

Revascularization Effect on Neurocognition: An Analysis of Moyamoya Disease Patient Outcome

LAU Sau Ning Sarah¹, TSANG Chun on Anderson¹, TSANG Chun Pong¹, LUI Wai Man¹ Lam LM Charlene², Lee Tatia Mei Chun²

¹Division of Neurosurgery, Department of Surgery, QMH ²Department of Psychology, University of Hong Kong

Gender	Age	Bypass date	Type of bypass
F	29	30/05/2012	STA-MCA
M	40	17/04/2013	STA-MCA
F	38	11/09/2013	STA-MCA
F	48	28/05/2013	EMAS+EDAS
F	38	15/01/2014	EMAS+EDAS
M	48	15/04/2014	STA-MCA
F	23	17/10/2014	STA-MCA
M	40	30/12/2014	STA-MCA
F	49	16/01/2015	STA-MCA
F	29	14/05/2014	STA-MCA
F	44	10/02/2015	STA-MCA
F	30	21/04/2015	STA-MCA
M	23	19/05/2015	STA-MCA

Methods:

- 2012 to 2015
- Prospective cohort
- 13 patients
- Left:Right side surgery = 7:6
- Neuropsychological assessment before and after operation at 1 and 6 months

MOCA at 6 months

Mean 26.3

- Improve 70%
- Static 20%
- Worse 10%

p>0.05

MOC	A	at	1	month
٨	Ле	an	2	5.5

- Improve 45.5%
- Static 18.2%
- Worse 36.4%

Neurocognitive Battery		1-month postop		6-month postop	
Attention	Divided attention	Deteriorated	Insig	Improved	Insig
	Sustained attention	Deteriorated	Insig	Deteriorated	Insig
Memory	Verbal memory	Equivocal	Insig	Improved	p<0.05
	Visual memory	Improved	Insig	Improved	p<0.05
Executive functioning	Inhibition	Deteriorated	Insig	Improved	Insig
	Working memory	Improved	Insig	Improved	Insig
	Non-verbal fluency	Improved	p<0.05	Improved	p<0.05
	Verbal fluency	Deteriorated	p<0.05	Deteriorated	Insig
Processing speed		Deteriorated	Insig	Improved	Insig

Discussion and Conclusions:

- Cognitive function is a better correlation to patient's quality of life after bypass surgery than number of ischaemic events
- Sustained improvement observed in MOCA scores after operation
- **Initial deterioration** in some aspects of neurocognitive functions at 1 month
- Significant improvement observed at 6 months after surgery (both in memory and executive functions)
- Adjuncts for neuroplasticity/re-learning may be a potential area of focus in facilitating neuro-rehabilitation for this group of patients
- Implications for **paediatric** age group (future area of study)
- ? Earlier surgery = More pronounced effects of neuroplasticity

References:

Macyszyn et al. J Neurosurg 2017;126:1523–1529.

Lin et al. J Neurosurg 2014;120:612–617. Starke et al. Neurosurg Focus 2009;26(4):E6.

Baaj et al. Neurosurg Focus 2009;26 (4):E7.

Evans et al. Perceptual and Motor Skills 1985. Teuber et al. Annual Review of Psychology 1955;6:267–296.

