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We study Abelian braiding statistics of loop excitations in three-dimensional gauge theories with
fermionic particles and the closely related problem of classifying 3D fermionic symmetry-protected
topological (FSPT) phases with unitary symmetries. It is known that the two problems are related by
turning FSPT phases into gauge theories through gauging the global symmetry of the former. We show that
there exist certain types of Abelian loop braiding statistics that are allowed only in the presence of
fermionic particles, which correspond to 3D “intrinsic” FSPT phases, i.e., those that do not stem from
bosonic SPT phases. While such intrinsic FSPT phases are ubiquitous in 2D systems and in 3D systems
with antiunitary symmetries, their existence in 3D systems with unitary symmetries was not confirmed
previously due to the fact that strong interaction is necessary to realize them. We show that the simplest
unitary symmetry to support 3D intrinsic FSPT phases is Z, x Z,. To establish the results, we first derive a
complete set of physical constraints on Abelian loop braiding statistics. Solving the constraints, we obtain
all possible Abelian loop braiding statistics in 3D gauge theories, including those that correspond to
intrinsic FSPT phases. Then, we construct exactly soluble state-sum models to realize the loop braiding
statistics. These state-sum models generalize the well-known Crane-Yetter and Dijkgraaf-Witten models.
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I. INTRODUCTION

Topological phases in three spatial dimensions can
support particle and loop excitations [1]. While we learn
in undergraduate quantum mechanics that there are only
bosonic and fermionic exchange statistics for particles in
3D, the rich statistical properties of loop excitations have
only begun to be uncovered recently [2,3], in conjunction
with the study of bosonic symmetry-protected topological
(BSPT) phases in 3D [4-6]. More specifically, it was found
that one way to characterize BSPT phases protected by
finite unitary symmetries is to “gauge” the global sym-
metries, i.e., couple the BSPT matter to a gauge field such
that the global symmetries are promoted to local gauge
symmetries. In such gauged BSPT phases, particle excita-
tions are the gauge charges and loop excitations are vortices
carrying gauge fluxes. Most importantly, distinct BSPT
phases give rise to different “three-loop” braiding statistics
in the gauge theories, which is a fundamentally new type
of braiding statistics in 3D [2,3,7-13]. In other words,
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three-loop braiding statistics serves as a topological invari-
ant for BSPT phases.

So far, all studies of loop braiding statistics have focused
on gauge theories where particles are bosons. Loop braid-
ing statistics in the presence of fermionic particles are much
less explored. Perhaps the most important question to
address is, Does the presence of fermions allow new types
of loop braiding statistics that are not possible otherwise?

This question is closely related to the problem of
classifying interacting fermionic symmetry-protected topo-
logical phases (FSPT) in 3D, in which the braiding statistics
of vortex loops also serves as a topological invariant for the
bulk phase. To put it into context, we briefly review the
classification of FSPT phases with unitary symmetries in
3D. For noninteracting fermionic systems, it is well known
that there are no nontrivial FSPT phases protected by on-site
unitary symmetries linearly realized on the fermions
[14—17]. On the other hand, we can create interacting
FSPT phases by effectively turning fermions into bosons
with the help of strong interactions (i.e., fermions forming
spins or molecular bound states), and letting the bosons form
SPT states. An interesting question then arises: are there
“intrinsic” FSPT phases in 3D protected by unitary sym-
metries? Here, by intrinsic, we mean those FSPT phases that
do not stem from BSPT phases. If there were any, we know
that they must be strongly interacting states (since we know
there are no nontrivial noninteracting SPT phases). Then, the
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loop braiding statistics obtained by gauging symmetries of
these intrinsic FSPT phases are the ones that are allowed
only in the presence of fermionic particles.

Because of the nonexistence of noninteracting phases,
one has to confront the complexity of interacting systems
from the very beginning to realize FSPT phases. A fruitful
approach is to construct and study exactly solvable lattice
models. A systematic construction of fermionic SPT phases
has been proposed in Ref. [18], although no explicit
examples in 3D for unitary symmetries (except the bosonic
ones) were given. In addition, it is not clear what kind of
physical properties characterize the constructed FSPT
states in Ref. [18]. We should mention that other classi-
fication schemes have been proposed, such as the spin
cobordism group in Ref. [19] and the invertible topological
quantum field theories (TQFTs) in Refs. [20,21].

In this work, we study Abelian loop braiding statistics in

3D gauge theories with fermionic particles. As we see, the
presence of fermionic particles indeed enables new types of
three-loop braiding statistics, forbidden when the particles
are bosonic. Because of the well-established correspon-
dence between SPT phases and gauge theories [2,7,22-24],
our results also imply existence of intrinsic FSPT phases.
We derive these results through a combination of physical
arguments and exactly solvable models. Moreover, we
derive a complete classification of Abelian three-loop
braiding statistics in Abelian gauge theories (i.e., the gauge
group is Abelian) in the presence of fermionic particles.
We show that the simplest symmetry group that allows
for intrinsic interacting FSPT phases is ZJZC X Ly X Zy.

Here, ZJZ" is the fermion parity conservation. It turns out
that this example captures the essence of all 3D Abelian
FSPT phases discussed in this work. Hence, we give an

intuitive picture for one of the Z{ X Z5 X Z, intrinsic FSPT
phases—namely, the “root” phase—in terms of decorated
domain walls. In this description, a symmetric state can be
obtained by proliferating domain walls of the global
symmetry. If domain walls themselves are “decorated”
by lower-dimensional SPT phases, then the wave function
of proliferated domain walls may represent a nontrivial SPT
state [25]. In the Z} x Z, x Z, FSPT phase, a Z,; domain
wall is decorated by a 2D FSPT phase protected by the

Zg x Z, symmetry. Using the terminology of Ref. [26], the
one that we use for decoration is the root Abelian FSPT
phase in 2D, which has a Z, classification with interactions

(note that the full interacting classification of 2D Zg X 7,
FSPT phases is Zg; however, the Zg root phase is non-
Abelian). In fact, because this Abelian root phase has a Z,
classification, it can exist only on a Z, domain wall
[18,24,26,27]. This 2D phase can be easily realized with
noninteracting fermions, and a simple example is the
following: the system consists of two layers, a Chern
insulator with Chern number C = 1 (or equivalently, two
copies of p, + ip, superconductors) and its time-reversal

D

FIG. 1. A Z, symmetry defect in the Z’; X Z, X Z, intrinsic
FSPT phase. There lives a 1D helical Dirac fermion (denoted by
red and blue arrows) on the defect. The shaded region represents a
branch surface associated with the defect.

image with C = —1. This noninteracting FSPT has helical
Dirac fermions on the edge, and since the two chiral modes
carry opposite Z, charges, they cannot backscatter.
Interactions on the edge can cause spontaneous breaking
of the Z, symmetry, but the edge cannot be both symmetric
and nondegenerate [24,28].

To expose the physics of the 3D FSPT phase constructed
above, we imagine inserting a Z, symmetry defect loop
into the FSPT phase (Fig. 1). Since the defect loop can be
viewed as the effective boundary of a domain wall, it must
carry similar gapless modes as the edge of the 2D FSPT
phase decorated on the domain wall, assuming no sponta-
neous symmetry breaking along the loop. As we already
mentioned, one possible effective low-energy theory for the
gapless modes is a 1D helical Dirac fermion. This 1D
helical Dirac fermion on Z, symmetry defects is an
important property of the FSPT phase.

To explicitly show that the above 3D FSPT phase is
intrinsic, we need to gauge the Z’; X Zy X Z, symmetry.
Then, symmetry defect loops turn into dynamical vortex
loops in the gauged system. There are two three-loop
braiding process (see Fig. 2) which can reveal the intrinsic

nature of the FSPT phase. First, consider braiding a Zé (.e.,
fermion parity) vortex loop around a Z, vortex loop, while
both are linked to a unit Z, vortex loop. We find that this
three-loop braiding statistics is either semionic or anti-
semionic (£7/2). On the other hand, using a result that we
establish in Sec. III D, if this FSPT phase stems from a
BSPT phase, this three-loop braiding phase can only be O or
#z. The essence in this difference is that fermion parity
vortex loops play a nontrivial role in the three-loop braiding
statistics in the FSPT phase constructed from decorated
domain walls. Hence, this FSPT must be intrinsically
fermionic and the corresponding loop braiding statistics
can exist only in the presence of fermionic particles. The
other process is to exchange two identical Z, vortex loops
linked to the unit Z, vortex. The resulting Berry phase turns
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out to be z/4 (up to a 7 ambiguity), which, as we see, is not
allowed in systems with bosonic charges.

Because of the length of this paper, we briefly outline the
strategy underlying our approach. In Sec. II, we give an
introduction to some basic notions, including symmetries
in fermionic systems, the gauging method, and braiding
statistics in 3D. Next, in Sec. III, we define a set of
topological invariants to unambiguously characterize
Abelian three-loop braiding statistics in the presence of
fermionic particles and derive physical constraints satisfied
by the topological invariants. We then solve the constraints
to obtain possible solutions corresponding to gauged
intrinsic FSPT phases. Next, to show that the constraints
are complete and the solutions we find are indeed physical,
we introduce a family of exactly solvable lattice models of
topological twisted gauge theories in Sec. [V and compute
the loop braiding statistics in Sec. V. We show that all
physical solutions we found in Sec. III can be realized by
these models, thus completing the classification.

II. PRELIMINARIES

To begin, we discuss preliminary knowledge on 3D
FSPT phases and loop braiding statistics. We first discuss
the structure of symmetry groups in fermionic systems,
with an emphasis on the role of fermion parity conserva-
tion. Then, we introduce the general idea of gauging
symmetries in fermionic systems. Finally, some basic
properties of 3D loop braiding statistics are discussed.

A. Symmetries

Any fermionic system has a fundamental unbreakable
symmetry, namely, the conservation of the total fermion
parity: P, = (—1)"/, where N is the number of fermions.
The two operators {1, P;} form a symmetry group, which
we denote as Z]; .

In addition, the system may be symmetric under other
global symmetry transformations. Together with the fermion
parity, all symmetry transformations form a symmetry group
G. It is generally required that P, commutes with all
elements in G. Accordingly, Z’; is a normal subgroup of
G. The quotient group G = Q/Z/; in a sense contains all the
“physical” symmetries (i.e., those can be broken by physical
perturbations). Mathematically, G is a central extension of G
by Z’ZC. Given G, such an extension is not unique. Possible
extensions are mathematically classified by the second
group cohomology H?|[G, Z‘é |. Forexample, it is well known
that fermionic systems with time-reversal symmetry Z] =
{1, T} come in two varieties: one with 72 = 1, and the other
with T? = Py, corresponding to the two elements
in H2[2], 7)) = 7,.

In this work, we consider fermionic systems with an
Abelian unitary symmetry group G. Without loss of
generality, we can represent G as follows [29]:

K
G=2z}, [[2x. (1)
i=1

where N, is an even number. We use integer vectors
a = (ay,ay,...,ax) to denote the group elements, with
a;=0,1,...,(N;— 1), and use additive convention for
group multiplication. Generators of the group are denoted as

e;=(0,....1,...,0),

where the ith entry equals 1 and other entries equal 0.
The group ZLO is singled out because the generator of the
fermion parity symmetry corresponds to the (Ny/2)e
element. Equivalently, it means that the unit charge under
Z{,O is a fermion, while the unit charge under other ZN,
subgroups are all bosons. If we consider the more physical
global symmetry group G = Zy, 1%, Zy,, we find that
all fermions carry half charges under Zy, ,, forming the so-
called “projective representations” of Zy, . (If Ny/2 is odd,
this actually does not give a true projective representation,
due to the familiar isomorphism that Z{,O = Z{ X Znyn)-

B. FSPT phases and gauging symmetry

As we discussed in the Introduction, fermionic systems
with a symmetry G may form various SPT phases, i.e.,
gapped symmetric short-range entangled states. In this
work, we study FSPT phases protected by Abelian unitary
symmetries in Eq. (1).

One way to characterize FSPT phases is to “gauge” the
global symmetry G in lattice Hamiltonians. That is, we
minimally couple the system to a lattice gauge field of a
(discrete) gauge group G. There is a well-defined procedure
to do so; see, e.g., Refs. [7,22,24]. Here, we illustrate the

basic idea of the gauging method, by considering G = ZLO
for simplicity. Suppose the lattice fermionic system is
described by the Hamiltonian H of the form

(ij)

where 7;; is the nearest-neighbor hopping amplitude.
Additional interactions must be included in - --” to have
nontrivial 3D FSPT phases. However, for the sake of
simplicity, we consider only the free-fermion hopping term
to illustrate the gauging idea. The hopping terms preserve
the Z{VO symmetry, which is generated by the global
transformation ¢; — c;e”>"o. To gauge the symmetry,
we first introduce an N(-dimensional Hilbert space V;; on
each link ij, spanned by the basis {|m)} with
m=0,1,...,Ny— 1. The tensor product of the Hilbert
space V;; of each link is the lattice gauge field. We define
two operators on this Hilbert space:

+i(2zm/Ny) |m>,

ﬂij|m> =e Sij|m> =|m*1), (3)
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where the choice of + sign depends on whether ij is
parallel or antiparallel to a fixed orientation that we assign
for each link on the lattice. Next, we minimally couple the
fermion Hamiltonian H to the lattice gauge field as follows:

H ztl_] ]/’tl] T (4)

For more complicated terms that involve multiple sites,
the minimal coupling can be similarly defined (see
Refs. [7,22]). Additional interacting terms involving the
gauge field alone are usually added to guarantee that the
gauge flux excitations are gapped.

The resulting model A has a local Z N, gauge symmetry
on each site i, which is generated by the operator

« T[T s (5)

Jj€neigh(i)

T — ¢! i(27/Ny)c

where neigh(i) denotes the set of all the nearest neighbors
of i. The overall Hilbert space, including the fermionic part
and the gauge field part, consists of those gauge-invariant
states |¥), i.e., those satisfying

T¥%) = ¥). (6)

This constraint is the analogue of the usual Gauss law of
electromagnetism, V - E = p.

The above gauging procedure can be extended to any
unitary symmetry G. The gauged model A, with a gauge
field coupled to fermionic matter, is actually topologically
ordered, in the sense that it is gapped and it hosts
deconfined topologically nontrivial excitations, as long
as the original Hamiltonian H is gapped and does not
break the symmetry spontaneously. In a gauge theory,
nontrivial excitations carry either gauge charge or gauge
flux. It has been proposed and verified in various systems
that braiding statistics of charge and flux excitations in the
gauged models are able to distinguish the original SPT
phases. In this work, we study braiding statistics in 3D
gauged FSPT systems, extending previous works on 2D
and 3D BSPT phases [2,7] and 2D FSPT phases [26,29].

It is sometimes useful to only gauge the fermion parity
symmetry subgroup Z . In this way, the fermionic system
1s turned into a bosonlc one, in the sense that there are no
local fermionic excitations. Because of the direct product
structure in Eq. (1), the other global symmetries remain
unaffected by the gauging procedure, so we end up with a
Zy, gauge theory enriched by a symmetry group G/Zy, =

K Zy, 19,30-37].

C. Basics of 3D braiding statistics

We now discuss the basics of braiding statistics between
excitations in a gauged 3D FSPT system, i.e., a G gauge
theory coupled to fermionic matter.

There are two kinds of excitations in the system: particle
excitations that carry gauge charges and vortex loop
excitations that carry gauge fluxes. For an Abelian group
G, we use integer vectors ¢ = (qo,qi,-...,qx), With
qi=0,...,(N;—1), to denote the charge excitations.
The self-statistics associated with exchanging two identical
charges is given by

Hq = qo- (7)

That is, it is a fermion (boson) if ¢, is odd (even).

Vortex excitations are stringlike and must form closed
loops inside the bulk of the system. They carry gauge flux.
We use vectors

b= 2w 2w 2w
—ay,— Ay, ..., —d
N, 0 N, aj Ne K

to label gauge fluxes, where a@; = 0,1, ..., (N; — 1) is an
integer. There is a well-known correspondence between
gauge fluxes and group elements: one may regard the
vector a = (ay, ..., ax) that labels ¢ as a group element of
G. Accordingly, the fermion parity group element corre-
sponds to the fermion parity flux (r,0,...,0).

Unlike charge excitations, vortex excitations cannot be
uniquely labeled by their gauge fluxes. Two distinct
vortices @ and « may carry the same gauge flux; i.e.,
¢q = . It can be shown that two vortices carrying the
same gauge flux can be transformed to one another by
attaching gauge charges. The mutual braiding statistics
between a charge excitation g and a vortex loop a follows
the Aharonov-Bohm law:

eqa =4q- ¢av (8)

where the center dot is the vector inner product. In
particular, the Aharonov-Bohm phase between ¢ and a
fermion parity vortex is given by mqq.

The most interesting part of 3D braiding statistics is
between vortex loops. It was shown [2,3] that the funda-
mental loop braiding process involves three loops (Fig. 2):
a loop «a is braided around a loop £ while both are linked to
a third “base” loop y. This three-loop braiding process
has been used to characterize various 3D topological

FIG. 2. Three-loop braiding process involving vortex loops a,
p, and y. The blue lines are trajectories swept out by two points
on a.
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phases [7]. Following the notation in Ref. [2], we denote
the three-loop braiding phase by 6, ., where c is the integer
vector that labels the gauge fluxes carried by y:
¢, = (2rncyINy, ...,.2ncg/Nk). We use 6,5, instead of
045, because the three-loop braiding statistical phase
depends only on the flux ¢, parametrized by ¢ and is
totally insensitive to the amount of charges attached to y.
We also consider an exchange or half-braiding process: two
identical loops a, both linked to the base loop y, exchange
their positions. We denote this three-loop exchange sta-
tistics by 0,.

In most part of the paper, we will consider only Abelian
braiding statistics. Non-Abelian loop braiding statistics can
also appear in gauge theories with Abelian gauge group.
We briefly touch upon non-Abelian loop braiding at the end
of the paper.

III. PHYSICAL CONSTRAINTS ON ABELIAN
LOOP BRAIDING STATISTICS

In this section, we study general properties of loop
braiding statistics in gauged 3D FSPT systems. For
simplicity, we consider only Abelian loop statistics; i.e.,
every Berry phase associated with braiding excitations is
Abelian. We discuss physical constraints on Abelian loop
braiding statistics, and discuss which types can result from
intrinsic FSPT phases.

A. Topological invariants

To begin, we define a set of topological invariants
{®;jx.©;} for loop braiding statistics. These topological
invariants are a subset of the full braiding statistics data, and
hence are simpler to deal with compared to the latter.
Nevertheless, they are equivalent to the full set of loop
braiding statistics, since the latter can be reconstructed out
of the former. Similar topological invariants have been
introduced in 2D and 3D gauged BSPT phases [2,7], as
well as 2D gauged FSPT phases [29].

Let a, f, and y be vortex loops, carrying unit flux
{[(2x)/N e}, {[(2m)N]e;}. and {[(22)/N ey}, respec-
tively. Here, e; is an integer vector (0, ..., 1, ...,0), where
the ith entry is 1 and all other entries are 0, with
i=0,1,...,K. We define the topological invariant ©;; ;
as follows:

®ij,k = Nijeaﬂ,ekv (9)

where 6, is the mutual braiding statistics between a and
/ while both are linked to the base loop y (Fig. 2). Here, we
use N/ to denote the least common multiple of N; and N;.

Similarly, we define a topological invariant ©;; for the
self-statistics associated with exchanging two identical o’s,
both of which are linked to the base loop y. It is defined as
follows:

®i,k = Niga,ek7 (10)
where
_ Ny 2=0 (mod 2)
No = {Nn Ny (11)
% =1 (mod 2),
and for i > 1,
- N, N,;=0 (mod 2
N, = et (12)
2N; N;=1 (mod 2).

The above topological invariants {©;; ;. ©; ; } are defined
in a way such that (i) they only depend on the flux of «, 3,
and y and (ii) the full set of braiding statistics can be
reconstructed out of {©;;;.0;,}. One can check the
property (i) by replacing a, 8, y with &, ', ¥/, respectively.
It is easy to show that the topological invariants do not
change if ¢y = ¢, ¢p = ¢p, and ¢p, = ¢,. The proof of
property (ii) is more involved, so we give the proof in
Appendix A.

B. Physical constraints

The topological invariants {@;;;,®;,} cannot take
arbitrary values. We argue that the topological invariants
have to satisfy the following constraints:

2N;

Ok = N—igi,kv (13a)

Oiix = Ojix, (13b)

Nijk®ij,k = 0, (13C)

Nk®i,k = O, (13(1)

Ny, .

Ni®i,k = 7901'.1(’ (Nl even, i1 Z 1), (136)
Nk .

®i,k N_ -+ ®ik,i = O, (le even), (13f)

Nijk Nijk Nijk

W®ij,k +W®jk,i+W®ki,j =0, (13g)

0®;; =0, (conjectured), (13h)

N2

—29,,=0. (13i)

4N,

where N; , denotes the greatest common divisor of
N;, ...,N;, and Nk denotes the least common multiple
of N;, ..., N. These constraints can be proved by checking
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various consistency conditions on the three-loop braiding
statistics. The proofs are given separately in Appendix B.

These constraints are necessary conditions that physical
Abelian three-loop braiding must satisfy [except Eq. (13h),
which remains a conjecture at this stage]. On the other
hand, we do not know at this point whether these
constraints are also sufficient, in the sense that every
solution to these constraints can be realized in physical
systems. To verify the completeness of the constraints, we
present a family of exactly solvable lattice models in
Sec. IV and show that indeed every solution to the
constraints is physical.

Several comments are in order. First, similar constraints
were obtained for gauge theories coupled to BSPT systems
in Refs. [2,7]. Most of the constraints here are just variants
of those for BSPT phases, and some are even the same, e.g.,
Egs. (13c), (13d), and (13g). However, Eq. (13e) is more
“fermionic” than others, since it has no bosonic analog. It
replaces the stronger condition N;®;; =0 in bosonic
theories (see Ref. [7]). Nevertheless, in a sense it is a
“2D” constraint [29], since the base loop does not enter the
constraint in any nontrivial way. Similarly, Eq. (131) has no
analog in bosonic systems.

Second, the constraint Eq. (13h) remains a conjecture at
this stage. We are not able to give a general proof. A weaker
constraint can be derived from Eqs. (13a), (13f), and (13g):

%@0 0=0;

NO ’

gcd(3,N;))®;; =0 (i>1), (14)
where “gcd” stands for greatest common divisor. This
weaker result provides some evidence for the conjecture
Eq. (13h). In fact, it remains a conjecture in gauged BSPT
systems, too [7] [however, see Ref. [38] for a derivation of
Eq. (13h) by exploiting the bulk-boundary correspondence
under certain assumptions].

Third, Eq. (13e) holds only for even N; with i > 1. There
are no analogous constraints for odd N;. In addition,
Eq. (13f) holds only when N is even.

Lastly, we derive several useful corollaries. The first one
follows from Egs. (13a) and (13c):

2N;

T NuBu =0 (15)
Note that for BSPT theories, we have a stronger condition
N;;©; . = 0 (see Ref. [7]). Another corollary follows from
Eqgs. (13d) and (13e). Setting k = i in Eq. (13e) and using
Eq. (13d), we immediately obtain

NOi

7@01"[ =0 (N;even,i>1). (16)

Finally, combining Eq. (16) with Eq. (13f), we have

No

®;9=0. 17
) i,0 ( )

Even though Eq. (17) follows from Eq. (16), which holds
only for even N; with i > 1, one can easily check that it
holds in general.

C. Solutions from BSPT phases

Later on, we solve the constraints Eqs. (13a)—(131), where
each solution leads to a consistent set of loop braiding
statistics and corresponds to a FSPT phase. BSPT phases
form a subset of FSPT phases, so we first write down a class
of solutions that stem from BSPT phases.

Physically, we can imagine the following construction.
First, we form “molecules” from pairs of fermions, where
each molecule is a boson. The bosonic molecules are
neutral under Z’;, and thus only sense the quotient

symmetry group G = Q/Zg =Z,]1;Zy,- We then put
the molecules into a BSPT state protected by the symmetry
G. It is now generally believed that the 3D BSPT phases
with unitary symmetry G are classified by the cohomology
group H*[G,U(1)] [39]. The loop braiding statistics in
gauged BSPT models were studied in Refs. [2,7].

Now we can adapt the loop braiding statistics of BSPT
phases from Ref. [7] into ©;; and ©;;; and find the
following expressions:

27NV 2xN'

O =5 Mij — Myj) + == (M — My;i)  (18)
I NikNj 7 7 NjkNi J ]
and
N; 2%
ik NiNik( iki kll) ( )

Here, M;j, is an arbitrary three-index integer tensor,
N = gcd(N;, Ny), and

e

One can easily check that the above expressions satisfy all
the constraints Eqs. (13a)—(131). Note that different values
of M;j. can lead to the same values of the topological
invariants.

D. Braiding statistics of fermion parity loops

We are mainly interested in loop braiding statistics
beyond those given by Egs. (18) and (19), i.e., those
resulting from gauging instrinsic FSPT phases. Such loop
braiding statistics is explicitly discussed in the next section.
Before doing that, we would like to answer this question:
Given a solution to the constraints Eqs. (13a)—(13i), i.e., a
set of three-loop braiding statistics, how do we know
whether it is “intrinsically fermionic,” and not just a gauged
BSPT phase in disguise?

We claim that the following criterion holds.
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Criterion.—A set of three-loop braiding statistics results
from gauging an intrinsic FSPT phase, if and only if some
of the three-loop braiding statistics involving fermion parity
loops are “nontrivial.”

Those three-loop braiding statistics that involve fermion
parity loops include 8¢, 0,5+, 0 ,, and O, ,, Where @, B, ¥
are arbitrary vortex loops and f stands for a fermion
parity loop.

We need to clarify what we mean by nontrivial three-loop
braiding statistics. Just as any other vortex excitations, there
are many fermion parity loops which differ by charge
attachments. Attaching charges to loops shifts three-loop
braiding statistics by Aharonov-Bohm phases. Accordingly,
we call a three-loop braiding statistical phase “trivial” if it
can be tuned to 0 by attaching charges to the loops involved
in the braiding process. To remove the ambiguity due to
charge attachment and Aharonov-Bohm phases, we define
the following quantities for Abelian loop braiding statistics:

®i.f = Nia(z,f’

CHTES N'j@ap,f,

O¢r = Ot e,

O = lem(2, Nk)efa.ekv (21)

where Icm stands for least common multiple, 6, is the
exchange statistics of two identical a’s linked to a fermion
parity loop f, 6,4 ¢ is the mutual braiding statistics between
and g both linked to f, 6, is the exchange statistics of two
identical f’s linked to a base loop y, and 6y, ,, is the mutual
statistics between a and f while both are linked to y. Here, a,
p, v are vortex loops carrying gauge flux {[(27)/N,]e;},
{[27)/N,le;}, and {[(27)/Ni]e;}, respectively. These
quantities are defined in a way similar to the topological
invariants ©, ; and ©;; ;. One can easily show that if ©;,
O;j 1> Ot x, and Oy ; vanish, all three-loop braiding statistics
involving fermion parity loops are trivial. Therefore, to see if
a set of three-loop braiding statistics corresponds to an
intrinsic FSPT phase, we only need to check if any of the
quantities ©; ¢, ©;; ¢, Of ., and O, ; is nonvanishing.

This criterion can be proven by explicitly solving the
constraints Eqgs. (13a)—(13i) and checking if all the sol-
utions with vanishing ©;¢, ©;;¢, O¢, and O, ; are in the
form of Egs. (18) and (19) (which we discuss in the next
section). On the other hand, Egs. (18) and (19) indeed lead
to vanishing ©; ¢, ©;; ¢, Oy, and O, ;.

Here, we would like to give a more intuitive argument.
Although heuristic, it provides a physical interpretation for
the criterion and can be applied more generally to non-
Abelian loop braiding. Let us first show the “if”” direction in
the criterion. Consider those FSPT phases formed by bosonic
pairs of fermions. Since the pairs do not transform under the
fermion parity symmetry, they only need the symmetries in

Q/Zé for protection. Under the assumption that FSPT phases
have a one-to-one correspondence to equivalence classes of

three-loop braiding statistics (i.e., up to charge attachment), it
is reasonable to expect that the fermion parity loops should
not play a nontrivial role in three-loop braiding statistics
beyond Aharonov-Bohm phases after gauging the symmetry
G. Hence, the “if” direction holds.

To see the “only if”” direction, let us assume that fermion
parity loops do not play any role beyond Aharonov-Bohm
phases. Then, for any three-loop structure involving a
fermion parity f, we can always attach charges to the
loops such that (1) the new fermion parity loop f’ has a
bosonic exchange statistics and (2) for any given gauge
flux, there always exists a vortex such that its mutual
braiding statistics with respect to f’ is trivial, while both are
linked to the same base loop. Accordingly, we can con-
dense f’, confining the fermionic gauge charges. This
condensation leaves behind a gauge theory with purely
bosonic charges, without affecting the other gauge sym-
metries; i.e., the resulting theory has a gauge group Q/Z’; .
As a consequence, the corresponding FSPT phases are
always equivalent to those formed by bosonic pairs. This
argument is reasonable but not quite rigorous, because a
complete theory of loop condensation in topological phases
is not available yet. We notice that similar arguments have
been applied in two dimensions [40].

Let us now combine this criterion with the constraints
Egs. (13a)—(13i) of topological invariants. We see that the
quantities ©; ¢, ©;;¢, Of are forced to vanish due to the
constraints; only ®¢; , may possibly be nonzero. Accordingly,
for Abelian loop braiding statistics, we only need to compute
Oy, to see if a given set of Abelian three-loop braiding
statistics corresponds to an intrinsic FSPT phase.

To derive these results, we first relate the quantities
defined in Eq. (21) to the topological invariants as follows:

O;f = 761 0> (22a)
Ny
COTES 7®ij.Oa (22b)
N2
O k _41§? O« (22¢)
0
Ny,
Oy, Oy f- 22d
fik d(2,N,) 0i,k ( )

These relations follow straightforwardly from the defini-
tions of related quantities.

The relation ©; y = 0 follows immediately from Eq. (17).
At the same time, ®;; = 0 follows immediately from
Eq. (131). To see ©;;y = 0, we consider three cases.

(1) i = j =0, it follows from Egs. (13a) and (17).

(2)i=0, j>1.1If N; is odd, then Ny; = gcd(m,N;).
Then, B ¢ = 0 follows from the constraint Eq. (13¢). If N;
1s even, we have
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_No _ Ny

N —N;®;p=N J@ =0, (23)
where the first equality follows Eq. (22a), the second
follows Eq. (13e), and the last follows Eq. (13d).

(3) i, j > 1. Let us denote Ny = 2"0¢y, N; = 2"it;, and

= 2’/t where 1, t;, tjare odd numbers. Without loss of
generality, we assume r; < r;. Itis not hard to see that ©;; ¢
can only be 0 or z. Using Egs. (13c) and (22b), we find that
©;; ¢ may be nonzero only if ry < r; < r;. Assuming this is
the case, we write Eq. (13g) in the following form:

Z‘Oij 2rj—r,-t0ij tOij
7 i = PN W(ajo,i' (24)
With this equation, we then have

NO tOij
5 00 Toilo; i

Q7= tOij tOij
-1
= 2" fytoito, <_T®Oi,j - WGJ'OJ

= ”xtOU 0ij

CITES

= —Ioly;

= _tOitOthijzrj(Gi.j + ®j.i)v (25)

jii

where the first line uses the facts that ©;; ; can only be 0 or
m and that fo;10;(1°//7) is odd, the second line uses
Eq. (24), the third line uses the constraint Eq. (13e), and
the last line is a simplification. It is easy to see that both N,
and N; divide the coefficient 7o;7,;2°72":. Then, using the
constraint Eq. (13d), we prove that ©;; ¢ = 0.

Therefore, only Oy; ;. is potentially nonzero. Accordingly
to Egs. (13c) and (22d), one can see that it can only take
values 0 or z. Moreover, if either N; or N, is odd, Eq. (13c¢)
is enough to guarantee ®g;; = 0. If both N; and N are
even, from Eq. (22d), we have Oy, = N,©,, for i > 1,
which further leads to Oy, ; = 0 using Eq. (13h). For i = 0,
we have Og;, = (N¢/2)®y = 0 according to Eq. (22¢).

To summarize, we have shown that to check whether a
set of topological invariants corresponds to an intrinsic
FSPT phase or not, we only need to check if Oy, is
nonzero for i # k, i > 1, and N; and N are both even.

E. Solving the constraints

We now explicitly solve the constraints Egs. (13a)—(131).
Mathematically speaking, the constraints are linear equa-
tions of the tensors ©;; and ©;;;. Solving them is
straightforward, though tedious due to the fact that the
equations are defined modulo 2z.

We first notice the following structure of the solutions:
Given two sets of topological invariants @) and @), if all
intrinsic FSPT indicators ®y;, are identical (for i # k,

i>1), we can define ® = O —e®?), Because of the

linearity of the constraints, ®" also satisfy all constraints. In
fact, we see that

N®lk:®flk Gg'tk_o (26)

Combined with N ®] , = 0, we obtain N;;®; , = 0. In fact,
©' satisfies essentially the stronger constraints for BSPT
phases, whose solutions are given in Sec. III C. Therefore,
once we know the solutions corresponding to intrinsic
FSPT phases, all others can be obtained by adding BSPT
solutions.

To solve the constraints, a useful observation is that the
constraints relate only those components of tensors whose
indices differ at most by one index 0. Accordingly, we can
divide the components of the tensors into four groups:

(a): ©g0, B0

(b): ©i0,00,i, 0, 00, O i Oii 05 Oig i B

(€): ©/,0;.00,0j0, 00, ©j; i, ;i j. O i, O .
(d): 04, O i Opi j,

where i # j # k # 0. Since ©;;, is symmetric in the first
two indices, we do not list other components that are related
by this symmetry above.

In the group (a), only the trivial solution is allowed:
B0 = O = 0. It follows directly from the constraints
Egs. (13a) and (13h). Also, invariants in the group
(d) satisfy the same equations with those of BSPT phases.
Hence, solutions for the group (d) are exactly the same as in
BSPT phases; i.e., all can be written in the form Egs. (18).

Below, we solve the constraints for cases (b) and (c).
Without loss of generality, we consider G = Z X Zy, for

case (b) and consider G = sz X2y, X Zy, for case (c).

1.6=7,,

Consider the symmetry group G = Z-,’:,O X Zy, with
Ny = 2m. We solve the constraints for topological invar-
iants in the group (b) with i =1. Among the eight
components, we find that ®;, ©;, and ®;; completely
determine the rest. More explicitly,

X ZNI

2N,
] =—0,,,
11,1 Nl 1,1
2N, 2N
Op,1 = °®m, O = N1®10,
NOI NO]
6101:_—610’ (27)

@ _ == @ N
10,0 NO 0,1

where the first and second lines follow Eq. (13a) and the
third line follows Eq. (13f).

Since ®; ; = 0 following Eq. (13h), we only need to find
possible values for © ; and ©, 4. Let us first consider odd
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N;. In this case, using the constraints Egs. (13a), (13c),
(13d), and (131), we find that

2 2w

Oy =——xX, ®
0.1 gcd(m,Nl)x 1,0

“gedmny” Y

Here, x, y are integers. It is not hard to see that this solution
is in the form of Eq. (19). This agrees with the criterion
discussed in Sec. III D.

When N is even, using Egs. (13d) and (13i), we find that
©p.; can take the following values:

. (29)

—2__x if m is odd
@0’1 _ {g d(m,Ny)
ged(m/2,Ny)

x if m is even,

where x is an integer. According to the corollary Eq. (17),
we have m®; , = 0. In addition, multiplying Eq. (13e) by 2
and using Eq. (13c), we have 2N,0;, = 0. Together we
find

2%y if m is odd
gcd(m,N )y 1

@1,0 = 2 l . . (30)
wdimany Yy 1f m is even.

For odd m, the parameters x and y are independent. For
even m, there exists a relation between x and y: Taking
i=1and k=0 in Eq. (13e) and using the expression of
@01‘0 = @10’0 in Eq (27), we find that

Ny N,
= X7
gcd(m/2,N1)y gcd(m/2,Ny)

(31)

This relation puts a constraint x = y(mod 2) on x and y
only if N/ ged(m/2, Ny) is odd.

Let us see which solutions correspond to intrinsic FSPT
phases. According to the criterion discussed in Sec. III D,
we only need to check the quantity O, . It is nonvanishing
only when m is even and N, is even, in which case we
find that

Ny
S S 2
®f1.0 gcd(m/Z, Nl) X7 (3 )

Let Ny = 2"ty and N; = 2"1t;, where ry > 2, r; > 1 and
to, t; are odd numbers. Then, it is easy to see that ¢ o = 7
only if

r02r1+223 (33)

and x is an odd number. Therefore, the simplest symmetry
group to support intrinsic FSPT phases is G = Zg X Z,.

2. g=z§m X Zy, x Zy,

In this case, one will find that if either N, or N, is odd, all
solutions to the constraints correspond to BSPT phases,
given by Egs. (18) and (19). Hence, below we focus on the
more interesting case where both N| and N, are even. One
can show that any odd factors of Ny, Ny, N, cannot add
solutions that correspond to intrinsic FSPT phases. Hence,
we assume that N; = 2" fori =0, 1, 2, with ry, ry, r, > 1
for simplicity. Without loss of generality, we further
take r 1 <r 2.

There are nine topological invariants in the group (c) with
i=1landj =20, 0,0, 0, are determined by
0, , or ©,; through Egs. (13a) and (13f):

0112 =202, 01 =20,,,
N12 N12
Opi=-——-0,5  Op,=——=0,,. (34
12,1 ]\,1 1,2 12,2 N2 2,1 ( )

Multiplying Eq. (13e) by 2 and using Eq. (13c), we have
2N,0;,; = 2N,0,; = 0. Combining this with Eq. (13d),
we have

2
O12 = St i 41
2
@2,1 = ?az. (35)

Solving the constraints Eq. (13b) and (13g), we find that

27zNO! 27NV
BOo12 1= by,
NpN| NixNg
27zN!2 27zN12
O = 3— by,
NoiN, NpN|
27N02 27N02
® = - b. 36
00 =N N T NN, (36)

The parameters a;, b, b, by are not arbitrary. Using
Eq. (13e), they should satisfy the following relations:

N N
TT. szzﬂ' 0b3,
Ny, Noi
271' ﬂNO
pmitn T 4 b = b (37)

Let us see which of the solutions correspond to intrinsic
FSPT phases. Accordingly to the criterion in Sec. III D, we
need to evaluate Oy , and Oy, ;. We find that @, ; = 0, and

2

®f1’2 = N1®172 = omin(ri+1.ry)=r,

ap. (38)

Therefore, intrinsic FSPT phases with ®¢; , = 7 can occur
only for
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rp2r+12>2, (39)

and g, is an odd number. The simplest example is then the
group G = Zé X 2y X Zy.

F. Examples

In this section, we discuss two examples whose three-
loop braiding statistics correspond to intrinsic FSPT
phases.

1. g=Z{9XZZ

One of the simplest groups that support intrinsic FSPT
phasesis G = Z-g X Z,. It supports the following three-loop
braiding statistics:

7

Bp1=7 O ¢ O 0=7, Oyo=m (40)
and all other invariants are 0. It is a solution obtained in
Sec. I E by taking x =y = 1 in Egs. (29) and (30).

2. g=Z’;xZZXZ4

Another simple group that supports intrinsic FSPT
phases is G = Z’; x Z, x Z4. The root intrinsic phase is
characterized by the following topological invariants:

T

91,2:5’ Oua=7r, Oyp=7nOp;=7z (41
And all other invariants are 0. It is obtained by setting
a; =b; =1, a, = b, = b3 =0 in Egs. (34)—(36).

3. Physical picture

Let us understand the two examples in more physical
terms. Although the two examples have seemingly different
symmetry groups, they are in fact closely related. Both
symmetry groups can be regarded as central extensions of
Z, x Z4: namely, we can take the physical symmetries to
be G=72,xZ, in both cases, and for Zg X Z, the
fermions carry half charges under the Z, subgroup.

Consider a [(27)/4]e, base loop. By dimensional reduc-
tion we obtain a 2D fermionic SPT protected by the
Zy x Z4 symmetry. In fact, because of ®;, = 7/2, the
protecting symmetry is just the Z, subgroup. As we have
already discussed in Sec. I, this is the “root” Abelian Z,
FSPT phase in 2D, which has a Z, classification (thus, can
exist only on a Z, base loop) [18,24,26]. Besides the
noninteracting realization mentioned in Sec. I, commuting-
projector Hamiltonians for such 2D phases have also been
found in Refs. [18,41,42]. ©,, = /2 translates into the
fractional exchange statistics of symmetry fluxes in the 2D
FSPT phase, which as proven in Ref. [24] implies its edge
(i.e., the Z, vortex loop) has to be degenerate.

IV. TOPOLOGICAL STATE-SUM MODELS

In this section, we introduce a class of lattice models to
realize the fermionic gauge theories found in the previous
section. We define these lattice models with a path integral
representation of the partition function in discretized
Euclidean space-time. More specifically, we define a
partition function for any closed oriented manifold with
a triangulation. The partition function, however, is a
topological invariant of the space-time manifold (i.e.,
independent of the choice of the triangulation). Hence, it
is a type of lattice topological quantum field theory. It is
generally believed that such topological state-sum models
can be cast into commuting-projector Hamiltonians [43].

We first recall a few useful facts regarding triangulations
of n-dimensional manifolds. We work with simplicial
triangulations for simplicity [44] and denote the set of
k-simplices (0 < k < n) in the triangulation as A;. For a
given triangulation, we pick an arbitrary ordering of the
vertices as 0, 1,2, .... The restriction of the ordering on
each k-simplex o}, induces a relative ordering of the vertices
of o,. Under this relative ordering, we write o) as
[igiy - - - ig], where iy < i} < ... < iy are the vertices of oy.

On an oriented manifold, all simplices can be equipped
with orientations, induced from the orientation of
the manifold M. For each ¢,,, we define ¢(o) to be 1 if the
orientation on ¢ induced from that of M coincides with the
one coming from the ordering of its vertices; otherwise if
they are opposite, then (o) = —1.

A. Twisted Crane-Yetter TQFT

We now present models for fermionic gauge theories.
The construction was first introduced by Kapustin and
Thorngren recently in the context of higher-form gauge
theories [45]. We call these models the twisted Crane-Yetter
models. The general input of the twisted Crane-Yetter
TQFT involves (i) a braided fusion category (BFC), (ii) a
finite group G, and (iii) certain cohomological data (3, 4, w)
associated with G and the BFC.

For simplicity, we present the construction for an
Abelian BFC A. The anyon labels in A are denoted by
a, b, c,.... The identity (i.e., the trivial anyon) is denoted by
0. The BFC A can be viewed as an Abelian group, with the
group multiplication given by the fusion rules. As a BFC, A
is equipped with further topological data, in particular, the
F and R symbols. We further assume that the F symbols of
A can be chosen to be trivial. In this case, the hexagon
equations simplify to

Ra.cRb,c — Ra+b,c’ Rc,aRc,b — Rc,a+b. (42)
Notice that because A is Abelian, we denote the multipli-
cation additively. In other words, R“* defines a bicharacter
on the Abelian group A. We define 7 as the following
subset of A:
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T={xe AR"R“=1YaecA.  (43)

We refer to 7 as the subset of transparent particles. In many
cases, we will actually take a BFC such that A = 7.

The other pieces of the input data are a finite group G and
two group cocycles: a 3-cocycle [f] € H?*[G,7] and a
2-cocycle [1] € H?*[G, A] (|'] denotes the cohomology
class). A 3-cocycle f is a 3-cochain (i.e., a function)
G? — T that satisfies the 3-cocycle condition:

p(h.k.1) — f(gh. k. 1) + (g, hk.1)
—p(g.h.kl) + f(g.h. k) = 0. (44)

Similarly, a 2-cocycle 4 is a function G> — A that satisfies
the 2-cocycle condition:

A(h,k) —A(gh,k) + A(g,hk) —i(g,h) =0.  (45)
The final piece of the data w is a group 4-cochain
w:G* - U(1). It is, generally speaking, not a 4-cocycle;
however, it does satisfy a similar condition which will be
determined later. We will frequently use the following
shorthand notation for a group n-cochain v:

> gin_li”)- (46)

With this understanding of the input data, we now
describe the model. We start with an ordered triangulation
of an oriented 4-manifold. Each 1-simplex [ij] (i < j) is
assigned a group element g;; € G, which can be thought of
as G connections of the gauge field. As a topological gauge
theory, we require that there is no G flux in every face;
i.e., the connection is flat. So for each 2-simplex [ijk]
(i < j < k), the flatness condition is imposed:

Vigiy-wi,

Ey(gioipgiliy

8ij - 8jk = 8ik- (47)

To each 2-simplex [ijk| (i < j < k), we assign a simple
object f;; from A. For each 3-simplex [ijkl], we demand
that the following “flatness condition” holds:

SFii = S + Fiji = Fije = Bijur- (48)
Let us now write down the partition function. To each
4-simplex, say o, = (01234), we assign a phase factor:

Tt(04) = Rf012:/234 (Rf034-ﬂ0123 Rf014-P1234 RAo12./234 )—1

X w(8o1. 8125 823> 834)- (49)

The phase factor T*(c,) is assigned to 64 assuming its local
orientation coincides with the global orientation of M. If
they have the opposite orientations, we instead assign
T (04) = [T"(04)]* to 64. The partition function is then
defined as

Z(M) = S I T o). (50)

|G|\Ao\|A|‘A1\ 18] (T} cehy

We require that Z(M) defines a topological quantum
field theory. Namely, Z(M) should yield a topological
invariant of the manifold M, which means that it must be
(1) independent of the specific choice of triangulation
and (2) independent of the ordering of the vertices. It is
known that all triangulations can be related to each other
via a finite series of elementary moves, known as Pachner
moves [46]. To this end, we define the following “obstruc-
tion class”:

O(g1,85, 23,84, 85) —RPA(81.82.838485).5(83.84.85)
x RA(81.828384.85).5(82.85.84)
x RA(818283.84.85).5(21.82.83)

x RM81.82).5(83.84.85) (51)

One can show that O is actually a S5-cocycle in
H3[G,U(1)]. We show in Appendix D that invariance
under Pachner moves requires that

@123451001345001235
O(g1. 82, 85.84.85) = . (52)
@01234@01245@02345

We observe that the right-hand side of Eq. (52) is the
coboundary of the 4-cochain @w. Hence, it implies that the
obstruction class must be cohomologically trivial in order
for the twisted Crane-Yetter model to be well defined.
Otherwise, we say the model is “obstructed.” For obstruc-
tion-free models, Eq. (52) becomes a “twisted” 4-cocycle
condition on @ (compared to the regular 4-cocycle con-
dition in which the left-hand side is 1).

The twisted Crane-Yetter models reduce to known
models in two special limits.

(1) G is trivial. In this case, the state sum reduces to the
well-known Crane-Yetter theories [47,48] (the Hamiltonian
version of the TQFT is known as the Walker-Wang model
[49] in the condensed matter literature). Excitations in the
model can be understood as a 7 gauge theory, however
with an interesting twist: particle excitations are labeled by
elements of 7. A particle a then has topological spin
0, = R** = £1. In fact, the characterization of particle
excitations holds generally, not just for the Abelian BFCs
discussed here. Therefore, in general, Crane-Yetter models
also produce topological gauge theories. Recently, it was
shown that with non-Abelian BFC as the input, the Crane-
Yetter model can also realize twisted gauge theory [50].

(2) A is trivial. In this case, the theory reduces to
the Dijkgraaf-Witten (DW) topological gauge theory [51],
whose loop braiding statistics has been thoroughly studied
[2,3,52].
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B. Gauge-theoretical interpretation

The state-sum model can be understood as a topological
gauge theory, for a 2-form gauge field f and a 1-form
gauge field g. In other words, the theory embodies two
kinds of gauge symmetries: the 1-form gauge transforma-
tions on f,

fije = fije + S — S + Eijs e A, (53)
and O-form gauge transformations on g,
g; — hi'g;hy, hed. (54)

We explicitly prove that the partition function is invariant
under the two types of gauge transformations, with two
simplifying assumptions: (a) G is Abelian and (b) the entire
A is transparent (i.e., 7 = .A). While the proof is rather
technical and the details can be found in Appendix E, we
introduce the reformulation of the TQFT as a topological
gauge theory following Ref. [45], using the notations of
simplicial calculus (see Appendix C for a review of relevant
mathematical concepts). In the following, the multiplica-
tion in G will also be denoted additively. We define the
discretized “action” S by T(c,) = €5\, f can be viewed
as a 2-cochain valued in A, and g is a 1-cochain valued in
G. The flatness conditions Eqs. (47) and (48) then can be
written as g = 0 and 6f = f. The latter implies that f is
not closed.

In the partition function, the product of three R
symbols closely resembles the “Pontryagin square” in
Ref. [45]. Roughly speaking, if f is a closed 2-cochain,
the Pontryagin square is just the cup product f U f.
However, if f is not quite closed, the cup product is no
longer closed and we need to amend it by an additional
term, fU f— f U; 6f, to get a closed cochain. In this
notation, the action can be written as

S=2x[fuf—fu p+iuf+n. (55)

Here, n = [(Inw)/(2zi)] is the linearized form of w.

With this notation, we can now give a quick derivation of
the obstruction-vanishing condition. In order for the action
S to be a topological invariant, all we need to show is that S
is a closed 4-cochain:

S(fuf-=fup+iuf)
=5fUf+fUSf—3(fU,df)—AuUdSf
=—6fU 8f —fU &f—AUp
=—fU f—-AUP. (56)

We thus require oy =pU; f+A1UpJ, which is the
obstruction-vanishing condition Eq. (52).

C. Relation to symmetry-enriched topological phases

We now define a variant of the Crane-Yetter TQFT.
Instead of having G labels on the 1-simplices, we dualize
them to O-simplices, i.e., vertices. Namely, the actual labels
are G group elements on vertices, and g;; = g'g ;- The
flatness condition for f’s is the same as before, as well as
the partition function T*(s,):

1_+(04) = T+(U4)~ (57)

Here, T*(04) is the partition function defined in Eq. (49),
where the G label on [ij] is given by g;'g,.

This “dual” state-sum model can be viewed as a model of
symmetry-enriched topological (SET) phase. For each
h € G, a global symmetry transformation is defined as

Apparently the partition function is invariant under such
global symmetry transformations since it depends only
on gi'g;.

As we have argued, the G fields can be understood as
connections of a discrete G gauge field. As a result, gauge-
equivalent configurations of G fields yield the same
partition function. In the SET model, the connections
{g;;} are by definition “pure gauge.” Thus the partition
function on any oriented closed manifold is identical to
g, =1, i.e., the Crane-Yetter TQFT of A. The original
state-sum model can then be viewed as “gauging” the SET
model. This relation was first considered between DW
gauge theories and group-cohomology models of bosonic
SPT phases [22].

Therefore, we can understand that the bulk excitations of
the SET model are described by the Crane-Yetter TQFT,
i.e., a 7 gauge theory (with possibly fermionic gauge
charges). An important question is then how excitations,
including both particles and loops, transform under the
symmetry group G. In the next section, using dimensional
reduction, we argue that the particles transform as projec-
tive representations of G essentially determined by 4, while
the loop excitations exhibit nontrivial symmetry actions
corresponding to nontrivial three-loop braiding statistics
after gauging.

V. BRAIDING STATISTICS IN THE
STATE-SUM MODELS

In this section, we analyze the braiding statistics between
particle and loop excitations in the twisted Crane-Yetter
state-sum models. For simplicity, we assume that the whole
BFC A is transparent, i.e., A = 7, throughout the section.

A. Particle excitations

First, let us consider the properties of particle excitations.
For this purpose, it is useful to view the state-sum model as
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a G-symmetry enriched gauge theory. As we argued earlier,
the particle excitations are charged under the emergent
gauge group .A. We need to understand how they transform
under G. We present some evidence that the symmetry
transformations on particles are determined by A.

To begin, we consider a simpler theory defined by

T+(g4) — R/1012~,f234’ (59)

together with the twisted flatness condition J&f = f.
Basically, we drop the term in the action which contributes
to the exchange statistics of the particle excitations (so now
they are all bosons). Reference [45] showed that this theory
can be analyzed in a dual representation, where the 2-form
is dualized to a 1-form gauge field a. To simplify the
discussion, we use the simplicial calculus. First, the
constraint 6f — f = 0 can be implemented by introducing
a l-cochain Lagrange multiplier a and the following
modification to the action:

S=-AUf+au(6f-p)
=(fa-A)Uf-—auUp. (60)

We should notice that this applies only to nondegenerate R,
namely, (1/|A])Y,c4R*? = 8(b). Since f is no longer
constrained, we can sum over f to get a — A1 = 0, and the
action becomes S = —a U . This is a symmetry-enriched
A gauge theory, where the gauge charges, labeled by
characters y of A, transform as projective representations of
G. More specifically, the projective representation U, on
the gauge charge y is given by

U;{(g)U;((h) = W;((g’ h)U;((gh)v (61)
where the projective phase factor is given by
1,(g.h) = 7(i(g.h)). (62)

In general, with the f U f term in T*(o4), we cannot
apply the above duality transformation. However, for a

special case A = Zg and with a trivial , we can “linearize”
the term f U f using the following relation:

fuf=wuf, (63)

where w, is the second Stiefel-Whitney class of the
manifold. This relation holds only when f is a 2-cocycle.
Then a similar duality transformation leads to da = w, + A.
The w, term accounts for the fermionic statistics of
particles [53], and the symmetry transformation under G
is again given by Egs. (61) and (62).

Extrapolating from these two special cases, we con-
jecture that Egs. (61) and (62) hold more generally in the
full theory (when the R symbol is nondegenerate). We do
not have a proof of this statement at the moment, but we

show that it is also consistent with the dimensional
reduction result.

B. Dimensional reduction

To understand properties of the loop excitations, we
consider the theory on a 4-manifold M, = M5 x S', where
M3 is a 3-manifold and S' is the circle. Since these models
have zero correlation length, we can analyze the theory in the
limit where there is only one cell in the S! direction, and view
it as a 2D theory on M3. We will fix the G flux through the
“hole” of S' to be h. Some of the particle excitations in the 2D
theory correspond to the loop excitations that are linked to an
h gauge flux in the 3D theory. Accordingly, if we can extract
the braiding statistics in the 2D theory, three-loop braiding
statistics in the 3D theory can be inferred from there.

Let us understand the fields in the 2D theory after
dimensional reduction. All the 1-form G gauge fields in M;
remain, so do the 2-form 4 gauge fields in M;. Both of
them satisfy the same (twisted) flatness conditions as
before. However, there are additional dynamical 1-form
fields, denoted by m, coming from the dimensional
reduction of the full 2-form gauge fields in M. They obey
the following flatness conditions:

My = My +mj +n(g, gk (64)
Here, n is the slant product of f: n = iyf. The explicit
expression of n in terms of S reads:

n(k,1) =B(k.1h) = p(k,h,1) + p(h,k.1). (65)

The partition function with a fixed holonomy h around
S' will be denoted by Zy, (M5 x S'). After a straightforward
but lengthy calculation, we find

Zh(M3XS1)
! &(o3)
= o = (3 aves T] siien)
{grel(ao) Mrfiel(ay) 03EA;
(3 s IITe)
{m}EZ(Al) 03€A;3

In this expression, A, = A, (M3), and the weight on a
tetrahedron is given by

St ([0123]) = Réo-l,
T, ([0123]) = R™> e Rbo"5 (g, 81, 823).  (67)
Here the 1-cocycle ¢ is the slant product of A:
£(k) = A(k.h) - A(h.K). (68)

and a is a 3-cochain that depends on f and w. The
obstruction vanishing condition Eq. (52) reduces to the
following equation:
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R7012:1234 RAo12:1234 — M . (69)

Q023400124

We refer the readers to Appendix F for the derivation of the
dimensional reduction.

C. Braiding statistics in the 2D theory

After dimensional reduction, we now analyze the 2D
theory. To simplify the analysis, we assume that G is
Abelian, and £ in Eq. (68) is cohomologically trivial. With
the latter assumption, we see that in the 2D partition
function Z;, the sum over f becomes completely indepen-
dent of h, and the h dependence enters only through the
sum over m. Therefore, for the purpose of extracting loop
braiding statistics on the h base loop, we only need to focus
on the sum over m. More discussions on the physical
meaning of the sum over f are found in Appendix F. It turns
out that to realize those three-loop braiding statistics
studied in Sec. III, it is sufficient to assume £ is cohomo-
logically trivial.

To infer the loop braiding statistics in the original 3D
theory, our analysis of the 2D theory should proceed in two
steps. First, we need to establish the correspondence
between the excitations in the 2D and 3D theories. More
precisely, we need to identify which of the 2D anyons
correspond to the 3D particle excitations and which
correspond to the 3D loop excitations. Second, we need
to extract the braiding statistics of the 2D anyons.

All properties of the 2D theory Z}, should depend on h.
For notational brevity, we suppress this h dependence
below. It is easy to recover this dependence later.

1. Correspondence between 2D and 3D excitations

As we discuss above, the 2D theory has two kinds of
dynamical variables, m;; € A and g;; € G, living on each
link [ij]. On each 2-simplex [ijk], they satisfy the twisted
and untwisted flatness conditions, respectively:

mg; + mj + n(g;. gi)
8ij 8jk — 8ik-

= Mg,

(70)

Instead of viewing m;; and g;; as two independent degrees
of freedom, we can combine them into one and denote it as
(mg);;- In fact, {mg}|,,ca gec form a group G under the
following definition of group multiplication:
mg X my = [m+m' +n(g,K)]g. (71)
The group G is known as a central extension of G by A,
associated with the 2-cocycle n(g, k) € H?[G, A].
With this notation, we claim that the partition function
T,,.1 actually represents a 2D Dijkgraaf-Witten gauge
theory of group G associated with the following 3-cocycle:

w211(ag. by 1) = REMEN RAEN ca(g K1), (72)

To see this, one can check that (i) w,,; is indeed a
3-cocycle in H3[G,U(1)], as long as n, A, a satisfy
Eq. (69) and (ii) the conditions Eq. (70) leads to

(mg)ij X (mg)jk = (mg)u; (73)
i.e., every 2-simplex has a flat G connection.

The above mapping is most convenient for general
computations of braiding statistics of excitations in the
2D theory, since braiding statistics in the Dijkgraaf-Witten
theory is known (see, e.g., Ref. [54]). Below we take a
slightly different approach. We dualize the G gauge fields
in the G Dijkgraaf-Witten theory, similarly as discussed in
Sec. IVC, and view the result as an .4 gauge theory,
enriched by the symmetry group G.

The Hamiltonian version of this symmetry-enriched
gauge theory was recently considered in Ref. [55]. The
anyons in an Abelian A gauge theory can be labeled
as dyons (a,y), where a € A is the gauge flux, and
x:A — U(1) denotes a character of A, labeling a gauge
charge. Since the symmetry group G does not permute any
anyons, each anyon carries a projective representation of G.
The twisted flatness condition Eq. (70) is interpreted as A
gauge charges carrying projective representations of G. As
shown in Ref. [55], the projective phase on a pure charge
(Ly) is

N1, (8. k) = x(n(g. k). (74)
For a gauge flux (a, 1),
o (8:K) = ROVEVRIER(75)

More generally, the projective phase of the dyon (a,y) is
given by 74, = N(a,1)1(1,)-

We now identify the correspondence between the 2D and
3D excitations. For each a, we define y,(x) = R*® with
x € A.Ttis clear that y, is a character of .A. Then, the dyon
(a,y,) transforms under G with a projective phase,

May )(g’ k) _ Ra,n(g,k)Rl(g.k).aRn(g,k).a

— RMgk).a

= xa(A(g. k), (76)

where we use the fact that 3, and therefore n, is transparent
to obtain the second line. It is easy to see that the
anyons {(a.x,)},eq form a fusion group A, and we
identify them as the descendants of the 3D quasiparticles.
Indeed, the topological twist of (a,y,) is y,(a) = R** =
6,, and the mutual braiding between (a, y,,) and (b, y,) is
Za(B)yp(a) = R*PR”>* = 1, as expected. In fact, it is not
difficult to see that the set {(a,y,)} forms the maximal
subset of transparent anyons in the 2D theory; i.e., any
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other particles not in this set have nontrivial braiding with at
least one of the anyons in the set. As a result, all other
particles should be understood as the descendants of gauge
flux loops in the 3D theory.

2. Braiding statistics with A = Z{V
0

With the above understanding, we now specialize to
the case A = Zy, and G = [[X, Zy . For the rest of the
section we assume the even number Ny = 2m, and the R
symbols are given by R’ = (1), which corresponds
to Z[f,o. We also work with the following parametrization
of A:

Mgk)=) { (g tki=lgitk]) (modNo). (77)

where ¢; are integers, and [g; +k;] equals g;+Kk;
modulo N;. We use integer vector g = (g;,...,8x) to
denote group elements of G. In fact, this parametrization
exhausts all cohomology classes in H?[G,Zy,| which
satisfy the assumption that £ in Eq. (68) is cohomolog-
ically trivial.

We would like to extract a part of the braiding statistics
data from given n(g, k) and a(g, k,1), focusing on those
that will lead to Abelian statistics. To start, let us give
an explicit parametrization of the inputs n(g,k) and
a(g,k,1). Let us take the following class of 2-cocycles
n € MG, Zy,):

K
n(g.k) =7
i=1

where p; are integer parameters. Here, we have used
additive convention for group multiplication in both G
and A. It is worth mentioning that this class of n satisfies
n(g,k) = n(k, g). This property is a necessary and suffi-
cient condition for the braiding statistics to be Abelian. At
the same time, we can choose

<

‘(g + k- g +K]) (mod Np). (78)

=

a(g k l) _ eiﬂzij(pipj/NiNj)gi(kj+lj_[kj+lj])

X ei2ﬂZij(’ij/NiN.f)gi(k-f+lj_[kj+]j]), (79)

where 7;; are integers. One can check that the above 4, n, a
indeed make @, ; a 3-cocycle. The existence of a for given
Aand n [not just those parametrized by Eq. (78)] shows that
there is no obstruction in the 2D theory. Notice that if we
modify the 4-cochain @ by a 4-cocycle, a will be modified
by a 3-cocycle correspondingly.

One can in principle compute the braiding statistics
using the understanding from the previous section and
using the general results for Dijkgraaf-Witten models
[54,56], but in our case we will take a shortcut. Notice

that in our parametrization of n(g,k), different Z,
subgroups are decoupled, so let us focus on an individual
Zy, for now. In the 2D Zy, gauge theory, following the
discussion of dual SET phases in the previous section we
denote the unit gauge flux by v, and the unit gauge charge e
corresponding to the character 4,(x) = exp{[(27i)/Ny]x},
with x € A. The (bulk) fermion in this notation is repre-
sented by ey,

With a Z, global symmetry, anyons can carry fractional
charges under Zy. Denote the projective phase on an
anyon a by 7,(g, k). We can extract the fractional charge
Q, as follows:

NOi

il = Hna([j]’ [1]), (80)

where [j] = j(mod N;) is a group element of Z . Using
this and Egs. (74) and (75), we find

1210 — 2mipilNy; 0270y — p2miNo(pi+4:)/2No; (81)
We can say that the e anyon carries a p;/N,, fractional
charge of the Zy symmetry, while the v anyon carries
{[No(pi + ¢:)[/(2Ny;)} fractional charge. The fermion
eNo2y carries a fractional charge [(Nyg;)/(2Ny;)], which
can only be 0 or 4.

Such a SET can be easily described by an Abelian
Chern-Simon theory with the following K matrix and
charge vector ¢; [31,57,58]:

Ni(pit+a;)
o 0 Ny - Ny (82)
No 0) Vo |
No;

In this formalism, anyons are labeled by integer vectors.
The exchange statistics 6; of an anyon [ and mutual
braiding statistics between anyons [ and [’ are given by

91 = ﬂ'lTK_ll, 9”/ = ZEZTK_IZI. (83)

In addition, the Zy, charge carried by [ is given by
Ql - ZTK_lti. (84)

We denote the gauge charge by e = (1,0) and the gauge
flux » = (0,1). One can easily check that such K and ¢,
indeed describe the above Zy, gauge theory enriched by
Zy, symmetry.

So far we have focused on the symmetry fractionaliza-
tion in the 2D theory, which is completely determined by /3
and 4. We have not accounted for the possibility of adding
2D BSPT layers (i.e., different 3-cocycle «). While the
details of braiding statistics surely depend on the BSPT
layer, this subtlety does not affect the indicator ©y; ; for
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intrinsic FSPT phases, discussed in Sec. III D, which is of
central interest to us. So, we ignore the BSPT ambiguity
(i.e., a dependence) for the moment.

We now gauge the symmetry G and switch back to the
twisted Crane- Yetter model. After gauging, a vortex carry-
ing the unit Zy, flux can be represented by the fractional
vectors ¢;/N;. The braiding statistics between these vortices
can be calculated again using Eq. (83). Accordingly, we
obtain the exchange and mutual braiding phases:

N2n.(p: )
91 ﬂz t;I'K l‘ _ﬂ" Opt§p12+ Qz)’
N; NiNg;
0. — " [Tg-1 ‘:”N%(Zpipj'f'pin"f'Qipj)‘ (85)
1 NlN] ! / NiNjNOiNOj

The mutual braiding between the Zy. unit flux and the e
anyon, as well as the v anyon, is given by

2rp;

o ':ﬂN()(pi—f—qi)
el NlNOI ’ vl M

86
NiNy; (86)

These braiding statistics are only part of the full set of
braiding statistics. Note that there exist other Zy, vortices
differing by charge attachments. However, knowing the
braiding statistics between the vortices {#;/N;};_; . as
well as the anyons e and v, is enough to extract the
topological invariants for gauged intrinsic FSPT phases
defined in Sec. III.

D. Braiding statistics in the 3D theory

Now we come back to the 3D theory. Again we consider

=TI, 2y, and A =7}, with R*> = (~1)®. The
2-cocycle A is given in Eq. (77). We ignore the w
dependence of the braiding statistics, which is not relevant
for the intrinsic FSPT indicator ®g; .

We use the following explicit expression for represen-
tative cocycles g € H*[G, Zy,|:

kg, (87)
ijk ijkO

where p;; and p;; are integer parameters, and [h; + k]
equals h; + k; modulo N;. It turns out that the first term in
the explicit expression describes Abelian braiding statistics
for loops, while the second term leads to non-Abelian loop
statistics. For this reason, we refer to the two types of
cocycles as “Abelian” and “non-Abelian.” In this section,
we consider only the Abelian part of the cocycle, leaving a
discussion on non-Abelian loop braiding statistics in
Sec. VII. One may calculate the cohomology group
H3[G, Zy,] using the Kiinneth decomposition:

3G, Zy,] =

HZNOHZN jo H ZN!/](O (88)

i<j i<j<k

We believe that the parametrization in Eq. (87) exhausts all
cohomology classes in H?[G, Zy,|.

We now focus on the Abelian part of . As discussed
previously, dimension reduction of the 3D state-sum model
leads to a 2D model described by the slant product n = iy, 3.
For f in Eq. (87), the slant product is given by

P.
:Zﬁj,(kﬂrl/’—

Jj J

n(k,1) k; +1]), (89)

where

_ ZNopzjhz (90)
No

l

This form of n is the same as in Eq. (78), with p; there
replaced by P;. Taking h = ¢; and substituting the expres-
sion of P; into Egs. (85) and (86), we obtain the three-loop
braiding statistics:

N pri(Nopii + Nowg;)

91' = 5
* NiNGNG,
0. — ”N(S)(ZNOPkipkj + NoxPrid; + NoxPrjdi) 1)
ik N;N;NoiNo;N3, ’
and
2zNopyi
Ocik = >
’ NiNoiNoj
No(N N,
0,1 = aNo(Nopri + Nordqi ) (92)

NiNo;No
Previously, we identified ¢"¥?» as the fermion particle in
the 3D bulk. Since ¢"?> and v both have a 7 mutual
statistics with respect to e¥2», we now should understand
both of them as fermion parity loops. Accordingly, we
understand v? as a bosonic particle in the 3D bulk, and e is
a loop excitation that has a [(27)/N,| mutual statistics with
respect to the fermion particle eMo?v.

Finally, we make the following comment. Throughout
our computation, we do not keep track of the dependence of
three-loop braiding statistics on the 4-cochain w. A
consequence is that the three-loop braiding statistics given
in Egs. (91) and (92) are not the complete result, in
particular violating the constraints in Eqs. (13e) and
(13f). In order for the constraints to be obeyed, we have
to keep track of the @ dependence carefully, which,
however, is very complicated. Nevertheless, the indicator
Oy, of intrinsic FSPT phases does not change after

011054-16



LOOP BRAIDING STATISTICS AND INTERACTING ..

PHYS. REV. X 8, 011054 (2018)

attaching BSPT layers; therefore, we can safely ignore the
issue for the purpose of extracting the indicators.

E. Realizations of intrinsic FSPT phases

We now show that the state-sum model realizes all
intrinsic FSPT phases that we find in Sec. III, completing
the argument that the physical constraints Egs. (13a)—(13i)
are complete. In Sec. III, we find two kinds of intrinsic
FSPT phases, supported by the representative groups
Z’;m X Zy, and ng X Zy, X Zy,, respectively. Without
loss of generality, we assume m = 2" N; = 2", and
N, =2, According to Sec. III E, existence of the two
kinds of intrinsic FSPT phases requires r,, > r; +1 > 2
and r, > r; + 1 > 2, respectively. Since the second kind of
intrinsic FSPT does not put requirements on m, we assume
m =1 for simplicity. One can easily extend the following
discussion to general m for the second kind of intrinsic
FSPT phases.

Let us now take a unified view on the groups Zf;m X Zy,

and ijc X Zy, X Zy,: both of them arise as central exten-
sions of Zy, X Zy, by Z; More specifically, the former is a

nontrivial central extension of Zy, x Zy, by Z{, associated
with N, = m and ¢, = 1, ¢; = 0 in the 2-cocycle 4, while
the latter is the trivial extension Zy X Zy, by Z]; asso-
ciated with g, = g¢; = 0 in A. Therefore, in the twisted

Crane-Yetter state-sum model, we set A = Z‘g and choose A
accordingly [59]. We see below that through this choice,

the state-sum model indeed can be viewed as Z’;m X Zy,

and Z’; X Zy, X Zy, gauge theories coupled to fermionic
matter, respectively. In this notation, the condition r,, >
ri + 1> 2 on the existence of intrinsic FSPT phases for

7, x Zy, translates to r, > ry + 1 > 2, the same as that

2m
for Z) x Zy, x Zy,.

Let us specify the input data to the state-sum model. As
discussed above, for the 2-cocycle 4 in Eq. (77), we set

g1 =0,and g, = 0, 1 for Z5 x Zy, x Zy, and Z},, x Z,,
respectively. For both groups, we set the 3-cocycle f in

Eq. (87) by the following parameters:

pu=rn=pn=0, pa =1L (93)
The non-Abelian part of f is set to 0.

Before we discuss the loop braiding statistics, we need to
check that with these choices of A and f the topological
state-sum model is well defined; i.e., the obstruction
class Eq. (51) vanishes. In Appendix G, we provide a
complete set of invariants to distinguish all cohomology
classes in H>[G,U(1)] when G is a finite Abelian group.
Applying these invariants to the present case, we find that
the obstruction class vanishes, when the following equa-
tions hold:

No
0: _ 1 ),
ﬂNin”( +q;)
Ny N/ Ny N/
0=n—"L 1 = (qg.pii+qips). (94
ﬂNOlep,,( +q,)+ﬂNOiNj(qul,+q,p”) (94)

where the second equation should hold for i # j, and
Ny = 2. These equations are defined modulo 2z. With our
choice of the parameters g;, p;, and p;; in 4 and f3, we find
that the first equation in Eq. (94) is automatically satisfied,
while the second one puts the following conditions on ry
and ry:

0 = gi-min(hr)emas(ry ), (95)

which does not depend on ¢g,. For r, > r; + 1 > 2, we see
that the above equation indeed holds modulo 2z. Hence,
the twisted Crane-Yetter state-sum model is obstruc-
tion free.

The loop braiding statistics for the two groups are given
by Egs. (91) and (92), under the current choice of g;, p;,
and p; i Let us check that the braiding statistics imply that
they are indeed Z’;m x Zy, and ijc X Zy, X Zy, gauge
theories. Since N = 2, the fermionic particle is ev, and the
fermion parity loops are e and v. According to Eq. (92), the
mutual braiding between ev and the Zy, unit flux on any
base loop is given by g,2/N,. The mutual braiding statistics
between ev and the Zy, unit flux is always 0. Hence, it is
indeed a Z;m x Zy, gauge theory for g, = 1, and a Z’; X
Zy, X Zy, for g, = 0.

With this understanding, we now calculate the indicator
Oy, ;. for intrinsic FSPT phases:

aNyp
®f1,2 = Nleel,Z = # =7,
104V 20
zNop12
Op | = WN-O,, 1 =W =0,
£2.1 20621 N1oNao
1 =0
W= { 2 (96)
2 qr = 1,

where we understand that e is the fermion parity loop, and
NO :2, Nl :2r1, NZ :2}’2’ with r > ry -+ 1 22 One
may use the v fermion parity loop to do the computation,
which leads to the same result. This agrees with the results
in Sec. III E (the index “2” should be understood as “0” for
the group Z’;m x Zy,). Therefore, all intrinsic FSPT phases
identified in Sec. III are realized in the twisted Crane-
Yetter model.

VI. ANOMALOUS SETS IN 3D

In Sec. III, we derive a set of physical constraints for
Abelian loop braiding statistics. We now demonstrate that
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these constraints can be used to show that certain 3D
symmetry-enriched gauge theories are anomalous.

Let us discuss a simple example: G = Z, and A = 77 .
with Ng =2 and R*’ = (=1)®. In a Z} gauge theory
enriched by Z, symmetry, if the fermion parity flux loop
carries gapless modes whose symmetry transformations are
identical to those of a nontrivial 2D Z, BSPT phase [22],
such a SET is anomalous. To see the anomaly, gauging the
Z, symmetry we would obtain ®; , = x forbidden by the
constraints. More specifically, ®; = & implies Oy, | = x,
contradicting Eq. (13e).

However, such a SET can actually be realized consistently
on the surface of a 4D bosonic Z, SPT phase, for instance,
by a coupled-layer construction as presented in Ref. [60].
Based on heuristic field theory arguments, Ref. [60] also
proposed that the bulk 4D SPT state is the one obtained from
group-cohomology classification [H>[Z,, U(1)] = Z,]. We
can provide a more rigorous justification with the topologi-
cal state-sum models. Let us set 4 = 0 for the moment, and
the topological action has a variation

oS ~p U, p, (97)

where ~ means up to a 5-coboundary. In order for the model
to be a well-defined topological gauge theory in 3D, 65 has
to vanish cohomologically. When the obstruction class does
not vanish, we have to couple the model to a 4D theory. The
fields in the bulk are just G spins on vertices, and the
topological action is given precisely by f U; . Therefore,
the bulk is essentially a group-cohomology model of a
bosonic SPT phase.

Back to the example, let us take G = Z,, A = Z’;, and a
nontrivial 3-cocycle given by (g, g, g) = [1] (we represent
A = {]0], [1]}). One can easily check that the obstruction
class is nontrivial. If we naively apply the dimensional
reduction method to compute loop braiding statistics, we
would find B¢, ; = 7.

We also notice that the same obstruction appears in the
gauge theory with all bosonic charges Eq. (59) if we have
A(g.g) = [1] and the same f.

VII. DISCUSSIONS

A. Relation to group-supercohomology models

In Ref. [18], Gu and Wen proposed a systematic
construction of fermionic SPT phases with a symmetry
group Zg x G. Let us summarize the mathematical struc-
ture of their construction: in dD, for each cohomology class
[] € H[G, Z,], one can associate an obstruction class
defined as the Steenrod square Sq*[f], and viewed as an
element of H2[G, U(1)]. If the obstruction class vanishes,
a FSPT phase can be constructed corresponding to [f].
Reference [ 18] proposed that the obstruction-free subgroup
of HY[G,Z,] gives a partial classification of dD FSPT
phases.

For d = 3, the mathematical structure of the Gu-Wen
construction is completely identical to the twisted Crane-

Yetter TQFT with A = Zé and a trivial 1. We believe that
the state-sum model discussed in this work with 4 =0 is
indeed a gauged Gu-Wen model, where fermions are
coupled to Z, gauge fields. Our results also clarify the
physical meaning of [f] € H3[G, Z,] for Abelian unitary
G; that is, the cocycle f encodes information about the
three-loop braiding statistics.

With a nontrivial A the state-sum model generalizes the
Gu-Wen supercohomology constructions, by allowing
gauge fermions to carry projective representations of the
symmetry group. We have considered “Abelian” cocycles
for A. It will be interesting to explore the physics of “non-
Abelian” 2-cocycles, corresponding to fermions carrying
higher-dimensional projective representation of the sym-
metry group. A recent discussion on such terms in
continuum field theories can be found in Ref. [61].

B. Non-Abelian loop braiding statistics

We have exclusively focused on Abelian loop braiding
statistics in this work. Loops can also exhibit non-Abelian
braiding statistics. This can happen even when the gauge
group is Abelian, if we choose a non-Abelian 3-cocycle

in Eq. (87). We will present one such example, for A = z,
G=7Z4x7Z4x7Z4, A=0, and the 3-cocycle f is para-
metrized by p,3 = 1 with all other components of p set to
0. Using the invariants given in Appendix G, it is easy to
show that the state-sum model is obstruction free.

To see the non-Abelian loop braiding, consider a base
loop ¢;. From the dimensional reduction, the e¢ and v
anyons in the 2D theory both carry two-dimensional
projective representations of G. After G is gauged, they
become non-Abelian anyons and exhibit non-Abelian
braiding statistics, similar to what has been found in certain
Dijkgraaf-Witten gauge theories [7,8,62].

Recent works have constructed exactly solvable lattice
models for putative non-Abelian 3D topological phases
[63,64], in which the dimensionally reduced theories may
support non-Abelian Ising excitations. It will be interesting
to extend the dimensional reduction approach to these
models.
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APPENDIX A: EQUIVALENCE BETWEEN
TOPOLOGICAL INVARIANTS AND LOOP
BRAIDING STATISTICS

We treat the topological invariants and three-loop braid-
ing statistics interchangeably throughout the paper. Here,
we show that they are indeed equivalent in the case of
Abelian braiding statistics. The following argument is a
simple generalization of that for BSPT phases given
in Ref. [7].

To show the equivalence, it is enough to reconstruct the
full set of three-loop braiding statistics out of the topo-
logical invariants. Consider an arbitrary set of vortices {v; }
with v; carrying unit flux [(27)/N;]e;. All of them are
linked to a base loop that carries unit flux [(27)/N;]ey.
According to the definitions of ©;;; and ©,;, we have

9 B ®ij.k 277)’ijk
vivj.ep Nij Nij ’
®i.k 27rx-k
Oy, = N + N‘l ] (A1)

where x;, y; are some integers that satisfy the relations
Yiik = 2xjx and y;jx = yjir- These relations follow from the
properties 0, ,=20,, and 8,5 , =0y, . We take {©;; . ©;  }
in the interval [O, 27), butin certain cases we set some of them
in the interval [27z,4x), which we discuss below.

Then, we attach a charge ¢’* to the loop »; when it is
linked to [(27)/N;]e; unit flux, for each i and k. The new
vortex loops {?;} have the following mutual and exchange
three-loop braiding statistics:

vivj.er

Zﬂqi-k 7 /.'k
917'1ij,€k + ! + i )
‘ N; N,
27"

05,0, =0
Ni

b.ep v;,€ =+

+ nqif, (A2)

where q;" is the jth component of ¢’*. We choose the charge
{¢"*} properly such that they satisfy the following relations:

o " ;
N, (NiCI}k +N;q]") = =yijx  (mod NY),
N; ik ik Y

- (2¢]* + Niqy) = —xx  (mod N;).

o (A3)

One can show that for even N;, such {g™*} always exist. For
odd N; (i > 1), the existence of such {g’*} requires
Yoir = X;x(mod 2). Interestingly, it is actually a physical
requirement for properly chosen ©;; and 0, ;. Before we
explain the case of odd N;, we conclude that if Eq. (A3)
holds, we obtain a set of vortex loops {#;} such that

R
Didjer T N’
Oi
gﬁi.ek - N—z (A4)

That is, these braiding statistics are determined by the
topological invariants.

We now explain the case when N; is odd for i > 1.
Consider N; copies of v; vortices linked to [(27)/N;]e;
flux. Fusing the v; vortices together gives a pure charge q.
Using the linearity relations Eqgs. (A8c) and (A8d), which
we explain shortly, we obtain

NiNy

D) ;00,6 *

N%Hwi.ek = tqop = (AS)
[More detailed discussion can be found in Appendix B in
the proof of Eq. (13e).] In addition, using the constraints
Egs. (13a), (13c), and (13d) for odd N;, we can write the
topological invariants as follows:

_ " . 0, =
Noix YNy

Aiks (A6)

with 0 < ay, by < N;. Inserting Eqs. (Al) and (A6) into
Eq. (AS), we find that

m(ay + xi) = 7(bi + you) (mod 27z). (A7)
Now if a;;, and b, have the same parity, so do x;; and yg;;.
If a;; and by, have opposite parity, we can replace a;; by
a;, + N, in Eq. (A6). This only means we choose
2r £ ©; < 4n. Now that a;, + Ny and by, have the same
parity, so do x;; and yg;;. This proves the claim that yg;, =
x;x(mod 2) is a physical requirement for properly chosen
®i,k and ®i0,k'

With the set {#;} that are linked to unit flux [(27)/N]ey,
the remaining three-loop braiding statistics are easy to
reconstruct. To do that, we use the following general
properties of Abelian three-loop braiding statistics:

Ouay = 204, (A8a)

Oupy = Opay: (A8Db)

Ou(p ). = Oapry T Oupyys (A8c)
Otaxp)y = Oay T Opy + Oapys (A8d)
Otaroas) prop2) (1<) = Oanpron + Oprss (A8e)
Oucpyixyy = Oay, +0py, (AB8f)
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FIG. 3. Two ways of fusing loops. (a) Fusing #; and f3,, that are

linked to the same base y, into a new loop, denoted as f; X f3,.
(b) Fusing f#; and f,, that are linked to different bases y; and y,
and that carry the same amount of flux ¢, = ¢y,, into a new
loop, denoted as f;of,.

Equation (A8a) follows immediately from the definition
of exchange statistics. Equation (A8b) comes from the
fact that braiding a around f is topologically equivalent
to braiding f around «, while both are linked to y.
Equations (A8c)-(AS8f) are referred to as linearity
reations. They follow from the fact that braiding and
exchanging of loops commute with the two fusion
processes of loops, depicted in Fig. 3. More discussions
on these linearity relations can be found in Refs. [2,7].
These works consider only the case that charge exci-
tations are bosonic. Nevertheless, the linearity relations
hold regardless of the exchange statistics of charge
excitations.

We can now use the two types of fusions in Fig. 3 and the
linearity relations Eqgs. (A8c)-(A8f) to obtain braiding
statistics between vortices that carry general gauge flux.
Also, through charge attachments, one can exhaust all
vortices that carry the same gauge flux. Accordingly, the
full set of three-loop braiding statistics indeed can be
reconstructed out of the topological invariants. Hence, they
are equivalent.

APPENDIX B: PROOFS OF THE CONSTRAINTS

In this appendix, we prove the constraints Eqgs. (13a)—
(13i) through various physical arguments, except that
Eq. (13h) remains a conjecture. The proofs heavily rely
on the general properties of Abelian loop braiding statistics
Egs. (A8a)—(AS8f).

Proofs of Egs. (13a), (13b), (13c), and (13g).—First of
all, Eq. (13a) follows immediately from the relation
Eq. (A8a) and the definitions of ©;; and ©,;. The
constraint Eq. (13b) follows from the relation Eq. (A8b).
The constraints Eqs. (13c) and (13g) involve only
mutual braiding statistics between loops. The fact that
there exist fermionic charge excitations does not matter
for mutual statistics. Accordingly, they can be estab-
lished using exactly the same arguments as those given
in Ref. [7].

Proof of Eq. (13d).—Consider the thought experiment
shown in Fig. 4, where we have N identical copies of a y
base loop linked with « and o' loops. Here, a and o' are the
same type of loops; we put a prime on the latter just for

FIG. 4. The first thought experiment.

notational distinction. The loops carry gauge flux ¢, =
¢y = {[(27)/N;]e;} and ¢, = [(27)/Ni]e;. Now imagine
that we exchange a and « in each copy. The total Berry
phase is obviously given by N,0,,. Then, we perform a
two-step deformation on the exchange process (Fig. 4):
we first fuse the a () loops into a bigger A (A’) loop
that is linked with all the y base loops, then we fuse all
the y loops together to a C loop. It is not hard to see that
C carries no gauge flux. Therefore, the original exchange
process is deformed to a process of exchanging two loops
A and A’ that are not linked to any base loop (note that A
and A’ are the same type of loops). Applying the linearity
relation Eq. (A8f) to the above deformation process,
we obtain

2w
N0y, :ﬁCIA'ei‘HTQA‘eo- (B1)
1

where the right-hand side is the statistical phase asso-
ciated with exchanging A and A’, and g, is the gauge
charge carried by the unlinked loop A.

To obtain Eq. (13d), we multiply N; on both sides
of Eq. (B1). For i =0, the right-hand side reduces to
(2Ny/No + No)zmq, - eg. With Eq. (11), we find that
(2N¢/Ny + Ny) is an even number. Accordingly, the
right-hand side of Eq. (B1) equals 0 modulo 2z. If i # 0,
we notice that N;/N, is an integer and N, is even; thereby the
right-hand side also equals 0 modulo 2z. Hence, we
prove Eq. (13d).

Proof of Eq. (13e).—Consider a base loop y that is linked
with N; copies of a loops. The loops carry gauge flux ¢, =
[(27)/N;le; and ¢, = [(27)/N]e;. Using the relations
Egs. (A8d) and (A8a), it is not hard to see that the exchange
statistics of the @ loops as a whole is given by N %9,1,7, which
equals N;®;;. On the other hand, fusing the a loops
together gives a gauge charge g, whose exchange statistics
is 7qy. Accordingly, we should have

N0, = nq,. (B2)
In addition, we consider (Ny/2) copies of f loops that
are also linked to y. The f loops carry gauge flux
¢p = {[(27)/Nyleo}. According to the Aharonov-Bohm
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a o’

FIG. 5. The second thought experiment.

law, the mutual statistics between ¢ and the (Ny/2) copies
of B is mqq. That is, the mutual braiding statistics between
N; copies of a as a whole and (N,/2) copies of f as a whole
1s 7q,. Using the linearity relations, we find the latter is also
given by [(NgN;)/2]0,4,. Therefore, we have

gy = @eaﬂ,y = %601',/0 (B3)
where the second equality holds when N; is even.
Combining Eqs. (B2) and (B3), we immediately obtain
the constraint Eq. (13e).

Proof of Eq. (13f).—To show Eq. (13f), we perform
several thought experiments. First, we consider again the
thought experiment in Fig. 4, but now with N* copies of
the linked loops @, @ and y. Similarly to Eq. (B1), we
obtain

. 2z ik
N*o,, = N da-ei +7qs €9 = N—®i,k»

i i

(B4)

where we assume N'¥ is even. Note that this g, is different
from that in Eq. (B1), since we start with a different number
of copies of linked loops in Fig. 4.

Next, we consider another thought experiment, shown in
Fig. 5. We start with the same N'¥ copies of linked loops a,
a and y as in Fig. 4. Then, we fuse all the « loops to a big
loop A, but we shrink the ' loops and fuse them onto the y
loops such that y turns to y’. The gauge flux carried by y’ is
the same as that of y; i.e., ¢, = ¢,. Next, we fuse the N ik
copies of y’ together and obtain an excitation C’. It is not
hard to see that C’ carries no gauge flux; hence, it is actually
a charge excitation.

To proceed, we create a pair of loops @’ and &”, with
the loop o” carrying unit flux of [(27)/N;Je;. We
imagine braiding o’ around C’. Since C’ is a pure
charge, the statistical phase is given by the Aharonov-
Bohm phase [(27)/N;]q¢ - e;. On the other hand, since
C' is composed of N* copies of loops 7/, the linearity
relations tell us that the braiding statistical phase is also
given by N*6,, , = @y ;. Therefore, we obtain

2w

O = ﬁCIC’ €.
i

We now make use of Eqgs. (B4) and (B5) to show the
constraint Eq. (13f). Recall that we start with N°* identical

(B5)

a-a’-y links in both Figs. 4 and 5. Each link should carry a
well-defined overall charge, which we denote as gj-
Because of charge conversation, the overall gauge charge
carried by the excitations does not vary in any step of the
thought experiments. Accordingly, we have

da+ 4o = N* G (B6)

Adding together Egs. (B4) and (BS5), and using Eq. (B6),

we arrive at

Nik
N—®i.k + O = mq, - e,

i

(B7)

where we have used the fact that gj;,, is an integer vector.

Finally, we argue that A must be a bosonic charge; i.e.,
g, - eg = 0. To see that, consider the exchange statistics of
C’ in Fig. 5:

Oc = mqc - e

= (N%)*0, 4
Nik 2

_ ) oL,
Ny
Nik 2

- <~—) . NiG)ki - O
NiN; '

(B8)

Accordingly, C’ is bosonic. Then, using Eq. (B6) with
the assumption that Nk is even, we immediately con-
clude that A is also bosonic. Hence, we prove the
constraint Eq. (13f).

Proof of Eq. (13i).—Finally, we argue for the last
constraint Eq. (131). Physically, it follows from the require-
ment that the flux loops cannot have any chiral modes. This
is also new to fermionic theories (for bosonic ones, by
condensing the bosonic gauge charges on the flux loops
one can always make them gapped), and imposes a non-
trivial constraint on the braiding statistics of the 2D
topological phase obtained from dimensional reduction.
We recall the following bulk-boundary relation in a 2D
(bosonic) topological phase [65]:

1 2 wil4)c.
5261“9“ = elmiM)e-

Here D = /> _,d? is the total quantum dimension of the
2D theory, a runs over all types of anyons, and d, and 6,
are the quantum dimension and topological twist of an
anyon of type a, respectively. The quantity c_ is the chiral
central charge, and c_ = 0 for nonchiral theories.

Let us apply Eq. (B9). We fix a base loop, and dimen-
sionally reduce the 3D gauge theory. The anyon types in the
2D theory can be labeled by a tuple (g, m), where ¢ labels
the gauge charges, and ¢; = {[(27)/N;]m;} labels the
gauge fluxes. These anyon excitations correspond to the
vortex loops that are linked to the base loop in the original

(B9)
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3D theory. Assuming all the 2D anyons are Abelian, we

have d, = 1 and D = |G| = [[X, N;. The topological twist

of (g, m) is given by

O(g.m)
(B10)

where we have used @; to denote the loop that corresponds
to the anyon (0, ¢;) after dimensional reduction, and have
taken the base loop to carry gauge flux [(27)/N]e;.

Next we insert the expression of 6, , into Eq. (B9) with
the requirement c_ = 0, and perform the summation over g
and m. We first sum over ¢, and the relevant part is

E ( 1 90 ¢ (27imo/Ng) qOH E 6‘ (2zim;IN )

J>0¢q;=1
= N05m0.N0/2HNj5m/-,0' (B11)
j>0
Combining this part with the rest, we have
Zeq m = VD ey (B12)

q m

According to the definitions of the topological invariants,
the right-hand side of the above equation is given by

' i(No/4)®oy  No — 0 (mod 2
o NO2 0 e‘ 2 ( ) (B13)
ez(NO/Z)@o_k % =1 (mod 2)

Putting together Eqs. (B12) and Eq. (B13), and
properly rewriting the expressions, we obtain the constraint
Eq. (13i).

APPENDIX C: SIMPLICIAL CALCULUS AND
GENERALIZED CUP PRODUCT

We always work with a simplicial triangulation of a
manifold M. A p-cochain is a function living on
|

_ ( 1)%627”2 qjmj/N; « elzjmj . ek+12i<jminlj0"i"[-ek,

p-simplicies valued in an Abelian group .A. Denote the
collection of all such cochains as C” (M, .A), which naturally
forms a group.

We define the coboundary operator § that maps a
p-cochain f € CP(M, A) to a (p + 1)-cochain:

p+1

=Y (=1)¥fligiy...ig-wipsr). (C1)
=k

(6f)(ioiy ...

ip+1)

where the variable 7, is omitted. § can be considered as a
discrete derivative, and satisfies 62 = 0. If § f =0, fissaid
to be closed, or a p-cocycle. If f can be written as f = g
with g a (p — 1)-cochain, f is said to be exact, or a p-
coboundary. The group of p-cocycles is denoted as
ZP(M, A) and the group of p-coboundaries B”(M,.A).
Clearly B?(M,A) c Z’(M,A). The pth cohomology
group H? (M, A) = Z? (M, A)/B? (M, A).

The cup product of a p-cochain f € C? and a g-cochain
g € C1 is defined as

[f U gl(iohy - iprq) = prolprg)l- (C2)
Here, B is a bilinear form on A: B(x +y,z) = B(x,z) +
B(y,z)and B(z,x +y) = B(z,x) + B(z,y). Inour case, we
have R%? = ¢278(@b) where B(a, b) € Q/Z. Notice that we
do not necessarily have B(x, y) = B(y, x). For most of the
calculations, we actually have B(y,x) = —B(x,y)mod Z.

The most important property of the cup product is

8(fug)=d8fug+(=1)Pfudg. (C3)

Therefore, if §f = §g = 0, 5(f U g) = 0. One can actually
show that the cup product defines a product of cohomology
classes. The cup product to some extent is the discrete
version of the wedge product of differential forms.

We also define a higher cup product [66]. For our
purpose, we mostly just need Uy:

p—1
[F U g0, cop+g=1) = (=D)PDEDBIFO, .. jij+ g s p + a4 = 1),9( o j + )] (C4)
j=0
They satisfy the property:
Jug+ (=1)Pgu f=(=1)""5f Uy g+ (=1)7f Uy 8g = (=1)""5(f Uy g). (C5)

Notice that the sign on the lhs is reversed compared to the usual formula (e.g., see Ref. [66]) due to the skew symmetry of

the bilinear form B.
Generally, higher cup products satisfy

fUs g+ (=1)Piregu, f= (-

)PHasf Uy g+ (=1)77f Uy 89—

(=1)PHTS(f Uasr 9)- (Co)
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We list explicit expressions for the U; that we will use:

g=1:[fu gl(0.1,...p+1) = B[f(O,...,p),ig(i,i—l— 1)},
i=0

p=2.q=2:[f U, g](0123) = B[f(023). g(012)] — B[f(013), g(123)],
p=2.9=3:[fU g/(01234) = B[f(034), g(0123)] + B[£(014), g(1234)],
p =3.q =3:[f U g)(012345) = B[f(0345), g(0123)] + B[f(0145), g(1234)] + B[f(0125), g(2345)].  (C7)

APPENDIX D: INVARIANCE OF THE PARTITION FUNCTION UNDER PACHNER MOVES

We derive the expression for the obstruction class by checking the invariance of the partition function under Pachner
moves. For a triangulated 4-manifold, there are essentially three kinds of Pachner moves: the 1-5, 2-4, and 3-3 moves. In the
present example, all of them reduce to the following single condition:

Zt (01234)Z+(01245)Z+(02345) = Z+(01235)Z+(01345)Z+(12345). (Dl)
Let us define
23(01234) — Rfmz-f234’ Z;F(()1234) — Rf034sﬁ0123Rf014-/31234’ 23(01234) — R/101z~f234’ (D2)
so that
Z+
Zt=_29_| (D3)
Z{Z;

We simplify the Pachner move equation for Z] and Z individually first:

ZH(01234)Z
Z5(01235)Z

(01245) 2
(01345)Z

for2.f23a+f2us=f 235 R 0233 fo12:f 345 RS 023+
E02345§ :R " 2%f Zj:f ZE;R e — RS 012:=Passs —R 01; %:f Oj: * — RSo12:=Pa3as R=Por23.f s (D4)
12345 RJo13t)123:] 345 RJo131]123:] 345 ’

+
0
+
0

Zfr (01234)23;r (0124-5)2,71+ (02345)
Zfr (01235)23;r (01345)2?(12345)
= Rfo1s-Proas=Proas=Pizas Rf oas PoraatPo2ss—=Porsa Rf02s—Ff125:23as RFora=F1asPro3s Rf0sa—Fo3s-Porzs

— RfoisPrass—Prass—Pizas Rf oasPorzatBozsa—Porzs Rfo1s—for2-Pazas Rfors—Ffoas-Brosa R 3as—FfoasBoros
x R=Por2s:Pazas R=Poas-Pr23a R—Posas-Por2s
— RS oisProsatProastBras—Pioss—Bisas Rfoas BoroatBooza—Boiza—Bois—Biosa R—for2-Bras R 3as.Poins
x R=Por2sPazas R=Poas-Pr23a R=Posas-Porzs
= Rfo2Passs Rf sasPoras R=Poras-Pazas R—Poras-Pross R—PosasPorzs | (D5)

In the last step we use the 3-cocycle condition of fj.

Z$(01234) 2§ (01245) 25 (02345)

+ +
2 2 — RAo2:f23a 245 F 235 RAors—Ao13=4123.f 345
Zz_(01235)2;(01345)2;(12345)

= RAo12:f3a5=P23ss R=Ao12:f 345
= Rho=Pass — (R/lmz-ﬂzszts )‘1 . (D6)

Combining the two pieces, we get
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Z+(01234) 21 (01245) 2+(02345) RPo125-P2345 RPotas Pr234 RPosas Porzs RAorz-Pazas 001234001245002345

Since f is

= D7
Zt (01235)Z+ (01345)Z+ (12345) Rﬁmz;,fms Rf345'ﬂ(”23 @01235101345012345 ( )
valued in the transparent center, OEU f+ fUBSE+ GE U SE—BE U, 6f
RPoxs-faas RfwsPois = 1 for all f. Therefore, the invariance
/ — 5(52 Uy f) - 8(2 U 7). (E1)

under Pachner moves requires that

©12345901345%01235 — RPoi2s:Pazas RPorasPraza RPosas-Porzs RAorzPazas
@01234001245@02345

(D8)

APPENDIX E: GAUGE INVARIANCE OF THE
PARTITION FUNCTION

We show below that the action can be thought of as a
topological gauge theory for a 2-form gauge field f and a
1-form gauge field g. We consider only the case with 4 = 0.

To show that the f;’s can be regarded as a 2-form gauge
field, we need to show that the action is invariant under a
1-form gauge transformation f — f + 0&, where £ is a
1-cochain. The variation of the action is

So we can set Cimn = _ﬂ(hi’ im> g/n)

So the partition function does not change.

To establish that g;;’s are 1-form gauge fields requires
more work. Under gauge transformations g — g + dh,
where h is a 0-cochain. First, one needs to preserve the
flatness condition, so the gauge transformations also affect
the 2-form gauge fields. Because of the 3-cocycle condition
of 5, we can write

B(g + oh) — p(g) = &¢. (E2)
Here, { is a 2-cochain. Explicit expressions of { can be
obtained, but extremely tedious in the general case. So we
illustrate by performing a gauge transformation on a single
vertex i: now g;; — g;; +h; while the others remain
unchanged. The 3-cocycle f(g;;. gk /) transforms as

B(8ij» &jx- 8ur) = B(8ij» Gjr- 8u) + (i, g1 8jn) + B(hy. 8ix 8r) — P(hi, 81 81)- (E3)

To preserve the flatness condition 5f = f8, f has to transform as f — f + . The change in f U f — f U, § is
SUSHFULHLUE—fU 8 =C U 8f =¢ Uy & (E4)
lﬁulﬂeﬂulﬁJrﬁul5¢j+5¢ju1ﬂ+&ju155. (E9)

Using the formula Eq. (C5), we can write

(uf+ful=Cudf+oCu f-6(Cuf).  (ES)
Neglecting the boundary term, Eq. (E4) becomes
{ul=Cuidf—fusl+sfu f.  (E6)
Now applying the formula Eq. (C6), we obtain
FU1dl =800 f=pUy60—6(f U, 80).  (ET)
So finally, the change of f U f— f U, B is
Juf=fup=rfuf-fup+fud
—{U 60 = Uy 6C, (E8)

up to a boundary term.
We also need to take into account the change in 7. The
change in f U, B is given by

Using Eq. (C6), we have

Uy 8+ 6L Uy f=68f Uy 80+ Uy 820+ 8(B U, 80)
(E10)

and

(Ul =CUbl+6Ul=-60U; 60+ 6(C Uy &)
(E11)

Because on = f U; f, n must be modified in the following
way:
n=>n—=CUl+LU 60+ U, 6L (E12)

Combining with Eq. (ES8), the action is indeed invariant.
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APPENDIX F: DIMENSIONAL REDUCTION

First, we need to choose a triangulation of M5 x S'. We
start from an open manifold M5 x D' (where D' stands
for an interval), and triangulate the two boundaries into
3-simplicies denoted by [ijkl] and [i'j'k'l'], respectively.
We exploit an ordering in which i < ¢’ for all vertices i in
the simplicial triangulation of M5. We then identify the two
boundaries, i.e., i is identified with i’, to obtain M5 x S'.
The G flux through S' is measured by a Wilson loop along
S', which is the G label on ii’ (it is easy to see that all j
should have the same label by the flatness condition). We
set g;» = h from now on.

The basic building block of the triangulation is a prism
[ijkli'j’K'l'] (see an illustration in Fig. 6). Each 4D prism
[ijkli'j'K'l'] is further triangulated into four 4-simpli-
ces [ijkIl'], [ijkk'l], [ijjK'l], [il' j'K'T].

Next, we divide the 2-simplices into two types: the “in-
plane” ones, which lie entirely inside the 3-manifold M3,
ie., fijx = fiyr, and those going “out of plane,” e.g., fij ;.
They need to be treated differently. This is already evident
when we examine the twisted flatness conditions: the
flatness conditions for the in-plane fields are essentially
properties of M5, and may depend on the topology of the
manifold. The flatness conditions for the out-of-plane fields
can be dealt with explicitly, which we analyze now.

Let us consider the twisted flatness conditions on a 3D
prism [ijki’j'k'], which is further triangulated into three 3-
simplices [ijkk'], [ijj'k'], and [ii’j'K]. Let us write out the
flatness conditions:

SFixe = fiee + Fije = Fije = Pijirs (Fla)
Fipe = Fipe + Fiw — Fijp = Bijyws (Fib)
Sije = fije + fiow = fiey = Bijwe- (Flc)

The meaning of these conditions is uncovered by
considering (Fla)—(F1b)+(Flc):
|

T([01233])T([01172'3))
T([0122'3)) T([00'12'3"])

T([01230'1'2/3]) =

FIG. 6.

Ilustration of a prism.
My = my; + mj + n(gi, gk (F2)

Here, m;; are defined as m;; = f;; — fi;7, and n(g;;. gx)
is given by

n(gij» &jx) = Bijiw — Pijyw + Pivyw
= p(gij. 8- h) — p(g;;.h.gy) +p(h. g gjx)
= (ihﬂ)(gij’ gjk)' (F3)

Here, ip,/3 is called the slant product of 8: [iy 4] € H?[G,T].
Once we fix the fields involved in m; s Mk and m;y, as well
as the in-plane one f;j;, the remaining two, f;yp and f;jp,
are also fixed.

At this point, it is clear that m should be thought of as a
1-form gauge field valued in A on M3, satisfying a twisted
flatness condition Eq. (F2). What we have shown is that the
twisted flatness conditions on M x S' naturally decouple
into the flatness conditions of the in-plane 2-form fields
{fijx}, and the flatness conditions of the 1-form gauge
fields {mu}

Now we need to evaluate the partition function.

First we collect the contributions from T’s on a single prism
[01230'1"2'3']:

Rf012~f233’ Rfml’sflz3 R.foz’3/-"012 Rf()n’}’ Bois R)“OIZ’fzz/g/ Rloo’l/afl’z/y

= iho
Rf012~f22’3’Rf00'|/-,f123 Rf013/-”123 Rf033/7ﬁ0123 R}LOlzaf233/Rﬂm1/~f1’2/3/ h (gOI’ g12’ g23)

R™03-Po123 RS o2r3012

o R.f012’m23Rm01,f|23 Rf013/-”|23

We can use flatness conditions on [00'2'3/] and [0133/],

Rior2:m23 RA(h.go1)=A(go1.h).f 123 ih@(go1. 812, 823)- (F4)

foos = fory + foos — fovr = B(h, €p2. 823).
fizy = fosz + fory = foiz = B(&o1. &13. h), (F5)

to rewrite
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Rfovynorz  Rfosnor Rfoys —fooz —Ah.g02-823) 1012

Rfoiz iz - Rfoi3ms Rfosy =133 +4(8or-813.h). 13 (F6)

Let us collect the following factors involving f/;’s:

Rfo23:1012

Rfo13:m123 Rfo12.m23 Rmorof123 (F7)

To see that these terms do not contribute to the partition
function, we recall the following property of the cup
product:

fum+muf=656(fu m)—86fu m—fu,ém. (F8)

Recall that 6f =  and 6m = —n. Then, Eq. (F8) implies
|

Rf023:7012

Rfo23:1012
~ RPozzmortmpatmas (Fg)

Rfo12:m23 Rimorsfi23 Rfo13:1123

Here, ~ means up to a boundary term.

To further simplify the expressions let us do the
following gauge fixing: we fix all f;;; = 0, by using the
gauge degrees of freedom on i;, and then m;; = f;»;. So,
fooy — fova = Moz — Moy = maz + noo3. fozy — f133 = 0.
Notice that after the gauge fixing m;;, we also need to
multiply the partition function by a factor of |A| to correctly
normalize it. In total, the partition function should be
multiplied by |.A|/41(Ms)l,

Now we have obtained the following expression for the
partition function on a prism:

R™M2+1023—p(h.802.823) 1012

119120 — 25
T(01230'1°2'3") = Rmosos Rfo12.m23 Rmor.f123 Rfo13:1123

RA(801.813.h).110

Rhorzms RS0 23 iy (g1, 812, 823)

R7Mo12+7023- o123 RMo23—A(.802.823) 101>

— R™a3:1012 RAo12:M23 RSot:f 123

We separate the weights associated to m and f:

Sz+1 ([0] 23]) = Réo-foz,

where

(o1, 12, 823) =

The exact expression of a is not important for our analysis.

Let us now take care of the normalization factors. We have

|A0(M4)| = |A0(M3)

Thus, the normalization factor becomes

|_A||A1(M3)\

To summarize, we have found that the partition function on M x S' can be written as

1
Zh(M3 X Sl) =

Rﬂ(gOI»ngh)a"]z} ihw(gOI » 8125 g23)' (FIO)

T5,.1([0123]) = R™on RA (g 812, 823) (F11)
Rmo 12 Poros Rros—H(h.gor.823)mor

REEor&s ) 1o in@(8o1 812: 823)- (F12)

|A1(My)] = |8o(M3)] + 2|41 (M3)]. (F13)

= ! F14

|G|\A0(M4)||A|\A|(M4)|—\A0(M4)\ - |G||A0(M3)\|A||A1(M3)\ ’ (F14)

> ST e)( Xt [[T0@). @19

It should be clear that in this expression A, = Ay (M3).

(Gl *lAIS e, <{f}€l(Az)

{m}el(A) 03€A;

In the following, we discuss the physical interpretation of the sum over the “in-plane” fields f. We consider only the

simple case £ = (. The sum over f can be evaluated:
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Z Osp—p = |22(M3, A)[6( Z &(o3)p (F16)
{r1el(ay) =
In the following, we write
| 5= 3 elopion. (F17)
M 03EA;
Let us calculate the number of 1- and 2-cocycles:
C?
2= ]| = ) S,
|Z
Cl
22 = 1 |3 = ) (]
1Z']
C]
— ‘H2| . 1| ’ .
[H'| - B
_|E?] |CY- 12
T .
Now we can easily see |C¥| = | A2, |Z°] =

ing M3 is connected). Note that due to Poincaré duality,
|H?| = |H'|. Putting together, we find

|Z'| = |H"]|- |A|\Ao\—1’ |Z%| = |‘A|\A|HA0|+1‘ (F19)
Therefore, we find that
1
Zp(M5; x S = |G|\A0||A|A0 12 (L; )
(¥ 55,,,__,,T§<:i><ag>). (F20)

{m}el(a)

To better understand the sum over f, we consider the
following example of a Dijkgraaf-Witten theory with the
gauge group given by G x A. Group elements are labeled
by (h, x). We further assume that the group 4-cocycle takes
the following form:

= Xa,(81.82.83)-
(F21)

o((g1,a1), (82, a2), (83, a3), (84, a4))

Let us compute the partition function of this DW theory on

x S'. Following the derivation in Ref. [2], fixing the
holonomy along S! to be (h, x), the dimensionally reduced
partition function becomes

Z () (M5 x Sl)

|G|\AOI|A|\A0\ > [T e

{g.a} 03€A;3

(F22)

Here we define

T1+(f73) :)(x(givgjagk)’T;(GE») =

Notice that this DW theory can be related to the theory
Eq. (59) discussed in Sec. VA. More precisely, after the
duality transformation, we arrive at exactly such a DW
theory with

(ina,)(gig;)~"  (F23)

1:(81. 82, 83) = RFAE B8]0, (F24)

Let us consider Zy, =3 42 (n.x)- The only dependence
on x comes from [[,.c A3T‘i(”’*>(()-_g). For a given x,

17 ) = RIw? (F25)

03EA;
We now carry out the sum over x:

/f’x
ZRfM ( / ﬁ>. (F26)
|A| xeA M
Therefore,
1

Zp(Myx S = |G“A0\|A|\A0\ 12 (AS )

x Z 1% (F27)

{a} 03€A;

The similarity between Eq. (F20) and Eq. (F27) is quite
obvious. Motivated by this computation, we believe the &
function in Eq. (F20) can be in general understood as the
result of summing over the flux of the A gauge field, dual to
“2-form gauge charges.”

APPENDIX G: EVALUATING OBSTRUCTIONS
IN THE TWISTED CRANE-YETTER MODELS

Recall that the twisted Crane-Yetter models are well
defined only if the following 5-cocycle v € H>[G, U(1)] is
a 5-coboundary:
V(gl , 82,83, 84, gs) — RP(818283.84.85).5(81.82.83)

x RA(81-828384.85).5(82.85.84)
x RA(81-82.838485).5(85.84.85)

X RM81.82)5(83.84.85) (G1)
where R4? = (—=1), Bisa3-cocyclein H>[G, 7], and Ais a
2-cocyclein H?[G, T]. When vis not a 5-coboundary, we say
that the corresponding model has an H>[G, U(1)] obstruc-
tion. The main purpose of this appendix is to determine when
the twisted Crane-Yetter models are obstruction free, i.e.,
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when thevin Eq. (G1)is a 5-coboundary. We discuss only the
case that G is an Abelian group and 7 = Zy,.

To do that, we define six quantities {®; ; . ©;; 1 - Ok 1.m
Q. Q. Q) for a general 5-cocycle v € H[G,U(1)],
where G is any finite Abelian group [ [ Z,. These quantities
have the important property that they are defined in a way such
that they are invariant under a coboundary transformation
v — véu. Hence, we call these quantities invariants for
H3[G,U(1)]. We claim that a 5-cocycle is a 5-coboundary
if and only if all the six corresponding invariants vanish. We
define these invariants for general S5-cocycles in
Appendix G 1, and we prove the claim in Sppendix G 2.
Finally, we apply the invariants to the specific 5-cocycle
given in Eq. (G1).

1. Defining the invariants

To define the invariants, let us first define the following
functions:

iov(g, h k1)
_v(a,g.h,k,l)v(g,h,a k,1)v(g h k.l a)
B v(g.a,h,k, (g, h k. al)

(G2)

The function i,v is usually called the “slant product” of v. It
is actually a 4-cocycle in H*[G, U(1)], when a is treated as
a parameter. One may continue to apply the slant product
on i,yv:

iav(g.b.h,K)i,v(g, h,Kk,b)
i;v(b,g. h.k)i,v(g. h,b. k)’
o ibiay(c7 g7 h)ibial/(g? h’ c)

icibiay(g’ h) - lbl I/(g c h) ’
a D)

ibial/(g, h, k) =

(G3)

where i,i,v is a 3-cocycle and i.ipi,v is a 2-cocycle. In
addition, we also define the following function:

v(g,h,k,a,b)u(g,a, h,k,b)
v(g,h,a,k,b)v(a, g h k,b)
" v(g,h,a,b,k)v(a, g h,b k)
v(g,a, h,b, k)
o v(g,a,b,h, k)
v(a,g,b,h, k)

ia,by(gv h, k) =

v(a,b,g,h k). (G4)

The function i, v, however, is not a 3-cocycle.

With these functions, we now define the invariants for
H3[G, U(1)] for Abelian group G = [[;Zy.. Let e, be the
generator associated with the Zy. subgroup of G. First, we
define the following invariants for a given 5-cocycle v:

ie,- ie,iemy<ek’ ej)

eieijk,l,m = ——
e le,le, V(€. €))

, (GS)

NI
ei@i_/.l.m = H ie[ iel l.eml/<ej, nej)ie_/_ l.e]l.emy(ei, ne,»), (G6)
n=1

N;
e®iim — H e le,le, V(€ N€;). (G7)
=1

One may check that ©;;,,, ©;;;,,, and ©;j; ,, are indeed
invariant under a coboundary transformation v — vdpu.
Next, we define the following invariants:

N;
eiQi - iei(e[, mel’, e,-,ne,-), (GS)
m,n=1
Nk N;
elg[k = H Hiek,meku(ei,nei,ei)iekv(ei,nei,ei,mei).
m=1 n=1
(G9)

Again these two quantities are invariant under a coboun-
dary transformation v — vou.
Finally, we define the invariant €; k- To do that,

we write
N =1Ipr. Ne=]1p"
P p

N;= Hpr,,’
P

where the products are taken over all prime numbers p.
Then, we have the following group isomorphisms:

ZN,- = ZZ"Z X Z3r3 X ZS’S X oo,
ZNJ. - ZQ;‘Z X Z3.&3 X ZSSS X e,
Ly, = Lon X L3y X Lsis X - -+
Let e = [N;/(p'»)]e; be the generator associated with the

Z ,, subgroup in Zy, and e”, e[ are similarly defined. In
the case that r, < s, <1,, we define

o opSp . P P p P p »

eiQ,p.k pl [Hp lef.meil/(ei +ejane,' +nej’ei —l—ej)
Ik =

] P nel el)j P ooP b

m=1n=1 lef.mef”(ei ,ne; , €; )lef.mefy(ej’nej ) ej)

ir(el + el nel + ne” el + el mel + me’
AN j i Jj i

J’ J
e P el

x
YNV
2 z7mei)le£(ej7ne]’ e

ie,f(ef’ne me§7>

(G10)

If r,, s,, t, are in different orders, Qf].k are defined similarly

with a corresponding permutation of indices i, j, k in
Eq. (G10). At the end, we define the total invariant

— 14
Qi = g Qi
)4

(G11)
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Again, one can show that Q;; is invariant under a
coboundary transformation v — vop.

2. Completeness of the invariants

Let us now show that the invariants {®;;,,.0;; ;.
O;jk.1m» Qi Qix» Q1 ; are complete, in the sense that they
have the resolution to distinguish every cohomology class
in H°[G,U(1)]. To do that, we perform a counting argu-
ment. First of all, for Abelian group G = [];Zy., the
cohomology group is given by

vi(a,b,c,d,e) =expsi2ry ————a
— N,N]Nk

Qiju
NN, /

v(a,b,c,d, e) = exp{ i2ﬂ2
ikl

where Py, Qjjus Rjji, are integer parameters. For
simplicity, we assume R;ji;,, = 0 if any of its two indices
are equal. We have used integer vectors a = (a;, d,, ...) to
denote the group elements of G with 0 < a; < N;, and
[b; + c;] is defined as b; + ¢; modulo N;. We use additive
convention for group multiplication of the Abelian group
G. One may check that vy and v, are indeed 5-cocycles.

Inserting the expression of v, into the definition of
®ijk,l,m’ ®ij,l,m9 ®i,l,m7 we find that

27
Oijttm =" ngn(ﬁ IR 5(1)6()o (K)o (1)o(m)
ijklm 5
2zN
®ij,l,m N N (lel} + Qllm} + lel] Qimlj
_leij_ Qlimj) + (l(—)]),
2
O 1.m :W(Qmm' + Qitmi + Qumii = Qimti = Qomtii = Climi)-
(G14)

(Note that Q;, Q;;, €;;; can be evaluated, but the expres-
sions are complicated, so we do not list them here. This
does not affect the counting argument below.) Inserting the
expression of v; into the definitions of Q;, Q, €5, we

find that ®ijk,l,m = ®ij,l,m = ®i,l,m =0 and

Pj;;
Qi:2ﬂ Nll 5
Qikzzﬂpiik+Piki+Pkiz"
Nk
Piy+ P+ Prii+Pii+ P+ Prii
Qijkzzﬂ ijk ikj kl§V Jjik Jki kj X, (GIS)
ijk

where X is an integer with the property that X and N, ;. are
coprime.

,(b] +Cj

H3[G, U(1)] =

11zv 117, 11 74,

i<j i<j<k

3
x H ZNijkI H ZNijklﬁ ’

i<j<k<l i<j<k<l<p

(G12)

That means the invariants can take at most |[H>[G, U(1)]|
distinct values. If we are able to show that the invariants can
take exactly |H°[G,U(1)]| distinct values, we prove the
invariants are complete.

To do that, we evaluate the values of the invariants for the
following explicit 5-cocycles:

b, +c,]><dk+ek—[dk+ek}>},

R
abic (dy+ e —[d; + el])} exp{iZEZ Gk b, icxdien, } (G13)

ijklp ijklm

Let us count how many distinct values these invariants
can take. First, ©;;; , is fully antisymmetric, and it can
take N, different values. One can show that
Nij1p©ij1p, =0, and it is symmetric in /, j and antisym-
metric in /, p. A more careful calculation shows that for
fixed indices i # j # 1 # p, ©;;;, and those related to

©;;,, by index permutations can take N?; ip
The invariant O, ; p is antisymmetric in [, p. For fixed
indices i # j # p, ©;,, and those related by index permu-
tations can take N?,F distinct values. Hence, ©;;; ,, ©

distinct values.

ijl.p>

©;, , together can take N different values with
Neo = H N H Sk H Nijkim-  (G16)
i<j<k i<j<k<l i<j<k<l<m

Next, we count the possible number of values for Q;, €,
Q;jx from v,. Since for v; we have O, = ©;j;,, =
©;;m = 0, these possible values of invariants are distinct
from those from v,. The invariant 2; obviously can take N;
distinct values. For given i # k, Q;; and ;; are independent.
They together can take N7 distinct values. The invariant Q; ;;
is fully symmetric and it can take N, distinct values. (Note
that in the definition of €, it is only symmetric in i and j.
This full symmetry in all three indices is only a consequence
of the specific cocycle v;.) Accordingly, we have that the

invariants €;, €;;, Q;;; can take N g distinct values with

Na=[INTIN} ] Mg

i i<j i<j<k

(G17)

Putting all together, the invariants can take NgNg =
|H?[G,U(1)]| distinct values in total. Hence, they are
complete.
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3. Evaluating obstruction

We now evaluate the values of the invariants {©;,,,,
O;j 1m» Ok sm» Qis Qg Qij } for the S-cocycle given in
Eq. (Gl1). That 5-cocycle depends on a 3-cocycle f in
H3[G,Zy,) and a 2-cocycle 4 in H*[G, Zy,|. Below, we
work with the following explicit  and A:

Nopi;
'B(a,b,c): ' NONJal(bj+cj_[bj+Cj])
ij L
N
+ Op”kalb (mod Ny),
ijk Nljko

A(a,b) = Z%(“i“’i —la;+b]) (modN,). (GI8)

where p;;, p;jx. q; are integer parameters, and for simplicity,
we assume that p,;; = Oifany two of the indices are the same.
We now insert the above expressions of  and 4 into the
expression of v in Eq. (G1), and further insert v into the
definitions of the invariants {©;;,,.0;; s ©;jk1m: i,
Q. Qi }. After a long tedious calculation, we find that

Ny

Qi:”N_mpii<1+Qi)’
ik
Qlk_ﬂmN pkl(]+qi)
Ny Nik
+r2
No; Ny
N (NT*—1) N,

(g:pixk +qrpi;) (wheni#k),

Qx=n (14+qi+4q;)Dij

2 Nijro
No , . . .,
+ﬂN—(f1ink+ijPki+fIkPij) (wheni#j#k),
ijkO
Ny
0, =1—2g.h.
i,l,m ﬂNilmO q4iPiim
Nii N,
®. —nr i< ),
ij,lim N lemoqtpjlm+(l(_>])
Oijt1m =0, (G19)

where ﬁl]k = pz]k + p]kl + pkl] pk]z p]zk plkj and
pij = pij + pji- (Note that we only calculated Q; and
Q;jx with i # j # k for simplicity. For €, jk, k is the index
such that: if we write N; =2%p;, N;=2%n; and
Ny = 2%ny, where n;, nj, ny are odd numbers the exponent
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