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We simulated highly tunable Weyl-semimetal bands using superconducting quantum circuits. Driving
the superconducting quantum circuits with microwave fields, we mapped the momentum space of a lattice
to the parameter space, realizing the Hamiltonian of a Weyl semimetal. By measuring the energy spectrum,
we directly imaged the Weyl points, whose topological winding numbers were further determined from the
Berry curvature measurement. In addition, we manipulated the band structure with an additional pump
microwave field, producing a momentum-dependent Weyl-point energy together with an artificial magnetic
field, which are indispensable for generating chiral magnetic topological currents in some special Weyl
semimetals and may have significant impact on topological physics.
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Topological effects have attracted broad interest because
they not only deepen our understanding of fundamental
physics but also are promising for realizing robust quantum
information processing. Among topological materials,
Weyl semimetals (WSMs) form a representative family
that possess topologically protected band crossing points,
Weyl points [1–3], whose physical properties have recently
been addressed extensively [4–8], including negative
magnetoresistance effects induced by a so-called chiral
anomaly (CA). Although significant progress has been
achieved in probing the topological properties of WSMs,
many interesting phenomena are still unexplored. For
instance, the chiral magnetic effect (CME) [9–11], which
arises purely from the topology of paired Weyl points and
requires that the two paired points must be separated in
both momentum and energy with a magnetic field being
applied, has not yet been detected in nature. The main
challenge lies in the limited flexibility of engineering and
manipulating the WSM band structures in a designated
tunable way such that the CME is detectable. In order to
maximize the flexibility and then explore more topological
effects, here we present a setup for simulating highly
tunable Weyl-semimetal bands in condensed matter sys-
tems. By driving the superconducting quantum circuits
[12,13] with elaborately designed microwaves [14–18], we
first realized a Weyl-semimetal band in an artificial system.
We measured the spectroscopy, directly imaging the Weyl
points, whose monopole charges are further determined by
the Berry curvature measurement. Then we applied another
microwave field to continuously tune the Weyl-point
energy to a well-designed momentum-dependent form.
In addition, we derived an equation of the CME topological
current in our engineered Weyl-semimetal bands with

multiple Weyl pairs, and manipulated the virtual currents
determined from this equation by tuning various parame-
ters, demonstrating the full flexibility in manipulating Weyl
points and introducing the wanted artificial magnetic field.
A lattice version of a simplified Weyl-semimetal

Hamiltonian may be written as

HðkÞ¼ sinkxσxþsinkyσyþðλþcoskzÞσzþu0ðkÞσ0; ð1Þ

where σx;y;z are the Pauli matrices and σ0 is the unit
matrix. k (kx, ky, kz) is the momentum (or wave) vector,
and λ (jλj ≤ 1) is an experimentally controllable parameter
that determines the kz coordinates of the Weyl points
(band crossing points). In most cases, u0ðkÞ is zero or a
k-independent constant, which merely introduces an extra
energy shift. AWeyl point can be considered as a “magnetic
monopole” for its associated Berry bundle. Physically, the
monopole charge is a generalization of the chirality, and
particularly right-handed (left-handed) Weyl point has a
positive (negative) unit charge. We here wish to point out
that Eq. (1) is a single-particle Hamiltonian, which may be
used for describing any kind of single-particle excitations
including fermions and bosons. And for a given k, it
just corresponds to a particular two-level system with
k-dependent parameters. Therefore, the WSM band here
can be simulated by a completely tunable qubit system.
In order to simulate the Hamiltonian of WSM bands, we

used a three-dimensional superconducting transmon sys-
tem [18,19]. The transmon, which is composed of a single
Josephson junction and two pads (250 × 500 μm2), was put
in a rectangular aluminum cavity with the resonance
frequency of TE101 mode about 9.026 GHz. In our
experiments, the main function of the cavity is to control
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and measure the transmon. The system is designed to work
in the dispersive regime. The whole sample package was
cooled in a dilution refrigerator to a base temperature of
30 mK. The dynamics of the system can be described by the
circuit QED theory, which addresses the interaction of an
artificial atom with microwave fields [20–23]. The quan-
tum states of the transmon can be controlled by micro-
waves. In-phase and quadrature mixers combined with a
1 GHz arbitrary wave generator (AWG) were used to
modulate the amplitude, frequency, and phase of micro-
wave pulses [24]. The measurement was performed with a
“high power readout” scheme [18,30]. As a strong micro-
wave on resonance with the cavity is sent in, the transmitted
amplitude of the microwave reflects the state of the trans-
mon due to the nonlinearity of the cavity QED system.
Conventionally, the transmon (coupled with cavity)

exhibits anharmonic multiple energy levels. In our experi-
ments, we considered the lowest three bare energy
levels of the transmon, as shown in the left-hand part of
Fig. 1(a), namely, j0i, j1i, and j2i. The transition frequen-
cies between different energy levels are ω10=2π ¼ 7.1755
and ω21=2π ¼ 6.8310 GHz, respectively, which were inde-
pendently calibrated by saturation spectroscopy. To map
the transmon Hamiltonian to the form of Eq. (1), we
applied construct (pump) microwaves to the transmon,
coupling to states j1i and j2i (j0i and j1i). The original bare
states j0i, j1i, and j2i will then transform to microwave
dressed states [17]. In the right-hand part of Fig. 1(a), we
show six relevant dressed states, which are denoted by
jn;−i, jn; 0i, jn;þi, jnþ 1;−i, jnþ 1; 0i, and jnþ 1;þi,
respectively. Here n is the average number of photons in the
coherent drive. The eigenenergies of these dressed states
depend on the microwave fields. In our experiments, the
lowest level jn;−i acted as the reference level because
the system was always initialized in it. The top two levels
jnþ 1;þi and jnþ 1; 0i were selected as two eigenstates
of spin-1=2 atoms. Under microwave driving, the effective
Hamiltonian of a spin-1=2 atom in the rotating frame may

be written as Ĥ ¼ P
3
i¼0Ωiσi=2; (ℏ ¼ 1 for simplicity),

where Ω1 (Ω2) corresponds to the frequency of Rabi
oscillations around the x (y) axis on the Bloch sphere,
which can be continuously adjusted by changing the
amplitude and phase of the construct microwave applied
to the system. Ω3 ¼ ω21 − ωconstruct is determined by the
detuning between the energy level spacing ω21 and the
construct microwave frequency. Ω0, corresponding to u0 in
the above Hamiltonian, is related to the energy spacing
between fjnþ 1;þi; jnþ 1; 0ig, and jn;−i. Since the
splitting of jn;−i and jn;þi (jnþ 1;−i and jnþ 1;þi)
depends on the frequency and amplitude of the pump
(construct) microwave, we can accurately design Ω0 after
calibration [31]. Therefore, by elaborately designing the
waveform of AWG and frequencies of microwaves, we can
construct every term in the above Hamiltonian point by
point. We sent the probe microwave and swept the
frequency. When the frequency of the probe microwave
matched the energy spacing between jn;−i and jnþ 1;þi
(or jnþ 1; 0i), a resonant peak could be observed. By
collecting the resonant peaks for various k parameters, we
obtained the band structures of Weyl semimetals [24].
We first demonstrated the realization and manipulation

of Weyl-semimetal bands for u0ðkÞ ¼ 0. In this case, the
pump microwave field was actually turned off. The
corresponding waveforms were synthesized by AWG
and sent to the microwave sources for constructing the
Hamiltonian in Eq. (1). Here we set Ω1=2 ¼ Ω sin kx,
Ω2=2 ¼ Ω sin ky, and Ω3=2 ¼ Ωðλþ cos kzÞ, with unit
Ω ¼ 10 MHz. To visualize the band structure of the
Weyl semimetal, we measured the spectroscopy of the
lattice Hamiltonian in the first Brillouin zone, as shown in
Fig. 2. Weyl points, as the signature of Weyl semimetals,
are directly observed. As illustrated in Fig. 2, eight Weyl
points are observed in the first Brillouin zone. There are
four points with a positive (negative) charge, which are
named Wþ (W−) and denoted by red (green) color. To
characterize their topological properties, we also measured
the winding number of each Weyl point by detecting the
Berry curvature, which was determined by measuring the
nonadiabatic response to the change of the external param-
eter [14–16]. We let the system evolve quasiadiabatically
along a designed path in the parameter space, so that the
Berry curvature is directly related to hσyi [31]. Then the
winding numbers for W� could be obtained by performing
quantum state tomography [24]. As shown in Fig. 2(b), the
winding number of W� approximates �1, close to the
predicted value, where � of the winding number corre-
sponds to the topological charge sign of Weyl points.
Moreover, we can continuously vary λ to explore various
topological properties of Weyl semimetals. For instance, we
observed that with the change of λ, Weyl points merge and
annihilate. Shown in Figs. 2(c)–2(e) are three-dimensional
spectra for λ ¼ 0, −0.5, and −1, from left to right. When
λ ¼ 0, there are eight Weyl points, located at (0, 0, �π=2),

FIG. 1. (a) The energy diagram of a transmon without (left) and
with (right) microwave driving. The construct (pump) microwave
field is applied to j1i and j2i (j0i and j1i). The system transforms
to the dressed states, as shown in the right-hand panel. (b) Left:
Microwaves with various frequencies, amplitudes, and phases are
applied to construct the Hamiltonian. Right: Schematic for the
effect of an extra pump microwave field, which is to generate a
parameter-dependent energy offset.
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(0, π, �π=2), (π, 0, �π=2), and (π, π, �π=2), respectively.
With λ decreasing from 0 to−1, Weyl points move along the
kz direction. When λ ¼ −1, the eight Weyl points merge to
four Dirac points, which corresponds to a topological phase
transition from the topological WSM phase to a normal
Dirac metal phase.
Having manipulated the Weyl points in a virtual momen-

tum space, we can demonstrate the further tunability by
shifting the energy of the Weyl points, which is mainly
motivated by the so-called chiral magnetic effect in WSMs
addressed below. According to the Nielsen-Ninomiya no-go
theorem [33], these Weyl points always form dipoles, each
ofwhich is composed of two oppositely chargedmonopoles.
Thus the electromagnetic response ofWSMs lies essentially
inside each dipole. Namely, a left-handed Weyl point is
separated by bμ (μ ¼ 0, 1, 2, 3) from a right-handed one in
energy-momentum space. Because of the topological nature
of the dipole momentum bμ, a unique topological term
responding exclusively to the magnetic field may be
expected from a minimal model of WSM consisting of only
one dipole of Weyl points. The corresponding action is
given by SΘ ¼ ½−ð1=8π2Þ� R d4xϵμνλσbμAν∂λAσ, where Aν

represents the corresponding component of the electric-
magnetic potential, and ϵμνλσ is the Levi-Cività symbol
(here the electronic charge is set to e ¼ 1 for simplicity)
[11,31]. This action leads to the anomalous current
jμ ¼ ½−ð1=8π2Þ�ϵμνλσbνFλσ, where Fλσ is the electromag-
netic field tensor. A remarkable result is that when two
oppositely charged Weyl points are separated by an energy

difference b0, a solely external magnetic field B is
able to induce an additional pure topological current Jtopo
given by [31]

Jtopo ¼
b0
4π2

B: ð2Þ

This is the equation of CME for one pair ofWeyl points. The
current arises purely froma topological effect, and is directly
proportional to the magnetic field, in contrast to the famous
Ampere’s law. Notably, this CME topological current is
inherently different from the CA currents extensively
addressed for WSMs over the past several years [4–8].
Here, the CA and CME currents are respectively originated
from the two different topological terms in the action and
described by distinct formulas [31]. The topological term in
the action with the dipole momentum has the advantage
of being readily generalizable to a generic WSM contain-
ing multiple dipoles. For a generic case, we need to
introduce a modified bμ for multiple dipoles of monopoles:
bμ ¼

P
sðKþ;μ

s − K−;μ
s Þ, where s labels left- or right-handed

Weyl points, and K�;μ
s are the positions of left- or right-

handed Weyl points in the energy-momentum space. It
follows that CME can still be described by Eq. (2) with the
above-introduced modified b0 [31]. It is noteworthy that the
time-reversal symmetry should be broken for a nonvanish-
ing chiral magnetic effect, as seen from Eq. (1); otherwise,
the CME current may be vanishing [34].
From Eq. (2), we note that there are two factors that

account for CME topological currents. The first is a
nonzero b0, which is difficult to fulfill in real materials,
and the second is the presence of a magnetic field. Using
our highly tunable Weyl-semimetal bands, we can realize
the two factors at the same time by adding additional pump
microwave fields, though notably no particle current really
occurs in our parametrized single-qubit system. We first
show how to obtain a finite b0 [24]. As shown in Eq. (1),
u0ðkÞ is the prefactor of the σ0 term. For our WSM, we
have four pairs of Weyl points. In an ideal case, b0 may be 4
times the energy difference between a single pair of Wþ
and W− points. We noticed that the Weyl points have
different locations in momentum space. If one can produce
a momentum-dependent σ0 term, the energy difference of
the two Weyl points will be nonvanishing. In order to
realize a momentum-dependent u0ðkÞ, we applied an extra
pump microwave field to shift the reference level for
different k. In the dressed state picture, the absolute value
of the eigenenergy is determined by the energy spacing
between subspace fjnþ 1;þi; jnþ 1; 0ig and jn;−i,
which is ω01 þ Δ01=4þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

01 þΩ2
01

p
=4 in the E − kz

plane which contains Weyl points [31]. Here Δ01 is
detuning between level spacing ω10 and the pump micro-
wave, while Ω01 is the coupling Rabi frequency, which is
proportional to the amplitude of the pump microwave. In
contrast to the original value ω01, the magnitude of energy

FIG. 2. (a) Illustration of Weyl points in the first Brillouin
zone. Weyl points with positive (negative) charges are denoted by
red (green) color. (b) Schematic of the formation of winding
numbers at a positive (negative) Weyl point. Measured winding
number from hσyi are close to þ1 (−1), corresponding to Weyl
points with positive (negative) charges. (c)–(e) Measured three-
dimensional energy spectra of the Weyl semimetal in the first
Brillion zone for λ ¼ 0, −0.5, −1. The brightest points are Weyl
points with the charges labeled. The locations of gapless Weyl
points are found to shift with λ.
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shift is Δ01=4þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

01 þ Ω2
01

p
=4, which can be accurately

controlled by adjusting the amplitude and frequency of
pump microwaves. For instance, using an accurately
designed waveform, we could obtain a special kind of

u0ðkÞ ¼ fðkzÞ cosðkxÞ cosðkyÞ; ð3Þ
where fðkzÞ is a 2π-periodic function of kz, which can be
set as fðkzÞ ¼ αkz=ð10πÞ for jkzj ≤ 7π=8, while fðkzÞ ¼
−7α=10π½kz − sgnðkzÞ� for 7π=8 ≤ jkzj ≤ π in the range of
½−π; π�, with α being a preset parameter. In our experi-
ments, fðkzÞ in the range ½−7π=8; 7π=8� is a simple linear
function of kz, which can generate the energy difference u0
of a relevant pair of Weyl points. The function in
½−π;−7π=8Þ and ð7π=8; π� is chosen to have the periodical
boundary condition. In Fig. 3(b), we show an example of u0
with kx ¼ ky ¼ 0, α ¼ 1. Notably, our specific choice of
the cosðkxÞ cosðkyÞ term in u0 is to ensure that the total
current contributed from four pairs of Weyl points is 4 times
that for a single pair.
We now turn to the second factor of CME. From Eq. (2),

the CME topological current will be proportional to both b0
and the magnetic field B. Since B ¼ ∇ ×A, we can
introduce an artificial vector potential A to generate the
artificial magnetic field needed. Without loss of generality,
we assumed that B was along the x direction and A had
only the z component, such that Bx ¼ ∂Az=∂Y, where a set
of Az in our experiment was chosen to be proportional to a
fictitious coordinate Y (with the dimensionality of length).
Considering the form of the canonical momentum, we can
introduce the vector potential by adding a controllable shift

on the momentum kz, namely, we transformed kz to kz þ Az
in the σz prefactor of Eq. (1), resulting in Ω3=2 ¼
Ω½λþ cosðkz þ AzÞ�. In the presence of this offset, the
artificial magnetic fieldmay be introduced to act on e-charge
single particles. In order to extract Bx, we here adopted a
scenario of fictitious work to evaluate ∂Az=∂Y from our
experimental data. Since we had a good linear momentum-
dependent shift of the energy bands near the Weyl points, a
small change ofAzwill cause an energydifference inΔE, i.e.,
ΔE ∝ ΔAz near the Weyl points. On the other hand, we
may write ΔE ¼ FYΔY near one Weyl point, where FY
could be viewed as a constant fictitious force acting on the
particle which moved ΔY along the Y direction. Therefore,
ΔAz ∝ ΔY, with the prefactor defining the magnitude of Bx.
In our experiments, by choosing various small Az near the
Weyl point, we measured the corresponding ΔAz and ΔE
(i.e., ΔY if we set FY ¼ 1 force unit). By plotting Az as a
function of Y, we indeed observed a good linear relation,
whose slope may approximately give the artificial field Bx.
For various fixed Bx, we measured b0, from which we were
able to determine the virtual CME topological current Jtopo
based on our derived Eq. (2).
One advantage for simulating topological band struc-

tures by using a superconducting transmon is the full
controllability of the parameter space. We can continuously
tune parameters λ, Az, and u0ðkÞ in Eq. (1). We have two
ways to vary the virtual CME topological current derived
from Eq. (2). One is to change λ. The other is to tune the
slope of u0ðkÞ. As indicated in Fig. 4(a), with λ varying from
0.5 to −0.5 for α ¼ 1, the energy difference changes from
0.0813GHz (green) to 0.1512GHz (red). On the other hand,
when kz is in the range of (−7π=8, 7π=8), changing the slope

z z
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FIG. 3. Effects of an offset Az and momentum-dependent u0 are
illustrated in (a) and (b). (c) Spectrum along the kz direction for
Hamiltonian in Eq. (1) for u0ðkÞ ¼ fðkzÞ cosðkxÞ cosðkyÞ (blue
line) with kx ¼ ky ¼ 0, where fðkzÞ is given in Eq. (3) with
α ¼ 1. The vector potential Az, which causes the shift of the
spectrum, is 0 (green) and π=8 (red), respectively. (d) Plot of Az as
a function of Y. Error bars are derived from the width of resonant
peaks in the spectrum.

(a) (b)

ar
b.

 u
ni

ts

arb. units

ar
b.

 u
ni

ts

arb. units

FIG. 4. (a) Energy spectrum with various b0 obtained by
changing λ and u0. The upper panel shows the spectrum for
different α of u0 with λ ¼ 0: α ¼ 1 (green) and α ¼ 3 (red). The
lower panel shows the spectrum for λ ¼ 0.5 (red) and −0.5
(green) with α ¼ 1. Solid dots and lines are experimental data and
theoretical calculations, respectively. (b) The total topological
current derived from Eq. (2), which is contributed to by all four
pairs of Weyl points, is plotted as a function of b0 for various Bx.
From bottom to top, Bx is 0.09, 0.13, 0.19, and 0.38, respectively.
Blue and red circles are experimental data obtained from the
shifts of λ and α, respectively, while dashed lines are theoretical
results. The inset of (b) shows the normalized topological current
J=b0 as a function of Bx for the two methods.
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of fðkzÞ (i.e., α) in u0ðkÞ alsomodifies the energy difference
of twoWeyl points for a fixed λ ¼ 0: the energy difference is
0.151 GHz for α ¼ 1 (green), while it is 0.430 GHz for
α ¼ 3 (red). Both methods effectively changed b0, and
hence the virtual topological current. For various Bx, we
plotted the topological currents against b0 for both methods.
The currents extracted from the two approaches fall on one
straight line for the same Bx, as shown in the main panel of
Fig. 4(b). Moreover, the normalized topological current
J=b0 for two differentmethods depends solely onBx, as seen
from the inset of Fig. 4(b). Finally, we wish to reiterate that
the currents addressed here are virtual and not realistic ones
for our single-qubit system, and particularly they just reflect
the deformational response of the topological band structure
to magnetic fields, which are determined from Eq. (2) by
measuring b0.
In summary, our work presents the first experimental

report on quantum simulation and manipulation of highly
tunable Weyl-semimetal band structures using supercon-
ducting qubits, paving the way for further exploration and
simulation of topological physics.
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