈ C(E, E)
and L1 + L2 ∈ C(E, E) are positive linear operators. Additionally,

max
{∫ Y

0 [A1(t) + A2(t) + L1(t) + L2(t)]dt
ε1 − ε2

,

∫ Y
0 [A1(t)− A2(t) + L1(t)−L2(t)]dt

ε1 + ε2

}
≤ 1.

(5)

Then, j(t) ≤ 0 and k(t) ≤ 0, t ∈ I.

Proof. Let c(t) = j(t) + k(t), t ∈ I. Then:

c′(t) = j′(t) + k′(t) ≤ −A1(t)c(t) + A2(t)c(t)− [(L1 −L2)c](t)

≤ −[A1(t)− A2(t)]c(t)− [(L1 −L2)c](t), t ∈ I

and:
c(0) = j(0) + k(0) ≤ ε1c(Y) + ε2c(Y) = (ε1 + ε2)c(Y).

From Lemma (1), c(t) ≤ 0. Hence, j(t) ≤ −k(t) and k(t) ≤ −j(t), then we have:{
j′(t) ≤ −[A1(t) + A2(t)]j(t)− [(L1 + L2)j](t), t ∈ I,
j(0) ≤ (ε1 − ε2)j(Y)

and: {
k′(t) ≤ −[A1(t) + A2(t)]k(t)− [(L1 + L2)k](t), t ∈ I,
k(0) ≤ (ε1 − ε2)k(Y).

From Lemma (1), one obtains j(t) ≤ 0, k(t) ≤ 0, t ∈ I. This is the end.

3. Existence Results

Let us consider the linear problem:{
x′(t) = −A(t)x(t)− (Lx)(t) + σ(t), t ∈ I,
N1x(0)− N2x(Y) = B,

(6)

where N1, N2 are constants, σ ∈ E, A ∈ C(I, [0,+∞)), B ∈ R.
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Lemma 3. x ∈ Ω is one solution of (6) when x ∈ E is one solution of the equation:

x(t) =
Be−

∫ t
0 A(r)dr

N1 − N2e−
∫ Y

0 A(r)dr
+
∫ Y

0
D(t, s)[σ(s)− (Lx)(s)]ds , (7)

where B = −g(η(0), η(T)) + N1η(0)− N2η(Y), η ∈ Ω, A ∈ C(I, [0,+∞)), N1, N2 are constants with

N1 6= N2e−
∫ Y

0 A(r)dr, and:

D(t, s) :=


N2

N1−N2e−
∫ Y

0 A(r)dr
e
∫ 0

t A(r)dre
∫ s

Y A(r)dr + e
∫ s

t A(r)dr, 0 ≤ s < t ≤ Y,

N2

N1−N2e−
∫ Y

0 A(r)dr
e
∫ 0

t A(r)dre
∫ s

Y A(r)dr, 0 ≤ t ≤ s ≤ Y.

Proof. Suppose that x ∈ Ω is one solution of Problem (6), one achieves:

x(t) = x(0)e−
∫ t

0 A(r)dr +
∫ t

0
e
∫ s

t A(r)dr[σ(s)− (Lx)(s)]ds.

Let t = Y; we get:

x(Y) = x(0)e−
∫ Y

0 A(r)dr +
∫ Y

0
e
∫ s

Y A(r)dr[σ(s)− (Lx)(s)]ds.

Since N1x(0)− N2x(T) = B, we obtain:

x(0) =
B

N1 − N2e−
∫ Y

0 A(r)dr

+
N2

N1 − N2e−
∫ Y

0 A(r)dr

∫ Y

0
e
∫ s

Y A(r)dr[σ(s)− (Lx)(s)]ds .

Then:

x(t) =
Be−

∫ t
0 A(r)dr

N1 − N2e−
∫ Y

0 A(r)dr
+
∫ Y

0
D(t, s)[σ(s)− (Lx)(s)]ds,

where:

D(t, s) =


N2

N1−N2e−
∫ Y

0 A(r)dr
e
∫ 0

t A(r)dre
∫ s

Y A(r)dr + e
∫ s

t A(r)dr, 0 ≤ s < t ≤ Y,

N2

N1−N2e−
∫ Y

0 A(r)dr
e
∫ 0

t A(r)dre
∫ s

Y A(r)dr, 0 ≤ t ≤ s ≤ Y.

Apparently, if x(t) is a solution of (6), so x(t) will also be a solution of (7). The proof
is complete.

Clearly, ‖D(t, s)‖ = max
{∣∣∣∣ N1

N1−N2e−
∫ Y

0 A(r)dr

∣∣∣∣, ∣∣∣∣ N2

N1−N2e−
∫ Y

0 A(r)dr

∣∣∣∣}. In the next part, we define

‖D(t, s)‖ = d.

Lemma 4. A ∈ C(I, [0,+∞)), N1 6= N2e−
∫ Y

0 A(r)dr, and:

d ‖L‖Y < 1.

Then, (6) has only one solution.



Symmetry 2018, 10, 421 5 of 11

Proof. Give a mapping F : E→ E by:

(Fx)(t) :=
Be−

∫ t
0 A(r)dr

N1 − N2e−
∫ Y

0 A(r)dr
+
∫ Y

0
D(t, s)[σ(s)− (Lx)(s)]ds.

For any x1, x2 ∈ E, we have:

‖Fx1 − Fx2‖ ≤ d ‖L‖ Y ‖x2 − x1‖.

From the Banach contraction principle, (6) has only one solution. The proof is then finished.

Remark 1. If A ∈ C(I, [0,+∞)), N1 ≥ N2 > 0, and:

N1

N1 − N2e−
∫ Y

0 A(r)dr
‖L‖Y < 1.

Then, (6) has only one solution.

Let B(k, h)(t) := A1(t)k(t) + A2(t)h(t) + (L1k)(t) + (L2h)(t).

Theorem 1. Suppose that linear operators L1 − L2 ∈ C(E, E) and L1 + L2 ∈ C(E, E) are positive.
Let σ1, σ2 ∈ E, C1, C2 ∈ R, A1, A2 ∈ C(I, [0,+∞)) and A1(t) ≥ A2(t) for t ∈ I. Moreover,

we assume that (5) holds, N1, N2, N3 are constants with N1 6= (N2 − N3)e−
∫ Y

0 [A1(r)+A2(r)]dr,

N1 6= (N2 + N3)e−
∫ Y

0 [A1(r)−A2(r)]dr, and:

max
{

N1‖L1+L2‖Y
N1−(N2−N3)e

−
∫ Y

0 [A1(r)+A2(r)]dr
, N1‖L1−L2‖Y

N1−(N2+N3)e
−
∫ Y

0 [A1(r)−A2(r)]dr

}
< 1 . (8)

Then, the system: 
k′(t) = −B(k, h)(t) + σ1(t), t ∈ I,
h′(t) = −B(h, k)(t) + σ2(t), t ∈ I,
N1x(0) = N2k(Y)− N3h(Y) + A1,
N1y(0) = N2h(Y)− N3k(Y) + A2,

(9)

has only one solution.

Proof. Set e = k + h, l = k− h. Then, we have:{
e′(t) = −[A1(t) + A2(t)]e(t)− [(L1 + L2)e](t) + σ1(t) + σ2(t),
N1e(0) = (N2 − N3)e(Y) + C1 + C2,

(10)

and: {
l′(t) = −[A1(t)− A2(t)]l(t)− [(L1 −L2)l](t) + σ1(t)− σ2(t),
N1l(0) = (N2 + N3)l(Y) + C1 − C2.

(11)

By Lemma 4, both (10) and (11) have a unique solution.

Note that k =
e + l

2
, h =

e− l
2

, and the pair (k, h) is the only solution of Problem (9). This ends
the proof.



Symmetry 2018, 10, 421 6 of 11

4. Main Results

Definition 2. A pair (S, W) is seen as a coupled lower and upper approximative solution to (1) if:
S′(t) ≤ Q1(S, W)(t), t ∈ I,
W ′(t) ≥ Q2(W, S)(t), t ∈ I,
g1(S(0), S(Y), W(0), W(Y)) ≤ 0,
g2(W(0), W(Y), S(0), S(Y)) ≥ 0.

Theorem 2. Suppose that (5), (8) hold, Q1, Q2 ∈ C(E, E) and
(H1) the function (S, W) ∈ Ω is the coupled lower and upper approximative solution to Problem (1) satisfying
S(t) ≤ W(t), t ∈ I; (H2) there exist A1, A2 ∈ C(I, [0,+∞)) with A1(t) ≥ A2(t) ≥ 0 for t ∈ I, and the
positive linear operators L1 −L2,L1 + L2 ∈ C(E, E) satisfy:

Qi(x, y)(t)−Qj(v, w)(t)

≤ A1(t)[v(t)− x(t)] + A2(t)[w(t)− y(t)] + [L1(v− x)](t) + [L2(w− y)](t)

for i ≥ j, i,j = 1, 2 for t ∈ I, S ≤ x ≤ v ≤ W, S ≤ w ≤ y ≤ W; (H3) the functions g1, g2 ∈ C(R4,R) are
non-decreasing of the third variable and satisfy:

gi(x̄1, x̄2, y, y1)− gj(x1, x2, y, ȳ1) ≤ N1(x̄1 − x1)− N2(x̄2 − x2) + N3(y1 − ȳ1)

for i ≥ j, i, j = 1, 2, S(0) ≤ x1 ≤ x̄1 ≤ W(0), S(0) ≤ x2 ≤ x̄2 ≤ W(0), S(Y) ≤ y ≤ ȳ ≤ W(Y),
S(Y) ≤ y1 ≤ ȳ1 ≤W(Y), where N1 ≥ N2 + N3, N2 > 0, N3 > 0 and ε1 = N2

N1
, ε2 = N3

N1
.

Then, Problem (1) has solution (x, y) ∈ [S, W] × [S, W], where [S, W] = {ξ ∈ Ω : S(t) ≤ ξ(t) ≤
W(t), t ∈ I}.

Proof. Fist, using the following equations, one constructs two sequences {Sn(t)} and {Wn(t)}:
S′n(t) = −B(Sn, Wn)(t) + F1(Sn−1, Wn−1)(t), t ∈ I,
W ′n(t) = −B(Wn, Sn)(t) + F2(Wn−1, Sn−1)(t), t ∈ I,
N1Sn(0) = N2Sn(Y)− N3Wn(Y) + ϕ1(Sn−1, Wn−1),
N1Wn(0) = N2Wn(Y)− N3Sn(Y) + ϕ2(Wn−1, Sn−1),

(12)

with n = 1, 2, . . ., where S0 = S, W0 = W, Fi(x, y)(t) = Qi(x, y)(t) + A1(t)x(t) + A2(t)y(t) +
(L1x)(t) + (L1y)(t) and ϕi(u, v) = N1u(0)− N2u(Y) + N3v(Y)− gi(u(0), u(Y), v(0), v(Y)), i = 1, 2.

Apparently, from Theorem 1, Problem (12) has only one solution. Now, we are going to divide
this proof into five parts.

Step 1. One shows that S ≤ S1 and W1 ≤W.
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Set r(t) = S(t)− S1(t), s(t) = W1(t)−W(t). From (H1), we get:

r′(t) = S′(t)− S′1(t)

≤ Q1(S, W)(t) + B(S1, W1)(t)− F1(S, W)(t)

≤ −A1(t)r(t) + A2(t)s(t)− (L1r)(t) + (L2s)(t), t ∈ I,

s′(t) = W ′1(t)−W ′(t)

≤ B(W1, S1)(t) + F2(W, S)(t)−Q2(W, S)(t)

≤ −A1(t)s(t) + A2(t)r(t)− (L1s)(t) + (L2r)(t), t ∈ I,

r(0) = S(0)− S1(0)

≤ 1
N1

g1(S(0), S(Y), W(0), W(Y)) +
N2

N1
r(Y) +

N3

N1
s(Y)

≤ N2

N1
r(Y) +

N3

N1
s(Y),

and:
s(0) = W1(0)−W(0)

≤ − 1
N1

g2(W(0), W(Y), S(0), W(Y)) +
N2

N1
s(Y) +

N3

N1
r(Y)

≤ N2

N1
s(Y) +

N3

N1
r(Y).

From Lemma 2 and N1 ≥ N2 > 0, N1 ≥ N3 > 0, we have r(t) ≤ 0 and s(t) ≤ 0, so S ≤ S1 and
W1 ≤W.

Step 2. We show that Wn ≤Wn−1 and Sn−1 ≤ Sn if Wn−1 ≤Wn−2, Sn−2 ≤ Sn−1, n = 2, 3, . . ..
Set e(t) = Sn−1(t)− Sn(t), l(t) = Wn(t)−Wn−1(t). From (H1), (H2), we get:

e′(t) = S′n−1(t)− S′n(t)

= −B(Sn−1, Wn−1)(t) + F1(Sn−2, Wn−2)(t) + B(Sn, Wn)(t)− F1(Sn−1, Wn−1)(t)

≤ −A1(t)e(t) + A2(t)l(t)− (L1e)(t) + (L2l)(t) + Q1(Sn−2, Wn−2)

−Q1(Sn−1, Wn−1) + A1(t)[Sn−2(t)− Sn−1(t)] + A2(t)[Wn−2(t)−Wn−1(t)]

+ [L1(Sn−2 − Sn−1)](t) + [L2(Wn−2 −Wn−1)](t)

≤ −A1(t)e(t) + A2(t)l(t)− (L1e)(t) + (L2l)(t), t ∈ I ,

and:

l′(t) = W ′n(t)−W ′n−1(t)

= −B(Wn, Sn)(t) + F2(Wn−1, Sn−1)(t) + B(Wn−1, Sn−1)(t)− F2(Wn−2, Sn−2)(t)

≤ −A1(t)l(t) + A2(t)e(t)− (L1l)(t) + (L2e)(t) + Q2(Wn−2, Sn−2)

−Q2(Wn−1, Sn−1) + A1(t)[Wn−1(t)−Wn−2(t)] + A2(t)[Sn−1(t)− Sn−2(t)]

+ [L1(Wn−1 −Wn−2)](t) + [L2(Sn−1 − Sn−2)](t)

≤ −A1(t)l(t) + A2(t)e(t)− (L1l)(t) + (L2e)(t), t ∈ I .
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By (H1) and (H3), we have:

N1e(0) = N1[Sn−1(0)− Sn(0)]

= N1Sn−1(0)− N2Sn(Y) + N3Wn(Y)− ϕ1(Sn−1, Wn−1)

= N2e(Y) + N3l(Y) + g1(Sn−1(0), Sn−1(Y), Wn−1(0), Wn−1(Y))

− g1(Sn−2(0), Sn−2(Y), Wn−2(0), Wn−2(Y)) + N1[Sn−2(0)− Sn−1(0)]

+ N2[Sn−1(Y)− Sn−2(Y)] + N3[Wn−2(Y)−Wn−1(Y)]

≤ N2e(Y) + N3l(Y) ,

and:
N1l(0) = N1[Wn(0)−Wn−1(0)]

= N2Wn(Y)− N3Sn(Y) + ϕ2(Wn−1, Sn−1)− N1Wn−1(0)

= N2l(Y) + N3e(Y)− g2(Wn−1(0), Wn−1(Y), Sn−1(0), Sn−1(Y))

+ g2(Wn−2(0), Wn−2(Y), Sn−2(0), Sn−2(Y)) + N1[Wn−1(0)−Wn−2(0)]

− N2[Wn−1(Y)−Wn−2(Y)] + N3[Sn−1(Y)− Sn−2(Y)]

≤ N2l(Y) + N3e(Y).

Using Lemma 2 and N1 ≥ N2 > 0, N1 ≥ N3 > 0, we have e ≤ 0, l ≤ 0, so Wn ≤Wn−1, Sn−1 ≤ Sn.
From mathematical induction, one gets that {Sn} is a nondecreasing sequence, and {Wn} is a

nonincreasing sequence.

Step 3. We claim that S1 ≤W1 if S ≤W.
Let u(t) = S1(t)−W1(t). Using (H2) and (H3), one receives:

u′(t) = S′1(t)−W ′1(t)

= −B(S1, W1)(t) + F1(S, W)(t) + B(W1, S1)(t)− F2(W, S)(t)

= −[A1(t)− A2(t)]u(t)− [(L1 −L2)u](t) + Q1(S, W)(t) + A1(t)S(t)

+ A2(t)W(t) + (L1S)(t) + (L2W)(t)−Q2(W, S)(t)

− A1(t)W(t)− A2(t)S(t)− (L1W)(t)− (L2S)(t)

≤ −[A1(t)− A2(t)]u(t)− [(L1 −L2)u](t), t ∈ I,

and:
N1u(0) = N1[S1(0)−W1(0)]

= (N2 + N3)u(Y) + ϕ1(S, W)− ϕ2(W, S)

= (N2 + N3)u(Y) + N1[S(0)−W(0)] + (N2 + N3)[W(Y)− S(Y)]

− g1(S(0), S(Y), W(0), W(Y)) + g2(W(0), W(Y), S(0), S(Y))

≤ (N2 + N3)u(Y).

From Lemma 1, one arrives at u ≤ 0, and S1 ≤W1. Utilizing the mathematical induction, we gain
Wn ≤ Sn, n = 1, 2, . . ..

Step 4. By the above three steps, we obtain:

S0 ≤ S1 ≤ · · · ≤ Sn ≤ · · · ≤Wn ≤ · · · ≤W1 ≤W0,
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and every Sn, Wn satisfies (12) for all n. We can get that the sequences {Sn(t)}, {Wn(t)} are
monotonically and bounded. Then, there are ρ, r satisfying that lim

n→∞
Sn(t) = ρ(t), lim

n→∞
Wn(t) = r(t)

and satisfying the equations: 
ρ′(t) = Q1(ρ, r)(t), t ∈ I,
r′(t) = Q2(r, ρ)(t), t ∈ I,
g(ρ(0), ρ(Y), r(0), r(Y)) = 0,
g(r(0), r(Y), ρ(0), ρ(Y)) = 0.

It proves that a pair (ρ, r) is the solution of Problem (1).

Step 5. One verifies that (ρ, r) is an extremal solution of (1) in [S, W].
Let (x, y) be any pair of solutions for (1) satisfying S(t) ≤ x(t), y(t) ≤ W(t). We assume that

there is a positive integer n satisfying Sn−1(t) ≤ x(t), y(t) ≤ Wn−1(t). Set u(t) = Sn(t)− x(t) and
v(t) = y(t)−Wn(t). By using (H2) and (H3), one gets:

u′(t) = S′n(t)− x′(t)

= −B(Sn, Wn)(t) + F1(Sn−1, Wn−1)−Q1(x, y)(t)

= −A1(t)Sn(t)− A2(t)Wn(t)− (L1Sn)(t)− (L2Wn)(t) + Q1(Sn−1, Wn−1)(t)

+ A1(t)Sn−1(t) + A2(t)Wn−1(t) + (L1Sn−1)(t) + (L2Wn−1)(t)−Q1(x, y)(t)

≤ −A1(t)u(t) + A2(t)v(t)− (L1u)(t) + (L2v)(t), t ∈ I,

v′(t) = y′(t)−W ′n(t)

= Q2(x, y)(t) + B(Wn, Sn)(t)− F2(Wn−1, Sn−1)

= Q2(y, x)(t) + A1(t)Wn(t) + A2(t)Sn(t) + (L1Wn)(t) + (L2Sn)(t)

−Q2(Wn−1, Sn−1)(t)− A1(t)Wn−1(t)− A2(t)Sn−1(t)

− (L1Wn−1)(t)− (L2Sn−1)(t)

≤ −A1(t)v(t) + A2(t)u(t)− (L1v)(t) + (L2u)(t), t ∈ I,

N1u(0) = N1[Sn(0)− x(0)]

= N2Sn(Y)− N3Wn(Y) + ϕ1(Sn−1, Wn−1)− N1x(0)

= N2Sn(Y)− N3Wn(Y) + N1Sn−1(0)− N2Sn−1(Y) + N3Wn−1(Y)− N1x(0)

− g1(Sn−1(0), Sn−1(Y), Wn−1(0), Wn−1(Y)) + g1(x(0), x(Y), y(0), y(Y))

≤ N2Sn(Y)− N2x(Y)− N3Wn(Y) + N3y(Y)

≤ N2u(Y) + N3v(Y),

and:

N1v(0) = N1[y(0)−Wn(0)]

= N1y(0)− N2Wn(Y) + N3Sn(Y) + ϕ1(Wn−1, Sn−1)

= N1y(0)− N2Wn(Y) + N3Sn(Y)− N1Wn−1(0) + N2Wn−1(Y)− N3Sn−1(Y)

+ g1(Wn−1(0), Wn−1(Y), Sn−1(0), Sn−1(Y))− g1(y(0), y(Y), x(0), x(Y))

≤ −N2Wn(Y) + N2y(Y) + N3Sn(Y)− N3x(Y)

≤ N2v(Y) + N3u(Y).

From Lemma 2, one see that Sn(t) ≤ x(t), y(t) ≤ Wn(t) on I. Since S(t) ≤ x(t), y(t) ≤ W(t),
by induction, one gets Sn(t) ≤ x(t), y(t) ≤ Wn(t) for every n ∈ N. Now, take the limit as n → ∞,
then ρ(t) ≤ x(t), y(t) ≤ r(t). The proof is over.
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5. Example

Example 1. Assume that: 
z′(t) = Q1(z, w)(t), t ∈ [0, Y],
w′(t) = Q2(w, z)(t), t ∈ [0, Y],
g1(z(0), z(Y), w(0), w(Y)) = 0,
g2(w(0), w(Y), z(0), z(Y)) = 0,

(13)

with:

Q1(z, w)(t) = −tz(t)− Y
5t

∫ t

0
z(s)ds +

3Y
10t3

∫ t

0
s2w(s)ds,

Q2(w, z)(t) = −tw(t)− Y
5t

∫ t

0
w(s)ds +

3Y
10t3

∫ t

0
s2z(s)ds,

g(z(0), z(Y), w(0), w(Y)) = 4z(0)− 2z(Y) + w(Y)− 2,
g(w(0), w(Y), z(0), z(Y)) = 4w(0)− 2w(Y) + z(Y)− 2.

Set S = 0, W = 2. It is easily verified that W is an upper solution, S is a lower solution and S ≤ W.

Take (L1z)(t) =
Y
5t

∫ t

0
z(s)ds, (L2w)(t) =

3Y
10t3

∫ t

0
s2w(s)ds, A1(t) = t, A2(t) = 0, N1 = 4, N2 = 2,

N3 = 1 and Y = 1
2 . It is easy to see that (H1), (H2) and (H3) are satisfied. By simple computation, we obtain

L1(t) = 0.2Y, L2(t) = 0.1Y, and:

∫ Y

0
[A1(t) + A2(t) + L1(t) + L2(t)] dt = 0.2 <

N2 − N3

N1
= 0.25,∫ Y

0
[A1(t)− A2(t) + L1(t)−L2(t)] dt = 0.15 <

N2 + N3

N1
= 0.75,

N1

N1 − (N2 − N3)e−
∫ Y

0 [A1(r)+A2(r)]dr
‖L1 + L2‖Y < 1,

N1

N1 − (N2 + N3)e−
∫ Y

0 [A1(r)+A2(r)]dr
‖L1 −L2‖Y < 1 .

Hence, utilizing Theorem 2, (13) has an extreme solution in [S, W]× [S, W].

This equation can be used as a simple model of the physical field, and this example shows that
the conclusion in this paper applies to Problem (13).

6. Conclusions

In this paper, we obtain the existence results of coupled causal differential equations by means of
the monotone iterative technique. In practice, after modeling in our field, if such coupled differential
equations are obtained, we do not have to calculate the solution; we only need to use the sufficient
conditions in this paper to judge the existence of the solution.
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