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temporally and spatially evaluating other high resolution temperature
data within small areas.
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1. Introduction

Extreme hot weather events have been associated with significant excess morbidity and mortali
wide, especially in urban areas (Zhang et al., 2014; Harlan et al., 2006; Kalkstein andDavis, 1989; Rob
2008; Luber and McGeehin, 2008; Lugo-Amador et al., 2004; Intergovernmental Panel on Climat
2014). These events are typically defined as consecutive days withmaximum andminimum air tem
above the normal climatic range, which varies by location (Harlan et al., 2006; Meehl and Tebal
Some important and well-documented examples include N700 deaths during the 1995 heatwave i
(Semenza et al., 1996; Kaiser et al., 2007), N30,000 deaths during the 2003 heatwave in Europe (Rob
2008; García-Herrera et al., 2010; Sardon, 2007), and N15,000 deaths during the 2010 heatwave
(Barriopedro et al., 2011; Shaposhnikov et al., 2014). During the summer of 2009 a much smalle
greater Vancouver, Canada, was associated with an estimated 110 excess deaths, which correspo
40% increase in mortality when compared with previous summer weeks (Henderson and Kosats
Kosatsky et al., 2012).

Most epidemiologic analyses of such events usefixed site air temperaturemeasurements fromstati
tained by local, regional, or federal government agencies responsible for the environment (Robine et
Kaiser et al., 2007; García-Herrera et al., 2010; Barriopedro et al., 2011; Shaposhnikov et al., 2014; H
and Kosatsky, 2012; Kosatsky et al., 2012). While the quality of these data is high, the ability of these d
flect the temperature variability experienced by urban populations is generally low because they are
at the local scale (100–3000 m) or mesoscale (3000–100,000 m) (Oke, 2004; Oke, 1987; World Mete
Organization, 2008). In addition, these stations are often located in open areas to ensure no interfere
shading (World Meteorological Organization, 2008), so they do not reflect the distribution of popula
of built environments that can generate urban heat island (UHI) effects. In reality, air temperature
the microscale (b100 m) and the local scale (100–3000 m) (Saaroni and Ziv, 2010; Nichol and To, 2
the health risks associated with extremely hot weather are assumed to vary with the exposure.

To overcome the limitations of fixed site measurements, some studies have attempted to model sp
iability in urban air temperatures using remote sensing data or spatial models that integrate data from
sources.Many of these studies have used remote sensingmeasurements of land surface temperature (
platforms such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat (Sohrab
2014;Gallo et al., 2010; Benali et al., 2012). Somehave usedmobilemonitoring by vehicle or bicycle (Sa
Ziv, 2010; Cassano, 2013; Oke and Maxwell, 1967). Others have focused on the relationships betwee
perature and geographic variables such as distance from the coast, sky-view factor, and surface cover
and Svensson, 2003; Rinner and Hussain, 2011). For example, the greater Vancouver heat map (GVH
variables such as Landsat LST and sky-view factor to estimate the spatial variability in regional air tem
on very hot days at a resolution of 60 m (Ho et al., 2016a). The map was developed primarily for spa
eation of health risks within the region, and has been evaluated for that purpose (Ho et al., 2016b).

Spatial temperaturemodels such as the GVHMare typically built using data from fixedmonitorin
both the dependent variable and the validation data, with remote sensingmeasurements such as LST
more of the independent variables (Ho et al., 2016a; Nichol et al., 2009; Nichol andWong, 2008). Be
spatial resolution of the satellite data is often at themicroscale (b100m), themaps themselves displ
variability within the same scale but are rarely evaluated with microscale measurements. Furtherm
is little information on howwell the combination of fixed site and remote sensing inputs actually cap
microscale variability that the resultingmaps purport to reflect. The general objective of our study w
dress these uncertainties through the collection and analysis of microscale air temperature data, and
ison of those data to the independent and dependent variables frequently used in high resolution tem
mapping, as well as the estimates from such a model. More specifically, temperature data from 20
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greater Vancouverwere comparedwith: (1) fixed sitemeasurements at the nearest locations; (2) Landsat LST
measurements taken on the same day, where available; and (3) estimates from the GVHM.
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2. Methods

2.1. Study area and population

The greater Vancouver urban area is located on the southwest coast of the Canadian pr
British Columbia, in the Fraser River delta. The 2011 population was 2.3 million residents, with
age year-over-year increase of 1.9% (Statistics Canada, 2012). Typical summer weather is char
by low pressure, anti-cyclonic systems that are associated with warm, sunny conditions
winds (Oke and Hay, 1994). However, there are occasional rainy summer periods when a cyclon
affects the area (Oke and Hay, 1994). Because greater Vancouver is bounded by mountain ridg
north, the Pacific Ocean in the west, and the Fraser Valley in the east, complementary mesosc
sea breeze and mountain-valley circulation systems are commonly present in summer (Oke
1994; Richards, 2005).

2.2. Route selection

We selected 20walking routeswith an approximate length of 8–10 kmper route, whichwould a
to bewalked in 2–3 h (Fig. 1). Route selectionwas based on factors that could increase individual vul
to heat stress. Specifically, walking routes were chosen in areas that fulfilled either of the followin
(1) two of the listed conditions belowweremet for at least 30% of the area, or (2) one of the listed c
belowwasmet for at least 75% of the area. The conditionswere: (1) a population density N 100 pers
determined from the 2006 census (Statistics Canada, 2008; Sauder, 2010); (2) an estimated air tem
N3.5 °C warmer than Vancouver International Airport (YVR) according to the GVHM (Ho et al., 20
(3) an average household income below $30,000 from the 2006 census (Statistics Canada, 2008
2010). Census tractswith zero incomeoccurredwhen census results had been suppressed, so popula
sity andGVHMwere used as the only selection criteria in these areas. After initial identification, thefi
ing routes were spatially distributed across the study area to maximize coverage, especially in a
sparse fixed monitoring data. The routes were also selected to provide a range of distances to th
major bodies of water. Routes were created manually by retaining streets that optimized logistical
(Fig. 1). In addition to providing the Local Climate Zone (LCZ) categories (Mills and Foley, 2016) for e
and weather station (Table 1), we have also provided a keyhole markup language (KML) file (Fig. S
plementary material).

2.3. Mobile air temperature data collection

Mobile temperature data were collected on foot using a Met One 064-2 temperature senso
radiation shield, a Kestrel 4500 Portable Weather Station, a GoPro Hero 3 video camera, and
GPSMAP 78s GPS (Fig. 2). The Met One 064-2 and Kestrel 4500 were mounted to a PVC pipe f
height of 1.5 m and a distance of 50 cm away from the body to prevent direct heat transfer. Th
and GoPro video data were not used in the analyses presented here. TheMet One 064-2 tempera
sor was chosen for this study because its technical specifications indicate an accuracy of ±0.1
response time of 10 s in still air (Met One Instruments, Inc. MODEL 064-1, 064-2, 2005). Ou
speed calculations and our Kestrel 4500 data indicate that there was approximately 1.2 m/s of ve
for the air temperature sensor. Our preliminary testing indicated that, at walking speed, th
responded to a 2 °C fluctuation within 10 s and returned to 70% of baseline within 30 s, returnin
line required 5 min (unpublished data). All data were logged at 10 second intervals. Study data
lected on foot for two reasons. First, travelling by foot means smaller distances were covered w
time periods compared with travelling by vehicle or bike, which allows higher spatial resolution
many areas were only accessible by pedestrians or bicycles in greater Vancouver due to trans
network design.



Fig. 1.Map of all 20 greater Vancouver mobile air temperature sampling routes and all Metro Vancouver fixed stations used in this study. The Burnaby North and Richmond South stations were in grass
fields located in residential neighbourhoods with detached dwellings. The Burnaby South station was on a school rooftop in a residential neighbourhood with detached dwellings, and the Vancouver
International Airport (YVR) station was in a grass field hundreds of meters from an airport runway (Metro Vancouver, 2012).
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We collected 42 sets of data for the 20 sampling routes, with each route monitored at least twice. All data
collection was conducted fromMay to September 2014, between the hours of 15:00 and 18:00 to capture the

imum air
rcast days

Table 1
Station air temperature sensor heights and Local Climate Zone classifications for each site (Mills and Foley, 2016;MetroVancouver, 2012).

Site name Air temperature sensor height (m) Local climate zone

Fixed sites
Richmond South 8.2 9-sparsely built
Burnaby South 19.3 8-large low-rise
Burnaby North 5.7 4-open high-rise
YVR 5.5 E-bare rock or paved

Mobile routes
Route 1 1.5 5-open mid-rise
Route 2 1.5 2-compact mid-rise
Route 3 1.5 3-compact low-rise
Route 4 1.5 4-open high-rise
Route 5 1.5 6-open low-rise
Route 6 1.5 6-open low-rise
Route 7 1.5 4-open high-rise
Route 8 1.5 6-open low-rise
Route 9 1.5 4-open high-rise
Route 10 1.5 6-open low-rise
Route 11 1.5 4-open high-rise
Route 12 1.5 4-open high-rise
Route 13 1.5 5-open mid-rise
Route 14 1.5 4-open high-rise
Route 15 1.5 5-open mid-rise
Route 16 1.5 4-open high-rise
Route 17 1.5 6-open low-rise
Route 18 1.5 6-open low-rise
Route 19 1.5 6-open low-rise
Route 20 1.5 5-open mid-rise
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hottest hours of summer days in the region. Data collection occurred mainly on days when the max
temperature exceeded 22 °C at YVR to ensure high temperatures were present in the dataset. Ove
Fig. 2.Mobilemonitoring setup. Left image shows thewhite radiation shield containing theMet One 064-2 sensor and the yellow Kestrel
4500 PortableWeather Station. The right image shows the typical sampling setupwith the thermometersworn and theGoPro video cam-
era mounted on the left shoulder.



were not sampled, and any periods of cloudiness that occurred during a sampling run were manually record-
ed. Instrument times were synchronized prior to each run to maximize temporal matching. Replicate runs of
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each routewere designed such that theywerewalked on the opposite side of the street and in oppo
tions from each other.

2.4. Temperature data for comparison with microscale measurements

We compared mobile measurements with three different sources of temperature data: (1) fixe
temperature measurements from the local monitoring network; (2) Landsat measurements of LST
hot day air temperature estimates from the GVHM. Fixed air temperature measurements at 1-min
vals were received for four sites (Fig. 1 and Fig. S.1 in Supplementary material) from Metro Va
which is a partnership providing joint services to all the municipalities in the region (Metro Va
2015). The fixed site air temperature sensors had heights ranging from 5.5 m at YVR to 19.3 m at
South, and all instruments were within the urban canopy layer for their respective areas (Table 1
Vancouver, 2012).

Landsat satellite images are publicly available and can be processed into multiple products, incl
(USGS, 2012; NASA, 2014). Level 1 data from June 3 (Landsat 7), July 13 (Landsat 8), and July 29 (L
2014, all acquired at approximately 11:00 pacific standard time, were obtained from theUSGeologic
(U.S. Geological Survey, 2015a). These data were collected 4–7 h prior to the spatially matched mo
whichwere measured during the hottest hours of the day. We chose to conduct the comparison thi
cause it was consistent with the use of LST data in the GVHM,which alsomodelled air temperature d
hottest hours of a typical hot summer day. While Landsat thermal data are originally sampled at h
resolutions of 60 m (Landsat 7) or 100 m (Landsat 8) at nadir, they are resampled and provided t
a 30-meter spatial resolution, which was used for our analyses (USGS, 2016a). All three images w
essed into LST values using established methods (Ho et al., 2016a; Irons and Taylor, 2011; U.S. G
Survey, 2013) in the R statistical computing environment (R Core Team, 2014). Thesemethods inclu
rection for thermal emissivity using normalized differential vegetation index (NDVI) values (Van d
and Owe, 1993), and a conversion from top of atmosphere temperature values to LST values (B
2003; Markham and Barsi, 2014). The Landsat 7 data gaps due to the scan line corrector error we
is (U.S. Geological Survey, 2015b), while the Landsat 8 stray light effect was minimized by using b
the thermal band (USGS, 2016b).

The GVHM (Ho et al., 2016a) was constructed using a random forest algorithm, which modelled
tionship between maximum air temperature at 59 weather stations and several predictor variables
forest is a non-parametric machine learning method which uses a large number of regression trees
such relationships (Ho et al., 2016a; Gislason et al., 2006). The predictor variables in the GVHMwe u
LST averaged within a 1000 m buffer, distance from the ocean, elevation, normalized difference wa
sky-view factor, solar radiation, and water vapor (Ho et al., 2016a). The Landsat LST data used in t
were restricted to six hot days with air temperatures exceeding 25 °C at the YVR fixed site (
2016a). This restriction was made because the GVHMwas designed to reflect spatial variation in ai
ature on relatively hot days in the region. Themap performedwell at the local andmesoscalewhen c
with similar products for other cities (Ho et al., 2016a). The publishedmap expresses modelled tem
relative to YVR because it is the station most frequently reported by the media, but we used the ma
lute values for this study.

2.5. Data analysis

All data analysis and mapping were conducted with R version 3.1.0 and ESRI ArcGIS 10.2 (R Co
2014; Esri, 2014). To compare the mobile air temperatures with the nearest fixed site air tempera
generated 1-minute time series plots for each run and calculated the following variables: mean and
deviation (SD) mobile temperature; mean and SD fixed temperature; mean and SD difference betw
10-second value and the closest 1-minute value.

Becausemobile temperaturesweremeasured over the course of 2–3 h during the hottest period o
there was typically an increase in ambient temperature over the measurement period. Given our i
the spatial rather than temporal variability for comparison with the LST and GVHM data, we ad



these short-term temporal trends (Eq. (1)). The reference site used was the Metro Vancouver fixed weather
station data at YVR (Fig. 1) (Metro Vancouver, 2014).

ð1Þ
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where: Trun adj is the adjusted mobile air temperature in 10-second intervals; Tsampling, raw is the ra
sampling air temperature in 10-second intervals; Trefsite, rolling is the reference site air temperature
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After themobile air temperature data were adjusted, they were rasterized to a 30-meter reso

taking the average of all point values within each cell. To compare the rasterized mobile data
rasterized LST data, we generated scatter plots of the spatially matched values for the three
dates covered by Landsat, and histograms showing the LST distributions on each daywere also g
The coefficient of determination (r2), its p-value, the line of best fit, and the LST/mobile air tem
difference were calculated for each plot. The r2 indicates howmuch of the variation in air temp
explained by the variation in LST, while the p-value indicates the likelihood of the relationship
served by chance alone.

The mobile data were collected on 42 summer days, whereas the GVHM was developed to
typical hot summer day in greater Vancouver (Ho et al., 2016a). To compare the rasterized mo
with the rasterized GVHM data we converted both to z-scores, which indicate how many stand
ations each value is from the mean of its distribution. The use of z-scores allowed us to compar
air temperatures between the mobile and GVHM datasets. Each individual mobile air temperat
was converted to z-score based on the mean and standard deviations for its specific run. Each i
GVHM value was converted to a z-score by cropping the entire GVHM raster to the extent of ea
and using the mean and standard deviation of the cropped area. The difference between the
scores and the mobile z-scores was calculated to create z-score differential maps for each run
correlation values for each run were calculated by taking spatially-matched mobile air tempe
score data from two replicates of each run, creating a scatterplot for that run, and then calcul
correlation,

3. Results

3.1. Mobile data compared with fixed site data

Complete 10-second interval air temperature datasets were collected for 41 out of 42 runs, wh
had data that was collected at 1 minute intervals due to an instrument error. The routes ranged
from 6.4 km (route 6) to 9.9 km (route 17), and in area from 0.5 km2 (route 6) to 2.5 km2 (
(Table S.1, Supplementary material). As expected, mobile air temperature measurements were
higher and more variable than simultaneous air temperature measurements at the nearest fixed s
Table S.1). There was little consistency between replicate measurements on the same route, possib
differences in meteorology and regional thermal state on the different measurement days, and po
to the fact that replicates were measured in opposite directions and on opposite sides of the s
fixed stations did generally characterize short-term temporal trends of nearby routes, even when t
station was almost 10 km away (Fig. 1). The trends were most similar when the distance between
site and the route was short. However, even for routes that were b1 km from the nearest fixed sit
B), there was considerable variability in the mobile measurements that was not evident in the fix
measurements.

3.2. Mobile data compared with land surface temperature data

Landsat satellites overpassed the study area on June 3, July 13, and July 29, which corresponded
15A, 18B, and 12B, respectively. Run 15Awasmonitored between 4:19–6:39 PM, run 18B was mon
tween 4:01–5:53 PM, and run 12B was monitored between 3:36–5:22 PM. The mean temperatur



during those runs were 18.5 °C, 27.0 °C, and 26.4 °C, and the mean mobile air temperatures for those runs
were 20.1 °C, 31.9 °C, and 26.8 °C respectively. In comparison, the mean LST values were 35.1 °C for run

ut, while
e mobile

Fig. 3.Rawmobile air temperature (red) frommobile runs and air temperature from the closest Metro Vancouverweather station (blue).
Y-axis shows temperature in °Cwhile the x-axis shows time (see Table S.1 in Supplementarymaterial for run durations). Note that both x-
axis and y-axis scales vary from run to run.
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15A, 38.1 °C for run 18B, and 34.8 °C for run 12B. Runs 15A and 12B were both sunny througho
route 18B was sunny with intermittent cloudiness. The linear regression relationship between th



air temperatures and LSTs were weak (Fig. 4), and there was no clear similarity between the three runs. The
relationship with LST was likely driven by route location, as the correlations on the matched overpass days
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were similar to those on the unmatched days, with the exception of route 12B (Table 2).
Fig. 4. Scatter plot of mobile air temperature and LST as well as the LST histogram for mobile monitoring runs coinciding with Landsat
overpass days. The r2 value between mobile air temperature and LST, the p-value for the calculated r2 value, the fit line equation, and
themean temperature difference between LST andmobile air temperature are provided on each plot. The LST data weremeasured at ap-
proximately 11:00, while the mobile air temperature data were mostly measured between 15:00 and 18:00.



3.3. Mobile data compared with the greater Vancouver heat map (GVHM)
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Table 2
Correlation values betweenmobile run air temperature data and LST from all three overpass dates. Bold values indicate the correlation on
the matched date.

LST from three overpass dates

Mobile run June 3 (Run 15A) July 13 (Run 18B) July 29 (Run 12B)
15A 0.37 0.31 0.27
18B 0.22 0.20 0.16
12B 0.00 0.64 0.61
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When the z-scores of mobilemeasurements were comparedwith the z-scores of the GVHMestim
correlation between run replicates varied from route to route, but most run replicates were similar
comparison (Fig. 5). The mean correlation (r) between route replicates z-scores was 0.46, the maxim
relation was 0.83, and theminimum correlation was−0.01 (see Fig. S.2 in Supplementary material
lations and scatterplots of all runs). The GVHM described spatial variability in air temperatures fo
many routes, as indicated by the large areas that were in agreement (Fig. 5).

The total number of raster cells between all 42 runswas 11,379. Of these, 57.4% had a z-score bet
and 1, 23.3% had a z-score N 1, and 19.3% had a z-score b−1 (Table S.2, Supplementary material). R
had the largest percentage of cells with z-scores N 1 (32.3%, 41.9% between−1 and 1, and 25.8% b−
18B had the largest percentage of cells with z-scores between −1 to 1 (76.5%, 17.9% N 1, and 5.6
Route 8A had the largest percentage of cells with z-scores b −1 (32.9%, 39.2% between −1 a
27.9% N 1). Of the 42 runs, 33 had over 50% of raster cells with z-scores between −1 and 1 (T
which suggests the GVHM generally captured the spatial variability in air temperatures.

4. Discussion

There is limited evidence on the relationships between microscale urban air temperature meas
and other existing methods for measuring or modelling air temperature. Comparisons between m
fixed site air temperatures indicated that mobile measurements were generally higher than time
nized fixed site measurements. Comparison between mobile air temperatures and LST showed tha
variables were positively correlated, although the relationships were weak. Finally, comparison betw
bile air temperatures and the GVHMsuggested that the GVHMcaptured spatial variability in temper
many routes, but that it underestimated and overestimated variation in some areas when compa
measured data.

Some previous studies have measured both fixed and mobile air temperatures (Straka et
Hedquist and Brazel, 2006), but we found none that had compared these two variables directly.
the differences we observed were expected, we report them here to provide others with some inf
about the range of variability that might be found in other contexts. The differences are likely driv
built environment (Saaroni and Ziv, 2010; Oke and Maxwell, 1967; Emmanuel and Krüger, 2012; H
al., 2007; Oke, 1982; Watkins et al., 2007), because most mobile monitoring routes were in urb
while the fixed weather stations were in less developed areas. In addition, temperatures at the fixe
were potentially cooler due to vertical temperature gradients. The mobile air sensor wasmounted a
of 1.5 m, while the fixed station temperature sensors were at heights of 5.5–19.3m (Table 1). The d
between fixed site and mobile measurements highlight the reality that heat-related health risks ar
vary with the exposure, and that the limitations of fixed site data should be acknowledged when co
public health.Many epidemiologic studies use these data to reflect population exposures (Robine et
Kaiser et al., 2007; García-Herrera et al., 2010; Barriopedro et al., 2011; Shaposhnikov et al., 2014; H
and Kosatsky, 2012; Kosatsky et al., 2012), but estimates that are more representative at themicros
as heat maps, may result in better models and more targeted interventions (Ho et al., 2016b).

The r2 values we report for the relationship between mobile air temperature and LST (0.04–0
lower than those reported in previous studies. These ranged from 0.64–0.87 when LST was comp
time-matched air temperature (Sohrabinia et al., 2014; Gallo et al., 2010; Nichol et al., 2009) or 0



LSTwas comparedwith dailymaximum air temperature (Mostovoy et al., 2006). One possible explanation for
our lower correlations was the 4–7 hour time gap between LST and mobile air temperature measurements,

bile mea-
tations or
ion, most
cific fixed
and cover

Fig. 5. Differences in the z-scores between the Greater Vancouver heat map (GVHM) and mobile air temperatures for all 42 runs. When
interpreting, a positive z-score differential means that GVHM z-scores were higher than the mobile air temperature z-scores, suggesting
that the GVHM overestimated air temperature. A negative differential suggests the GVHM underestimated air temperature.
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which would weaken any existing relationship. Another possible explanation is that we used mo
surements from a single day while most previous studies used years of data from fixed weather s
observations from sites throughout all seasons (Sohrabinia et al., 2014; Gallo et al., 2010). In addit
of the other studies compared LST with time-matched or daily maximum air temperature at spe
pixels over time, which removes potential confounding by geographic variables such as land use/l



and temporal variation of thermal state. One study in Hong Kong did compare LST to 148 km of vehicular air
temperature traverse data at a 10-meter resolution and found a r2 of 0.80 (Nichol et al., 2009). However, when
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the resultswere split based onurban or rural classification of data, the r value dropped to 0.42 for ur
(Nichol et al., 2009).

Another possible factor in our lower r2 values is the way that temperatures are measured by the
instruments. Air temperature sensors have an ellipsoid source area with both horizontal and vert
ences upwind of the sensor (Oke, 2004; Stewart and Oke, 2012; Schmid, 2002), while LST sensors h
cular source area below the sensor (Oke, 2004; Schmid, 1997).While this mismatch affects all meas
of the two variables, it may be exaggerated for microscale variables because of smaller overlapping a
other consideration is that all satellite-based LSTmeasurements have some blurring between adjace
primarily due to the scanning process of the moving sensor. As such, these LST measurements may
represent variability at the microscale. Furthermore, Landsat 7 and 8 thermal data were natively rec
60 and 100 meter grids respectively, and are then resampled to a 30 meter grid, which results in blu
tween neighbouring 30 meter pixels (USGS, 2016a). Calibration of LST measurements from Landsat
and its predecessor instruments have been ongoing for decades (Barsi et al., 2003), but spatial blurr
relevant during these calibrations as they focus on homogeneous areas where absolute in-situ LST v
be measured. Without specific information on the influence of this blurring, we followed numer
studies and compared in-situ measurements to the LST values from the pixels in which they w
(Nichol and To, 2012; Sohrabinia et al., 2014; Benali et al., 2012; Nichol et al., 2009; Nichol an
2008; Mostovoy et al., 2006).

Heat maps generated by regression models provide useful estimates and visualizations of air tem
differences between areas. However, like anymodel estimates, theymust be evaluatedwith real data
their validity, preferably at the same resolution as the maps themselves. Microscale mobile air tem
data fill a gap that other data sources cannot by offering accuratemeasurements collected at very hi
resolutionswith temporal coverage limited only by the study design and resources. Spatial coverage
by the distance a person can cover on foot, restricting the utility of this approach to smaller areas. H
could have a wide range of applications such as heat map development, studying the land use/la
drivers of microscale air temperature variability, or evaluation of more common and less resource-
methods.

Most heat maps are evaluated using cross-validation. Leave-one-out cross-validation for the G
volved (Zhang et al., 2014) leaving out all observations fromoneweather station, (Harlan et al., 2006
the model, (Kalkstein and Davis, 1989) calculating the difference between the modelled temperat
and actual station temperature values, (Robine et al., 2008) repeating the procedure until the m
been run with each station missing once, and (Luber and McGeehin, 2008) calculating the average
solute error and rootmeans square error for all runs to quantify accuracy (Ho et al., 2016a). One stud
Kong constructed 10-m resolution daytime andnighttime air temperature heatmaps by regressingA
ageswith air temperaturemeasurements collectedwithin 1.5 h of the corresponding overpass (Nich
2012). These heat maps were validated with time-matched air temperature data from the Hong K
automatic weather station (AWS) network. The daytime heat map and AWS air temperature data h
relation of 0.75, while the nighttime heat map and the AWS air temperature data had a correlatio
(Nichol and To, 2012). In comparison,we found awide range of spatial correlation between patterns
in the GVHM and measured in our data.

One limitation of our study is that land-sea andmountain-valleywind system shifts are common
Vancouver, which could generate within-run spatially-independent variability in the mobile data.
an analysis of wind speed and direction patterns showed that the processes stayed fairly consiste
all mobile runs (not shown). Another limitation is the within-run correction for temporal trend, w
sumes that the rate of change atfixed stations is comparablewith the rate of change inmobilemeasu
The correctionwas shown to be effective, however, as r2 values between LST and themobile air tem
increased after the correction equation was applied to themobile data (not shown). Another limita
between-day and time-of-day variability present in the mobile air temperature data, despite all
being conducted during summer months at approximately the same time of day. Time-of-day v
was minimized with the within-run air temperature correction, but we could not make credible co
for between-day variability. The between-day variability was highlighted by the large differences
run replicates. This raises concern about the true average microscale air temperature at each r



necessitates treating all runs as unique samples. We suggest that future studies should prioritize route repli-
cates over the number of routes monitored.
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5. Conclusion

This study was conducted to assess the GVHM and two of its inputs with respect to their ability
microscale variability in air temperature. Our results suggested that: (1) the limitations of fixed sit
peraturemeasurements should be consideredwhen assessing public health risk; (2) the correlation
microscale air temperature and LST may be highly variable; and (3) microscale data can be va
assessing heat maps developed with local and macroscale data. Future microscale mobile monito
paigns should focus on havingmore replicates for each route, keeping protocols consistent for each
andmonitoring fewer routes if limited by resources. Havingmany replicatemeasurements in fewer
provide a better representation of the true average of the spatial patterns.
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