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Abstract

Radiation esophagitis (RE) is a common adverse event associated with radiotherapy for non—small cell lung cancer (NSCLC).
While plasma cytokine levels have been correlated with other forms of radiation-induced toxicity, their association with RE has
been less well studied. \We analyzed data from 126 patients treated on 4 prospective clinical trials. Logistic regression models
based on combinations of dosimetric factors [maximum dose to 2 cubic cm (D2cc) and generalized equivalent uniform dose
(gEUD)], clinical variables, and pretreatment plasma levels of 30 cytokines were developed. Cross-validated estimates of area
under the receiver operating characteristic curve (AUC) and log likelihood were used to assess prediction accuracy. Dose-only
models predicted grade 3 RE with AUC values of 0.750 (D2cc) and 0.727 (gEUD). Combining clinical factors with D2cc
increased the AUC to 0.779. Incorporating pretreatment cytokine measurements, modeled as direct associations with RE and
as potential interactions with the dose-esophagitis association, produced AUC values of 0.758 and 0.773, respectively. D2cc
and gEUD correlated with grade 3 RE with odds ratios (ORs) of 1.094/Gy and 1.096/Gy, respectively. Female gender was
associated with a higher risk of RE, with ORs of 1.09 and 1.112 in the D2cc and gEUD models, respectively. Older age was
associated with decreased risk of RE, with ORs of 0.992/ear and 0.991/year in the D2cc and gEUD models, respectively.
Combining clinical with dosimetric factors but not pretreatment cytokine levels yielded improved prediction of grade 3 RE
compared to prediction by dose alone. Such multifactorial modeling may prove useful in directing radiation treatment planning.
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Introduction

Locally advanced non-small cell lung cancer (NSCLC) is often
treated with concurrent chemotherapy and radiation [1,2]. Radiation
esophagitis (RE) is a common complication of this treatment, with
the incidence of grade 3 or greater symptoms having been reported to
be as high as 25% in prospective trials [3]. Grade 3 esophagitis, per
Common Terminology Criteria for Adverse Events, indicates severe
symptoms requiring intervention such as tube feeding or parenteral
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nutrition [4]. Acute RE usually develops between 2 and 4 weeks of
treatment and, in addition to affecting quality of life, can necessitate
treatment break, which is associated with inferior outcomes [5-7].
With improved understanding of the clinical, dosimetric, and
biologic risk factors for RE, it may be possible to identify patients
for whom stricter esophageal dose constraints, prophylactic nutritional
optimization, or other action may be beneficial for reducing toxicity and
increasing chances for completing treatment.

Clinical factors associated with RE include concurrent chemother-
apy, gender, age, body mass index, pretreatment dysphagia, and nodal
stage [8-10]. Dose-escalated, twice-daily, and hyopfractionated
radiotherapy courses increase risk [2,9,11-13]. Improved esophageal
sparing with intensity-modulated radiotherapy (IMRT) has shown
promise for reducing rates of grade 3+ RE compared to 3D-conformal
(3DCRT), although this has not been consistent in all studies
[14-22]. A multitude of dosimetric factors predictive of RE have been
described, including mean esophageal dose, maximum esophageal
dose, and various doses to esophageal surface area, length, and volumes
(including total, infield, and relative volumes) [8-10,14,23-39]. More
advanced approaches, including normal tissue complication probability
modeling and anatomic correction, have shown unclear benefit
[27,38,40]. More recently, a multi-institutional study evaluating
multiple dose-volume metrics identified the maximum dose to
2 cubic cm (D2cc) and generalized equivalent uniform dose (gEUD)
as superior parameters [41].

Cytokines represent a large, heterogeneous group of proteins
involved in regulating inflammatory and fibrotic responses to injury
[42]. Multiple cytokines have been linked with reflux-associated and
eosinophilic esophagitis [43—45]. Single nucleotide polymorphisms
(SNPs) in several cytokines and cytokine receptors have been
associated with an increased risk of RE [46—48]. In mouse models,
esophageal radiation has been found to induce transcription of
multiple inflammatory cytokines [49,50].

While plasma cytokine levels have been extensively investigated as
potential biomarkers for radiation-induced lung toxicity (RILT)
(reviewed in [51]), their potential role in RE has been less well
studied. In predicting RILT, differences in both pretreatment and
radiation-induced plasma cytokine levels have been shown to
correlate with risk [51-53]. However, as RE, compared to radiation
pneumonitis and pulmonary fibrosis, often develops relatively early in
radiation course, biomarkers evaluable prior to initiation of
radiotherapy would be of greatest utility for RE, as they could direct
intervention prior to the onset of toxicity. We hypothesized that
variations in pretreatment plasma cytokine levels may correlate with
increased or decreased risk of RE. We investigated combining
pretreatment plasma cytokine data with dosimetric and clinical factors
in an effort to improve prediction of RE in patients undergoing
definitive radiotherapy for NSCLC. Dosimetric factors of D2cc and
gEUD were selected due to recently published favorable results using
these parameters [41].

Materials and Methods

Study Population

This work analyzed data from 4 prospective Institutional Review
Board—approved lung-cancer studies: 1) a phase 1/2 study of radiation
dose escalation with concurrent chemotherapy, 2-3) two consecutive
studies using functional imaging and biomarkers to assess patient
outcome, and 4) a study using midtreatment positron emission
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tomography (PET) to guide individualized dose escalation. Included
in this analysis were patients with stage I to III NSCLC treated with
standard fractionation, i.e., not stereotactic body radiotherapy. All
clinical data were prospectively collected. Smoking status was missing
for 10 patients, which was handled via single imputation.

Treatment Regimen

All patients were treated with definitive radiotherapy with or
without sequential or concurrent chemotherapy. In cases of sequential
treatment, chemotherapy was administered following radiotherapy.
In most cases, radiation was delivered using 3DCRT as previously
described [54], whereas IMRT was used for a minority of patients.
Gross tumor volume included the primary tumor and any involved
hilar or mediastinal lymph nodes, as determined by tissue diagnosis
and/or PET—computed tomography (CT). Uninvolved lymph node
regions were not included in the clinical target volume. The
esophagus was contoured per Radiation Therapy Oncology Group
guidelines on each patient's CT simulation scan. Tissue inhomogeneity
corrections were applied for all plans.

As dose and fractionation varied among patients, we standardized
values to biologic effective dose (BED), which normalizes doses of
various fractionations by supposing a hypothetical condition of an
infinite number of fractions. Tumor and esophageal BEDs were
calculated using the linear-quadratic formula using an alpha/beta ratio
of 10 Gy. Patients were evaluated weekly during radiotherapy and at
regular intervals following completion of treatment. Radiation-induced
esophageal toxicity was graded by physicians during on-treatment
and follow-up visits per Common Terminology Criteria for Adverse
Events v3.0 [4].

Cytokine Analysis

Plasma concentrations of 30 cytokines were measured: epidermal
growth factor, eotaxin, fractalkine, granulocyte colony stimulating
factor, granulocyte macrophage colony stimulating factor, interferon
a, interleukin (IL)1ev, IL1B, IL2, IL4, IL5, IL6, IL7, IL8, IL10, IL12
subunit 40 (IL12p40), IL12 p35 and p40 heterodimer (IL12p70),
IL13, IL15, IL17, IL1 receptor antagonist, monocyte chemoattrac-
tant protein 1, macrophage inflammatory protein 1o, macrophage
inflammatory protein 1B, soluble CD40 ligand, TGFa, TGFp1,
TNFa, and vascular endothelial growth factor. This panel was
selected to represent a diverse collection of cytokines implicated in
many inflammatory processes including RILT and esophagitis of
various etiologies. Cytokine measurements were performed in
platelet-poor plasma samples within 2 weeks prior to the start of
RT. Plasma samples were collected and prepared as previously
described [55]. Briefly, blood samples were collected in the presence
of the anticoagulant K,EDTA (dikalium salt of ethylenediaminetet-
raacetic acid) and placed on ice immediately after collection. Samples
were centrifuged within 2 hours of collection, after which the upper
one-third of the supernatants was collected and stored at -80°C. Prior
to cytokine measurements, samples were recentifuged in order to
generate platelet-poor samples for analysis. TGFB1 levels were
measured using enzyme-linked immunosorbent assay as previously
described [53], while the other 29 cytokines were measured using
luminex multiplex assay (xMAP plasma assay; Luminx, St. Charles,
MO). All sample tests were run in duplicate. Some cytokine
measurements fell below a lower limit of detection. We used an ad hoc
methodology to detect and account for these censored measurements,
which is described in the Supplement.
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Statistical Modeling

We modeled the incidence of grade 3 esophagitis after initiation of
radiotherapy as a function of associations with dose, selected clinical
and dosimetric factors, and pretreatment cytokine levels using
multivariable logistic regression. To account for the low ratio of
number of events to number of covariates, which can negatively
impact precision, we applied “elastic net” penalization to the
regression [56]. The elastic net is equipped to automatically exclude
unimportant variables from the model and shrink the estimated
associations of those that remain. This first characteristic encourages
simplicity and interpretability in the selected model, whereas the
second helps improve the external validity of the model in subsequent
assessments. The number of variables excluded and the degree of
shrinkage are automatically tuned based upon optimizing perfor-
mance in a cross-validated framework, whereby proportions of the
data are sequentially held apart and treated as small validation sets.
Specifically, we maximized the cross-validated log-likelihood, a
statistical measure of the agreement between each patient's
model-predicted risk of grade 3 esophagitis and whether she/he
developed it. We also measured cross-validated area under the
receiver-operating characteristic curve (AUC), a measure of discrim-
inatory ability. We note that standard measures of “statistical
significance” such as P values do not account for the variable
selection or shrinkage process and thus would be potentially
misleading in our analysis. Rather, by definition of being included
in the final model, a covariate is considered to have a meaningful
association with the outcome (grade 3 esophagitis).

To focus on and distinguish between the impacts of associations
corresponding to the set of clinical factors and those corresponding to
the set of pretreatment cytokines, we compared four families of
prediction models for esophagitis, differing in terms of the maximum
possible level of complexity. The simplest model was a baseline
comparison model for predicting grade 3 esophagitis using dosimetric
factors only. We applied our model building approach separately for
two dosimetrics: D2cc and gEUD to the esophagus, with « = 5.
Generalized equivalent uniform dose is a numerical representation of
the estimated biologic effect of dose distributed heterogeneously
throughout a given structure, represented as a single dose distributed
uniformly, and is expressed in units of Gy [57]. The relative
contribution of maximum dose can be differentially weighted by
adjusting the “2” factor. When calculated with an “2” of 1, gEUD is
equivalent to mean dose. Increasing the “4” value leads to greater
weighting of maximum dose even if the volume receiving this dose is
small. High “4” values are appropriate for serial organs, such as the
esophagus and bowel, as the function of such organs can be impaired
by damage to a small volume. Conversely, low “2” values are more
appropriate for parallel organs, such as the liver, as functional
impairment requires damage to a relatively larger volume.

We then added a set of prespecified clinical factors: concurrent
chemotherapy, smoking status (current, former, never), age, sex,
simple stage, and Karnofsky performance status (KPS). Finally, we also
added pretreatment cytokine levels, modeled either as having direct
associations with toxicity or as indirectly modifying the dose-esophagitis
association. To ensure valid comparability, all models were built and
cross-validated against an identical subcohort of 126 patients with
observed pretreatment cytokine levels but potentially missing dose
levels. These missing values were accounted for using multiple
imputation. Given the number of cytokines, we did not consider an
approach for imputing the missing cytokine values.
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The statistical shrinkage of the elastic net approach was applied to
each family of models except for the dose-only model. However, in
none of the models was this shrinkage applied to the association
parameter corresponding to dose, as doing so would contradict the
clear underlying biological rationale for a strong association between
dose and esophagitis. All analyses were conducted in R [58,59].
Additional details are given in the Supplement.

Results
We identified 147 patients treated with definitive, fractionated
radiotherapy on the above-described protocols from 2004 to 2013. At
a median follow-up of 3.5 years (range 1.3-10.1), the incidence of
grade 3 esophagitis in this cohort was 10.2% (15/147). There were no
cases of grade 4 or 5 esophagitis. Of these 147 patients, 22 had
missing or corrupted dose information and 21 did not have any
cytokines measured. As described above, patients without cytokine
data were excluded from our model-building cohort, while the
patients with missing dose values were accounted for using multiple
imputation. The incidence of grade 3 esophagitis in the 126 analyzed
patients was 10.3% (13/126), which was similar to that observed in
the full cohort. Characteristics of the full cohort (7 = 147) and the
reduced cohort with pretreatment cytokines measured (7 = 126) are
reported in Table 1.

Table 2 gives the results from the model fitting procedure against
the 126 patients for both analyzed dosimetrics, namely, D2cc and

Table 1. Patient Characteristics

Cohort with
Pretreatment Cytokine
Dara (z = 126)

Full Cohort (7 = 147)

Grade 3 esophagitis, # (%)

Esophageal dose, D2cc
Median (IQR)

# Missing

Esophageal dose, gEUD
Median (IQR)

# Missing

Target dose, BED
Median (IQR)

13 (10.3%) 15 (10.5%)

62.7 Gy (56.1, 69.6)
n=17

62.1 Gy (56.0, 68.5)
n=22

46.9 Gy (39.0, 51.8)
n=17

46.8 Gy (39.0, 51.7)
n=22

84.0 Gy (78.0, 93.6) 84.0 Gy (78.0, 94.4)

# Missing n=3 n=06
Sex, # (%)

Female 28 (22.2%) 33 (22.4%)
Age, year

Median (IQR)
Race/ethnicity, # (%)

65.8 (59.3, 73.4) 65.6 (59.3, 73.2)

Caucasian 121 (97.6%) 140 (97.2%)
African American 2 (1.6%) 3 (2.1%)
Asian 1 (0.8%) 1 (0.7%)
Not reported 2 3
KPS
Median (IQR) 87.5 (80, 90) 90 (80, 90)
Smoking status, # (%)
Former 57 (48.8%) 71 (51.8%)
Current 57 (48.8%) 62 (45.3%)
Never smoker 3 (2.6%) 4 (2.9%)

Not reported 9 10
Simple stage, # (%)

1 14 (11.1%)

11 14 (11.1%)

15 (10.2%)
17 (11.6%)

111 98 (77.8%) 114 (77.6%)

v 0 1 (0.7%)
Concurrent chemotherapy, # (%)

Yes 103 (81.7%) 121 (82.3%)
Radiation technique, # (%)

3DCRT 122 (96.8%) 143 (97.3%)

IMRT 4 (3.2%) 4 (2.7%)

1IQR, inrerquartile range.
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gEUD. In these “dose-only” models, the cross-validated
log-likelihood and AUC were, respectively, -37.7 and 0.750 for
D2cc and -37.7 and 0.727 for gEUD. These increased to -37.1 and
0.779, respectively, when the set of clinical covariates was added to
D2cc (dose + clinical). Clinical factors analyzed included concurrent
chemotherapy, former smoking status, current smoking status,
age, sex, simple TNM stage, and KPS. There was a similar
improvement in model fit when using gEUD, with log-likelihood
increasing to -37.2 and the AUC to 0.768. We emphasize that these
metrics are cross-validated and thus adjusted for overfitting. As such,
numerical increases reflect an improvement in model fit and
predictive performance.

Upon adding pretreatment cytokine measurements, either as
having associations with esophagitis directly or as modifying the
dose-esophagitis relationship, predictive performance degraded. For
D2cc, the log-likelihood values from the cytokine models were -37.8
and -37.4, respectively, and the AUCs were 0.758 and 0.773.
For gEUD, the log-likelihood values from the cytokine models were -37.6
and -37.5, and the AUCs were 0.749 and 0.729. Comparing the two
approaches to modeling cytokine levels, the better fitting set allowed a
cytokine to adjust the dose-esophagitis association up or down
(a statistical interaction) rather than being itself directly associated
with esophagitis. However, in an overall comparison, none of the
cytokine models could further improve upon a simpler model using
only dose and clinical covariates. Comparing performance across
dosimetrics, D2cc had marginally better performance than gEUD in the
dose + clinical model. Figure 1 plots the model-based (cross-validated)
risks of grade 3 RE using the D2cc dosimetric.

Focusing on the dose + clinical models, which had the best
operating characteristics, we next included data from the 21 patients
who were excluded from the model-building process due to missing
pretreatment cytokine data. We report the individual estimated
associations from refitting the selected dose + clinical model to all 147
patients (Table 3). As expected, increasing dose was strongly
associated with increased risk of esophagitis, with odds ratios (ORs)
of 1.094/Gy (D2cc) and 1.096/Gy (gEUD). In addition to dose, two
clinical covariates were selected for the models. First, women had
slightly higher risk than men, with ORs of 1.090 (D2cc) and 1.112
(gEUD). Additionally, with each dosimetric, there was an incremental
decline in the risk of RE with increasing age, with ORs of 0.992/year
(D2cc) and 0.991/year (gEUD).

Discussion

In the work described here, RE models combining dosimetric and
clinical factors showed improved prediction accuracy compared to
that obtained by dose alone, as reflected in higher AUC and log
likelihood values. Incorporating pretreatment plasma levels of 30
cytokines, however, did not improve results. This was true whether

Table 2. Prediction of Grade 3 Esophagitis Based upon 126 Patients with Measured Cytokines
from Four Models Using Increasing Amounts of Clinical and Cytokine Data

Dose = D2cc Dose = gEUD
AUC Log Likelihood AUC Log Likelihood
Dose only 0.750 -37.7 0.727 -37.7
Dose + clinical 0.779 -37.1 0.768 -37.2
Dose + clinical + Cyty 0.758 -37.8 0.735 -37.6
Dose + clinical + Dose*Cyt, 0.773 -37.4 0.749 -37.5

The model with the largest log-likelihood (in bold) was selected.

Cyt0, pretreatment cytokine levels.
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cytokine levels were modeled as direct interactions with RE or as
potential modifiers of the dose-RE association. Of the various models
tested, we found the D2cc + clinical model to yield the highest prediction
accuracy, with an AUC of 0.779 and a log likelihood of -37.1. We found
female gender to be associated with a mild increase in the risk of RE, while
increasing age was protective. While these results do not support the use of
pretreatment cytokines to predict grade 3 RE, they do demonstrate the
superiority of a multifactorial approach. While many physicians already
consider patient-specific factors when generating treatment plans,
standardized methods for quantifying risk could allow for more robust
individualization of treatment planning, nutritional optimization, or
other prophylactic intervention.

The incidence of grade 3 RE in this cohort was 10.2%, which is
similar to other recent studies [11]. The majority of our patients
received concurrent chemotherapy, which is both consistent with the
standard of care for locally advanced NSCLC and a previously
described risk factor for RE. The majority of patients analyzed in this
work were treated with 3DCRT. Multiple studies have shown that
the use of IMRT is associated with reduced rates of RE, although
others have shown no improvement [14-22]. With increasing
utilization of IMRT for NSCLGC, it is possible that the generalizability
of our results may be reduced.

Despite the abundance of dosimetric factors that have been
correlated with RE, no clearly superior parameter has been identified
for standardized implementation. In 2010, a Quantitative Analysis of
Normal Tissue Effects in the Clinic report identified limiting mean
esophageal dose to <34 Gy as the most significant factor for reducing
the risk of grade 3+ RE, a planning goal also recommended in
Radiation Therapy Oncology Group 0617 [11,60]. The dosimetric
variables analyzed here, D2cc and gEUD, were selected due to recent
promising results regarding their use in predicting RE [41]. D2cc is a
parameter often used as surrogate for maximum point dose and is
commonly used in other settings [61,62]. The importance of volume
of esophagus receiving high radiation dose is supported by a large
meta-analysis that identified the volume of esophagus receiving 60 Gy
(V60) as the strongest correlate of RE [30]. As discussed in the
methods section above, gEUD calculated with an “2” value >1
incorporates maximum dose while also accounting for dose to the
entire organ.

We note that the finding that increasing age correlated with lower
risk of RE is consistent with our previous report focusing specifically
on this phenomenon [63] but that the magnitude of the association is
smaller here. This was likely due to multiple factors, including the use
of statistical shrinkage via the elastic net, which was employed in this
study to reduce false-positive findings given the high number of
model-building parameters and which forces all estimated associations
to be smaller; the inclusion of the additional clinical covariate of sex;
and the inclusion of an additional 22 patients in this study with
missing dose information. That the association between age and RE
was similar despite these differences supports the findings in the
previous study.

There are several potential reasons why our analysis failed to show a
correlation between pretreatment plasma cytokine levels and grade 3
RE. One possibility is that an inadequate number of cytokines was
investigated and that some cytokine that was not measured could
correlate with RE. However, this is unlikely given the volume and
diversity of the panel, as well as the interrelatedness of cytokine
expression patterns and functions. We investigated a broad panel of
cytokines, including many of those linked to esophagitis of other
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Figure 1. Predicted risk of grade 3 RE by various D2cc-based prediction models. Green and purple dots represent patients who did not

and did develop grade 3 RE, respectively.

etiologies, those associated with other radiation-induced toxicities,
those in which SNPs have been shown to correlate with RE, and those
induced by radiation in mouse models [43,44,46-49,51]. Another
possibility is that cytokines may have been lost or degraded during
isolation or storage, as they are labile in plasma. However, our group
has successfully collected and analyzed plasma cytokine levels in
multiple previous studies [64-66], with these samples having been
handled similarly.

While we analyzed pretreatment cytokine levels in this work, it is
possible that cytokine data obtained mid- or following treatment
could distinguish patients with and without RE. Such a phenomenon
has been observed in lung toxicity, with both pretreatment and
treatment-induced cytokine levels having been shown to correlate
with risk of RILT (reviewed in [51]). However, as RE often develops
within the first several weeks of radiotherapy, as opposed to radiation
pneumonitis and pulmonary fibrosis, which generally develop
months after treatment, such information would be inherently less
able to direct meaningful adaptation of radiotherapy. While our
analysis of plasma cytokines was negative, this alone is a significant
finding, as little information regarding cytokines and RE exists in the
published literature.

While the work presented here represents progress in RE
prediction, continued efforts to improve accuracy are warranted.
Several areas are promising, including incorporation of cross-sectional
and functional imaging. For example, midtreatment esophageal
expansion on CT and increased esophageal fludeoxyglucose avidity
on PET have been correlated with RE [67-69]. However, as these are
midtreatment findings, their ability to guide treatment optimization
may be limited. In addition, other, noncytokine biologic factors have

Table 3. ORs for Dosimetric and Clinical Factors from Selected “Dose + Clinical” Multivariable
Models of Grade 3 RE in Cohort of 147 Patients (21 Additional Patients Who Were Missing
Cytokine Measurements Were Readded into the Analysis Cohort after Model Selection)

Dose = D2cc Dose = gEUD
Dose (OR per Gy) 1.094 1.096
Female sex 1.090 1.112
Age (OR per year) 0.992 0.991

shown potential for predicting RE, including micro-RNAs (miR-
NAs). In one study, Xu et al. showed elevation of midtreatment
serum levels of certain miRNA species to be associated with RE [70].
However, that study failed to show a correlation between
pretreatment miRNA levels and RE, which, again, could limit
applicability. Certain miRNA-related SNPs have also been linked
with an increased risk of RE [71] and could represent an avenue to
predict risk prior to initiation of treatment.

Conclusions

In this analysis, prediction of grade 3 RE based on dosimetric and clinical
factors was superior to prediction by dosimetry alone. We did not find
evidence that variation in pretreatment plasma cytokine levels further
improved performance, which represents a novel finding. These results
demonstrate the utility of multivariable modeling for predicting RE.
Identification of additional clinical, biologic, imaging, or other factors could
further improve prediction, possibly leading to more personalized treatment
planning with associated reduced toxicity and improved outcomes.

Appendix A. Supplementary data
Supplementary data to this article can be found online at hteps://

doi.org/10.1016/j.tranon.2017.11.005.
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