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We study Abelian braiding statistics of loop excitations in three-dimensional gauge theories with
fermionic particles and the closely related problem of classifying 3D fermionic symmetry-protected
topological (FSPT) phases with unitary symmetries. It is known that the two problems are related by
turning FSPT phases into gauge theories through gauging the global symmetry of the former. We show that
there exist certain types of Abelian loop braiding statistics that are allowed only in the presence of
fermionic particles, which correspond to 3D “intrinsic” FSPT phases, i.e., those that do not stem from
bosonic SPT phases. While such intrinsic FSPT phases are ubiquitous in 2D systems and in 3D systems
with antiunitary symmetries, their existence in 3D systems with unitary symmetries was not confirmed
previously due to the fact that strong interaction is necessary to realize them. We show that the simplest
unitary symmetry to support 3D intrinsic FSPT phases is Z2 × Z4. To establish the results, we first derive a
complete set of physical constraints on Abelian loop braiding statistics. Solving the constraints, we obtain
all possible Abelian loop braiding statistics in 3D gauge theories, including those that correspond to
intrinsic FSPT phases. Then, we construct exactly soluble state-sum models to realize the loop braiding
statistics. These state-sum models generalize the well-known Crane-Yetter and Dijkgraaf-Witten models.
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I. INTRODUCTION

Topological phases in three spatial dimensions can
support particle and loop excitations [1]. While we learn
in undergraduate quantum mechanics that there are only
bosonic and fermionic exchange statistics for particles in
3D, the rich statistical properties of loop excitations have
only begun to be uncovered recently [2,3], in conjunction
with the study of bosonic symmetry-protected topological
(BSPT) phases in 3D [4–6]. More specifically, it was found
that one way to characterize BSPT phases protected by
finite unitary symmetries is to “gauge” the global sym-
metries, i.e., couple the BSPT matter to a gauge field such
that the global symmetries are promoted to local gauge
symmetries. In such gauged BSPT phases, particle excita-
tions are the gauge charges and loop excitations are vortices
carrying gauge fluxes. Most importantly, distinct BSPT
phases give rise to different “three-loop” braiding statistics
in the gauge theories, which is a fundamentally new type
of braiding statistics in 3D [2,3,7–13]. In other words,

three-loop braiding statistics serves as a topological invari-
ant for BSPT phases.
So far, all studies of loop braiding statistics have focused

on gauge theories where particles are bosons. Loop braid-
ing statistics in the presence of fermionic particles are much
less explored. Perhaps the most important question to
address is, Does the presence of fermions allow new types
of loop braiding statistics that are not possible otherwise?
This question is closely related to the problem of

classifying interacting fermionic symmetry-protected topo-
logical phases (FSPT) in 3D, in which the braiding statistics
of vortex loops also serves as a topological invariant for the
bulk phase. To put it into context, we briefly review the
classification of FSPT phases with unitary symmetries in
3D. For noninteracting fermionic systems, it is well known
that there are no nontrivial FSPT phases protected by on-site
unitary symmetries linearly realized on the fermions
[14–17]. On the other hand, we can create interacting
FSPT phases by effectively turning fermions into bosons
with the help of strong interactions (i.e., fermions forming
spins ormolecular bound states), and letting the bosons form
SPT states. An interesting question then arises: are there
“intrinsic” FSPT phases in 3D protected by unitary sym-
metries? Here, by intrinsic, wemean those FSPT phases that
do not stem from BSPT phases. If there were any, we know
that they must be strongly interacting states (since we know
there are no nontrivial noninteracting SPTphases). Then, the
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loop braiding statistics obtained by gauging symmetries of
these intrinsic FSPT phases are the ones that are allowed
only in the presence of fermionic particles.
Because of the nonexistence of noninteracting phases,

one has to confront the complexity of interacting systems
from the very beginning to realize FSPT phases. A fruitful
approach is to construct and study exactly solvable lattice
models. A systematic construction of fermionic SPT phases
has been proposed in Ref. [18], although no explicit
examples in 3D for unitary symmetries (except the bosonic
ones) were given. In addition, it is not clear what kind of
physical properties characterize the constructed FSPT
states in Ref. [18]. We should mention that other classi-
fication schemes have been proposed, such as the spin
cobordism group in Ref. [19] and the invertible topological
quantum field theories (TQFTs) in Refs. [20,21].
In this work, we study Abelian loop braiding statistics in

3D gauge theories with fermionic particles. As we see, the
presence of fermionic particles indeed enables new types of
three-loop braiding statistics, forbidden when the particles
are bosonic. Because of the well-established correspon-
dence between SPT phases and gauge theories [2,7,22–24],
our results also imply existence of intrinsic FSPT phases.
We derive these results through a combination of physical
arguments and exactly solvable models. Moreover, we
derive a complete classification of Abelian three-loop
braiding statistics in Abelian gauge theories (i.e., the gauge
group is Abelian) in the presence of fermionic particles.
We show that the simplest symmetry group that allows

for intrinsic interacting FSPT phases is Zf
2 × Z2 × Z4.

Here, Zf
2 is the fermion parity conservation. It turns out

that this example captures the essence of all 3D Abelian
FSPT phases discussed in this work. Hence, we give an
intuitive picture for one of theZf

2 × Z2 × Z4 intrinsic FSPT
phases—namely, the “root” phase—in terms of decorated
domain walls. In this description, a symmetric state can be
obtained by proliferating domain walls of the global
symmetry. If domain walls themselves are “decorated”
by lower-dimensional SPT phases, then the wave function
of proliferated domain walls may represent a nontrivial SPT
state [25]. In the Zf

2 × Z2 × Z4 FSPT phase, a Z4 domain
wall is decorated by a 2D FSPT phase protected by the
Zf

2 × Z2 symmetry. Using the terminology of Ref. [26], the
one that we use for decoration is the root Abelian FSPT
phase in 2D, which has a Z4 classification with interactions
(note that the full interacting classification of 2D Zf

2 × Z2

FSPT phases is Z8; however, the Z8 root phase is non-
Abelian). In fact, because this Abelian root phase has a Z4

classification, it can exist only on a Z4 domain wall
[18,24,26,27]. This 2D phase can be easily realized with
noninteracting fermions, and a simple example is the
following: the system consists of two layers, a Chern
insulator with Chern number C ¼ 1 (or equivalently, two
copies of px þ ipy superconductors) and its time-reversal

image with C ¼ −1. This noninteracting FSPT has helical
Dirac fermions on the edge, and since the two chiral modes
carry opposite Z2 charges, they cannot backscatter.
Interactions on the edge can cause spontaneous breaking
of the Z2 symmetry, but the edge cannot be both symmetric
and nondegenerate [24,28].
To expose the physics of the 3D FSPT phase constructed

above, we imagine inserting a Z4 symmetry defect loop
into the FSPT phase (Fig. 1). Since the defect loop can be
viewed as the effective boundary of a domain wall, it must
carry similar gapless modes as the edge of the 2D FSPT
phase decorated on the domain wall, assuming no sponta-
neous symmetry breaking along the loop. As we already
mentioned, one possible effective low-energy theory for the
gapless modes is a 1D helical Dirac fermion. This 1D
helical Dirac fermion on Z4 symmetry defects is an
important property of the FSPT phase.
To explicitly show that the above 3D FSPT phase is

intrinsic, we need to gauge the Zf
2 × Z2 × Z4 symmetry.

Then, symmetry defect loops turn into dynamical vortex
loops in the gauged system. There are two three-loop
braiding process (see Fig. 2) which can reveal the intrinsic
nature of the FSPT phase. First, consider braiding aZf

2 (i.e.,
fermion parity) vortex loop around a Z2 vortex loop, while
both are linked to a unit Z4 vortex loop. We find that this
three-loop braiding statistics is either semionic or anti-
semionic (�π/2). On the other hand, using a result that we
establish in Sec. III D, if this FSPT phase stems from a
BSPT phase, this three-loop braiding phase can only be 0 or
π. The essence in this difference is that fermion parity
vortex loops play a nontrivial role in the three-loop braiding
statistics in the FSPT phase constructed from decorated
domain walls. Hence, this FSPT must be intrinsically
fermionic and the corresponding loop braiding statistics
can exist only in the presence of fermionic particles. The
other process is to exchange two identical Z2 vortex loops
linked to the unitZ4 vortex. The resulting Berry phase turns

FIG. 1. A Z4 symmetry defect in the Zf
2 × Z2 × Z4 intrinsic

FSPT phase. There lives a 1D helical Dirac fermion (denoted by
red and blue arrows) on the defect. The shaded region represents a
branch surface associated with the defect.
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out to be π/4 (up to a π ambiguity), which, as we see, is not
allowed in systems with bosonic charges.
Because of the length of this paper, we briefly outline the

strategy underlying our approach. In Sec. II, we give an
introduction to some basic notions, including symmetries
in fermionic systems, the gauging method, and braiding
statistics in 3D. Next, in Sec. III, we define a set of
topological invariants to unambiguously characterize
Abelian three-loop braiding statistics in the presence of
fermionic particles and derive physical constraints satisfied
by the topological invariants. We then solve the constraints
to obtain possible solutions corresponding to gauged
intrinsic FSPT phases. Next, to show that the constraints
are complete and the solutions we find are indeed physical,
we introduce a family of exactly solvable lattice models of
topological twisted gauge theories in Sec. IV and compute
the loop braiding statistics in Sec. V. We show that all
physical solutions we found in Sec. III can be realized by
these models, thus completing the classification.

II. PRELIMINARIES

To begin, we discuss preliminary knowledge on 3D
FSPT phases and loop braiding statistics. We first discuss
the structure of symmetry groups in fermionic systems,
with an emphasis on the role of fermion parity conserva-
tion. Then, we introduce the general idea of gauging
symmetries in fermionic systems. Finally, some basic
properties of 3D loop braiding statistics are discussed.

A. Symmetries

Any fermionic system has a fundamental unbreakable
symmetry, namely, the conservation of the total fermion
parity: Pf ¼ ð−1ÞNf , where Nf is the number of fermions.
The two operators f1; Pfg form a symmetry group, which

we denote as Zf
2 .

In addition, the system may be symmetric under other
global symmetry transformations. Togetherwith the fermion
parity, all symmetry transformations form a symmetry group
G. It is generally required that Pf commutes with all

elements in G. Accordingly, Zf
2 is a normal subgroup of

G. The quotient group G ¼ G/Zf
2 in a sense contains all the

“physical” symmetries (i.e., those can be broken by physical
perturbations). Mathematically, G is a central extension ofG
by Zf

2. Given G, such an extension is not unique. Possible
extensions are mathematically classified by the second
group cohomologyH2½G;Zf

2 �. For example, it iswell known
that fermionic systems with time-reversal symmetry ZT

2 ¼
f1; Tg come in two varieties: onewith T2 ¼ 1, and the other
with T2 ¼ Pf, corresponding to the two elements

in H2½ZT
2 ;Z

f
2 � ¼ Z2.

In this work, we consider fermionic systems with an
Abelian unitary symmetry group G. Without loss of
generality, we can represent G as follows [29]:

G ¼ Zf
N0

YK
i¼1

ZNi
; ð1Þ

where N0 is an even number. We use integer vectors
a ¼ ða0; a1;…; aKÞ to denote the group elements, with
ai ¼ 0; 1;…; ðNi − 1Þ, and use additive convention for
groupmultiplication. Generators of the group are denoted as

ei ¼ ð0;…; 1;…; 0Þ;
where the ith entry equals 1 and other entries equal 0.
The groupZf

N0
is singled out because the generator of the

fermion parity symmetry corresponds to the ðN0/2Þe0
element. Equivalently, it means that the unit charge under
Zf

N0
is a fermion, while the unit charge under other ZNi

subgroups are all bosons. If we consider the more physical
global symmetry group G ¼ ZN0/2

Q
K
i¼1ZNi

, we find that
all fermions carry half charges under ZN0/2, forming the so-
called “projective representations” of ZN0/2. (If N0/2 is odd,
this actually does not give a true projective representation,
due to the familiar isomorphism that Zf

N0
¼ Zf

2 × ZN0/2).

B. FSPT phases and gauging symmetry

As we discussed in the Introduction, fermionic systems
with a symmetry G may form various SPT phases, i.e.,
gapped symmetric short-range entangled states. In this
work, we study FSPT phases protected by Abelian unitary
symmetries in Eq. (1).
One way to characterize FSPT phases is to “gauge” the

global symmetry G in lattice Hamiltonians. That is, we
minimally couple the system to a lattice gauge field of a
(discrete) gauge group G. There is a well-defined procedure
to do so; see, e.g., Refs. [7,22,24]. Here, we illustrate the
basic idea of the gauging method, by considering G ¼ Zf

N0

for simplicity. Suppose the lattice fermionic system is
described by the Hamiltonian H of the form

H ¼
X
hiji

tijc
†
i cj þ � � � ; ð2Þ

where tij is the nearest-neighbor hopping amplitude.
Additional interactions must be included in “� � �” to have
nontrivial 3D FSPT phases. However, for the sake of
simplicity, we consider only the free-fermion hopping term
to illustrate the gauging idea. The hopping terms preserve
the Zf

N0
symmetry, which is generated by the global

transformation ci → cie−i2π/N0 . To gauge the symmetry,
we first introduce an N0-dimensional Hilbert space Vij on
each link ij, spanned by the basis fjmig with
m ¼ 0; 1;…; N0 − 1. The tensor product of the Hilbert
space Vij of each link is the lattice gauge field. We define
two operators on this Hilbert space:

μijjmi ¼ e�ið2πm/N0Þjmi; Sijjmi ¼ jm� 1i; ð3Þ
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where the choice of � sign depends on whether ij is
parallel or antiparallel to a fixed orientation that we assign
for each link on the lattice. Next, we minimally couple the
fermion HamiltonianH to the lattice gauge field as follows:

H̃ ¼
X
hiji

tijc
†
i cjμij þ � � � : ð4Þ

For more complicated terms that involve multiple sites,
the minimal coupling can be similarly defined (see
Refs. [7,22]). Additional interacting terms involving the
gauge field alone are usually added to guarantee that the
gauge flux excitations are gapped.
The resulting model H̃ has a local ZN0

gauge symmetry
on each site i, which is generated by the operator

Ti ¼ eið2π/N0Þc†i ci
Y

j∈neighðiÞ
Sji; ð5Þ

where neighðiÞ denotes the set of all the nearest neighbors
of i. The overall Hilbert space, including the fermionic part
and the gauge field part, consists of those gauge-invariant
states jΨi, i.e., those satisfying

TijΨi ¼ jΨi: ð6Þ
This constraint is the analogue of the usual Gauss law of
electromagnetism, ∇ · E ¼ ρ.
The above gauging procedure can be extended to any

unitary symmetry G. The gauged model H̃, with a gauge
field coupled to fermionic matter, is actually topologically
ordered, in the sense that it is gapped and it hosts
deconfined topologically nontrivial excitations, as long
as the original Hamiltonian H is gapped and does not
break the symmetry spontaneously. In a gauge theory,
nontrivial excitations carry either gauge charge or gauge
flux. It has been proposed and verified in various systems
that braiding statistics of charge and flux excitations in the
gauged models are able to distinguish the original SPT
phases. In this work, we study braiding statistics in 3D
gauged FSPT systems, extending previous works on 2D
and 3D BSPT phases [2,7] and 2D FSPT phases [26,29].
It is sometimes useful to only gauge the fermion parity

symmetry subgroup Zf
N0
. In this way, the fermionic system

is turned into a bosonic one, in the sense that there are no
local fermionic excitations. Because of the direct product
structure in Eq. (1), the other global symmetries remain
unaffected by the gauging procedure, so we end up with a
ZN0

gauge theory enriched by a symmetry group G/ZN0
¼Q

K
i¼1ZNi

[9,30–37].

C. Basics of 3D braiding statistics

We now discuss the basics of braiding statistics between
excitations in a gauged 3D FSPT system, i.e., a G gauge
theory coupled to fermionic matter.

There are two kinds of excitations in the system: particle
excitations that carry gauge charges and vortex loop
excitations that carry gauge fluxes. For an Abelian group
G, we use integer vectors q ¼ ðq0; q1;…; qKÞ, with
qi ¼ 0;…; ðNi − 1Þ, to denote the charge excitations.
The self-statistics associated with exchanging two identical
charges is given by

θq ¼ πq0: ð7Þ

That is, it is a fermion (boson) if q0 is odd (even).
Vortex excitations are stringlike and must form closed

loops inside the bulk of the system. They carry gauge flux.
We use vectors

ϕ ¼
�
2π

N0

a0;
2π

N1

a1;…;
2π

NK
aK

�

to label gauge fluxes, where ai ¼ 0; 1;…; ðNi − 1Þ is an
integer. There is a well-known correspondence between
gauge fluxes and group elements: one may regard the
vector a ¼ ða0;…; aKÞ that labels ϕ as a group element of
G. Accordingly, the fermion parity group element corre-
sponds to the fermion parity flux ðπ; 0;…; 0Þ.
Unlike charge excitations, vortex excitations cannot be

uniquely labeled by their gauge fluxes. Two distinct
vortices α and α0 may carry the same gauge flux; i.e.,
ϕα ¼ ϕα0 . It can be shown that two vortices carrying the
same gauge flux can be transformed to one another by
attaching gauge charges. The mutual braiding statistics
between a charge excitation q and a vortex loop α follows
the Aharonov-Bohm law:

θqα ¼ q · ϕα; ð8Þ

where the center dot is the vector inner product. In
particular, the Aharonov-Bohm phase between q and a
fermion parity vortex is given by πq0.
The most interesting part of 3D braiding statistics is

between vortex loops. It was shown [2,3] that the funda-
mental loop braiding process involves three loops (Fig. 2):
a loop α is braided around a loop β while both are linked to
a third “base” loop γ. This three-loop braiding process
has been used to characterize various 3D topological

FIG. 2. Three-loop braiding process involving vortex loops α,
β, and γ. The blue lines are trajectories swept out by two points
on α.
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phases [7]. Following the notation in Ref. [2], we denote
the three-loop braiding phase by θαβ;c, where c is the integer
vector that labels the gauge fluxes carried by γ:
ϕγ ¼ ð2πc1/N1;…; 2πcK/NKÞ. We use θαβ;c instead of
θαβ;γ, because the three-loop braiding statistical phase
depends only on the flux ϕγ parametrized by c and is
totally insensitive to the amount of charges attached to γ.
We also consider an exchange or half-braiding process: two
identical loops α, both linked to the base loop γ, exchange
their positions. We denote this three-loop exchange sta-
tistics by θα;c.
In most part of the paper, we will consider only Abelian

braiding statistics. Non-Abelian loop braiding statistics can
also appear in gauge theories with Abelian gauge group.
We briefly touch upon non-Abelian loop braiding at the end
of the paper.

III. PHYSICAL CONSTRAINTS ON ABELIAN
LOOP BRAIDING STATISTICS

In this section, we study general properties of loop
braiding statistics in gauged 3D FSPT systems. For
simplicity, we consider only Abelian loop statistics; i.e.,
every Berry phase associated with braiding excitations is
Abelian. We discuss physical constraints on Abelian loop
braiding statistics, and discuss which types can result from
intrinsic FSPT phases.

A. Topological invariants

To begin, we define a set of topological invariants
fΘij;k;Θi;kg for loop braiding statistics. These topological
invariants are a subset of the full braiding statistics data, and
hence are simpler to deal with compared to the latter.
Nevertheless, they are equivalent to the full set of loop
braiding statistics, since the latter can be reconstructed out
of the former. Similar topological invariants have been
introduced in 2D and 3D gauged BSPT phases [2,7], as
well as 2D gauged FSPT phases [29].
Let α, β, and γ be vortex loops, carrying unit flux

f½ð2πÞ/Ni�eig, f½ð2πÞ/Nj�ejg, and f½ð2πÞ/Nk�ekg, respec-
tively. Here, ei is an integer vector ð0;…; 1;…; 0Þ, where
the ith entry is 1 and all other entries are 0, with
i ¼ 0; 1;…; K. We define the topological invariant Θij;k

as follows:

Θij;k ¼ Nijθαβ;ek ; ð9Þ

where θαβ;ek is the mutual braiding statistics between α and
β while both are linked to the base loop γ (Fig. 2). Here, we
use Nij to denote the least common multiple of Ni and Nj.
Similarly, we define a topological invariant Θi;k for the

self-statistics associated with exchanging two identical α’s,
both of which are linked to the base loop γ. It is defined as
follows:

Θi;k ¼ Ñiθα;ek ; ð10Þ

where

Ñ0 ¼
(
N0

N0

2
≡ 0 ðmod 2Þ

N0

2
N0

2
≡ 1 ðmod 2Þ;

ð11Þ

and for i ≥ 1,

Ñi ¼
(
Ni Ni ≡ 0 ðmod 2Þ
2Ni Ni ≡ 1 ðmod 2Þ: ð12Þ

The above topological invariants fΘij;k;Θi;kg are defined
in a way such that (i) they only depend on the flux of α, β,
and γ and (ii) the full set of braiding statistics can be
reconstructed out of fΘij;k;Θi;kg. One can check the
property (i) by replacing α, β, γ with α0, β0, γ0, respectively.
It is easy to show that the topological invariants do not
change if ϕα0 ¼ ϕα, ϕβ0 ¼ ϕβ, and ϕγ0 ¼ ϕγ. The proof of
property (ii) is more involved, so we give the proof in
Appendix A.

B. Physical constraints

The topological invariants fΘij;k;Θi;kg cannot take
arbitrary values. We argue that the topological invariants
have to satisfy the following constraints:

Θii;k ¼
2Ni

Ñi
Θi;k; ð13aÞ

Θij;k ¼ Θji;k; ð13bÞ

NijkΘij;k ¼ 0; ð13cÞ

NkΘi;k ¼ 0; ð13dÞ

NiΘi;k ¼
N0i

2
Θ0i;k; ðNi even; i ≥ 1Þ; ð13eÞ

Θi;k
Nik

Ñi
þ Θik;i ¼ 0; ðNik evenÞ; ð13fÞ

Nijk

Nij Θij;k þ
Nijk

Njk Θjk;i þ
Nijk

Nki Θki;j ¼ 0; ð13gÞ

Θi;i ¼ 0; ðconjecturedÞ; ð13hÞ

N2
0

4Ñ0

Θ0;i ¼ 0; ð13iÞ

where Ni…k denotes the greatest common divisor of
Ni;…; Nk, and Ni…k denotes the least common multiple
of Ni;…; Nk. These constraints can be proved by checking
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various consistency conditions on the three-loop braiding
statistics. The proofs are given separately in Appendix B.
These constraints are necessary conditions that physical

Abelian three-loop braiding must satisfy [except Eq. (13h),
which remains a conjecture at this stage]. On the other
hand, we do not know at this point whether these
constraints are also sufficient, in the sense that every
solution to these constraints can be realized in physical
systems. To verify the completeness of the constraints, we
present a family of exactly solvable lattice models in
Sec. IV and show that indeed every solution to the
constraints is physical.
Several comments are in order. First, similar constraints

were obtained for gauge theories coupled to BSPT systems
in Refs. [2,7]. Most of the constraints here are just variants
of those for BSPT phases, and some are even the same, e.g.,
Eqs. (13c), (13d), and (13g). However, Eq. (13e) is more
“fermionic” than others, since it has no bosonic analog. It
replaces the stronger condition NiΘi;k ¼ 0 in bosonic
theories (see Ref. [7]). Nevertheless, in a sense it is a
“2D” constraint [29], since the base loop does not enter the
constraint in any nontrivial way. Similarly, Eq. (13i) has no
analog in bosonic systems.
Second, the constraint Eq. (13h) remains a conjecture at

this stage. We are not able to give a general proof. Aweaker
constraint can be derived from Eqs. (13a), (13f), and (13g):

3N0

Ñ0

Θ0;0 ¼ 0; gcdð3; NiÞΘi;i ¼ 0 ði ≥ 1Þ; ð14Þ

where “gcd” stands for greatest common divisor. This
weaker result provides some evidence for the conjecture
Eq. (13h). In fact, it remains a conjecture in gauged BSPT
systems, too [7] [however, see Ref. [38] for a derivation of
Eq. (13h) by exploiting the bulk-boundary correspondence
under certain assumptions].
Third, Eq. (13e) holds only for even Ni with i ≥ 1. There

are no analogous constraints for odd Ni. In addition,
Eq. (13f) holds only when Nik is even.
Lastly, we derive several useful corollaries. The first one

follows from Eqs. (13a) and (13c):

2Ni

Ñi
NikΘi;k ¼ 0: ð15Þ

Note that for BSPT theories, we have a stronger condition
NikΘi;k ¼ 0 (see Ref. [7]). Another corollary follows from
Eqs. (13d) and (13e). Setting k ¼ i in Eq. (13e) and using
Eq. (13d), we immediately obtain

N0i

2
Θ0i;i ¼ 0 ðNi even; i ≥ 1Þ: ð16Þ

Finally, combining Eq. (16) with Eq. (13f), we have

N0

2
Θi;0 ¼ 0: ð17Þ

Even though Eq. (17) follows from Eq. (16), which holds
only for even Ni with i ≥ 1, one can easily check that it
holds in general.

C. Solutions from BSPT phases

Later on, we solve the constraints Eqs. (13a)–(13i), where
each solution leads to a consistent set of loop braiding
statistics and corresponds to a FSPT phase. BSPT phases
form a subset of FSPT phases, so we first write down a class
of solutions that stem from BSPT phases.
Physically, we can imagine the following construction.

First, we form “molecules” from pairs of fermions, where
each molecule is a boson. The bosonic molecules are
neutral under Zf

2, and thus only sense the quotient
symmetry group G ¼ G/Zf

2 ¼ Zm
Q

iZNi
. We then put

the molecules into a BSPT state protected by the symmetry
G. It is now generally believed that the 3D BSPT phases
with unitary symmetry G are classified by the cohomology
group H4½G;Uð1Þ� [39]. The loop braiding statistics in
gauged BSPT models were studied in Refs. [2,7].
Now we can adapt the loop braiding statistics of BSPT

phases from Ref. [7] into Θi;k and Θij;k and find the
following expressions:

Θij;k ¼
2πNij

N̄ikN̄j
ðMikj −MkijÞ þ

2πNij

N̄jkN̄i
ðMjki −MkjiÞ ð18Þ

and

Θi;k ¼
Ñi

N̄i

2π

N̄ik
ðMiki −MkiiÞ: ð19Þ

Here, Mijk is an arbitrary three-index integer tensor,
N̄ik ¼ gcdðN̄i; N̄kÞ, and

N̄i ¼
� N0

2
i ¼ 0

Ni i ≥ 1.
ð20Þ

One can easily check that the above expressions satisfy all
the constraints Eqs. (13a)–(13i). Note that different values
of Mijk can lead to the same values of the topological
invariants.

D. Braiding statistics of fermion parity loops

We are mainly interested in loop braiding statistics
beyond those given by Eqs. (18) and (19), i.e., those
resulting from gauging instrinsic FSPT phases. Such loop
braiding statistics is explicitly discussed in the next section.
Before doing that, we would like to answer this question:
Given a solution to the constraints Eqs. (13a)–(13i), i.e., a
set of three-loop braiding statistics, how do we know
whether it is “intrinsically fermionic,” and not just a gauged
BSPT phase in disguise?
We claim that the following criterion holds.
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Criterion.–A set of three-loop braiding statistics results
from gauging an intrinsic FSPT phase, if and only if some
of the three-loop braiding statistics involving fermion parity
loops are “nontrivial.”
Those three-loop braiding statistics that involve fermion

parity loops include θα;f, θαβ;f, θf;γ , and θαf;γ , where α, β, γ
are arbitrary vortex loops and f stands for a fermion
parity loop.
We need to clarify what we mean by nontrivial three-loop

braiding statistics. Just as any other vortex excitations, there
are many fermion parity loops which differ by charge
attachments. Attaching charges to loops shifts three-loop
braiding statistics by Aharonov-Bohm phases. Accordingly,
we call a three-loop braiding statistical phase “trivial” if it
can be tuned to 0 by attaching charges to the loops involved
in the braiding process. To remove the ambiguity due to
charge attachment and Aharonov-Bohm phases, we define
the following quantities for Abelian loop braiding statistics:

Θi;f ¼ Ñiθα;f;

Θij;f ¼ Nijθαβ;f;

Θf;k ¼ θf;ek ;

Θfi;k ¼ lcmð2; NkÞθfα;ek ; ð21Þ
where lcm stands for least common multiple, θα;f is the
exchange statistics of two identical α’s linked to a fermion
parity loop f, θαβ;f is themutual braiding statistics between α
and β both linked to f, θf;ek is the exchange statistics of two
identical f’s linked to a base loop γ, and θfα;ek is the mutual
statistics between α and fwhile both are linked to γ. Here, α,
β, γ are vortex loops carrying gauge flux f½ð2πÞ/Ni�eig,
f½ð2πÞ/Nj�ejg, and f½ð2πÞ/Nk�ekg, respectively. These
quantities are defined in a way similar to the topological
invariants Θi;k and Θij;k. One can easily show that if Θi;f,
Θij;f,Θf;k, andΘfj;k vanish, all three-loop braiding statistics
involving fermion parity loops are trivial. Therefore, to see if
a set of three-loop braiding statistics corresponds to an
intrinsic FSPT phase, we only need to check if any of the
quantities Θi;f, Θij;f, Θf;k, and Θfj;k is nonvanishing.
This criterion can be proven by explicitly solving the

constraints Eqs. (13a)–(13i) and checking if all the sol-
utions with vanishing Θi;f, Θij;f, Θf;k, and Θfj;k are in the
form of Eqs. (18) and (19) (which we discuss in the next
section). On the other hand, Eqs. (18) and (19) indeed lead
to vanishing Θi;f, Θij;f, Θf;k, and Θfj;k.
Here, we would like to give a more intuitive argument.

Although heuristic, it provides a physical interpretation for
the criterion and can be applied more generally to non-
Abelian loop braiding. Let us first show the “if” direction in
the criterion.Consider those FSPTphases formed bybosonic
pairs of fermions. Since the pairs do not transform under the
fermion parity symmetry, they only need the symmetries in
G/Zf

2 for protection. Under the assumption that FSPT phases
have a one-to-one correspondence to equivalence classes of

three-loop braiding statistics (i.e., up to charge attachment), it
is reasonable to expect that the fermion parity loops should
not play a nontrivial role in three-loop braiding statistics
beyond Aharonov-Bohm phases after gauging the symmetry
G. Hence, the “if” direction holds.
To see the “only if” direction, let us assume that fermion

parity loops do not play any role beyond Aharonov-Bohm
phases. Then, for any three-loop structure involving a
fermion parity f, we can always attach charges to the
loops such that (1) the new fermion parity loop f0 has a
bosonic exchange statistics and (2) for any given gauge
flux, there always exists a vortex such that its mutual
braiding statistics with respect to f0 is trivial, while both are
linked to the same base loop. Accordingly, we can con-
dense f0, confining the fermionic gauge charges. This
condensation leaves behind a gauge theory with purely
bosonic charges, without affecting the other gauge sym-
metries; i.e., the resulting theory has a gauge group G/Zf

2.
As a consequence, the corresponding FSPT phases are
always equivalent to those formed by bosonic pairs. This
argument is reasonable but not quite rigorous, because a
complete theory of loop condensation in topological phases
is not available yet. We notice that similar arguments have
been applied in two dimensions [40].
Let us now combine this criterion with the constraints

Eqs. (13a)–(13i) of topological invariants. We see that the
quantities Θi;f, Θij;f, Θf;k are forced to vanish due to the
constraints; onlyΘfi;kmaypossibly benonzero.Accordingly,
for Abelian loop braiding statistics, we only need to compute
Θfi;k to see if a given set of Abelian three-loop braiding
statistics corresponds to an intrinsic FSPT phase.
To derive these results, we first relate the quantities

defined in Eq. (21) to the topological invariants as follows:

Θi;f ¼
N0

2
Θi;0; ð22aÞ

Θij;f ¼
N0

2
Θij;0; ð22bÞ

Θf;k ¼
N2

0

4Ñ0

Θ0;k; ð22cÞ

Θfi;k ¼
N0i

gcdð2; NiÞ
Θ0i;k: ð22dÞ

These relations follow straightforwardly from the defini-
tions of related quantities.
The relationΘi;f ¼ 0 follows immediately from Eq. (17).

At the same time, Θf;k ¼ 0 follows immediately from
Eq. (13i). To see Θij;f ¼ 0, we consider three cases.
(1) i ¼ j ¼ 0, it follows from Eqs. (13a) and (17).
(2) i ¼ 0, j ≥ 1. If Nj is odd, then N0j ¼ gcdðm;NjÞ.

Then,Θ0j;f ¼ 0 follows from the constraint Eq. (13c). If Nj

is even, we have
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Θ0j;f ¼
N0

2
Θ0j;0 ¼

N0

N0j
NjΘj;0 ¼ N0jΘj;0 ≡ 0; ð23Þ

where the first equality follows Eq. (22a), the second
follows Eq. (13e), and the last follows Eq. (13d).
(3) i, j ≥ 1. Let us denote N0 ¼ 2r0t0, Ni ¼ 2ri ti, and

Nj ¼ 2rj tj, where t0, ti, tj are odd numbers. Without loss of
generality, we assume ri ≤ rj. It is not hard to see that Θij;f

can only be 0 or π. Using Eqs. (13c) and (22b), we find that
Θij;f may be nonzero only if r0 ≤ ri ≤ rj. Assuming this is
the case, we write Eq. (13g) in the following form:

t0ij

tij
Θij;0 ¼ −

2rj−ri t0ij

t0i
Θ0i;j −

t0ij

t0j
Θj0;i: ð24Þ

With this equation, we then have

Θij;f ¼
N0

2
Θij;0 t0it0j

t0ij

tij

¼ 2r0−1t0t0it0j

�
−
2rj−ri t0ij

t0i
Θ0i;j −

t0ij

t0j
Θj0;i

�

¼ −t0t0j
2rj−ri t0ij

t0i
NiΘi;j − t0t0i

t0ij

t0j
NjΘj;i

¼ −t0it0jt0ij2rjðΘi;j þ Θj;iÞ; ð25Þ

where the first line uses the facts that Θij;f can only be 0 or
π and that t0it0jðt0ij/tijÞ is odd, the second line uses
Eq. (24), the third line uses the constraint Eq. (13e), and
the last line is a simplification. It is easy to see that both Ni

and Nj divide the coefficient t0it0jt0ij2rj . Then, using the
constraint Eq. (13d), we prove that Θij;f ¼ 0.
Therefore, only Θfi;k is potentially nonzero. Accordingly

to Eqs. (13c) and (22d), one can see that it can only take
values 0 or π. Moreover, if either Ni or Nk is odd, Eq. (13c)
is enough to guarantee Θfi;k ¼ 0. If both Ni and Nk are
even, from Eq. (22d), we have Θfi;k ¼ NiΘi;k for i ≥ 1,
which further leads to Θfi;i ¼ 0 using Eq. (13h). For i ¼ 0,
we have Θf0;k ¼ ðN0/2ÞΘ00;k ¼ 0 according to Eq. (22c).
To summarize, we have shown that to check whether a

set of topological invariants corresponds to an intrinsic
FSPT phase or not, we only need to check if Θfi;k is
nonzero for i ≠ k, i ≥ 1, and Ni and Nk are both even.

E. Solving the constraints

We now explicitly solve the constraints Eqs. (13a)–(13i).
Mathematically speaking, the constraints are linear equa-
tions of the tensors Θi;k and Θij;k. Solving them is
straightforward, though tedious due to the fact that the
equations are defined modulo 2π.
We first notice the following structure of the solutions:

Given two sets of topological invariants Θð1Þ and Θð2Þ, if all
intrinsic FSPT indicators Θfi;k are identical (for i ≠ k,
i ≥ 1), we can define Θ0 ¼ Θð1Þ − Θð2Þ. Because of the

linearity of the constraints, Θ0 also satisfy all constraints. In
fact, we see that

NiΘ0
i;k ¼ Θð1Þ

fi;k − Θð2Þ
fi;k ¼ 0: ð26Þ

Combined with NkΘ0
i;k ¼ 0, we obtain NikΘ0

i;k ¼ 0. In fact,
Θ0 satisfies essentially the stronger constraints for BSPT
phases, whose solutions are given in Sec. III C. Therefore,
once we know the solutions corresponding to intrinsic
FSPT phases, all others can be obtained by adding BSPT
solutions.
To solve the constraints, a useful observation is that the

constraints relate only those components of tensors whose
indices differ at most by one index 0. Accordingly, we can
divide the components of the tensors into four groups:

ðaÞ∶ Θ0;0;Θ00;0;

ðbÞ∶ Θi;0;Θ0;i;Θi;i;Θi0;0;Θ00;i;Θii;0;Θi0;i;Θii;i;

ðcÞ∶ Θi;j;Θj;i;Θij;0;Θj0;i;Θi0;j;Θjj;i;Θii;j;Θij;i;Θij;j;

ðdÞ∶ Θij;k;Θjk;i;Θki;j;

where i ≠ j ≠ k ≠ 0. Since Θij;k is symmetric in the first
two indices, we do not list other components that are related
by this symmetry above.
In the group (a), only the trivial solution is allowed:

Θ00;0 ¼ Θ0;0 ¼ 0. It follows directly from the constraints
Eqs. (13a) and (13h). Also, invariants in the group
(d) satisfy the same equations with those of BSPT phases.
Hence, solutions for the group (d) are exactly the same as in
BSPT phases; i.e., all can be written in the form Eqs. (18).
Below, we solve the constraints for cases (b) and (c).

Without loss of generality, we consider G ¼ Zf
2m × ZN1

for
case (b) and consider G ¼ Zf

2m × ZN1
× ZN2

for case (c).

1. G=Zf
2m × ZN1

Consider the symmetry group G ¼ Zf
N0

× ZN1
with

N0 ¼ 2m. We solve the constraints for topological invar-
iants in the group (b) with i ¼ 1. Among the eight
components, we find that Θ0;1, Θ1;0, and Θ1;1 completely
determine the rest. More explicitly,

Θ11;1 ¼
2N1

Ñ1

Θ1;1;

Θ00;1 ¼
2N0

Ñ0

Θ0;1; Θ11;0 ¼
2N1

Ñ1

Θ1;0;

Θ10;0 ¼ −
N01

Ñ0

Θ0;1; Θ10;1 ¼ −
N01

Ñ1

Θ1;0; ð27Þ

where the first and second lines follow Eq. (13a) and the
third line follows Eq. (13f).
SinceΘ1;1 ¼ 0 following Eq. (13h), we only need to find

possible values for Θ0;1 and Θ1;0. Let us first consider odd
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N1. In this case, using the constraints Eqs. (13a), (13c),
(13d), and (13i), we find that

Θ0;1 ¼
2π

gcdðm;N1Þ
x; Θ1;0 ¼

2π

gcdðm;N1Þ
y: ð28Þ

Here, x, y are integers. It is not hard to see that this solution
is in the form of Eq. (19). This agrees with the criterion
discussed in Sec. III D.
WhenN1 is even, using Eqs. (13d) and (13i), we find that

Θ0;1 can take the following values:

Θ0;1 ¼
(

2π
gcdðm;N1Þ x if m is odd

2π
gcdðm/2;N1Þ x if m is even;

ð29Þ

where x is an integer. According to the corollary Eq. (17),
we havemΘ1;0 ¼ 0. In addition, multiplying Eq. (13e) by 2
and using Eq. (13c), we have 2N1Θ1;0 ¼ 0. Together we
find

Θ1;0 ¼
(

2π
gcdðm;N1Þ y if m is odd

2π
gcdðm;2N1Þ y if m is even:

ð30Þ

For odd m, the parameters x and y are independent. For
even m, there exists a relation between x and y: Taking
i ¼ 1 and k ¼ 0 in Eq. (13e) and using the expression of
Θ01;0 ¼ Θ10;0 in Eq. (27), we find that

N1

gcdðm/2; N1Þ
yπ ¼ N1

gcdðm/2; N1Þ
xπ: ð31Þ

This relation puts a constraint x≡ yðmod 2Þ on x and y
only if N1/ gcdðm/2; N1Þ is odd.
Let us see which solutions correspond to intrinsic FSPT

phases. According to the criterion discussed in Sec. III D,
we only need to check the quantity Θf1;0. It is nonvanishing
only when m is even and N1 is even, in which case we
find that

Θf1;0 ¼
N1

gcdðm/2; N1Þ
xπ: ð32Þ

Let N0 ¼ 2r0t0 and N1 ¼ 2r1t1, where r0 ≥ 2, r1 ≥ 1 and
t0, t1 are odd numbers. Then, it is easy to see that Θf1;0 ¼ π
only if

r0 ≥ r1 þ 2 ≥ 3 ð33Þ

and x is an odd number. Therefore, the simplest symmetry
group to support intrinsic FSPT phases is G ¼ Zf

8 × Z2.

2. G=Zf
2m × ZN1

× ZN2

In this case, one will find that if eitherN1 orN2 is odd, all
solutions to the constraints correspond to BSPT phases,
given by Eqs. (18) and (19). Hence, below we focus on the
more interesting case where both N1 and N2 are even. One
can show that any odd factors of N0, N1, N2 cannot add
solutions that correspond to intrinsic FSPT phases. Hence,
we assume that Ni ¼ 2ri for i ¼ 0, 1, 2, with r0, r1, r2 ≥ 1
for simplicity. Without loss of generality, we further
take r1 ≤ r2.
There are nine topological invariants in the group (c) with

i ¼ 1 and j ¼ 2.Θ11;2,Θ22;1,Θ12;1,Θ12;2 are determined by
Θ1;2 or Θ2;1 through Eqs. (13a) and (13f):

Θ11;2 ¼ 2Θ1;2; Θ22;1 ¼ 2Θ2;1;

Θ12;1 ¼ −
N12

N1

Θ1;2; Θ12;2 ¼ −
N12

N2

Θ2;1: ð34Þ

Multiplying Eq. (13e) by 2 and using Eq. (13c), we have
2N1Θ1;2 ¼ 2N2Θ2;1 ¼ 0. Combining this with Eq. (13d),
we have

Θ1;2 ¼
2π

2minðr1þ1;r2Þ a1;

Θ2;1 ¼
2π

2r1
a2: ð35Þ

Solving the constraints Eq. (13b) and (13g), we find that

Θ01;2 ¼
2πN01

N02N1

b1 −
2πN01

N12N0

b2;

Θ12;0 ¼
2πN12

N01N2

b3 −
2πN12

N02N1

b1;

Θ20;1 ¼
2πN02

N12N0

b2 −
2πN02

N01N2

b3: ð36Þ

The parameters a1, b1, b2, b3 are not arbitrary. Using
Eq. (13e), they should satisfy the following relations:

πN2

N12

b2 ¼
πN0

N01

b3;

2π

2minðr1þ1;r2Þ−r1 a1 þ πb2 ¼
πN0

N02

b1: ð37Þ

Let us see which of the solutions correspond to intrinsic
FSPT phases. Accordingly to the criterion in Sec. III D, we
need to evaluateΘf1;2 andΘf2;1. We find thatΘf2;1 ¼ 0, and

Θf1;2 ¼ N1Θ1;2 ¼
2π

2minðr1þ1;r2Þ−r1 a1: ð38Þ

Therefore, intrinsic FSPT phases with Θf1;2 ¼ π can occur
only for
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r2 ≥ r1 þ 1 ≥ 2; ð39Þ

and a1 is an odd number. The simplest example is then the
group G ¼ Zf

2 × Z2 × Z4.

F. Examples

In this section, we discuss two examples whose three-
loop braiding statistics correspond to intrinsic FSPT
phases.

1. G=Zf
8 × Z2

One of the simplest groups that support intrinsic FSPT
phases is G ¼ Zf

8 × Z2. It supports the following three-loop
braiding statistics:

Θ0;1¼ π; Θ1;0¼
π

2
; Θ11;0¼ π; Θ01;0¼ π; ð40Þ

and all other invariants are 0. It is a solution obtained in
Sec. III E by taking x ¼ y ¼ 1 in Eqs. (29) and (30).

2. G=Zf
2 × Z2 × Z4

Another simple group that supports intrinsic FSPT
phases is G ¼ Zf

2 × Z2 × Z4. The root intrinsic phase is
characterized by the following topological invariants:

Θ1;2 ¼
π

2
; Θ11;2¼ π; Θ01;2 ¼ π; Θ12;1 ¼ π: ð41Þ

And all other invariants are 0. It is obtained by setting
a1 ¼ b1 ¼ 1, a2 ¼ b2 ¼ b3 ¼ 0 in Eqs. (34)–(36).

3. Physical picture

Let us understand the two examples in more physical
terms. Although the two examples have seemingly different
symmetry groups, they are in fact closely related. Both
symmetry groups can be regarded as central extensions of
Z2 × Z4: namely, we can take the physical symmetries to
be G ¼ Z2 × Z4 in both cases, and for Zf

8 × Z2 the
fermions carry half charges under the Z4 subgroup.
Consider a ½ð2πÞ/4�e2 base loop. By dimensional reduc-

tion we obtain a 2D fermionic SPT protected by the
Z2 × Z4 symmetry. In fact, because of Θ1;2 ¼ π/2, the
protecting symmetry is just the Z2 subgroup. As we have
already discussed in Sec. I, this is the “root” Abelian Z2

FSPT phase in 2D, which has a Z4 classification (thus, can
exist only on a Z4 base loop) [18,24,26]. Besides the
noninteracting realization mentioned in Sec. I, commuting-
projector Hamiltonians for such 2D phases have also been
found in Refs. [18,41,42]. Θ1;2 ¼ π/2 translates into the
fractional exchange statistics of symmetry fluxes in the 2D
FSPT phase, which as proven in Ref. [24] implies its edge
(i.e., the Z4 vortex loop) has to be degenerate.

IV. TOPOLOGICAL STATE-SUM MODELS

In this section, we introduce a class of lattice models to
realize the fermionic gauge theories found in the previous
section. We define these lattice models with a path integral
representation of the partition function in discretized
Euclidean space-time. More specifically, we define a
partition function for any closed oriented manifold with
a triangulation. The partition function, however, is a
topological invariant of the space-time manifold (i.e.,
independent of the choice of the triangulation). Hence, it
is a type of lattice topological quantum field theory. It is
generally believed that such topological state-sum models
can be cast into commuting-projector Hamiltonians [43].
We first recall a few useful facts regarding triangulations

of n-dimensional manifolds. We work with simplicial
triangulations for simplicity [44] and denote the set of
k-simplices (0 ≤ k ≤ n) in the triangulation as Δk. For a
given triangulation, we pick an arbitrary ordering of the
vertices as 0; 1; 2;…. The restriction of the ordering on
each k-simplex σk induces a relative ordering of the vertices
of σk. Under this relative ordering, we write σk as
½i0i1 � � � ik�, where i0 < i1 < … < ik are the vertices of σk.
On an oriented manifold, all simplices can be equipped

with orientations, induced from the orientation of
the manifold M. For each σn, we define εðσÞ to be 1 if the
orientation on σ induced from that of M coincides with the
one coming from the ordering of its vertices; otherwise if
they are opposite, then εðσÞ ¼ −1.

A. Twisted Crane-Yetter TQFT

We now present models for fermionic gauge theories.
The construction was first introduced by Kapustin and
Thorngren recently in the context of higher-form gauge
theories [45]. We call these models the twisted Crane-Yetter
models. The general input of the twisted Crane-Yetter
TQFT involves (i) a braided fusion category (BFC), (ii) a
finite groupG, and (iii) certain cohomological data ðβ; λ;ωÞ
associated with G and the BFC.
For simplicity, we present the construction for an

Abelian BFC A. The anyon labels in A are denoted by
a; b; c;…. The identity (i.e., the trivial anyon) is denoted by
0. The BFCA can be viewed as an Abelian group, with the
group multiplication given by the fusion rules. As a BFC,A
is equipped with further topological data, in particular, the
F and R symbols. We further assume that the F symbols of
A can be chosen to be trivial. In this case, the hexagon
equations simplify to

Ra;cRb;c ¼ Raþb;c; Rc;aRc;b ¼ Rc;aþb: ð42Þ

Notice that because A is Abelian, we denote the multipli-
cation additively. In other words, Ra;b defines a bicharacter
on the Abelian group A. We define T as the following
subset of A:
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T ¼ fx ∈ AjRa;xRx;a ¼ 1;∀ a ∈ Ag: ð43Þ

We refer to T as the subset of transparent particles. In many
cases, we will actually take a BFC such that A ¼ T .
The other pieces of the input data are a finite groupG and

two group cocycles: a 3-cocycle ½β� ∈ H3½G; T � and a
2-cocycle ½λ� ∈ H2½G;A� (½·� denotes the cohomology
class). A 3-cocycle β is a 3-cochain (i.e., a function)
G3 → T that satisfies the 3-cocycle condition:

βðh;k; lÞ − βðgh;k; lÞ þ βðg;hk; lÞ
− βðg;h;klÞ þ βðg;h;kÞ ¼ 0: ð44Þ

Similarly, a 2-cocycle λ is a function G2 → A that satisfies
the 2-cocycle condition:

λðh;kÞ − λðgh;kÞ þ λðg;hkÞ − λðg;hÞ ¼ 0: ð45Þ

The final piece of the data ω is a group 4-cochain
ω∶G4 → Uð1Þ. It is, generally speaking, not a 4-cocycle;
however, it does satisfy a similar condition which will be
determined later. We will frequently use the following
shorthand notation for a group n-cochain ν:

νi0i1���in ≡ νðgi0i1 ;gi1i2 ;…;gin−1inÞ: ð46Þ

With this understanding of the input data, we now
describe the model. We start with an ordered triangulation
of an oriented 4-manifold. Each 1-simplex ½ij� (i < j) is
assigned a group element gij ∈ G, which can be thought of
as G connections of the gauge field. As a topological gauge
theory, we require that there is no G flux in every face;
i.e., the connection is flat. So for each 2-simplex ½ijk�
(i < j < k), the flatness condition is imposed:

gij · gjk ¼ gik: ð47Þ

To each 2-simplex ½ijk� (i < j < k), we assign a simple
object fijk from A. For each 3-simplex ½ijkl�, we demand
that the following “flatness condition” holds:

fjkl − fikl þ fijl − fijk ¼ βijkl: ð48Þ

Let us now write down the partition function. To each
4-simplex, say σ4 ¼ ð01234Þ, we assign a phase factor:

Tþðσ4Þ ¼ Rf012;f234ðRf034;β0123Rf014;β1234Rλ012;f234Þ−1
× ωðg01;g12;g23;g34Þ: ð49Þ

The phase factor Tþðσ4Þ is assigned to σ4 assuming its local
orientation coincides with the global orientation of M. If
they have the opposite orientations, we instead assign
T−ðσ4Þ ¼ ½Tþðσ4Þ�� to σ4. The partition function is then
defined as

ZðMÞ ¼ 1

jGjjΔ0jjAjjΔ1j−jΔ0j
X

fgij;fijkg

Y
σ4∈Δ4

Tϵðσ4Þðσ4Þ: ð50Þ

We require that ZðMÞ defines a topological quantum
field theory. Namely, ZðMÞ should yield a topological
invariant of the manifold M, which means that it must be
(1) independent of the specific choice of triangulation
and (2) independent of the ordering of the vertices. It is
known that all triangulations can be related to each other
via a finite series of elementary moves, known as Pachner
moves [46]. To this end, we define the following “obstruc-
tion class”:

Oðg1;g2;g3;g4;g5Þ ¼Rβðg1;g2;g3g4g5Þ;βðg3;g4;g5Þ

× Rβðg1;g2g3g4;g5Þ;βðg2;g3;g4Þ

× Rβðg1g2g3;g4;g5Þ;βðg1;g2;g3Þ

× Rλðg1;g2Þ;βðg3;g4;g5Þ: ð51Þ

One can show that O is actually a 5-cocycle in
H5½G;Uð1Þ�. We show in Appendix D that invariance
under Pachner moves requires that

Oðg1;g2;g3;g4;g5Þ ¼
ω12345ω01345ω01235

ω01234ω01245ω02345

: ð52Þ

We observe that the right-hand side of Eq. (52) is the
coboundary of the 4-cochain ω. Hence, it implies that the
obstruction class must be cohomologically trivial in order
for the twisted Crane-Yetter model to be well defined.
Otherwise, we say the model is “obstructed.” For obstruc-
tion-free models, Eq. (52) becomes a “twisted” 4-cocycle
condition on ω (compared to the regular 4-cocycle con-
dition in which the left-hand side is 1).
The twisted Crane-Yetter models reduce to known

models in two special limits.
(1) G is trivial. In this case, the state sum reduces to the

well-known Crane-Yetter theories [47,48] (the Hamiltonian
version of the TQFT is known as the Walker-Wang model
[49] in the condensed matter literature). Excitations in the
model can be understood as a T gauge theory, however
with an interesting twist: particle excitations are labeled by
elements of T . A particle a then has topological spin
θa ¼ Ra;a ¼ �1. In fact, the characterization of particle
excitations holds generally, not just for the Abelian BFCs
discussed here. Therefore, in general, Crane-Yetter models
also produce topological gauge theories. Recently, it was
shown that with non-Abelian BFC as the input, the Crane-
Yetter model can also realize twisted gauge theory [50].
(2) A is trivial. In this case, the theory reduces to

the Dijkgraaf-Witten (DW) topological gauge theory [51],
whose loop braiding statistics has been thoroughly studied
[2,3,52].
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B. Gauge-theoretical interpretation

The state-sum model can be understood as a topological
gauge theory, for a 2-form gauge field f and a 1-form
gauge field g. In other words, the theory embodies two
kinds of gauge symmetries: the 1-form gauge transforma-
tions on f,

fijk → fijk þ ξjk − ξik þ ξij; ξ ∈ A; ð53Þ

and 0-form gauge transformations on g,

gij → h−1
i gijhj; h ∈ G: ð54Þ

We explicitly prove that the partition function is invariant
under the two types of gauge transformations, with two
simplifying assumptions: (a)G is Abelian and (b) the entire
A is transparent (i.e., T ¼ A). While the proof is rather
technical and the details can be found in Appendix E, we
introduce the reformulation of the TQFT as a topological
gauge theory following Ref. [45], using the notations of
simplicial calculus (see Appendix C for a review of relevant
mathematical concepts). In the following, the multiplica-
tion in G will also be denoted additively. We define the
discretized “action” S by Tðσ4Þ ¼ eiSðσ4Þ. f can be viewed
as a 2-cochain valued in A, and g is a 1-cochain valued in
G. The flatness conditions Eqs. (47) and (48) then can be
written as δg ¼ 0 and δf ¼ β. The latter implies that f is
not closed.
In the partition function, the product of three R

symbols closely resembles the “Pontryagin square” in
Ref. [45]. Roughly speaking, if f is a closed 2-cochain,
the Pontryagin square is just the cup product f ∪ f.
However, if f is not quite closed, the cup product is no
longer closed and we need to amend it by an additional
term, f ∪ f − f ∪1 δf, to get a closed cochain. In this
notation, the action can be written as

S ¼ 2π½f ∪ f − f ∪1 β þ λ ∪ f þ η�: ð55Þ

Here, η ¼ ½ðlnωÞ/ð2πiÞ� is the linearized form of ω.
With this notation, we can now give a quick derivation of

the obstruction-vanishing condition. In order for the action
S to be a topological invariant, all we need to show is that S
is a closed 4-cochain:

δðf ∪ f − f ∪1 β þ λ ∪ fÞ
¼ δf ∪ f þ f ∪ δf − δðf ∪1 δfÞ − λ ∪ δf

¼ −δf ∪1 δf − f ∪1 δ
2f − λ ∪ β

¼ −β ∪1 β − λ ∪ β: ð56Þ

We thus require δη ¼ β ∪1 β þ λ ∪ β, which is the
obstruction-vanishing condition Eq. (52).

C. Relation to symmetry-enriched topological phases

We now define a variant of the Crane-Yetter TQFT.
Instead of having G labels on the 1-simplices, we dualize
them to 0-simplices, i.e., vertices. Namely, the actual labels
are G group elements on vertices, and gij ¼ g−1

i gj. The
flatness condition for f’s is the same as before, as well as
the partition function T̃þðσ4Þ:

T̃þðσ4Þ ¼ Tþðσ4Þ: ð57Þ
Here, Tþðσ4Þ is the partition function defined in Eq. (49),
where the G label on ½ij� is given by g−1

i gj.
This “dual” state-summodel can be viewed as a model of

symmetry-enriched topological (SET) phase. For each
h ∈ G, a global symmetry transformation is defined as

h∶gi → hgi: ð58Þ

Apparently the partition function is invariant under such
global symmetry transformations since it depends only
on g−1

i gj.
As we have argued, the G fields can be understood as

connections of a discrete G gauge field. As a result, gauge-
equivalent configurations of G fields yield the same
partition function. In the SET model, the connections
fgijg are by definition “pure gauge.” Thus the partition
function on any oriented closed manifold is identical to
gi ¼ 1, i.e., the Crane-Yetter TQFT of A. The original
state-sum model can then be viewed as “gauging” the SET
model. This relation was first considered between DW
gauge theories and group-cohomology models of bosonic
SPT phases [22].
Therefore, we can understand that the bulk excitations of

the SET model are described by the Crane-Yetter TQFT,
i.e., a T gauge theory (with possibly fermionic gauge
charges). An important question is then how excitations,
including both particles and loops, transform under the
symmetry group G. In the next section, using dimensional
reduction, we argue that the particles transform as projec-
tive representations of G essentially determined by λ, while
the loop excitations exhibit nontrivial symmetry actions
corresponding to nontrivial three-loop braiding statistics
after gauging.

V. BRAIDING STATISTICS IN THE
STATE-SUM MODELS

In this section, we analyze the braiding statistics between
particle and loop excitations in the twisted Crane-Yetter
state-sum models. For simplicity, we assume that the whole
BFC A is transparent, i.e., A ¼ T , throughout the section.

A. Particle excitations

First, let us consider the properties of particle excitations.
For this purpose, it is useful to view the state-sum model as
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aG-symmetry enriched gauge theory. As we argued earlier,
the particle excitations are charged under the emergent
gauge groupA. We need to understand how they transform
under G. We present some evidence that the symmetry
transformations on particles are determined by λ.
To begin, we consider a simpler theory defined by

Tþðσ4Þ ¼ Rλ012;f234 ; ð59Þ

together with the twisted flatness condition δf ¼ β.
Basically, we drop the term in the action which contributes
to the exchange statistics of the particle excitations (so now
they are all bosons). Reference [45] showed that this theory
can be analyzed in a dual representation, where the 2-form
is dualized to a 1-form gauge field a. To simplify the
discussion, we use the simplicial calculus. First, the
constraint δf − β ¼ 0 can be implemented by introducing
a 1-cochain Lagrange multiplier a and the following
modification to the action:

S ¼ −λ ∪ f þ a ∪ ðδf − βÞ
¼ ðδa − λÞ ∪ f − a ∪ β: ð60Þ

We should notice that this applies only to nondegenerate R,
namely, ð1/jAjÞPa∈AR

a;b ¼ δðbÞ. Since f is no longer
constrained, we can sum over f to get δa − λ ¼ 0, and the
action becomes S ¼ −a ∪ β. This is a symmetry-enriched
A gauge theory, where the gauge charges, labeled by
characters χ ofA, transform as projective representations of
G. More specifically, the projective representation Uχ on
the gauge charge χ is given by

UχðgÞUχðhÞ ¼ ηχðg;hÞUχðghÞ; ð61Þ

where the projective phase factor is given by

ηχðg;hÞ ¼ χ(λðg;hÞ): ð62Þ

In general, with the f ∪ f term in Tþðσ4Þ, we cannot
apply the above duality transformation. However, for a
special caseA ¼ Zf

2 and with a trivial β, we can “linearize”
the term f ∪ f using the following relation:

f ∪ f ¼ w2 ∪ f; ð63Þ

where w2 is the second Stiefel-Whitney class of the
manifold. This relation holds only when f is a 2-cocycle.
Then a similar duality transformation leads to δa ¼ w2 þ λ.
The w2 term accounts for the fermionic statistics of
particles [53], and the symmetry transformation under G
is again given by Eqs. (61) and (62).
Extrapolating from these two special cases, we con-

jecture that Eqs. (61) and (62) hold more generally in the
full theory (when the R symbol is nondegenerate). We do
not have a proof of this statement at the moment, but we

show that it is also consistent with the dimensional
reduction result.

B. Dimensional reduction

To understand properties of the loop excitations, we
consider the theory on a 4-manifold M4 ¼ M3 × S1, where
M3 is a 3-manifold and S1 is the circle. Since these models
have zero correlation length, we can analyze the theory in the
limit where there is only one cell in the S1 direction, and view
it as a 2D theory on M3. We will fix the G flux through the
“hole”ofS1 to beh. Someof theparticle excitations in the2D
theory correspond to the loop excitations that are linked to an
h gauge flux in the 3D theory. Accordingly, if we can extract
the braiding statistics in the 2D theory, three-loop braiding
statistics in the 3D theory can be inferred from there.
Let us understand the fields in the 2D theory after

dimensional reduction. All the 1-formG gauge fields inM3

remain, so do the 2-form A gauge fields in M3. Both of
them satisfy the same (twisted) flatness conditions as
before. However, there are additional dynamical 1-form
fields, denoted by m, coming from the dimensional
reduction of the full 2-form gauge fields in M4. They obey
the following flatness conditions:

mik ¼ mij þmjk þ nðgij;gjkÞ: ð64Þ
Here, n is the slant product of β: n ¼ ihβ. The explicit
expression of n in terms of β reads:

nðk; lÞ ¼ βðk; l; hÞ − βðk;h; lÞ þ βðh;k; lÞ: ð65Þ
The partition function with a fixed holonomy h around

S1 will be denoted byZhðM3 × S1Þ. After a straightforward
but lengthy calculation, we find

ZhðM3 × S1Þ

¼ 1

jGjjΔ0jjAjjΔ1j
X

fgg∈lðΔ0Þ

� X
ffg∈lðΔ2Þ

δδf¼β

Y
σ3∈Δ3

Sεðσ3Þ
2þ1 ðσ3Þ

�

×

� X
fmg∈lðΔ1Þ

δδm¼−n

Y
σ3∈Δ3

Tεðσ3Þ
2þ1 ðσ3Þ

�
: ð66Þ

In this expression, Δk ≡ ΔkðM3Þ, and the weight on a
tetrahedron is given by

Sþ
2þ1ð½0123�Þ ¼ Rξ01;f123 ;

Tþ
2þ1ð½0123�Þ ¼ Rm23;n012Rλ012;m23αðg01;g12;g23Þ: ð67Þ

Here the 1-cocycle ξ is the slant product of λ:

ξðkÞ ¼ λðk;hÞ − λðh;kÞ; ð68Þ
and α is a 3-cochain that depends on β and ω. The
obstruction vanishing condition Eq. (52) reduces to the
following equation:
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Rn012;n234Rλ012;n234 ¼ α1234α0134α0123
α0234α0124

: ð69Þ

We refer the readers to Appendix F for the derivation of the
dimensional reduction.

C. Braiding statistics in the 2D theory

After dimensional reduction, we now analyze the 2D
theory. To simplify the analysis, we assume that G is
Abelian, and ξ in Eq. (68) is cohomologically trivial. With
the latter assumption, we see that in the 2D partition
function Zh the sum over f becomes completely indepen-
dent of h, and the h dependence enters only through the
sum over m. Therefore, for the purpose of extracting loop
braiding statistics on the h base loop, we only need to focus
on the sum over m. More discussions on the physical
meaning of the sum over f are found in Appendix F. It turns
out that to realize those three-loop braiding statistics
studied in Sec. III, it is sufficient to assume ξ is cohomo-
logically trivial.
To infer the loop braiding statistics in the original 3D

theory, our analysis of the 2D theory should proceed in two
steps. First, we need to establish the correspondence
between the excitations in the 2D and 3D theories. More
precisely, we need to identify which of the 2D anyons
correspond to the 3D particle excitations and which
correspond to the 3D loop excitations. Second, we need
to extract the braiding statistics of the 2D anyons.
All properties of the 2D theory Zh should depend on h.

For notational brevity, we suppress this h dependence
below. It is easy to recover this dependence later.

1. Correspondence between 2D and 3D excitations

As we discuss above, the 2D theory has two kinds of
dynamical variables, mij ∈ A and gij ∈ G, living on each
link ½ij�. On each 2-simplex ½ijk�, they satisfy the twisted
and untwisted flatness conditions, respectively:

mij þmjk þ nðgij;gjkÞ ¼ mik;

gij · gjk ¼ gik: ð70Þ

Instead of viewing mij and gij as two independent degrees
of freedom, we can combine them into one and denote it as
ðmgÞij. In fact, fmggjm∈A;g∈G form a group G̃ under the
following definition of group multiplication:

mg ×m0
k ¼ ½mþm0 þ nðg;kÞ�gk: ð71Þ

The group G̃ is known as a central extension of G by A,
associated with the 2-cocycle nðg;kÞ ∈ H2½G;A�.
With this notation, we claim that the partition function

T2þ1 actually represents a 2D Dijkgraaf-Witten gauge
theory of group G̃ associated with the following 3-cocycle:

ω2þ1ðag; bk; clÞ ¼ Rc;nðg;kÞRλðg;kÞ;cαðg;k; lÞ: ð72Þ

To see this, one can check that (i) ω2þ1 is indeed a
3-cocycle in H3½G̃;Uð1Þ�, as long as n, λ, α satisfy
Eq. (69) and (ii) the conditions Eq. (70) leads to

ðmgÞij × ðmgÞjk ¼ ðmgÞik; ð73Þ

i.e., every 2-simplex has a flat G̃ connection.
The above mapping is most convenient for general

computations of braiding statistics of excitations in the
2D theory, since braiding statistics in the Dijkgraaf-Witten
theory is known (see, e.g., Ref. [54]). Below we take a
slightly different approach. We dualize the G gauge fields
in the G̃ Dijkgraaf-Witten theory, similarly as discussed in
Sec. IV C, and view the result as an A gauge theory,
enriched by the symmetry group G.
The Hamiltonian version of this symmetry-enriched

gauge theory was recently considered in Ref. [55]. The
anyons in an Abelian A gauge theory can be labeled
as dyons ða; χÞ, where a ∈ A is the gauge flux, and
χ∶A → Uð1Þ denotes a character of A, labeling a gauge
charge. Since the symmetry group G does not permute any
anyons, each anyon carries a projective representation ofG.
The twisted flatness condition Eq. (70) is interpreted as A
gauge charges carrying projective representations of G. As
shown in Ref. [55], the projective phase on a pure charge
ð1; χÞ is

ηð1;χÞðg;kÞ ¼ χ(nðg;kÞ): ð74Þ

For a gauge flux ða; 1Þ,

ηða;1Þðg;kÞ ¼ Ra;nðg;kÞRλðg;kÞ;a: ð75Þ

More generally, the projective phase of the dyon ða; χÞ is
given by ηða;χÞ ¼ ηða;1Þηð1;χÞ.
We now identify the correspondence between the 2D and

3D excitations. For each a, we define χaðxÞ ¼ Rx;a with
x ∈ A. It is clear that χa is a character ofA. Then, the dyon
ða; χaÞ transforms under G with a projective phase,

ηða;χaÞðg;kÞ ¼ Ra;nðg;kÞRλðg;kÞ;aRnðg;kÞ;a

¼ Rλðg;kÞ;a

¼ χa(λðg;kÞ); ð76Þ
where we use the fact that β, and therefore n, is transparent
to obtain the second line. It is easy to see that the
anyons fða; χaÞga∈A form a fusion group A, and we
identify them as the descendants of the 3D quasiparticles.
Indeed, the topological twist of ða; χaÞ is χaðaÞ ¼ Ra;a ¼
θa, and the mutual braiding between ða; χaÞ and ðb; χbÞ is
χaðbÞχbðaÞ ¼ Ra;bRb;a ¼ 1, as expected. In fact, it is not
difficult to see that the set fða; χaÞg forms the maximal
subset of transparent anyons in the 2D theory; i.e., any
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other particles not in this set have nontrivial braiding with at
least one of the anyons in the set. As a result, all other
particles should be understood as the descendants of gauge
flux loops in the 3D theory.

2. Braiding statistics with A =Zf
N0

With the above understanding, we now specialize to
the case A ¼ ZN0

and G ¼ Q
K
i¼1ZNi

. For the rest of the
section we assume the even number N0 ¼ 2m, and the R
symbols are given by Ra;b ¼ ð−1Þab, which corresponds
to Zf

N0
. We also work with the following parametrization

of λ:

λðg;kÞ¼
XK
i¼1

qi
Ni

ðgiþki− ½giþki�Þ ðmodN0Þ; ð77Þ

where qi are integers, and ½gi þ ki� equals gi þ ki
modulo Ni. We use integer vector g ¼ ðg1;…;gKÞ to
denote group elements of G. In fact, this parametrization
exhausts all cohomology classes in H2½G;ZN0

� which
satisfy the assumption that ξ in Eq. (68) is cohomolog-
ically trivial.
We would like to extract a part of the braiding statistics

data from given nðg;kÞ and αðg;k; lÞ, focusing on those
that will lead to Abelian statistics. To start, let us give
an explicit parametrization of the inputs nðg;kÞ and
αðg;k; lÞ. Let us take the following class of 2-cocycles
n ∈ H2½G;ZN0

�:

nðg;kÞ ¼
XK
i¼1

pi

Ni
ðgi þ ki − ½gi þ ki�Þ ðmod N0Þ; ð78Þ

where pi are integer parameters. Here, we have used
additive convention for group multiplication in both G
and A. It is worth mentioning that this class of n satisfies
nðg;kÞ ¼ nðk;gÞ. This property is a necessary and suffi-
cient condition for the braiding statistics to be Abelian. At
the same time, we can choose

αðg;k; lÞ ¼ eiπ
P

ij
ðpipj/NiNjÞgiðkjþlj−½kjþlj�Þ

× ei2π
P

ij
ðtij/NiNjÞgiðkjþlj−½kjþlj�Þ; ð79Þ

where tij are integers. One can check that the above λ, n, α
indeed make ω2þ1 a 3-cocycle. The existence of α for given
λ and n [not just those parametrized by Eq. (78)] shows that
there is no obstruction in the 2D theory. Notice that if we
modify the 4-cochain ω by a 4-cocycle, α will be modified
by a 3-cocycle correspondingly.
One can in principle compute the braiding statistics

using the understanding from the previous section and
using the general results for Dijkgraaf-Witten models
[54,56], but in our case we will take a shortcut. Notice

that in our parametrization of nðg;kÞ, different ZNi

subgroups are decoupled, so let us focus on an individual
ZNi

for now. In the 2D ZN0
gauge theory, following the

discussion of dual SET phases in the previous section we
denote the unit gauge flux by v, and the unit gauge charge e
corresponding to the character λeðxÞ ¼ expf½ð2πiÞ/N0�xg,
with x ∈ A. The (bulk) fermion in this notation is repre-
sented by eN0/2v.
With a ZNi

global symmetry, anyons can carry fractional
charges under ZNi

. Denote the projective phase on an
anyon a by ηaðg;kÞ. We can extract the fractional charge
Qa as follows:

e2πiQa ¼
YN0i

j¼1

ηað½j�; ½1�Þ; ð80Þ

where ½j� ¼ jðmod NiÞ is a group element of ZNi
. Using

this and Eqs. (74) and (75), we find

ei2πQe ¼ e2πipi/N0i ; ei2πQv ¼ e2πiN0ðpiþqiÞ/2N0i : ð81Þ

We can say that the e anyon carries a pi/N0i fractional
charge of the ZNi

symmetry, while the v anyon carries
f½N0ðpi þ qiÞ�/ð2N0iÞg fractional charge. The fermion
eN0/2v carries a fractional charge ½ðN0qiÞ/ð2N0iÞ�, which
can only be 0 or 1

2
.

Such a SET can be easily described by an Abelian
Chern-Simon theory with the following K matrix and
charge vector ti [31,57,58]:

K ¼
�

0 N0

N0 0

�
; ti ¼

0
@ N2

0
ðpiþqiÞ
2N0i

N0pi
N0i

1
A: ð82Þ

In this formalism, anyons are labeled by integer vectors.
The exchange statistics θl of an anyon l and mutual
braiding statistics between anyons l and l0 are given by

θl ¼ πlTK−1l; θll0 ¼ 2πlTK−1l0: ð83Þ

In addition, the ZNi
charge carried by l is given by

Ql ¼ lTK−1ti: ð84Þ

We denote the gauge charge by e ¼ ð1; 0Þ and the gauge
flux v ¼ ð0; 1Þ. One can easily check that such K and ti
indeed describe the above ZN0

gauge theory enriched by
ZNi

symmetry.
So far we have focused on the symmetry fractionaliza-

tion in the 2D theory, which is completely determined by β
and λ. We have not accounted for the possibility of adding
2D BSPT layers (i.e., different 3-cocycle α). While the
details of braiding statistics surely depend on the BSPT
layer, this subtlety does not affect the indicator Θfi;k for
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intrinsic FSPT phases, discussed in Sec. III D, which is of
central interest to us. So, we ignore the BSPT ambiguity
(i.e., α dependence) for the moment.
We now gauge the symmetry G and switch back to the

twisted Crane-Yetter model. After gauging, a vortex carry-
ing the unit ZNi

flux can be represented by the fractional
vectors ti/Ni. The braiding statistics between these vortices
can be calculated again using Eq. (83). Accordingly, we
obtain the exchange and mutual braiding phases:

θi ¼
π

N2
i
tTi K

−1ti ¼
πN2

0piðpi þ qiÞ
N2

i N
2
0i

;

θij ¼
2π

NiNj
tTi K

−1tj ¼
πN2

0ð2pipj þ piqj þ qipjÞ
NiNjN0iN0j

: ð85Þ

The mutual braiding between the ZNi
unit flux and the e

anyon, as well as the v anyon, is given by

θei ¼
2πpi

NiN0i
; θvi ¼

πN0ðpi þ qiÞ
NiN0i

: ð86Þ

These braiding statistics are only part of the full set of
braiding statistics. Note that there exist other ZNi

vortices
differing by charge attachments. However, knowing the
braiding statistics between the vortices fti/Nigi¼1;…;K , as
well as the anyons e and v, is enough to extract the
topological invariants for gauged intrinsic FSPT phases
defined in Sec. III.

D. Braiding statistics in the 3D theory

Now we come back to the 3D theory. Again we consider
G ¼ Q

K
i¼1ZNi

and A ¼ Zf
N0
, with Ra;b ¼ ð−1Þab. The

2-cocycle λ is given in Eq. (77). We ignore the ω
dependence of the braiding statistics, which is not relevant
for the intrinsic FSPT indicator Θfi;k.
We use the following explicit expression for represen-

tative cocycles β ∈ H3½G;ZN0
�:

βðg;h;kÞ ¼
X
ij

N0pij

Ni0Nj
giðhj þ kj − ½hj þ kj�Þ

þ
X
ijk

N0pijk

Nijk0
gihjkk; ð87Þ

where pij and pijk are integer parameters, and ½hj þ kj�
equals hj þ kj modulo Nj. It turns out that the first term in
the explicit expression describes Abelian braiding statistics
for loops, while the second term leads to non-Abelian loop
statistics. For this reason, we refer to the two types of
cocycles as “Abelian” and “non-Abelian.” In this section,
we consider only the Abelian part of the cocycle, leaving a
discussion on non-Abelian loop braiding statistics in
Sec. VII. One may calculate the cohomology group
H3½G;ZN0

� using the Künneth decomposition:

H3½G;ZN0
� ¼

Y
i

ZNi0

Y
i<j

Z2
Nij0

Y
i<j<k

ZNijk0
: ð88Þ

We believe that the parametrization in Eq. (87) exhausts all
cohomology classes in H3½G;ZN0

�.
We now focus on the Abelian part of β. As discussed

previously, dimension reduction of the 3D state-sum model
leads to a 2D model described by the slant product n ¼ ihβ.
For β in Eq. (87), the slant product is given by

nðk; lÞ ¼
X
j

Pj

Nj
ðkj þ lj − ½kj þ lj�Þ; ð89Þ

where

Pj ¼
X
l

N0pljhl

N0l
: ð90Þ

This form of n is the same as in Eq. (78), with pi there
replaced by Pi. Taking h ¼ ek and substituting the expres-
sion of Pi into Eqs. (85) and (86), we obtain the three-loop
braiding statistics:

θi;k ¼
πN3

0pkiðN0pki þ N0kqiÞ
N2

i N
2
0iN

2
0k

;

θij;k ¼
πN3

0ð2N0pkipkj þ N0kpkiqj þ N0kpkjqiÞ
NiNjN0iN0jN2

0k

; ð91Þ

and

θei;k ¼
2πN0pki

NiN0iN0k
;

θvi;k ¼
πN0ðN0pki þ N0kqiÞ

NiN0iN0k
: ð92Þ

Previously, we identified eN0/2v as the fermion particle in
the 3D bulk. Since eN0/2 and v both have a π mutual
statistics with respect to eN0/2v, we now should understand
both of them as fermion parity loops. Accordingly, we
understand v2 as a bosonic particle in the 3D bulk, and e is
a loop excitation that has a ½ð2πÞ/N0� mutual statistics with
respect to the fermion particle eN0/2v.
Finally, we make the following comment. Throughout

our computation, we do not keep track of the dependence of
three-loop braiding statistics on the 4-cochain ω. A
consequence is that the three-loop braiding statistics given
in Eqs. (91) and (92) are not the complete result, in
particular violating the constraints in Eqs. (13e) and
(13f). In order for the constraints to be obeyed, we have
to keep track of the ω dependence carefully, which,
however, is very complicated. Nevertheless, the indicator
Θfi;k of intrinsic FSPT phases does not change after
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attaching BSPT layers; therefore, we can safely ignore the
issue for the purpose of extracting the indicators.

E. Realizations of intrinsic FSPT phases

We now show that the state-sum model realizes all
intrinsic FSPT phases that we find in Sec. III, completing
the argument that the physical constraints Eqs. (13a)–(13i)
are complete. In Sec. III, we find two kinds of intrinsic
FSPT phases, supported by the representative groups
Zf

2m × ZN1
and Zf

2m × ZN1
× ZN2

, respectively. Without
loss of generality, we assume m ¼ 2rm , N1 ¼ 2r1 , and
N2 ¼ 2r2 . According to Sec. III E, existence of the two
kinds of intrinsic FSPT phases requires rm ≥ r1 þ 1 ≥ 2
and r2 ≥ r1 þ 1 ≥ 2, respectively. Since the second kind of
intrinsic FSPT does not put requirements on m, we assume
m ¼ 1 for simplicity. One can easily extend the following
discussion to general m for the second kind of intrinsic
FSPT phases.
Let us now take a unified view on the groups Zf

2m × ZN1

and Zf
2 × ZN1

× ZN2
: both of them arise as central exten-

sions ofZN1
× ZN2

byZf
2. More specifically, the former is a

nontrivial central extension of ZN1
× ZN2

byZf
2, associated

with N2 ¼ m and q2 ¼ 1, q1 ¼ 0 in the 2-cocycle λ, while
the latter is the trivial extension ZN1

× ZN2
by Zf

2 asso-
ciated with q2 ¼ q1 ¼ 0 in λ. Therefore, in the twisted
Crane-Yetter state-summodel, we setA ¼ Zf

2 and choose λ
accordingly [59]. We see below that through this choice,
the state-sum model indeed can be viewed as Zf

2m × ZN1

and Zf
2 × ZN1

× ZN2
gauge theories coupled to fermionic

matter, respectively. In this notation, the condition rm ≥
r1 þ 1 ≥ 2 on the existence of intrinsic FSPT phases for
Zf

2m × ZN1
translates to r2 ≥ r1 þ 1 ≥ 2, the same as that

for Zf
2 × ZN1

× ZN2
.

Let us specify the input data to the state-sum model. As
discussed above, for the 2-cocycle λ in Eq. (77), we set
q1 ¼ 0, and q2 ¼ 0, 1 for Zf

2 × ZN1
× ZN2

and Zf
2m × ZN1

,
respectively. For both groups, we set the 3-cocycle β in
Eq. (87) by the following parameters:

p11 ¼ p12 ¼ p22 ¼ 0; p21 ¼ 1: ð93Þ

The non-Abelian part of β is set to 0.
Before we discuss the loop braiding statistics, we need to

check that with these choices of λ and β the topological
state-sum model is well defined; i.e., the obstruction
class Eq. (51) vanishes. In Appendix G, we provide a
complete set of invariants to distinguish all cohomology
classes in H5½G;Uð1Þ� when G is a finite Abelian group.
Applying these invariants to the present case, we find that
the obstruction class vanishes, when the following equa-
tions hold:

0¼ π
N0

N0i
piið1þqiÞ;

0¼ π
N0

N0j

Nij

Ni
pjið1þqiÞþπ

N0

N0i

Nij

Nj
ðqipijþqjpiiÞ; ð94Þ

where the second equation should hold for i ≠ j, and
N0 ¼ 2. These equations are defined modulo 2π. With our
choice of the parameters qi, pi, and pij in λ and β, we find
that the first equation in Eq. (94) is automatically satisfied,
while the second one puts the following conditions on r1
and r2:

0 ¼ π21−minð1;r2Þþmaxðr1;r2Þ−r1 ; ð95Þ

which does not depend on q2. For r2 ≥ r1 þ 1 ≥ 2, we see
that the above equation indeed holds modulo 2π. Hence,
the twisted Crane-Yetter state-sum model is obstruc-
tion free.
The loop braiding statistics for the two groups are given

by Eqs. (91) and (92), under the current choice of qi, pi,
and pij. Let us check that the braiding statistics imply that

they are indeed Zf
2m × ZN1

and Zf
2 × ZN1

× ZN2
gauge

theories. Since N0 ¼ 2, the fermionic particle is ev, and the
fermion parity loops are e and v. According to Eq. (92), the
mutual braiding between ev and the ZN2

unit flux on any
base loop is given by q2π/N2. The mutual braiding statistics
between ev and the ZN1

unit flux is always 0. Hence, it is

indeed a Zf
2m × ZN1

gauge theory for q2 ¼ 1, and a Zf
2 ×

ZN1
× ZN2

for q2 ¼ 0.
With this understanding, we now calculate the indicator

Θfi;k for intrinsic FSPT phases:

Θf1;2 ¼ N1θe1;2 ¼
πN0p21

N10N20

¼ π;

Θf2;1 ¼ wN2θe2;1 ¼ w
πN0p12

N10N20

¼ 0;

w ¼
�
1 q2 ¼ 0

2 q2 ¼ 1;
ð96Þ

where we understand that e is the fermion parity loop, and
N0 ¼ 2, N1 ¼ 2r1 , N2 ¼ 2r2 , with r2 ≥ r1 þ 1 ≥ 2. One
may use the v fermion parity loop to do the computation,
which leads to the same result. This agrees with the results
in Sec. III E (the index “2” should be understood as “0” for
the group Zf

2m × ZN1
). Therefore, all intrinsic FSPT phases

identified in Sec. III are realized in the twisted Crane-
Yetter model.

VI. ANOMALOUS SETS IN 3D

In Sec. III, we derive a set of physical constraints for
Abelian loop braiding statistics. We now demonstrate that
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these constraints can be used to show that certain 3D
symmetry-enriched gauge theories are anomalous.
Let us discuss a simple example: G ¼ Z2 and A ¼ Zf

N0
,

with N0 ¼ 2 and Ra;b ¼ ð−1Þab. In a Zf
2 gauge theory

enriched by Z2 symmetry, if the fermion parity flux loop
carries gapless modes whose symmetry transformations are
identical to those of a nontrivial 2D Z2 BSPT phase [22],
such a SET is anomalous. To see the anomaly, gauging the
Z2 symmetry we would obtain Θ1;0 ¼ π forbidden by the
constraints. More specifically, Θ1;0 ¼ π implies Θ01;1 ¼ π,
contradicting Eq. (13e).
However, such a SET can actually be realized consistently

on the surface of a 4D bosonic Z2 SPT phase, for instance,
by a coupled-layer construction as presented in Ref. [60].
Based on heuristic field theory arguments, Ref. [60] also
proposed that the bulk 4D SPT state is the one obtained from
group-cohomology classification [H5½Z2;Uð1Þ� ¼ Z2]. We
can provide a more rigorous justification with the topologi-
cal state-sum models. Let us set λ ¼ 0 for the moment, and
the topological action has a variation

δS ∼ β ∪1 β; ð97Þ

where∼means up to a 5-coboundary. In order for the model
to be a well-defined topological gauge theory in 3D, δS has
to vanish cohomologically. When the obstruction class does
not vanish, we have to couple the model to a 4D theory. The
fields in the bulk are just G spins on vertices, and the
topological action is given precisely by β ∪1 β. Therefore,
the bulk is essentially a group-cohomology model of a
bosonic SPT phase.
Back to the example, let us take G ¼ Z2, A ¼ Zf

2 , and a
nontrivial 3-cocycle given by βðg;g;gÞ ¼ ½1� (we represent
A ¼ f½0�; ½1�g). One can easily check that the obstruction
class is nontrivial. If we naively apply the dimensional
reduction method to compute loop braiding statistics, we
would find Θ01;1 ¼ π.
We also notice that the same obstruction appears in the

gauge theory with all bosonic charges Eq. (59) if we have
λðg;gÞ ¼ ½1� and the same β.

VII. DISCUSSIONS

A. Relation to group-supercohomology models

In Ref. [18], Gu and Wen proposed a systematic
construction of fermionic SPT phases with a symmetry
group Zf

2 ×G. Let us summarize the mathematical struc-
ture of their construction: in dD, for each cohomology class
½β� ∈ Hd½G;Z2�, one can associate an obstruction class
defined as the Steenrod square Sq2½β�, and viewed as an
element ofHdþ2½G;Uð1Þ�. If the obstruction class vanishes,
a FSPT phase can be constructed corresponding to [β].
Reference [18] proposed that the obstruction-free subgroup
of Hd½G;Z2� gives a partial classification of dD FSPT
phases.

For d ¼ 3, the mathematical structure of the Gu-Wen
construction is completely identical to the twisted Crane-
Yetter TQFT with A ¼ Zf

2 and a trivial λ. We believe that
the state-sum model discussed in this work with λ ¼ 0 is
indeed a gauged Gu-Wen model, where fermions are
coupled to Z2 gauge fields. Our results also clarify the
physical meaning of ½β� ∈ H3½G;Z2� for Abelian unitary
G; that is, the cocycle β encodes information about the
three-loop braiding statistics.
With a nontrivial λ the state-sum model generalizes the

Gu-Wen supercohomology constructions, by allowing
gauge fermions to carry projective representations of the
symmetry group. We have considered “Abelian” cocycles
for λ. It will be interesting to explore the physics of “non-
Abelian” 2-cocycles, corresponding to fermions carrying
higher-dimensional projective representation of the sym-
metry group. A recent discussion on such terms in
continuum field theories can be found in Ref. [61].

B. Non-Abelian loop braiding statistics

We have exclusively focused on Abelian loop braiding
statistics in this work. Loops can also exhibit non-Abelian
braiding statistics. This can happen even when the gauge
group is Abelian, if we choose a non-Abelian 3-cocycle β
in Eq. (87). We will present one such example, forA ¼ Zf

2,
G ¼ Z4 × Z4 × Z4, λ ¼ 0, and the 3-cocycle β is para-
metrized by p123 ¼ 1 with all other components of p set to
0. Using the invariants given in Appendix G, it is easy to
show that the state-sum model is obstruction free.
To see the non-Abelian loop braiding, consider a base

loop ϕ1. From the dimensional reduction, the e and v
anyons in the 2D theory both carry two-dimensional
projective representations of G. After G is gauged, they
become non-Abelian anyons and exhibit non-Abelian
braiding statistics, similar to what has been found in certain
Dijkgraaf-Witten gauge theories [7,8,62].
Recent works have constructed exactly solvable lattice

models for putative non-Abelian 3D topological phases
[63,64], in which the dimensionally reduced theories may
support non-Abelian Ising excitations. It will be interesting
to extend the dimensional reduction approach to these
models.
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APPENDIX A: EQUIVALENCE BETWEEN
TOPOLOGICAL INVARIANTS AND LOOP

BRAIDING STATISTICS

We treat the topological invariants and three-loop braid-
ing statistics interchangeably throughout the paper. Here,
we show that they are indeed equivalent in the case of
Abelian braiding statistics. The following argument is a
simple generalization of that for BSPT phases given
in Ref. [7].
To show the equivalence, it is enough to reconstruct the

full set of three-loop braiding statistics out of the topo-
logical invariants. Consider an arbitrary set of vortices fvig
with vi carrying unit flux ½ð2πÞ/Ni�ei. All of them are
linked to a base loop that carries unit flux ½ð2πÞ/Nk�ek.
According to the definitions of Θij;k and Θi;k, we have

θvivj;ek ¼
Θij;k

Nij þ 2πyijk
Nij ;

θvi;ek ¼
Θi;k

Ñi
þ 2πxik

Ñi
; ðA1Þ

where xijk, yik are some integers that satisfy the relations
yiik ¼ 2xik and yijk ¼ yjik. These relations follow from the
properties θαα;γ¼2θα;γ and θαβ;γ¼θβα;γ .We takefΘij;k;Θi;kg
in the interval ½0; 2πÞ, but in certain caseswe set someof them
in the interval ½2π; 4πÞ, which we discuss below.
Then, we attach a charge qik to the loop vi when it is

linked to ½ð2πÞ/Nk�ek unit flux, for each i and k. The new
vortex loops fv̂ig have the following mutual and exchange
three-loop braiding statistics:

θv̂iv̂j;ek ¼ θvivj;ek þ
2πqikj
Nj

þ 2πqjki
Ni

;

θv̂i;ek ¼ θvi;ek þ
2πqiki
Ni

þ πqik0 ; ðA2Þ

where qikj is the jth component of qik. We choose the charge
fqikg properly such that they satisfy the following relations:

1

Nij
ðNiqikj þ Njq

jk
i Þ ¼ −yijk ðmod NijÞ;

Ñi

2Ni
ð2qiki þ Niqik0 Þ ¼ −xik ðmod ÑiÞ: ðA3Þ

One can show that for evenNi, such fqikg always exist. For
odd Ni (i ≥ 1), the existence of such fqikg requires
y0ik ¼ xikðmod 2Þ. Interestingly, it is actually a physical
requirement for properly chosen Θi;k and Θi0;k. Before we
explain the case of odd Ni, we conclude that if Eq. (A3)
holds, we obtain a set of vortex loops fv̂ig such that

θv̂iv̂j;ek ¼
Θij;k

Nij ;

θv̂i;ek ¼
Θi;k

Ñi
: ðA4Þ

That is, these braiding statistics are determined by the
topological invariants.
We now explain the case when Ni is odd for i ≥ 1.

Consider Ni copies of vi vortices linked to ½ð2πÞ/Nk�ek
flux. Fusing the vi vortices together gives a pure charge q.
Using the linearity relations Eqs. (A8c) and (A8d), which
we explain shortly, we obtain

N2
i θvi;ek ¼ πq0 ¼

NiN0

2
θviv0;ek : ðA5Þ

[More detailed discussion can be found in Appendix B in
the proof of Eq. (13e).] In addition, using the constraints
Eqs. (13a), (13c), and (13d) for odd Ni, we can write the
topological invariants as follows:

Θ0i;k ¼
2π

N0ik
bik; Θi;k ¼

2π

Nik
aik; ðA6Þ

with 0 ≤ aik, bik < Ni. Inserting Eqs. (A1) and (A6) into
Eq. (A5), we find that

πðaik þ xikÞ ¼ πðbik þ y0ikÞ ðmod 2πÞ: ðA7Þ
Now if aik and bik have the same parity, so do xik and y0ik.
If aik and bik have opposite parity, we can replace aik by
aik þ Nik in Eq. (A6). This only means we choose
2π ≤ Θi;k < 4π. Now that aik þ Nik and bik have the same
parity, so do xik and y0ik. This proves the claim that y0ik ¼
xikðmod 2Þ is a physical requirement for properly chosen
Θi;k and Θi0;k.
With the set fv̂ig that are linked to unit flux ½ð2πÞ/Nk�ek,

the remaining three-loop braiding statistics are easy to
reconstruct. To do that, we use the following general
properties of Abelian three-loop braiding statistics:

θαα;γ ¼ 2θα;γ; ðA8aÞ
θαβ;γ ¼ θβα;γ; ðA8bÞ

θαðβ1×β2Þ;γ ¼ θαβ1;γ þ θαβ2;γ; ðA8cÞ
θðα×βÞ;γ ¼ θα;γ þ θβ;γ þ θαβ;γ; ðA8dÞ

θðα1∘α2Þðβ1∘β2Þ;ðγ1×γ2Þ ¼ θα1β1;γ1 þ θα2β2;γ2 ; ðA8eÞ
θα∘β;γ1×γ2 ¼ θα;γ1 þ θβ;γ2 : ðA8fÞ
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Equation (A8a) follows immediately from the definition
of exchange statistics. Equation (A8b) comes from the
fact that braiding α around β is topologically equivalent
to braiding β around α, while both are linked to γ.
Equations (A8c)–(A8f) are referred to as linearity
reations. They follow from the fact that braiding and
exchanging of loops commute with the two fusion
processes of loops, depicted in Fig. 3. More discussions
on these linearity relations can be found in Refs. [2,7].
These works consider only the case that charge exci-
tations are bosonic. Nevertheless, the linearity relations
hold regardless of the exchange statistics of charge
excitations.
We can now use the two types of fusions in Fig. 3 and the

linearity relations Eqs. (A8c)–(A8f) to obtain braiding
statistics between vortices that carry general gauge flux.
Also, through charge attachments, one can exhaust all
vortices that carry the same gauge flux. Accordingly, the
full set of three-loop braiding statistics indeed can be
reconstructed out of the topological invariants. Hence, they
are equivalent.

APPENDIX B: PROOFS OF THE CONSTRAINTS

In this appendix, we prove the constraints Eqs. (13a)–
(13i) through various physical arguments, except that
Eq. (13h) remains a conjecture. The proofs heavily rely
on the general properties of Abelian loop braiding statistics
Eqs. (A8a)–(A8f).
Proofs of Eqs. (13a), (13b), (13c), and (13g).—First of

all, Eq. (13a) follows immediately from the relation
Eq. (A8a) and the definitions of Θii;k and Θi;k. The
constraint Eq. (13b) follows from the relation Eq. (A8b).
The constraints Eqs. (13c) and (13g) involve only
mutual braiding statistics between loops. The fact that
there exist fermionic charge excitations does not matter
for mutual statistics. Accordingly, they can be estab-
lished using exactly the same arguments as those given
in Ref. [7].
Proof of Eq. (13d).—Consider the thought experiment

shown in Fig. 4, where we have Nk identical copies of a γ
base loop linked with α and α0 loops. Here, α and α0 are the
same type of loops; we put a prime on the latter just for

notational distinction. The loops carry gauge flux ϕα ¼
ϕα0 ¼ f½ð2πÞ/Ni�eig and ϕγ ¼ ½ð2πÞ/Nk�ek. Now imagine
that we exchange α and α0 in each copy. The total Berry
phase is obviously given by Nkθα;γ. Then, we perform a
two-step deformation on the exchange process (Fig. 4):
we first fuse the α (α0) loops into a bigger A (A0) loop
that is linked with all the γ base loops, then we fuse all
the γ loops together to a C loop. It is not hard to see that
C carries no gauge flux. Therefore, the original exchange
process is deformed to a process of exchanging two loops
A and A0 that are not linked to any base loop (note that A
and A0 are the same type of loops). Applying the linearity
relation Eq. (A8f) to the above deformation process,
we obtain

Nkθα;γ ¼
2π

Ni
qA · ei þ πqA · e0: ðB1Þ

where the right-hand side is the statistical phase asso-
ciated with exchanging A and A0, and qA is the gauge
charge carried by the unlinked loop A.
To obtain Eq. (13d), we multiply Ñi on both sides

of Eq. (B1). For i ¼ 0, the right-hand side reduces to
ð2Ñ0/N0 þ Ñ0ÞπqA · e0. With Eq. (11), we find that
ð2Ñ0/N0 þ Ñ0Þ is an even number. Accordingly, the
right-hand side of Eq. (B1) equals 0 modulo 2π. If i ≠ 0,
we notice that Ñi/Ni is an integer and Ñi is even; thereby the
right-hand side also equals 0 modulo 2π. Hence, we
prove Eq. (13d).
Proof of Eq. (13e).—Consider a base loop γ that is linked

with Ni copies of α loops. The loops carry gauge flux ϕα ¼
½ð2πÞ/Ni�ei and ϕγ ¼ ½ð2πÞ/Nk�ek. Using the relations
Eqs. (A8d) and (A8a), it is not hard to see that the exchange
statistics of the α loops as a whole is given byN2

i θα;γ, which
equals NiΘi;k. On the other hand, fusing the α loops
together gives a gauge charge q, whose exchange statistics
is πq0. Accordingly, we should have

NiΘi;k ¼ πq0: ðB2Þ

In addition, we consider ðN0/2Þ copies of β loops that
are also linked to γ. The β loops carry gauge flux
ϕβ ¼ f½ð2πÞ/N0�e0g. According to the Aharonov-Bohm

(a) (b)

FIG. 3. Two ways of fusing loops. (a) Fusing β1 and β2, that are
linked to the same base γ, into a new loop, denoted as β1 × β2.
(b) Fusing β1 and β2, that are linked to different bases γ1 and γ2
and that carry the same amount of flux ϕβ1 ¼ ϕβ2 , into a new
loop, denoted as β1∘β2.

FIG. 4. The first thought experiment.
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law, the mutual statistics between q and the ðN0/2Þ copies
of β is πq0. That is, the mutual braiding statistics between
Ni copies of α as a whole and ðN0/2Þ copies of β as a whole
is πq0. Using the linearity relations, we find the latter is also
given by ½ðN0NiÞ/2�θαβ;γ. Therefore, we have

πq0 ¼
N0Ni

2
θαβ;γ ¼

N0i

2
Θ0i;k; ðB3Þ

where the second equality holds when Ni is even.
Combining Eqs. (B2) and (B3), we immediately obtain
the constraint Eq. (13e).
Proof of Eq. (13f).—To show Eq. (13f), we perform

several thought experiments. First, we consider again the
thought experiment in Fig. 4, but now with Nik copies of
the linked loops α, α0 and γ. Similarly to Eq. (B1), we
obtain

Nikθα;γ ¼
2π

Ni
qA · ei þ πqA · e0 ¼

Nik

Ñi
Θi;k; ðB4Þ

where we assume Nik is even. Note that this qA is different
from that in Eq. (B1), since we start with a different number
of copies of linked loops in Fig. 4.
Next, we consider another thought experiment, shown in

Fig. 5. We start with the same Nik copies of linked loops α,
α0 and γ as in Fig. 4. Then, we fuse all the α loops to a big
loop A, but we shrink the α0 loops and fuse them onto the γ
loops such that γ turns to γ0. The gauge flux carried by γ0 is
the same as that of γ; i.e., ϕγ0 ¼ ϕγ. Next, we fuse the Nik

copies of γ0 together and obtain an excitation C0. It is not
hard to see thatC0 carries no gauge flux; hence, it is actually
a charge excitation.
To proceed, we create a pair of loops α00 and ᾱ00, with

the loop α00 carrying unit flux of ½ð2πÞ/Ni�ei. We
imagine braiding α00 around C0. Since C0 is a pure
charge, the statistical phase is given by the Aharonov-
Bohm phase ½ð2πÞ/Ni�qC0 · ei. On the other hand, since
C0 is composed of Nik copies of loops γ0, the linearity
relations tell us that the braiding statistical phase is also
given by Nikθα00γ0;A ¼ Θik;i. Therefore, we obtain

Θik;i ¼
2π

Ni
qC0 · ei: ðB5Þ

We now make use of Eqs. (B4) and (B5) to show the
constraint Eq. (13f). Recall that we start with Nik identical

α-α0-γ links in both Figs. 4 and 5. Each link should carry a
well-defined overall charge, which we denote as qlink.
Because of charge conversation, the overall gauge charge
carried by the excitations does not vary in any step of the
thought experiments. Accordingly, we have

qA þ qC0 ¼ Nikqlink: ðB6Þ
Adding together Eqs. (B4) and (B5), and using Eq. (B6),
we arrive at

Nik

Ñi
Θi;k þ Θik;i ¼ πqA · e0; ðB7Þ

where we have used the fact that qlink is an integer vector.
Finally, we argue that A must be a bosonic charge; i.e.,

πqA · e0 ¼ 0. To see that, consider the exchange statistics of
C0 in Fig. 5:

θC0 ¼ πqC0 · e0

¼ ðNikÞ2θγ0;A
¼ ðNikÞ2

Ñk
Θk;i

¼ ðNikÞ2
ÑkNi

· NiΘk;i ¼ 0: ðB8Þ

Accordingly, C0 is bosonic. Then, using Eq. (B6) with
the assumption that Nik is even, we immediately con-
clude that A is also bosonic. Hence, we prove the
constraint Eq. (13f).
Proof of Eq. (13i).—Finally, we argue for the last

constraint Eq. (13i). Physically, it follows from the require-
ment that the flux loops cannot have any chiral modes. This
is also new to fermionic theories (for bosonic ones, by
condensing the bosonic gauge charges on the flux loops
one can always make them gapped), and imposes a non-
trivial constraint on the braiding statistics of the 2D
topological phase obtained from dimensional reduction.
We recall the following bulk-boundary relation in a 2D
(bosonic) topological phase [65]:

1

D

X
a

d2aθa ¼ eðπi/4Þc− : ðB9Þ

Here D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

ad
2
a

p
is the total quantum dimension of the

2D theory, a runs over all types of anyons, and da and θa
are the quantum dimension and topological twist of an
anyon of type a, respectively. The quantity c− is the chiral
central charge, and c− ¼ 0 for nonchiral theories.
Let us apply Eq. (B9). We fix a base loop, and dimen-

sionally reduce the 3D gauge theory. The anyon types in the
2D theory can be labeled by a tuple ðq;mÞ, where q labels
the gauge charges, and ϕi ¼ f½ð2πÞ/Ni�mig labels the
gauge fluxes. These anyon excitations correspond to the
vortex loops that are linked to the base loop in the original

FIG. 5. The second thought experiment.
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3D theory. Assuming all the 2D anyons are Abelian, we
have da ¼ 1 andD ¼ jGj ¼ Q

K
i¼0Ni. The topological twist

of ðq;mÞ is given by

θðq;mÞ ¼ ð−1Þq0e2πi
P

j
qjmj/Nj × ei

P
j
m2

jθαj;ekþi
P

i<j
mimjθαiαj;ek ;

ðB10Þ
where we have used αi to denote the loop that corresponds
to the anyon ð0; eiÞ after dimensional reduction, and have
taken the base loop to carry gauge flux ½ð2πÞ/Nk�ek.
Next we insert the expression of θq;m into Eq. (B9) with

the requirement c− ¼ 0, and perform the summation over q
and m. We first sum over q, and the relevant part is

XN0

q0¼1

ð−1Þq0eð2πim0/N0Þq0
Y
j>0

XNj

qj¼1

eð2πimj/NjÞqj

¼ N0δm0;N0/2

Y
j>0

Njδmj;0: ðB11Þ

Combining this part with the rest, we have

1 ¼ 1

D

X
q;m

θq;m ¼ eiðN0/2Þ2θα0α0 ;ek : ðB12Þ

According to the definitions of the topological invariants,
the right-hand side of the above equation is given by

eiðN0/2Þ2θα0α0 ;ek ¼
(
eiðN0/4ÞΘ0;k N0

2
≡ 0 ðmod 2Þ

eiðN0/2ÞΘ0;k N0

2
≡ 1 ðmod 2Þ:

ðB13Þ

Putting together Eqs. (B12) and Eq. (B13), and
properly rewriting the expressions, we obtain the constraint
Eq. (13i).

APPENDIX C: SIMPLICIAL CALCULUS AND
GENERALIZED CUP PRODUCT

We always work with a simplicial triangulation of a
manifold M. A p-cochain is a function living on

p-simplicies valued in an Abelian group A. Denote the
collection of all such cochains asCpðM;AÞ, which naturally
forms a group.
We define the coboundary operator δ that maps a

p-cochain f ∈ CpðM;AÞ to a (pþ 1)-cochain:

ðδfÞði0i1…ipþ1Þ ¼
Xpþ1

j¼k

ð−1Þkfði0i1…îk…ipþ1Þ; ðC1Þ

where the variable îk is omitted. δ can be considered as a
discrete derivative, and satisfies δ2 ¼ 0. If δf ¼ 0, f is said
to be closed, or a p-cocycle. If f can be written as f ¼ δg
with g a (p − 1)-cochain, f is said to be exact, or a p-
coboundary. The group of p-cocycles is denoted as
ZpðM;AÞ and the group of p-coboundaries BpðM;AÞ.
Clearly BpðM;AÞ ⊂ ZpðM;AÞ. The pth cohomology
group HpðM;AÞ ¼ ZpðM;AÞ/BpðM;AÞ.
The cup product of a p-cochain f ∈ Cp and a q-cochain

g ∈ Cq is defined as

½f ∪ g�ði0i1…ipþqÞ ¼ B½fði0…ipÞ; gðip…ipþqÞ�: ðC2Þ

Here, B is a bilinear form on A: Bðxþ y; zÞ ¼ Bðx; zÞ þ
Bðy; zÞ andBðz; xþ yÞ ¼ Bðz; xÞ þ Bðz; yÞ. In our case, we
haveRa;b ¼ e2πiBða;bÞ, whereBða; bÞ ∈ Q/Z. Notice that we
do not necessarily have Bðx; yÞ ¼ Bðy; xÞ. For most of the
calculations, we actually have Bðy; xÞ ¼ −Bðx; yÞmod Z.
The most important property of the cup product is

δðf ∪ gÞ ¼ δf ∪ gþ ð−1Þpf ∪ δg: ðC3Þ

Therefore, if δf ¼ δg ¼ 0, δðf ∪ gÞ ¼ 0. One can actually
show that the cup product defines a product of cohomology
classes. The cup product to some extent is the discrete
version of the wedge product of differential forms.
We also define a higher cup product [66]. For our

purpose, we mostly just need ∪1:

½f ∪1 g�ð0;…; pþ q − 1Þ ¼
Xp−1
j¼0

ð−1Þðp−jÞðqþ1ÞB½fð0;…; j; jþ q;…; pþ q − 1Þ; gðj;…; jþ qÞ�: ðC4Þ

They satisfy the property:

f ∪ gþ ð−1Þpqg ∪ f ¼ ð−1Þpþqδf ∪1 gþ ð−1Þqf ∪1 δg − ð−1Þpþqδðf ∪1 gÞ: ðC5Þ
Notice that the sign on the lhs is reversed compared to the usual formula (e.g., see Ref. [66]) due to the skew symmetry of
the bilinear form B.
Generally, higher cup products satisfy

f ∪a gþ ð−1Þpqþag ∪a f ¼ ð−1Þpþqþaδf ∪aþ1 gþ ð−1Þqþaf ∪aþ1 δg − ð−1Þpþqþaδðf ∪aþ1 gÞ: ðC6Þ
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We list explicit expressions for the ∪1 that we will use:

q ¼ 1∶½f ∪1 g�ð0; 1;…; pþ 1Þ ¼ B

�
fð0;…; pÞ;

Xp
i¼0

gði; iþ 1Þ
�
;

p ¼ 2; q ¼ 2∶½f ∪1 g�ð0123Þ ¼ B½fð023Þ; gð012Þ� − B½fð013Þ; gð123Þ�;
p ¼ 2; q ¼ 3∶½f ∪1 g�ð01234Þ ¼ B½fð034Þ; gð0123Þ� þ B½fð014Þ; gð1234Þ�;
p ¼ 3; q ¼ 3∶½f ∪1 g�ð012345Þ ¼ B½fð0345Þ; gð0123Þ� þ B½fð0145Þ; gð1234Þ� þ B½fð0125Þ; gð2345Þ�: ðC7Þ

APPENDIX D: INVARIANCE OF THE PARTITION FUNCTION UNDER PACHNER MOVES

We derive the expression for the obstruction class by checking the invariance of the partition function under Pachner
moves. For a triangulated 4-manifold, there are essentially three kinds of Pachner moves: the 1-5, 2-4, and 3-3 moves. In the
present example, all of them reduce to the following single condition:

Zþð01234ÞZþð01245ÞZþð02345Þ ¼ Zþð01235ÞZþð01345ÞZþð12345Þ: ðD1Þ

Let us define

Zþ
0 ð01234Þ ¼ Rf012;f234 ; Zþ

1 ð01234Þ ¼ Rf034;β0123Rf014;β1234 ; Zþ
2 ð01234Þ ¼ Rλ012;f234 ; ðD2Þ

so that

Zþ ¼ Zþ
0

Zþ
1 Z

þ
2

: ðD3Þ

We simplify the Pachner move equation for Zþ
0 and Zþ

1 individually first:

Zþ
0 ð01234ÞZþ

0 ð01245ÞZþ
0 ð02345Þ

Zþ
0 ð01235ÞZþ

0 ð01345ÞZþ
0 ð12345Þ

¼Rf012;f234þf245−f235Rf023;f345

Rf013þf123;f345
¼Rf012;−β2345

Rf012;f345Rf023;f345

Rf013þf123;f345
¼Rf012;−β2345R−β0123;f345 ; ðD4Þ

Zþ
1 ð01234ÞZþ

1 ð01245ÞZþ
1 ð02345Þ

Zþ
1 ð01235ÞZþ

1 ð01345ÞZþ
1 ð12345Þ

¼ Rf015;β1245−β1235−β1345Rf045;β0124þβ0234−β0134Rf025−f125;β2345Rf014−f145;β1234Rf034−f035;β0123

¼ Rf015;β1245−β1235−β1345Rf045;β0124þβ0234−β0134Rf015−f012;β2345Rf015−f045;β1234Rf345−f045;β0123

× R−β0125;β2345R−β0145;β1234R−β0345;β0123

¼ Rf015;β1234þβ1245þβ2345−β1235−β1345Rf045;β0124þβ0234−β0134−β0123−β1234R−f012;β2345Rf345;β0123

× R−β0125;β2345R−β0145;β1234R−β0345;β0123

¼ R−f012;β2345Rf345;β0123R−β0125;β2345R−β0145;β1234R−β0345;β0123 : ðD5Þ

In the last step we use the 3-cocycle condition of β.

Zþ
2 ð01234ÞZþ

2 ð01245ÞZþ
2 ð02345Þ

Zþ
2 ð01235ÞZþ

2 ð01345ÞZþ
2 ð12345Þ

¼ Rλ012;f234þf245−f235Rλ023−λ013−λ123;f345

¼ Rλ012;f345−β2345R−λ012;f345

¼ Rλ012;−β2345 ¼ ðRλ012;β2345Þ−1: ðD6Þ

Combining the two pieces, we get
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Zþð01234ÞZþð01245ÞZþð02345Þ
Zþð01235ÞZþð01345ÞZþð12345Þ ¼

Rβ0125;β2345Rβ0145;β1234Rβ0345;β0123Rλ012;β2345

Rβ0123;f345Rf345;β0123

ω01234ω01245ω02345

ω01235ω01345ω12345

: ðD7Þ

Since β is valued in the transparent center,
Rβ0123;f345Rf345;β0123 ¼ 1 for all f. Therefore, the invariance
under Pachner moves requires that

ω12345ω01345ω01235

ω01234ω01245ω02345

¼Rβ0125;β2345Rβ0145;β1234Rβ0345;β0123Rλ012;β2345 :

ðD8Þ

APPENDIX E: GAUGE INVARIANCE OF THE
PARTITION FUNCTION

We show below that the action can be thought of as a
topological gauge theory for a 2-form gauge field f and a
1-form gauge field g. We consider only the case with λ ¼ 0.
To show that the fijk’s can be regarded as a 2-form gauge

field, we need to show that the action is invariant under a
1-form gauge transformation f → f þ δξ, where ξ is a
1-cochain. The variation of the action is

δξ ∪ f þ f ∪ δξþ δξ ∪ δξ − δξ ∪1 δf

¼ δðδξ ∪1 fÞ − δðξ ∪ δξÞ: ðE1Þ

So the partition function does not change.
To establish that gij’s are 1-form gauge fields requires

more work. Under gauge transformations g → gþ δh,
where h is a 0-cochain. First, one needs to preserve the
flatness condition, so the gauge transformations also affect
the 2-form gauge fields. Because of the 3-cocycle condition
of β, we can write

βðgþ δhÞ − βðgÞ ¼ δζ: ðE2Þ

Here, ζ is a 2-cochain. Explicit expressions of ζ can be
obtained, but extremely tedious in the general case. So we
illustrate by performing a gauge transformation on a single
vertex i: now gij → gij þ hi while the others remain
unchanged. The 3-cocycle βðgij;gjk;gklÞ transforms as

βðgij;gjk;gklÞ → βðgij;gjk;gklÞ þ βðhi;gij;gjkÞ þ βðhi;gik;gklÞ − βðhi;gij;gjlÞ: ðE3Þ

So we can set ζimn ¼ −βðhi;gim;gjnÞ.
To preserve the flatness condition δf ¼ β, f has to transform as f → f þ ζ. The change in f ∪ f − f ∪1 β is

ζ ∪ f þ f ∪ ζ þ ζ ∪ ζ − f ∪1 δζ − ζ ∪1 δf − ζ ∪1 δζ: ðE4Þ

Using the formula Eq. (C5), we can write

ζ ∪ f þ f ∪ ζ ¼ ζ ∪1 δf þ δζ ∪1 f − δðζ ∪1 fÞ: ðE5Þ
Neglecting the boundary term, Eq. (E4) becomes

ζ ∪ ζ − ζ ∪1 δζ − f ∪1 δζ þ δζ ∪1 f: ðE6Þ
Now applying the formula Eq. (C6), we obtain

f ∪1 δζ − δζ ∪1 f ¼ β ∪2 δζ − δðf ∪2 δζÞ: ðE7Þ
So finally, the change of f ∪ f − f ∪1 β is

f ∪ f − f ∪1 β → f ∪ f − f ∪1 β þ ζ ∪ ζ

− ζ ∪1 δζ − β ∪2 δζ; ðE8Þ
up to a boundary term.
We also need to take into account the change in η. The

change in β ∪1 β is given by

β ∪1 β → β ∪1 β þ β ∪1 δζ þ δζ ∪1 β þ δζ ∪1 δζ: ðE9Þ

Using Eq. (C6), we have

β ∪1 δζ þ δζ ∪1 β ¼ δβ ∪2 δζ þ β ∪2 δ
2ζ þ δðβ ∪2 δζÞ

ðE10Þ

and

δðζ ∪ ζÞ ¼ ζ ∪ δζ þ δζ ∪ ζ ¼ −δζ ∪1 δζ þ δðζ ∪1 δζÞ:
ðE11Þ

Because δη ¼ β ∪1 β, η must be modified in the following
way:

η → η − ζ ∪ ζ þ ζ ∪1 δζ þ β ∪2 δζ: ðE12Þ

Combining with Eq. (E8), the action is indeed invariant.
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APPENDIX F: DIMENSIONAL REDUCTION

First, we need to choose a triangulation of M3 × S1. We
start from an open manifold M3 ×D1 (where D1 stands
for an interval), and triangulate the two boundaries into
3-simplicies denoted by ½ijkl� and ½i0j0k0l0�, respectively.
We exploit an ordering in which i < i0 for all vertices i in
the simplicial triangulation ofM3. We then identify the two
boundaries, i.e., i is identified with i0, to obtain M3 × S1.
The G flux through S1 is measured by a Wilson loop along
S1, which is the G label on ii0 (it is easy to see that all jj0
should have the same label by the flatness condition). We
set gii0 ¼ h from now on.
The basic building block of the triangulation is a prism

½ijkli0j0k0l0� (see an illustration in Fig. 6). Each 4D prism
½ijkli0j0k0l0� is further triangulated into four 4-simpli-
ces ½ijkll0�; ½ijkk0l0�; ½ijj0k0l0�; ½ii0j0k0l0�.
Next, we divide the 2-simplices into two types: the “in-

plane” ones, which lie entirely inside the 3-manifold M3,
i.e., fijk ≡ fi0j0k0 , and those going “out of plane,” e.g., fii0j0 .
They need to be treated differently. This is already evident
when we examine the twisted flatness conditions: the
flatness conditions for the in-plane fields are essentially
properties of M3, and may depend on the topology of the
manifold. The flatness conditions for the out-of-plane fields
can be dealt with explicitly, which we analyze now.
Let us consider the twisted flatness conditions on a 3D

prism ½ijki0j0k0�, which is further triangulated into three 3-
simplices ½ijkk0�, ½ijj0k0�, and ½ii0j0k0�. Let us write out the
flatness conditions:

fjkk0 − fikk0 þ fijk0 − fijk ¼ βijkk0 ; ðF1aÞ
fjj0k0 − fij0k0 þ fijk0 − fijj0 ¼ βijj0k0 ; ðF1bÞ
fijk − fij0k0 þ fii0k0 − fii0j0 ¼ βii0j0k0 : ðF1cÞ

The meaning of these conditions is uncovered by
considering (F1a)−(F1b)þ(F1c):

mik ¼ mij þmjk þ nðgij;gjkÞ: ðF2Þ

Here, mij are defined as mij ¼ fii0j0 − fijj0 , and nðgij;gjkÞ
is given by

nðgij;gjkÞ ¼ βijkk0 − βijj0k0 þ βii0j0k0

¼ βðgij;gjk;hÞ − βðgij;h;gjkÞ þ βðh;gij;gjkÞ
≡ ðihβÞðgij;gjkÞ: ðF3Þ

Here, ihβ is called the slant product of β: ½ihβ� ∈ H2½G; T �.
Once we fix the fields involved inmij,mjk, andmik, as well
as the in-plane one fijk, the remaining two, fij0k0 and fijk0 ,
are also fixed.
At this point, it is clear that m should be thought of as a

1-form gauge field valued in A on M3, satisfying a twisted
flatness condition Eq. (F2). What we have shown is that the
twisted flatness conditions on M3 × S1 naturally decouple
into the flatness conditions of the in-plane 2-form fields
ffijkg, and the flatness conditions of the 1-form gauge
fields fmijg.
Now we need to evaluate the partition function.

First we collect the contributions from T’s on a single prism
½012300102030�:

Tð½012300102030�Þ ¼ Tð½012330�ÞTð½01102030�Þ
Tð½0122030�ÞTð½000102030�Þ

¼ Rf012;f2330Rf0110 ;f123

Rf012;f22030Rf00010 ;f123

Rf02030 ;n012

Rf0130 ;n123

Rf00030 ;β0123

Rf0330 ;β0123

Rλ012;f22030Rλ00010 ;f102030

Rλ012;f2330Rλ0110 ;f102030
ihωðg01;g12;g23Þ

¼ Rm03;β0123

Rf012;m23Rm01;f123

Rf02030 ;n012

Rf0130 ;n123
Rλ012;m23Rλðh;g01Þ−λðg01;hÞ;f123 ihωðg01;g12;g23Þ: ðF4Þ

We can use flatness conditions on ½0002030� and ½01330�,

f023 − f02030 þ f00030 − f00020 ¼ βðh;g02;g23Þ;
f1330 − f0330 þ f0130 − f013 ¼ βðg01;g13;hÞ; ðF5Þ

to rewrite

FIG. 6. Illustration of a prism.
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Rf02030 ;n012

Rf0130 ;n123
¼ Rf023;n012

Rf013;n123

Rf00030−f00020−βðh;g02;g23Þ;n012

Rf0330−f1330þβðg01;g13;hÞ;n123 : ðF6Þ

Let us collect the following factors involving fijk’s:

Rf023;n012

Rf013;n123Rf012;m23Rm01;f123
: ðF7Þ

To see that these terms do not contribute to the partition
function, we recall the following property of the cup
product:

f ∪mþm∪ f¼ δðf ∪1mÞ−δf ∪1 m−f ∪1 δm: ðF8Þ

Recall that δf ¼ β and δm ¼ −n. Then, Eq. (F8) implies

Rf023;n012

Rf012;m23Rm01;f123Rf013;n123
∼ Rβ0123;m01þm12þm23 : ðF9Þ

Here, ∼ means up to a boundary term.
To further simplify the expressions let us do the

following gauge fixing: we fix all fijj0 ¼ 0, by using the
gauge degrees of freedom on ij0, and then mij ¼ fii0j0 . So,
f00030 − f00020 ¼ m03 −m02 ¼ m23 þ n023; f0330 − f1330 ¼ 0.
Notice that after the gauge fixing mij, we also need to
multiply the partition function by a factor of jAj to correctly
normalize it. In total, the partition function should be
multiplied by jAjjΔ1ðM3Þj.
Now we have obtained the following expression for the

partition function on a prism:

Tð012300102030Þ ¼ Rm03;β0123
Rf023;n012

Rf012;m23Rm01;f123Rf013;n123

Rm23þn023−βðh;g02;g23Þ;n012

Rβðg01;g13;hÞ;n123 Rλ012;m23Rξ01;f123ihωðg01;g12;g23Þ

¼ Rm23;n012Rλ012;m23Rξ01;f123
Rn012þn023;β0123Rn023−βðh;g02;g23Þ;n012

Rβðg01;g13;hÞ;n123 ihωðg01;g12;g23Þ: ðF10Þ

We separate the weights associated to m and f:

S2þ1ð½0123�Þ≡ Rξ01;f012 ;

T2þ1ð½0123�Þ≡ Rm23;n012Rλ012;m23αðg01;g12;g23Þ; ðF11Þ

where

αðg01;g12;g23Þ ¼
Rn012þn023;β0123Rn023−βðh;g02;g23Þ;n012

Rβðg01;g13;hÞ;n123 ihωðg01;g12;g23Þ: ðF12Þ

The exact expression of α is not important for our analysis.
Let us now take care of the normalization factors. We have

jΔ0ðM4Þj ¼ jΔ0ðM3Þj;
jΔ1ðM4Þj ¼ jΔ0ðM3Þj þ 2jΔ1ðM3Þj: ðF13Þ

Thus, the normalization factor becomes

jAjjΔ1ðM3Þj

jGjjΔ0ðM4ÞjjAjjΔ1ðM4Þj−jΔ0ðM4Þj ¼
1

jGjjΔ0ðM3ÞjjAjjΔ1ðM3Þj : ðF14Þ

To summarize, we have found that the partition function on M3 × S1 can be written as

ZhðM3 × S1Þ ¼ 1

jGjjΔ0jjAjjΔ1j
X

fgg∈lðΔ0Þ

� X
ffg∈lðΔ2Þ

δδf¼βS
εðσ3Þ
2þ1 ðσ3Þ

�� X
fmg∈lðΔ1Þ

δδm¼−n

Y
σ3∈Δ3

Tεðσ3Þ
2þ1 ðσ3Þ

�
: ðF15Þ

It should be clear that in this expression Δk ≡ ΔkðM3Þ.
In the following, we discuss the physical interpretation of the sum over the “in-plane” fields f. We consider only the

simple case ξ ¼ 0. The sum over f can be evaluated:
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X
ffg∈lðΔ2Þ

δδf¼β ¼ jZ2ðM3;AÞjδ(
X
σ3∈Δ3

εðσ3Þβðσ3Þ): ðF16Þ

In the following, we write

Z
M3

β≡ X
σ3∈Δ3

εðσ3Þβðσ3Þ: ðF17Þ

Let us calculate the number of 1- and 2-cocycles:

jZ1j ¼ jH1j · jB1j ¼ jH1j · jC
0j

jZ0j ;

jZ2j ¼ jH2j · jB2j ¼ jH2j · jC
1j

jZ1j

¼ jH2j · jC1j
jH1j · jB1j

¼ jH2j
jH1j ·

jC1j · jZ0j
jC0j : ðF18Þ

Now we can easily see jCkj ¼ jAjjΔkj, jZ0j ¼ jAj (assum-
ing M3 is connected). Note that due to Poincaré duality,
jH2j ¼ jH1j. Putting together, we find

jZ1j ¼ jH1j · jAjjΔ0j−1; jZ2j ¼ jAjjΔ1j−jΔ0jþ1: ðF19Þ

Therefore, we find that

ZhðM3 × S1Þ ¼ 1

jGjjΔ0jjAjΔ0−1

X0

fgg
δ

�Z
M3

β

�

×

� X
fmg∈lðΔ1Þ

δδm¼−nT
εðσ3Þ
2þ1 ðσ3Þ

�
: ðF20Þ

To better understand the sum over f, we consider the
following example of a Dijkgraaf-Witten theory with the
gauge group given by G ×A. Group elements are labeled
by ðh; xÞ. We further assume that the group 4-cocycle takes
the following form:

ω(ðg1; a1Þ; ðg2; a2Þ; ðg3; a3Þ; ðg4; a4Þ) ¼ χa4ðg1;g2;g3Þ:
ðF21Þ

Let us compute the partition function of this DW theory on
M3 × S1. Following the derivation in Ref. [2], fixing the
holonomy along S1 to be ðh; xÞ, the dimensionally reduced
partition function becomes

Zðh;xÞðM3 × S1Þ

¼ 1

jGjjΔ0jjAjjΔ0j
X0

fg;ag

Y
σ3∈Δ3

Tεðσ3Þ
1 ðσ3ÞTεðσ3Þ

2 ðσ3Þ: ðF22Þ

Here we define

Tþ
1 ðσ3Þ¼ χxðgi;gj;gkÞ;Tþ

2 ðσ3Þ¼ðihχalÞðgi;gjÞ−1: ðF23Þ

Notice that this DW theory can be related to the theory
Eq. (59) discussed in Sec. VA. More precisely, after the
duality transformation, we arrive at exactly such a DW
theory with

χxðg1;g2;g3Þ ¼ Rβðg1;g2;g3Þ;x: ðF24Þ

Let us considerZh ≡P
x∈AZðh;xÞ. The only dependence

on x comes from
Q

σ3∈Δ3
Tεðσ3Þ
1 ðσ3Þ. For a given x,

Y
σ3∈Δ3

Tεðσ3Þ
1 ðσ3Þ ¼ R

R
M3

β;x
: ðF25Þ

We now carry out the sum over x:

1

jAj
X
x∈A

R
R
M3

β;x ¼ δ

�Z
M3

β

�
: ðF26Þ

Therefore,

ZhðM3 × S1Þ ¼ 1

jGjjΔ0jjAjjΔ0j−1
X0

fgg
δ

�Z
M3

β

�

×
X0

fag

Y
σ3∈Δ3

Tεðσ3Þ
2 ðσ3Þ: ðF27Þ

The similarity between Eq. (F20) and Eq. (F27) is quite
obvious. Motivated by this computation, we believe the δ
function in Eq. (F20) can be in general understood as the
result of summing over the flux of theA gauge field, dual to
“2-form gauge charges.”

APPENDIX G: EVALUATING OBSTRUCTIONS
IN THE TWISTED CRANE-YETTER MODELS

Recall that the twisted Crane-Yetter models are well
defined only if the following 5-cocycle ν ∈ H5½G;Uð1Þ� is
a 5-coboundary:

νðg1;g2;g3;g4;g5Þ ¼ Rβðg1g2g3;g4;g5Þ;βðg1;g2;g3Þ

× Rβðg1;g2g3g4;g5Þ;βðg2;g3;g4Þ

× Rβðg1;g2;g3g4g5Þ;βðg3;g4;g5Þ

× Rλðg1;g2Þ;βðg3;g4;g5Þ; ðG1Þ

whereRa;b ¼ ð−1Þab, β is a 3-cocycle inH3½G; T �, and λ is a
2-cocycle inH2½G; T �.When ν is not a 5-coboundary,we say
that the corresponding model has an H5½G;Uð1Þ� obstruc-
tion. Themain purpose of this appendix is to determinewhen
the twisted Crane-Yetter models are obstruction free, i.e.,
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when theν inEq. (G1) is a 5-coboundary.Wediscuss only the
case that G is an Abelian group and T ¼ ZN0

.
To do that, we define six quantities fΘi;l;m;Θij;l;m;Θijk;l;m;

Ωi;Ωik;Ωijkg for a general 5-cocycle ν ∈ H5½G;Uð1Þ�,
whereG is any finite Abelian group

Q
ZNi

. These quantities
have the important property that they are defined in away such
that they are invariant under a coboundary transformation
ν → νδμ. Hence, we call these quantities invariants for
H5½G;Uð1Þ�. We claim that a 5-cocycle is a 5-coboundary
if and only if all the six corresponding invariants vanish. We
define these invariants for general 5-cocycles in
Appendix G 1, and we prove the claim in Sppendix G 2.
Finally, we apply the invariants to the specific 5-cocycle
given in Eq. (G1).

1. Defining the invariants

To define the invariants, let us first define the following
functions:

iaνðg;h;k; lÞ

¼ νða;g;h;k; lÞνðg;h; a;k; lÞνðg;h;k; l; aÞ
νðg; a;h;k; lÞνðg;h;k; a; lÞ : ðG2Þ

The function iaν is usually called the “slant product” of ν. It
is actually a 4-cocycle in H4½G;Uð1Þ�, when a is treated as
a parameter. One may continue to apply the slant product
on iaν:

ibiaνðg;h;kÞ ¼
iaνðg;b;h;kÞiaνðg;h;k;bÞ
iaνðb;g;h;kÞiaνðg;h;b;kÞ

;

icibiaνðg;hÞ ¼
ibiaνðc;g;hÞibiaνðg;h; cÞ

ibiaνðg; c;hÞ
; ðG3Þ

where ibiaν is a 3-cocycle and icibiaν is a 2-cocycle. In
addition, we also define the following function:

ia;bνðg;h;kÞ ¼
νðg;h;k; a;bÞνðg; a;h;k;bÞ
νðg;h; a;k;bÞνða;g;h;k;bÞ

×
νðg;h; a;b;kÞνða;g;h;b;kÞ

νðg; a;h;b;kÞ

×
νðg; a;b;h;kÞ
νða;g;b;h;kÞ νða;b;g;h;kÞ: ðG4Þ

The function ia;bν, however, is not a 3-cocycle.
With these functions, we now define the invariants for

H5½G;Uð1Þ� for Abelian group G ¼ Q
iZNi

. Let ei be the
generator associated with the ZNi

subgroup of G. First, we
define the following invariants for a given 5-cocycle ν:

eiΘijk;l;m ¼ iei iel iemνðek; ejÞ
iei iel iemνðej; ekÞ

; ðG5Þ

eiΘij;l;m ¼
YNij

n¼1

iei iel iemνðej; nejÞiej iel iemνðei; neiÞ; ðG6Þ

eiΘi;l;m ¼
YNi

n¼1

iei iel iemνðei; neiÞ: ðG7Þ

One may check that Θi;l;m, Θij;l;m, and Θijk;l;m are indeed
invariant under a coboundary transformation ν → νδμ.
Next, we define the following invariants:

eiΩi ¼
YNi

m;n¼1

ieiðei; mei; ei; neiÞ; ðG8Þ

eiΩik ¼
YNik

m¼1

YNi

n¼1

iek;mekνðei; nei; eiÞiekνðei; nei; ei; meiÞ:

ðG9Þ

Again these two quantities are invariant under a coboun-
dary transformation ν → νδμ.
Finally, we define the invariant Ωijk. To do that,

we write

Ni ¼
Y
p

prp; Nj ¼
Y
p

psp ; Nk ¼
Y
p

ptp ;

where the products are taken over all prime numbers p.
Then, we have the following group isomorphisms:

ZNi
¼ Z2r2 × Z3r3 × Z5r5 × � � � ;

ZNj
¼ Z2s2 × Z3s3 × Z5s5 × � � � ;

ZNk
¼ Z2t2 × Z3t3 × Z5t5 × � � � :

Let epi ≡ ½Ni/ðprpÞ�ei be the generator associated with the
Zprp subgroup in ZNi

, and epj , e
p
k are similarly defined. In

the case that rp ≤ sp ≤ tp, we define

eiΩ
p
ijk ¼

Yptp

m¼1

Ypsp

n¼1

iepk ;mepk
νðepi þ epj ; ne

p
i þ nepj ; e

p
i þ epj Þ

iepk ;mepk
νðepi ; nepi ; epi Þiepk ;mepk

νðepj ; nepj ; epj Þ

×
iepk ðe

p
i þ epj ; ne

p
i þ nepj ; e

p
i þ epj ; mepi þmepj Þ

iepk ðe
p
i ; ne

p
i ; e

p
i ; mepi Þiepk ðe

p
j ; ne

p
j ; e

p
j ;mepj Þ

:

ðG10Þ

If rp, sp, tp are in different orders,Ω
p
ijk are defined similarly

with a corresponding permutation of indices i, j, k in
Eq. (G10). At the end, we define the total invariant

Ωijk ¼
X
p

Ωp
ijk: ðG11Þ
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Again, one can show that Ωijk is invariant under a
coboundary transformation ν → νδμ.

2. Completeness of the invariants

Let us now show that the invariants fΘi;l;m;Θij;l;m;
Θijk;l;m;Ωi;Ωik;Ωijkg are complete, in the sense that they
have the resolution to distinguish every cohomology class
in H5½G;Uð1Þ�. To do that, we perform a counting argu-
ment. First of all, for Abelian group G ¼ Q

iZNi
, the

cohomology group is given by

H5½G;Uð1Þ� ¼
Y
i

ZNi

Y
i<j

Z2
Nij

Y
i<j<k

Z4
Nijk

×
Y

i<j<k<l

Z3
Nijkl

Y
i<j<k<l<p

ZNijklp
: ðG12Þ

That means the invariants can take at most jH5½G;Uð1Þ�j
distinct values. If we are able to show that the invariants can
take exactly jH5½G;Uð1Þ�j distinct values, we prove the
invariants are complete.
To do that, we evaluate the values of the invariants for the

following explicit 5-cocycles:

ν1ða;b; c;d; eÞ ¼ exp

�
i2π

X
ijk

Pijk

NiNjNk
aiðbj þ cj − ½bj þ cj�Þðdk þ ek − ½dk þ ek�Þ

�
;

ν2ða;b; c;d; eÞ ¼ exp

�
i2π

X
ijkl

Qijkl

NijkNl
aibjckðdl þ el − ½dl þ el�Þ

�
exp

�
i2π

X
ijklp

Rijklm

Nijklm
aibjckdlem

�
; ðG13Þ

where Pijk, Qijkl, Rijklp are integer parameters. For
simplicity, we assume Rijklm ¼ 0 if any of its two indices
are equal. We have used integer vectors a ¼ ða1; a2;…Þ to
denote the group elements of G with 0 ≤ ai < Ni, and
½bj þ cj� is defined as bj þ cj modulo Nj. We use additive
convention for group multiplication of the Abelian group
G. One may check that ν1 and ν2 are indeed 5-cocycles.
Inserting the expression of ν2 into the definition of

Θijk;l;m, Θij;l;m, Θi;l;m, we find that

Θijk;l;m¼−
2π

Nijklm

X
σ

sgnðσÞRσðiÞσðjÞσðkÞσðlÞσðmÞ;

Θij;l;m¼
2πNij

NilmNj
ðQmiljþQilmjþQlmij−Qimlj

−Qmlij−QlimjÞþði↔jÞ;

Θi;l;m¼
2π

Nilm
ðQmiliþQilmiþQlmii−Qimli−Qmlii−QlimiÞ:

ðG14Þ
(Note that Ωi, Ωij, Ωijk can be evaluated, but the expres-
sions are complicated, so we do not list them here. This
does not affect the counting argument below.) Inserting the
expression of ν1 into the definitions of Ωi, Ωik, Ωijk, we
find that Θijk;l;m ¼ Θij;l;m ¼ Θi;l;m ¼ 0 and

Ωi¼ 2π
Piii

Ni
;

Ωik ¼ 2π
PiikþPikiþPkii

Nik
;

Ωijk ¼ 2π
PijkþPikjþPkijþPjikþPjkiþPkji

Nijk
X; ðG15Þ

where X is an integer with the property that X and Nijk are
coprime.

Let us count how many distinct values these invariants
can take. First, Θijk;l;p is fully antisymmetric, and it can
take Nijklp different values. One can show that
NijlpΘij;l;p ¼ 0, and it is symmetric in i, j and antisym-
metric in l, p. A more careful calculation shows that for
fixed indices i ≠ j ≠ l ≠ p, Θij;l;p and those related to
Θij;l;p by index permutations can take N3

ijlp distinct values.
The invariant Θi;l;p is antisymmetric in l, p. For fixed
indices i ≠ j ≠ p, Θi;l;p and those related by index permu-
tations can take N3

ilp distinct values. Hence, Θijk;l;p, Θij;l;p,
Θi;l;p together can take N Θ different values with

N Θ ¼
Y
i<j<k

N3
ijk

Y
i<j<k<l

N3
ijkl

Y
i<j<k<l<m

Nijklm: ðG16Þ

Next, we count the possible number of values for Ωi, Ωij,
Ωijk from ν1. Since for ν1 we have Θijk;l;m ¼ Θij;l;m ¼
Θi;l;m ¼ 0, these possible values of invariants are distinct
from those from ν2. The invariant Ωi obviously can take Ni
distinct values. For given i ≠ k,Ωik andΩki are independent.
They together can takeN2

ik distinct values. The invariantΩijk

is fully symmetric and it can takeNijk distinct values. (Note
that in the definition of Ωijk, it is only symmetric in i and j.
This full symmetry in all three indices is only a consequence
of the specific cocycle ν1.) Accordingly, we have that the
invariants Ωi, Ωij, Ωijk can take N Ω distinct values with

N Ω ¼
Y
i

Ni

Y
i<j

N2
ij

Y
i<j<k

Nijk: ðG17Þ

Putting all together, the invariants can take N ΘN Ω ¼
jH5½G;Uð1Þ�j distinct values in total. Hence, they are
complete.
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3. Evaluating obstruction

We now evaluate the values of the invariants fΘi;l;m;
Θij;l;m;Θijk;l;m;Ωi;Ωik;Ωijkg for the 5-cocycle given in
Eq. (G1). That 5-cocycle depends on a 3-cocycle β in
H3½G;ZN0

� and a 2-cocycle λ in H2½G;ZN0
�. Below, we

work with the following explicit β and λ:

βða;b;cÞ¼
X
ij

N0pij

Ni0Nj
aiðbjþcj− ½bjþcj�Þ

þ
X
ijk

N0pijk

Nijk0
aibjck ðmodN0Þ;

λða;bÞ¼
X
i

qi
Ni

ðaiþbi− ½aiþbi�Þ ðmodN0Þ; ðG18Þ

where pij; pijk; qi are integer parameters, and for simplicity,
we assume thatpijk ¼ 0 if any twoof the indices are the same.
We now insert the above expressions of β and λ into the

expression of ν in Eq. (G1), and further insert ν into the
definitions of the invariants fΘi;l;m;Θij;l;m;Θijk;l;m;Ωi;
Ωik;Ωijkg. After a long tedious calculation, we find that

Ωi ¼ π
N0

N0i
piið1þqiÞ;

Ωik ¼ π
N0

N0k

Nik

Ni
pkið1þqiÞ

þπ
N0

N0i

Nik

Nk
ðqipikþqkpiiÞ ðwhen i≠ kÞ;

Ωijk ¼ π
NijkðNijk−1Þ

2

N0

Nijk0
ð1þqiþqjÞp̂ijk

þπ
N0

Nijk0
ðqip̂jkþqjp̂kiþqkp̂ijÞ ðwhen i≠ j≠ kÞ;

Θi;l;m ¼ π
N0

Nilm0

qip̂ilm;

Θij;l;m ¼ π
Nij

Ni

N0

Njlm0

qip̂jlmþði↔ jÞ;

Θijk;l;m¼ 0; ðG19Þ
where p̂ijk ≡ pijk þ pjki þ pkij − pkji − pjik − pikj and
p̂ij ¼ pij þ pji. (Note that we only calculated Ωik and
Ωijk with i ≠ j ≠ k for simplicity. For Ωijk, k is the index
such that: if we write Ni ¼ 2zini, Nj ¼ 2zjnj and
Nk ¼ 2zknk, where ni; nj; nk are odd numbers, the exponent
zk is the largest. The twisted Crane-Yetter models are
obstruction free if and only if all the above expressions
vanish.
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