Converting Oxygen Uptake to Energy Expenditure Substantially Increases Prediction Error

Matthew S. Tenan¹, Duncan Macfarlane² and Anthony C. Hackney³ ¹U.S. Army Research Laboratory, Research Triangle Park, NC, USA ²Hong Kong University, Hong Kong, China ³University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

The authors' proposal to use energy expenditure (EE) instead of oxygen uptake (VO₂) to express exercise intensity (1) is an interesting proposition; however, the appropriateness of this data conversion is highly dependent upon the research question. We need to stress that this data conversion introduces assumptions and a substantial increase in predictive error. Modeling indirect calorimetry error via Tenan's method (4) and Macfarlane et al's data (3), we simulated the error from VO₂ alone. Since the author's do not directly specify the equation for converting VO₂ to EE (except at RER \geq 1.0), we used the Brockway Equation (2), with no protein contribution (an added assumption):

As Brockway notes, numerous "fudge factors" exist in the equation, such as assuming 100% of carbohydrate metabolism is starch, as opposed to glucose or glycogen. We therefore apply a reasonable assumption that each constant arises from a standard normal distribution (mean ± 1 sd). As Table 1 shows, the conversion to EE more than doubles the resultant error in many instances. There are undoubtedly instances where the conversion of VO₂ to EE is necessary, but converting a "measured" variable into a "predicted" variable increases both error and additional assumptions that need to be carefully considered when undertaking such studies.

		Simulated Distribution Mean	Simulated Distribution Median	Simulated Distribution Standard Deviation	Coefficient of Variation	Δ Error for EE vs. VO ₂
VO2 = 0.5 L/min RER = 0.85	VO ₂	0.50	0.50	0.03	5.2%	+2.6%
	EE ¹ (kJ)	10.21	10.20	0.79	7.8%	
VO ₂ = 1.0 L/min RER = 0.93	VO ₂	1.00	1.00	0.03	2.6%	+4.3%
	EE ¹ (kJ)	20.79	20.78	1.44	6.9%	
VO ₂ = 1.5 L/min RER = 0.97	VO ₂	1.50	1.50	0.03	2.0%	+4.8%
	EE ¹ (kJ)	31.43	31.45	2.15	6.8%	
VO ₂ = 2.0 L/min RER = 1.00	VO ₂	2.00	2.00	0.07	3.2%	+4.0%
	EE ¹ (kJ)	42.19	42.21	3.05	7.2%	
	EE ² (kJ)	43.49	43.44	2.44	5.6%	+2.4%

Table 1. Results of 10,000 simulations and resulting distribution for measurement error of VO₂ and EE.

¹Using Brockway Equation and assuming constants have a 'standard' normal distribution (i.e. ± 1 sd).

²Using the author-specified equation when RER \geq 1.0: EE = VO2*21.745. Assuming a 'standard' normal distribution around constant.

1. **Beck ON, Kipp S, Byrnes WC, and Kram R**. Use aerobic energy expenditure instead of oxygen uptake to quantify exercise intensity and predict endurance performance. *J Appl Physiol* 2018.

2. **Brockway J**. Derivation of formulae used to calculate energy expenditure in man. *Hum Nutr Clin Nutr* 41: 463-471, 1987.

3. **Macfarlane D, and Wu H**. Inter-unit variability in two ParvoMedics TrueOne 2400 automated metabolic gas analysis systems. *Eur J Appl Physiol* 113: 753-762, 2013.

4. **Tenan MS**. A statistical method and tool to account for indirect calorimetry differential measurement error in a single-subject analysis. *Front Physiol* 7: 2016.