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ARTICLE INFO ABSTRACT

Mortality attributable to extreme hot weather is a growing concern in many urban environments, and spatial
heat vulnerability indexes are often used to identify areas at relatively higher and lower risk. Three indexes were
developed for greater Vancouver, Canada using a pool of 20 potentially predictive variables categorized to
reflect social vulnerability, population density, temperature exposure, and urban form. One variable was chosen
from each category: an existing deprivation index, senior population density, apparent temperature, and road
density, respectively. The three indexes were constructed from these variables using (1) unweighted, (2)
weighted, and (3) data-driven Heat Exposure Integrated Deprivation Index (HEIDI) approaches. The perfor-
mance of each index was assessed using mortality data from 1998-2014, and the maps were compared with
respect to spatial patterns identified. The population-weighted spatial correlation between the three indexes
ranged from 0.68-0.89. The HEIDI approach produced a graduated map of vulnerability, whereas the other
approaches primarily identified areas of highest risk. All indexes performed best under extreme temperatures,
but HEIDI was more useful at lower thresholds. Each of the indexes in isolation provides valuable information for
public health protection, but combining the HEIDI approach with unweighted and weighted methods provides
richer information about areas most vulnerable to heat.
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1. Introduction

Extreme hot weather events are an environmental health concern of
increasing importance. Although technical definitions of these events
vary (Nairn et al., 2009; Robinson, 2001), they have been consistently
associated with increased population morbidity (Basu and Samet, 2002;
Seltenrich, 2015; Turner et al., 2012) and mortality. Under the most
extreme conditions the associated mortality can be catastrophic. For
example, estimates suggest that > 70,000 people died during the 2003
European heat wave event (Robine et al., 2008) and > 55,000 people
died during the 2010 Russian heat wave event (Otto et al., 2012). Less
dramatic mortality impacts have been documented worldwide (Astrom
et al., 2011; Bell et al., 2008; Coates et al., 2014; Hajat et al., 2006;
Knowlton et al., 2009; Tan et al., 2007), particularly in cities where the
urban heat island (UHI) effect can lead to very high exposures
(Kleerekoper et al., 2012; McCarthy et al., 2010). One example oc-
curred in greater Vancouver, Canada during the summer of 2009, which

has motivated multiple studies related to hot weather epidemiology
(Henderson et al., 2016; Kosatsky et al., 2012) and public health pro-
tection (Henderson and Kosatsky, 2012; Ho et al., 2017) in the region.
Extreme hot weather events are expected to increase in frequency,
duration, and intensity as a result of climate change (Hayhoe et al.,
2010; Meehl and Tebaldi, 2004). Because the effects are not spatially
uniform, it is crucial to reliably identify areas that are at relatively
higher and lower risk such that mitigation efforts can be effectively
targeted. Again, this is particularly true in cities where temperatures are
higher (due to the UHI), dense populations are at risk, and social vul-
nerabilities are spatially variable. The development and mapping of
heat vulnerability indexes (HVI) is one common approach to identifying
high risk areas, and these have been used to inform resource allocation
and hot weather planning (Bradford et al., 2015; Reid et al., 2012).
The first step in constructing an HVI is to select the spatial variables
that provide some indication of areas at higher and lower risk. While
many studies have used the published literature to guide variable
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Variables considered for inclusion in construction of the heat vulnerability indexes, falling into one of four categories. Names in brackets indicate the final variable names used in the

text, reflecting modifications where necessary to ensure increasing risk of mortality with increasing variable values.

Type Variable name (final variable name) Modified?
Temperature exposure Maximum air temperature (Maximum Air Temperature) No
Maximum humidex (Maximum Humidex) No
Land surface temperature (Land Surface Temperature) No
Social vulnerability Labour participation rate (Labour Nonparticipation Rate) Yes
Unemployment rate (Unemployment Rate) No
Average household income (Average Household Income Ratio) Yes
Percentage without high-school diploma (Percentage without High School Diploma) No
Percentage with a university degree (Percentage without University Degree) Yes
Home ownership percentage (Percentage of Homes Rented) Yes
Percentage of single parent families (Percentage of Single Parent Families) No
Vancouver Area Neighborhood Deprivation Index (VANDIX) No
Population distribution Population density (Population Density) No
Senior density (Senior Density) No
Children density (Children Density) No
Urban form Normalized Difference Built-up Index (NDBI) No
Normalized Difference Impervious Surface Index (NDISI) No
Normalized Difference Vegetation Index (Negative NDVI) Yes
Skyview factor (Obstructed Sky Factor) Yes
Distance to the nearest major roadway (Inverse Distance to Nearest Major Road) Yes
Major road density (Road Density) No

selection (Aubrecht and Ozceylan, 2013; Chow et al., 2012; Dong et al.,
2014; Maier et al., 2014; Reid et al., 2009), some studies have used
statistical methods to select variables from existing sets of potential
predictors (Johnson et al., 2012; Loughnan et al., 2012; Wolf and
McGregor, 2013). To this end, we have identified four types of variables
that are relevant to the construction of an HVI. First, spatially resolved
temperature maps can be used to identify urban areas that are relatively
hotter, using satellite observations or models developed from remote
and in-situ measurements (Hondula et al., 2012; Kershaw and
Millward, 2012). Second, multiple indicators of social vulnerability
have been associated with hot weather mortality in previous studies
(Harlan et al., 2006; Patz et al., 2000). Third, some sensitive popula-
tions such as children and the elderly struggle to thermoregulate under
extreme heat conditions (Buscail et al., 2012; Kovats and Hajat, 2008;
Reid et al., 2009). Finally, highly urban areas with limited vegetation
and complex impermeable and reflective materials may be particularly
susceptible, beyond what is indicated by temperature mapping (Dong
et al., 2014; Gabriel and Endlicher, 2011). Once variables have been
selected, the HVI is typically generated through either the unweighted
or weighted approaches.

The unweighted approach assumes that each variable is equally
predictive of hot weather risk, so the variables are simply standardized
and summed to create the HVI (Aubrecht and Ozceylan, 2013; Bao
et al.,, 2015; Chow et al.,, 2012; Dong et al, 2014; Wisconsin
Department of Health Services, 2014). The weighted approach assumes
that different variables are more or less predictive of hot weather risk,
which makes HVI construction more complex. Multiple approaches to
weighting have been used (El-Zein and Tonmoy, 2015; Loughnan et al.,
2012; Rinner et al., 2010; Wolf and McGregor, 2013), but the most
common approach is principal component analysis (PCA). In brief,
scores from retained principal components are weighted by their re-
spective variance explained. Each spatial unit is given a weighted score
from each principal component, and these scores are aggregated to
produce the HVI (Wolf and McGregor, 2013; Zhu et al., 2014).

Some studies have justified using the unweighted approach because
the literature has not identified a single variable with a higher impact
on heat vulnerability than other variables (Aubrecht and Ozceylan,
2013; Wisconsin Department of Health Services, 2014). However,
newer studies suggest that demographic or socioeconomic variables
may play a larger role in heat vulnerability and should be given more
weight (Jones et al., 2015; Linares et al., 2014). Although assigned
weights can account for these differences, it makes index construction
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more complex and may introduce subjectivity during variable reduction
and weighting analyses. Here we propose a purely data-driven ap-
proach to select and weight HVI variables and create a Heat Exposure
Integrated Deprivation Index (HEIDI) based on previous work to spa-
tially delineate temperature-mortality relationships in greater Van-
couver (Ho et al., 2017). The objectives are to: (1) apply the data-driven
approach to select and weight variables for inclusion in the HVI from
each of four categories reflecting temperature exposure, social vulner-
ability, population distribution, and urban form; (2) assess and evaluate
HEIDI compared with conventional unweighted and weighted ap-
proaches; and (3) identify areas of high risk for future public health
protection and heat adaptation strategies.

2. Methods
2.1. Study area

Greater Vancouver is a rapidly growing urban area in the province
of British Columbia, Canada. (Aubrecht and Ozceylan, 2013; Wisconsin
Department of Health Services, 2014). In 2016 it had a population of
approximately 2.4 million residents covering an area of 2882km?
(Statistics Canada, 2017b). The metropolitan region comprises 21 mu-
nicipalities, mostly in the Fraser River delta and surrounding foothills of
the coastal mountains. The region is bounded to the north and east by
mountains, to the west by the Pacific Ocean, and to the south by its
border with the United States. These geographic attributes create
complex microclimatic environments that can result in strong urban
heat island effects on hot summer days (Ho et al., 2016).

2.2. Data sources

2.2.1. Vital statistics

The BC Vital Statistics Agency provides the BC Centre for Disease
Control with daily mortality data to support its public health surveil-
lance and protection programs. The dataset used in these analyses in-
cluded all deaths within greater Vancouver from 1998 through 2014.
The following information was available for each death: date of death;
age in years; sex; location of death (home, hospital, residential in-
stitution, or other); underlying cause of death coded according to the
10th revision of the International Classification of Diseases (ICD-10);
and the 6-digit residential postal code. All deaths attributed to transport
accidents (ICD-10 codes V01-V99) were removed. The residential 6-
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digit postal codes were geolocated using the Canadian Postal Code
Conversion File, and values for the 20 spatial variables described below
(Table 1) were extracted to the coordinates.

2.2.2. Three spatial variables reflecting temperature exposure

Temperature exposures in greater Vancouver can vary within tens of
meters (Tsin et al., 2016), and we included three spatial variables to
characterize this on hot summer days: land surface temperature; air
temperature; and humidex (Table 1). Humidex is an estimate of ap-
parent temperature used in Canada, produced from a combination of air
temperature and relative humidity (Masterton and Richardson, 1979).
Previous publications describe the development, evaluation, and ap-
plication of these maps for greater Vancouver (Aminipouri et al., 2016;
Ho et al., 2014; Ho et al., 2017; Ho et al., 2016; Tsin et al., 2016). In
brief, we used combinations of Landsat 5 Thematic Mapper (TM) and
Landsat 7 Enhanced Thematic Mapper (ETM + ) images taken on cloud-
free summer days when the maximum air temperature was = 25 °C at
Vancouver International Airport (YVR). The land surface temperature
map was derived from standard methods (Barsi et al., 2003; Coll et al.,
2010) using Landsat 5 TM data only. The maximum daily air tem-
perature and Humidex maps were derived from random forest models
associating temperatures observed at 59 local weather stations with
land surface temperature, normalized difference water index (NDWI)
(Gao, 1996), skyview factor (Hodul et al., 2016), elevation, and solar
radiation (Ho et al., 2014; Ho et al., 2016). The skyview factor describes
the proportion of the sky that is obscured at any given location, with
values of 0 and 1 representing an entirely obstructed and unobstructed
sky, respectively (Oke, 1988).

2.2.3. Eight spatial variables reflecting social vulnerability

Many different variables can be used to describe social and/or
material deprivation within a population and these variables are often
combined into single indexes, using methods similar to those already
described (Liberatos et al., 1988; Messer et al., 2006). The Vancouver
Area Neighborhood Deprivation Index (VANDIX) is a weighted index
derived from variables measured in the Canadian census and their
perceived effect on population health in the study area. In brief, a
survey was distributed among local medical health officers asking them
to rank the importance of 21 different variables with respect to their
association with poor health outcomes in greater Vancouver (Bell and
Hayes, 2012). The seven variables with the highest aggregate scores
were selected and used to create the VANDIX, which can be mapped at
the level of census dissemination area (DA). These DAs typically contain
populations between 400 and 700 (Statistics Canada, 2017a). Any
missing VANDIX values were replaced with the average of the VANDIX
values from bordering DAs, weighted by the length of the shared
perimeter.

In addition to including VANDIX in the pool of potential HVI vari-
ables, we also included each of its seven contributing variables, in case
any one of them was more predictive of hot weather risk than the
combination of all. These variables are: labour participation rate; un-
employment rate; average household income; percentage of the popu-
lation without a high school diploma; percentage of the population with
a university degree; percentage of homes owned; and percentage of
single-parent families (Table 1). Some of the variables were modified
prior to analysis so that increasing values were associated with in-
creasing hot weather risk. The final variables included the labour
nonparticipation rate, the percentage of the population without a uni-
versity degree, the percentage of homes rented, and the average
household income ratio. The latter was taken as the inverse of the
average household income multiplied by the minimum value.

2.2.4. Three spatial variables reflecting population distribution

Variables reflecting the distributions of the entire population, young
children (<10 years), and seniors (= 65 years) were included in the
analyses (Table 1). Population data from the 2006 Canadian census
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were extracted from SimplyMap (Geographic Research, 2016) at the DA
level in a polygon format. The area of each DA was calculated in ArcGIS
10.3 (Environmental Systems Research Institute, 2014). The population
densities were calculated by dividing the total population, the number
of young children, and the number of seniors by the DA areas. A raster
with a resolution of 60 m was then created for each of the three density
variables.

2.2.5. Six spatial variables reflecting urban form

Although the temperature exposure maps capture some variability
in urban form, we included six other variables that may have important
and independent relationships with hot weather risk (Table 1). The
skyview factor data used in the temperature exposure maps were con-
sidered independently because areas with highly obstructed skies may
be more vulnerable due to the delayed escape of long-wave radiation
and the effects on air currents (Gal et al., 2009). These data were
generated for greater Vancouver from Landsat 5 TM images (Hodul
et al., 2016), and were expressed as the proportion of obstructed sky to
ensure increasing risk with increasing variable values. Other urban
form variables derived from remote sensing data were the Normalized
Difference Built-up Index (NDBI) (Zha et al., 2003), Normalized Dif-
ference Impervious Surface Index (NDISI) (Xu, 2010), and Normalized
Difference Vegetation Index (NDVI). All three variables take values
between — 1 and 1, with larger values generally characterizing areas
that are developed, contain impervious surfaces, or contain vegetation,
respectively. These variables were derived from the same Landsat 5 TM
images used to create the land surface temperature map (Ho et al.,
2014). The NDVI was multiplied by — 1 so that larger values indicated
less vegetated areas, because increased vegetation is associated with
decreased hot weather risk (Jenerette et al., 2007).

Finally, we included variables indicating the presence and density of
major roads. This decision was based on preliminary analyses in-
dicating increased hot weather mortality risk in areas with higher ni-
trogen oxide (NO) concentrations as modelled by land use regression
(Henderson et al., 2007; M. Wang et al., 2013). To better understand
the preliminary finding we repeated analyses with all variables in the
NO model: length of major roads within 100 m; length of major roads
within 1000 m; population density within 2500 m; elevation; latitude;
and longitude. Of these, we found that the length of major roads within
100 m was more strongly associated with hot weather mortality than
estimated NO concentrations. This makes sense, given that roads have
relatively high storage heat flux, meaning the net uptake and release of
heat (R. Wang et al., 2013; Xu et al., 2008). Road network data were
taken from the DMTI Spatial CanMap 2013 data (DMTI Spatial Inc.,
2013), and spatial variables were created for distance to the nearest
major road and for density of major roads within a 100 m radius. The
distance variable was modified by taking the inverse so that larger
values corresponded with increased risk.

2.3. Data-driven delineation of high risk areas

Values for each of the 20 spatial variables were extracted to the
coordinates of the residential 6-digit postal codes for each death in the
mortality dataset. The shape of the temperature-mortality relationship
for each variable was characterized using the case-crossover approach
we have described in detail elsewhere (Ho et al., 2017). In brief, Hu-
midex observations from the Environment Canada weather station at
YVR were used as the time-varying measure of exposure in a time-
stratified design. Every decedent was assigned daily mean Humidex
values for the day of death (case day) and for all occurrences of the
same weekday within the same calendar month (control days). The
mortality data were then subset to those individuals who had a case day
or a control day within the 99.9th percentile of the YVR observations
from 1998 to 2014. As such, the analytic dataset included only deaths
that occurred either on an extremely hot day or a comparable cooler
day.
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Conditional logistic regression was used to assess which of the
spatial variables showed increasing risk of hot weather mortality as-
sociated with increasing variable values. The binary response variable
was 1 for case days and O for control days, conditioned on a unique
identifier for the individual decedents. The only explanatory term in the
model was an interaction between daily mean Humidex at YVR and a
binary variable indicating whether the residence of each decedent was
located in an area above or below some threshold value of the spatial
variable. For example, if the threshold value of VANDIX was 3.0, all
decedents who lived in areas of equal or higher deprivation would have
a value of 1 for the indicator variable while others would have a value
of 0. For each of the 20 spatial variables we tried 100 threshold values
equally spaced between the 1st and 99th percentiles, resulting in a total
of 2000 regressions. The odds ratio (OR) for the above-threshold group
was extracted from each model, and the 100 ORs for each spatial
variable were plotted against their respective threshold values. Finally,
a locally weighted smoother (LOESS) was fit to each scatter plot and the
shape of the LOESS was assessed for deviation from the baseline OR,
calculated using all deaths in the analytic dataset. We refer to these
fitted smoothers as the “threshold-OR” curves from herein.

2.4. Spatial variable selection for index construction

We selected one variable from each of the four categories to use in
construction of the indexes. This decision was made to ensure that the
indexes were both parsimonious and easy to interpret. Based on the
threshold-OR curves described above, we needed criteria by which to
select one spatial variable from each of the four categories: temperature
exposure; social vulnerability; population distribution; and urban form.
The selection criteria considered (1) the variable correlations within
categories and between categories, (2) the threshold-OR inflection
point, (3) the threshold-OR slope above the inflection point, and (4) the
area under the threshold-OR curve (AUC). A variable was considered to
be a good candidate if it was not highly correlated with other candidate
variables and the threshold-OR curve had an early point of inflection, a
steep slope, and/or a high AUC. If a candidate variable best satisfied the
last three criteria, but was highly correlated to the other variables se-
lected for the index, it was potentially omitted in favour of another
candidate variable (within the same category) that was less correlated
to the other selected variables.

The inflection point indicates the threshold value of the spatial
variable at which the threshold-OR curve becomes consistently higher
than the baseline OR. To systematically identify the inflection point,
approximate second derivatives of the threshold-OR curves were com-
puted for each threshold value and then ranked from largest to smallest.
Starting from the value with the largest second derivative, we pro-
ceeded sequentially, assigning the inflection point to the first value that
satisfied two conditions: (1) the slopes before and after this point were
positive, and (2) the OR at that point was smaller than the ORs at the
points with the next three largest second derivatives. These criteria
ensured that we did not select a threshold value in the middle of the
incline. Variables with early inflection points were favoured because
they were often associated with high AUC values and larger ORs at the
extreme variable values. Any variable with a flat threshold-OR curve
was automatically removed from consideration.

After the inflection point had been identified, the slope of the re-
lationship above the inflection point was assessed using linear regres-
sion. This criterion was important because the magnitude of the slope
indicated the speed with which the temperature-mortality relationship
could change. As such, steeper slopes were favoured during spatial
variable selection. Finally, the AUC of the threshold-OR curve was
calculated using the baseline OR as the lower boundary, the inflection
point as the leftmost boundary, and the end of the curve as the right-
most boundary. Large AUC values suggested that the inflection point
occurred early in the range of variable values or that the slope was
large. The AUC also reflects the presence of any peaks or valleys in the
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threshold-OR curve, which would not be characterized by the inflection
point and slope criteria alone.

2.5. Index construction

2.5.1. Conventional approaches

The unweighted approach used the summation of the four selected
spatial variables, under the assumption that each variable had the same
impact on heat vulnerability. Variables were standardized using z-score
transformation, such that each variable had a mean of 0 and a standard
deviation of 1. The result was a linear sum of the transformed variables
(Eq. (1)). The weighted approach was similar, but assumed that each of
the selected variables had a different impact on vulnerability. The in-
dividual weights were determined by the slope of the temperature-
morality relationship above the inflection point, scaled so that the sum
of all four weights was 1. The weighted values of each Z-score stan-
dardized variable were then summed together to create the index (Eq.
).

HVIunweighed =+ Zy+ 23+ Z4 (€))

HVIgope-weighed = A*Z1 + BxZ; + CxZ3 + DxZ, 2)

2.5.2. The Heat Exposure Integrated Deprivation Index (HEIDI) approach

The HEIDI approach is a novel method that we propose to be an
effective alternative or supplement to conventional approaches. This
purely data-driven technique takes the spatial sum of OR maps created
for each index variable, based on the results of spatial delineation
analyses described above. For example, if the highest threshold value
for VANDIX was 5.0 and it produced an above-threshold OR of 1.20, all
areas of greater Vancouver with equal or greater deprivation would be
assigned a value of 1.20. If the second-highest threshold value for
VANDIX was 4.8 and it produced an above-threshold value of 1.18, all
areas with deprivation between 4.8 and 5.0 would be assigned a value
of 1.18, and so on, essentially creating an isopleth for each of the 100
threshold values (illustrated in Fig. 1). Once the OR map had been
generated for each spatial variable in the index, the raster values were
summed to generate a map of the HEIDI values.

2.6. Index assessment

The unweighted, weighted, and HEIDI indexes were each rescaled
from their 1st and 99th percentile values to produce values between 0
and 5. Maps of the indexes were then generated at a 60 m resolution,
and index values were extracted to the residential locations of each
decedent in the mortality dataset. The case-crossover analyses were
repeated with 100 threshold values for each of the indexes, and the
resulting threshold-OR curves were used to evaluate the performance of
each index and to identify areas of low, moderate, and high heat vul-
nerability on each index map. Specifically, we mapped areas where
each index indicated ORs < 1.1, between 1.1 and 1.2, and > 1.2, and
compared the maps. We expected to see increasing hot weather risk
with increasing values of each index, and maximum ORs greater than
those for any of the four contributing variables.

Recall that the data were originally subset to individuals who had a
case day or a control day within the 99.9th percentile of observations at
YVR, which was 24 °C. We also tested the performance of the indexes by
repeating the same case-crossover and threshold-OR curve analyses for
mortality datasets subset to less extreme temperatures, ranging from 20
to 23 °C. Here we expected to see weaker relationships degrading to-
wards the baseline as the temperature cut-off was reduced, but slower
degradation would indicate improved utility for defining areas of
higher heat vulnerability. Finally, all postal codes within greater
Vancouver were geolocated and index values were extracted to these
points so that population-weighted correlations between the indexes
could be calculated. We chose not to calculate simple spatial
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Fig. 1. An illustrative example of the odds ratio (OR) isopleth maps generated for each of the variables included in the Heat Exposure Integrated Deprivation Index (HEIDI). Using
multiple threshold values for each variable (4 shown here, 100 used in the analyses), areas that were equal to or exceeded each value were assigned the corresponding OR from the
threshold-OR curve shown. This was done sequentially from the largest threshold value to the smallest value.

correlations because greater Vancouver has mountainous areas and a
large agricultural land reserve that are thinly populated.

3. Results and discussion
3.1. Summary of the mortality data used for evaluation

The mortality dataset used in most of the analysis was based on the
99.9th percentile of temperature observations at YVR, and it included a
total of 1006 deaths. Of these, 272 of the deaths occurred on six ex-
tremely hot days and the remaining 734 deaths occurred on a cooler
day, but had a control day that was extremely hot. On extremely hot
days the mortality counts ranged from 27 to 67 while on cooler days
they ranged from 14 to 48. The baseline OR [95% confidence interval]
for these deaths was 1.03 [1.02, 1.05], meaning that a 1-degree in-
crease in mean daily Humidex at YVR was associated with a 3.4%
[1.8%, 5.0%] increase in the odds of mortality among this subset. When
the temperature cut-off was dropped from 24 °C to 20 °C the number of
deaths in the subset was increased to 33,032, but the overall effect of a
1-degree increase in mean daily Humidex at YVR remained stable at
1.02 [1.02, 1.03].

One limitation of vital statistics data is that they consistently fail to
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identify decedents for whom temperature caused or contributed to the
death. The criteria for this certification are rarely met, so it is chal-
lenging to separate expected deaths from excess deaths during extreme
hot weather events (Henderson et al., 2016). To address this limitation
we restricted the main analytic dataset to deaths that occurred on ex-
tremely hot days and comparable cooler days, thereby increasing the
proportion of deaths that would have been excess due to heat rather
than expected under typical conditions. The same approach was taken
in the antecedent work (Ho et al., 2017), though here we provide more
information about impacts of the temperature cut-off with respect to
the analytic dataset (Table 2) and the performance of the HVI. Other
approaches could be taken. For example, Ho et al. (2017) reported that
the performance was improved by restricting the analytic dataset to
decedents who died at home or in the community, rather than in care.

Another way to strengthen the results could be more algorithmic
consideration of the lagged effects of high temperatures on population
health. For example, time series analyses in the study region have
shown that mortality is best modelled using the 2-day average of
maximum temperatures (Henderson and Kosatsky, 2012; Henderson
et al., 2013). Here we consider only the effect of same-day temperature
on mortality using the case-crossover design, meaning that we do not
necessarily capture the effect of an extremely hot day on mortality the
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Table 2

Summary statistics for the analytic mortality datasets generated using different threshold
temperatures to define extremely hot days, including average values of the index vari-
ables. The 24 °C data were used to generate the heat vulnerability indexes.

Temperature cut-off

24°C 23°C 22°C 21°C 20°C
Number of extremely hot days 6 20 41 100 203
included
Deaths included 1006 3423 6826 16,513 33,032
Deaths on extremely hot days 272 839 1785 4450 11,105
Deaths on comparable cooler days 734 2584 5041 12,063 21,927
Mean humidex (°C) Hot days 33.0 32.9 32.9 329 32.9
Cooler days 32.7 32.9 32.9 32.9 32.9
VANDIX Hot days 0.03 —-0.05 -0.04 -0.04 -0.04
Cooler days —0.10 -0.06 —-0.05 -0.05 -0.05
Mean senior density ~ Hot days 1152 1100 1103 1106 1141
(persons/km?) Cooler days 1042 1090 1115 1112 1117
Mean road density Hot days 3720 3485 3417 3463 3322
(m/km?) Cooler days 3191 3295 3293 3274 3278

following day. However, the six extremely hot days included in main
analyses (Table 2) were clustered into three hot periods: July 27-28,
1998; July 22, 2006; and July 28-30, 2009. When the threshold tem-
perature was dropped from 24 °C to 22 °C, these clusters were extended
to: July 26-29, 1998; July 21-23, 2006; and July 26-31, 2009. Fo-
cusing on specific hot periods rather than including all individual hot
days might help future studies using similar methods to better capture
the lagged effects of extreme heat.

3.2. Variables selected for index construction

The threshold-OR plots for the 20 spatial variables showed different
relationships with increasing variable values (Fig. 2), from decreasing
mortality risk (e.g. Population Density) to flat (e.g. Percentage without
University Degree) to increasing risk across the entire range (e.g. Road
Density). Our objective was to select one variable from each of the four
categories, applying the correlation, inflection point, slope, and AUC
criteria. In the temperature exposure category, Maximum Humidex had
a sharp inflection and steep slope compared with Land Surface Tem-
perature and Maximum Air Temperature. This finding was also reported
in previous work (Ho et al., 2017), and thus the Maximum Humidex
variable was chosen for inclusion in the HVI.

Of the population distribution variables only Senior Density had a
clear inflection point, and it was chosen for inclusion in the HVI. All
variables in the social vulnerability category showed some increase in
mortality risk across the range of values, with the exception of
Percentage without University Degree. The Labour Nonparticipation Rate
variable showed the strongest relationship with risk, followed by the
VANDIX composite. This result has also been reported elsewhere (Ho
et al., 2017), but here we chose to include the VANDIX because both the
Senior Density and the Labour Nonparticipation Rate variables capture the
retired population and have a relatively high correlation (r = 0.30).
Conversely, the correlation between VANDIX and Senior Density was
low (r = 0.05). Finally, many of the urban form variables had midpoint
inflections along with moderate slopes. However, the Road Density
variable was chosen for the HVI because of its higher AUC and lower
correlations with the other chosen variables.

The range of correlations between the four chosen variables was
0.03-0.45, where most correlations were < 0.06 and the strongest
correlation was between VANDIX and Maximum Humidex. This rela-
tively high correlation likely reflects the fact that the least deprived
areas of greater Vancouver are closer to the ocean and have a lot of
vegetation compared with the most deprived areas. We retained both
variables because they measure fundamentally different constructs.
Road Density and Senior Density were both heavily right-skewed because
of the presence of extremely large density values at some locations. The
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variable weights for the weighted index were taken as the slope above
the inflection point in the threshold-OR plots. These were 0.419 for
Maximum Humidex, 0.270 for VANDIX, 0.229 for Road Density, and
0.081 for Senior Density. Slopes were used instead of other plot para-
meters because they best reflect how quickly heat vulnerability esca-
lates as a variable increases.

Variables similar to the ones used to create the HVIs have been
employed in previous studies to either develop heat indexes or identify
areas of heat vulnerability. Humidex has been used to generate hourly
prediction maps of potential heat stress for the Greater Toronto Area in
Canada (Kershaw and Millward, 2012). Although the authors created a
very practical tool for public health organizations, they do not integrate
other social parameters that may influence heat vulnerability. Other
socioeconomic status indexes similar to VANDIX have also been used to
map risk. In France, the FDep99 social deprivation index (Rey et al.,
2009b) and a heat exposure index were combined to examine how their
interaction affected the number of heat-related mortalities (Rey et al.,
2009a). The authors reported that excess mortality within the fifth
deprivation quintile was approximately double excess mortality within
the first deprivation quintile for areas of Paris in the top three quintiles
of heat exposure.

Previous work on seniors has reported that they are among the most
vulnerable subpopulations during extreme hot weather (Borrell et al.,
2006; Gabriel and Endlicher, 2011; Kenny et al., 2010), though we have
found that younger seniors are at higher risk in greater Vancouver
(Kosatsky et al., 2012). One concern about the inclusion of senior
density within an HVI is that it becomes difficult to determine which
populations are at risk in a given area. The index may show that an area
is highly vulnerable because it has a dense population of seniors, or
because of other factors that put the whole population at risk. Finally,
road network variables have been used in other studies to investigate
heat vulnerability and urban heat island effects (Chen et al., 2012;
Inostroza et al., 2016). Road density had a strong positive correlation
with nocturnal land surface temperature in Shenzhen, China but minor
importance within the HVI constructed for Santiago, Chile. There are
multiple methods to calculate the road density, but we found the 100 m
buffer useful for clearly identifying and visualizing local differences.

3.3. Index comparisons

The mean (standard deviation) index values of all postal codes for
the unweighted, weighted, and HEIDI indexes were 0.95 (0.58), 1.74
(0.82), 0.75 (0.77), respectively (Table 3). Upon extracting the index
values to each of the geolocated postal codes, the correlation between
the indexes were as follows: unweighted index and weighted index was
0.89; unweighted index and HEIDI was 0.69; and weighted index and
HEIDI was 0.77. The spatial correlations between HEIDI and the other
indexes may be moderate for different reasons. First, we opted to cal-
culate the correlations for postal codes rather than all cells in the index
maps to avoid inflating the correlation values because of the abundance
of low vulnerability areas with very low population sizes. Second, many
of the pre-inflection ORs for the contributing variables were near the
baseline value (Fig. 2) meaning that the majority of postal codes had
HEIDI values between 0 and 1 (Table 3).

3.4. Index performance

The threshold-OR plots for the unweighted, weighted, and HEIDI
indexes showed different risk profiles over the range of values from 0 to
5, with maximum OR values of 1.25, 1.30, and 1.23, respectively
(Fig. 3). The unweighted and weighted approaches had inflection points
occurring at approximately 1.5 and 2.5, respectively, but the weighted
index had a steeper slope beyond the inflection. In contrast, the
threshold-OR curve for HEIDI was constantly increasing across all va-
lues. For the unweighted, weighted, and HEIDI approaches the ap-
proximate ranges of variation in the threshold-OR curves were from
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Fig. 2. Plots showing the variable threshold values
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the 20 potential index variables, separated into four
categories. The threshold-OR curves were fitted using
a locally weighted smoother (LOESS). The black
dotted line in each plot is the baseline OR (1.03). The
variables with a light cyan background were selected
for inclusion in the three different heat vulnerability
indexes.
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Table 3 1.5-5, 2.5-5, and 0-5, respectively (Fig. 3), making it meaningless to

Summary statistics for the heat vulnerability indexes, including the percentages of postal
codes within each of the index intervals.

Index intervals Indexes

Unweighted index Weighted index HEIDI
0-1 61.3% 17.4% 80.2%
> 1-2 34.3% 46.6% 11.7%
> 2-3 3.5% 29.4% 5.3%
> 3-4 0.6% 5.7% 2.0%
> 4-5 0.3% 0.8% 0.8%
Index mean 0.95 1.74 0.75
Index SD 0.58 0.82 0.77
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compare index values. Instead, we converted index values to estimated
ORs for every postal code and mapped areas of low, moderate, and high
risk for each using ORs < 1.1, between 1.1 and 1.2, and > 1.2, re-
spectively. The resulting maps show considerable spatial variation be-
tween the approaches. The unweighted index had very small areas
within the moderate and high risk zones (0.9% of postal codes), while
these areas were larger in the weighted (3.1% of postal codes) and
HEIDI (9.7% of postal codes) indexes (Fig. 3).

All three indexes indicate areas of increased risk in some of the same
locations: the downtown eastside of the City of Vancouver; urban areas
of the Burnaby municipality; small areas of the New Westminster mu-
nicipality; and the easternmost municipality of Abbotsford. Moderate
and high risk areas according to the unweighted index were small and
sparse, whereas the weighted and HEIDI indexes showed larger areas
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Fig. 3. Odds ratio (OR) maps of the indexes based on the threshold-OR curves for each index. White areas indicate OR values < 1.1 (< 10% increase in risk on a hot day), pink dots
indicate postal codes with OR values between 1.1 and 1.2 (10-20% increase in risk), and red dots indicate postal codes with OR values > 1.2 (> 20% increase in risk). The black dashed
line on the threshold-OR plots indicates the baseline risk (OR = 1.03). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

with more continuity, and both highlighted the impact of the road
density variable. Overall, HEIDI indicated some general areas of heat
vulnerability throughout the developed areas of each municipality in
greater Vancouver, and particularly highlighted the downtown eastside
in the city of Vancouver and the entire city of Abbotsford (Fig. 3). The
identification of these larger, more comprehensive areas is a function of
the linear increase in risk observed across all HEIDI values.

When the definition of an extremely hot day was varied to generate
different subsets of the mortality data (Table 2), we found that all three
indexes showed some increase in risk at all temperature thresholds
(Fig. 4). In general, the patterns of the threshold-OR curves observed at
a 24 °C persisted down to 20 °C, but were attenuated at each tem-
perature reduction. However, the inflection points for the unweighted
and weighted indexes increased as the temperature threshold decreased
while risk across HEIDI values remained linear. Overall it appears that
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each index remains informative at less extreme temperatures, but that
the distribution of risk is most consistent across HEIDI values.

Other studies have also evaluated their HVIs using mortality data.
An HVI constructed for London, England (Wolf and McGregor, 2013)
was assessed by how well it could predict high mortality and ambulance
dispatches during heat wave events (Wolf et al., 2014). Different as-
sessment approaches were used, including computation of prediction
skill scores and quasi-Poisson regression to assess changes in relative
risk. Although predictive performance of the HVI was not strong, the
results supported its potential as an indicator of areas where above
average morbidity and mortality could be expected. Another HVI cre-
ated for metropolitan areas across the United States (Reid et al., 2009)
was evaluated to verify whether it identified areas with increased
morbidity and mortality during exceptionally hot days (Reid et al.,
2012). Hospitalization and mortality counts for five states were
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Fig. 4. The three indexes were created based on odds
ratios (OR) calculated with mortality data from ex-

Unweighted Weighted

HEIDI tremely hot days, defined as mean

temperature > 24 °C at Vancouver International
Airport (top row). Other plots show the threshold-OR
curves for each index at less restrictive definitions of
extremely hot days, from > 20°C to > 23°C. The
black dashed line on the threshold-OR plots indicates
the baseline risk (OR = 1.03).
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regressed against the interaction of the HVI and a custom heat exposure
metric representing hot days. The results demonstrated that the HVI
primarily classified areas of general health vulnerability, but could
potentially be capable of identifying increased risks of heat-related ill-
nesses on exceptionally hot days. We found that HEIDI performed well
against the mortality data using the threshold-OR approach, with high
index values suggesting high risk and moderate index values suggesting
moderate risk. Further, we found that areas of risk identified by HEIDI
were consistent with those identified by more conventional approaches,
but that HEIDI indicated a larger population at risk.

We believe that the strength of the HEIDI approach lies in this linear
increase in the threshold-OR curve across the index values. An un-
weighted index constructed with four spatial variables can only take
high values in areas where values for each of the contributing variables
are high. The underlying assumption is that risk of mortality is multi-
plicatively higher in areas where all variables are high compared with
areas where only one variable is high. As such, areas that might be at
high risk due to a single variable cannot take a high index value, and
the information is lost. The situation is similar for the weighted ap-
proach, but the index can take high values under broader conditions,
depending on the variable weights. On the other hand, an index con-
structed using data-driven maps of mortality risk can take a high value
at any location where the OR for any contributing variable is high,
better reflecting the independent and combined risks of the variable set.

One result of the greater linearity observed using the HEIDI ap-
proach is that larger areas (and therefore larger populations) are
identified as being at moderate risk. This raises the question of how
information from HEIDI can be used for risk communication and po-
pulation protection when compared with approaches that focus on
more spatially constrained areas. Since the extreme hot weather event
of 2009 (Kosatsky et al., 2012), the regional health authorities in
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greater Vancouver have developed heat health emergency plans for
targeting interventions at high-risk populations during future events.
These plans include visiting all residential care facilities to assess indoor
temperatures, contacting socially isolated individuals, and distributing
resources such as drinking water and cooling fountains to some specific
locations. Unfortunately, these types of interventions are too resource-
intensive to be extended to populations at moderate risk. However,
there are other interventions that can help to protect the population and
that do not incur the same costs. Some examples include identifying
large, air-conditioned buildings that could be used as public cooling
shelters, or asking public swimming pools to reduce their rates and/or
extend their hours during extreme heat. Tools such as HEIDI can help to
identify the neighborhoods in which such simple interventions could
have the largest potential impacts. This is particularly true for urban
areas such as greater Vancouver, where extreme heat is an emerging
threat rather than an established pattern. Even so, cities with hotter
climates still show spatial variability in the mortality impacts of locally
extreme temperatures (Harlan et al., 2013), and the methods we pro-
pose should be replicable in any urban area where individual-level
mortality data are available at high spatial resolution. In areas without
such data we recommend that HVIs be constructed by methods that are
more Boolean than arithmetic, such that the index can take a high value
in any area where any contributing variable is high. As with HEIDI, this
will allow for better characterization of areas with moderate risk, which
may have much larger populations than the spatially constrained areas
at highest risk.
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