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We study the spin-excitation spectrum (dynamic structure factor) of the spin-1=2 square-lattice
Heisenberg antiferromagnet and an extended model (the J-Q model) including four-spin interactions
Q in addition to the Heisenberg exchange J. Using an improved method for stochastic analytic continuation
of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the
sharp (δ-function) contribution to the structure factor expected from spin-wave (magnon) excitations, in
addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in
excellent agreement with recent neutron-scattering experiments on CuðDCOOÞ2 · 4D2O, where a broad
spectral-weight continuum at wave vector q ¼ ðπ; 0Þ was interpreted as deconfined spinons, i.e., fractional
excitations carrying half of the spin of a magnon. Our results at ðπ; 0Þ show a similar reduction of the
magnon weight and a large continuum, while the continuum is much smaller at q ¼ ðπ=2; π=2Þ (as also
seen experimentally). We further investigate the reasons for the small magnon weight at ðπ; 0Þ and the
nature of the corresponding excitation by studying the evolution of the spectral functions in the J-Qmodel.
Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before
the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized
state. Based on these results, we reinterpret the picture of deconfined spinons at ðπ; 0Þ in the experiments as
nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture
of a fragile ðπ; 0Þ-magnon pole in the Heisenberg model and its depletion in the J-Q model, we introduce
an effective model of the excitations in which a magnon can split into two spinons that do not separate but
fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle-hole
pair in the exciton-polariton problem). The model can reproduce the reduction of magnon weight and
lowered excitation energy at ðπ; 0Þ in the Heisenberg model, as well as the energy maximum and smaller
continuum at ðπ=2; π=2Þ. It can also account for the rapid loss of the ðπ; 0Þ magnon with increasing Q and
the remarkable persistence of a large magnon pole at q ¼ ðπ=2; π=2Þ even at the deconfined critical point.
The fragility of the magnons close to ðπ; 0Þ in the Heisenberg model suggests that various interactions that
likely are important in many materials—e.g., longer-range pair exchange, ring exchange, and spin-phonon
interactions—may also destroy these magnons and lead to even stronger spinon signatures than in
CuðDCOOÞ2 · 4D2O.
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I. INTRODUCTION

The spin S ¼ 1=2 antiferromagnetic (AFM) Heisenberg
model is the natural starting point for describing the
magnetic properties of many electronic insulators with
localized spins [1]. The two-dimensional (2D) square-
lattice variant of the model became particularly prominent
because of its relevance to the undoped parent compounds
of the cuprate high-temperature superconductors [2,3], e.g.,
La2CuO4; more broadly, it has also remained a fruitful

*shaohui@csrc.ac.cn
†zymeng@iphy.ac.cn
‡sandvik@bu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 7, 041072 (2017)

2160-3308=17=7(4)=041072(26) 041072-1 Published by the American Physical Society

https://doi.org/10.1103/PhysRevX.7.041072
https://doi.org/10.1103/PhysRevX.7.041072
https://doi.org/10.1103/PhysRevX.7.041072
https://doi.org/10.1103/PhysRevX.7.041072
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


testing ground for quantum magnetism. Though there is no
rigorous proof of the existence of AFM long-range order at
temperature T ¼ 0 in the case of S ¼ 1=2 spins (while for
S ≥ 1, there is such a proof [4]), series-expansion [5] and
quantum Monte Carlo (QMC) calculations [6–10] have
convincingly demonstrated a sublattice magnetization in
close agreement with the simple linear spin-wave theory.
Thermodynamic properties and the spin correlations at
T > 0 [11–13] also conform very nicely with the expect-
ations [14,15] for a “renormalized classical” system with
exponentially divergent correlation length when T → 0.
Thus, at first sight, it may appear that the case is settled and
the system lacks “exotic” quantum-mechanical features.
However, it has been known for some time that the
dynamical properties of the model at short wavelengths
cannot be fully described by spin-wave theory. Along the
line q ¼ ðπ; 0Þ to ðπ=2; π=2Þ in the Brillouin zone (BZ) of
the square lattice (with lattice spacing one), the magnon
energy is maximal and constant within linear spin-wave
theory. However, various numerical calculations have
pointed to a significant suppression of the magnon energy
and an anomalously large continuum of excitations in the
dynamic spin structure factor Sðq;ωÞ around q ¼ ðπ; 0Þ
[16–20]. At q ¼ ðπ=2; π=2Þ, the energy is instead elevated
and the continuum is smaller. Conventional spin-wave
theory can only capture a small fraction of the ðπ; 0Þ
anomaly, even when pushed to high orders in the 1=S
expansion [21–24].
A large continuum at high energies for q close to ðπ; 0Þ

was also observed in neutron-scattering experiments on
La2CuO4, but an opposite trend in the energy shifts is
apparent there: a reduction at q ¼ ðπ=2; π=2Þ and an
increase at ðπ; 0Þ [25,26]. It was realized that this is due
to the fact that the exchange constant J is large in this case
(J ≈ 100 meV), and, when considering its origin from an
electronic Hubbard model, higher-order exchange proc-
esses play an important role [27–30]. Interestingly, in
CuðDCOOÞ2 · 4D2O (CFTD), which is considered the best
realization of the square-lattice Heisenberg model to date,
anomalous features in close agreement with those in the
Heisenberg model have been observed [31–33]. In this
case, the exchange constant is much smaller, J ≈ 6 meV,
and the higher-order interactions are expected to be
relatively much smaller than in La2CuO4.
For some time, the existence of a large continuum in

the excitation spectrum close to q ¼ ðπ; 0Þ has prompted
speculations of physics beyond magnons in materials such
as La2CuO4 and CFTD. In particular, in recent low-
temperature polarized neutron-scattering experiments on
CFTD [33], the broad and spin-isotropic continuum in
Sðq;ωÞ at q ¼ ðπ; 0Þ was interpreted as a sign of decon-
finement of spinons; i.e., the S ¼ 1 degrees of freedom
(d.o.f.) excited by a neutron at this wave vector would
fractionalize into two independently propagating S ¼ 1=2
objects. In contrast, the ðπ=2; π=2Þ scattering remains more

magnonlike, with a small spin-anisotropic continuum.
Calculations within a class of variational resonating-
valence-bond (RVB) wave functions give some support
of this idea [33], showing that a pair of spinons originating
from a “broken” valence bond [34] at q ¼ ðπ; 0Þ could
deconfine and account for both the energy suppression and
the broad continuum.
A potential problem with the spinon interpretation is that

there is also a magnon pole at q ¼ ðπ; 0Þ, even though its
amplitude is suppressed, and this would indicate that the
lowest-energy excitation at this wave vector is still amagnon.
LackingAFM long-range order, theRVBwave function does
not contain any magnon pole, and the interplay between the
magnon and putative spinon continuum was not considered
in Ref. [33]. Many different calculations have indicated a
magnon pole in the entire BZ in the 2D Heisenberg model
[16–20]. Theprominent continuumat and close toq ¼ ðπ; 0Þ
has been ascribed to multimagnon processes, and systematic
expansions [19] in the number of magnons indeed converge
rapidly and give results for the relative weight of the single-
magnon pole in close agreement [35] with series-expansion
and QMC calculations [16,17]. Since the results also agree
very well with the neutron data for CFTD, the spinon
interpretation of the experiments can be questioned.
Despite the apparent success of the multimagnon sce-

nario in accounting for the observations, one may still
wonder whether spinons could have some relevance in the
Heisenberg model and in materials such as CFTD and
La2CuO4. This question is the topic of the present paper.
Our main motivation for revisiting the spinon scenario is
the direct connection between the Heisenberg model and
deconfined quantum criticality: If a certain four-spin
interaction Q is added to the Heisenberg exchange J on
the square lattice (the J-Q model [36]), the system can be
driven into a spontaneously dimerized ground state: a
valence-bond solid (VBS). At the dimerization point,
Qc=J ≈ 22, the AFM order also vanishes, in what appears
to be a continuous quantum phase transition [37–39], in
accordance with the scenario of deconfined quantum-
critical points [40,41]. At the critical point, linearly
dispersing gapless triplets emerge at q ¼ ðπ; 0Þ and
ð0; πÞ [42,43], in addition to the gapless points (0,0) and
ðπ; πÞ in the long-range ordered AFM, and all the low-
energy S ¼ 1 excitations around these points should
comprise spinon pairs. Thus, it is possible that the reduction
in ðπ; 0Þ excitation energy observed in the Heisenberg
model and CFTD is a precursor to deconfined quantum
criticality. If that is the case, then it may indeed be possible
to also describe the continuum in Sðq;ωÞ around q ¼ ðπ; 0Þ
in terms of spinons, as already proposed in Ref. [19].
However, the persistence of the magnon pole remains
unexplained in this scenario.
Here, we revise and complete the picture of deconfined

spinon states in the continuum by also investigating the
nature of the sharp magnonlike state in the Heisenberg
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model, and its fate as the deconfined critical point is
approached. Using QMC calculations and an improved
numerical analytic continuation technique (also presented
in this paper) to obtain the dynamic structure factor from
imaginary-time-dependent spin correlations, we show that
the ðπ; 0Þmagnon pole in the Heisenberg model is fragile—
it is destroyed in the presence of even a very small Q
interaction, well before the critical point where the AFM
order vanishes. In contrast, the ðπ=2; π=2Þmagnon is robust
and survives even at the critical point. We explain these
behaviors within an effective magnon-spinon mixing
model, where a bare magnon in the Heisenberg model
becomes dressed by fluctuating in and out of a two-spinon
continuum at higher energy. The mixing is the strongest at
q ¼ ðπ; 0Þ, the point of minimum gap between the magnon
and spinon. Our results indicate that there already exist
spinons above the magnon band in the Heisenberg model,
and a small perturbation, here the Q interaction, can cause
their bare energy to dip below the magnon, thus destabi-
lizing this part of the magnon band and changing the nature
of the excitation from a well-defined magnon-spinon
resonance to a broad continuum of spinon states. In
contrast, the ðπ=2; π=2Þ spinons, which are at their
dispersion maximum, never fall below the magnon energy,
thus explaining the robust magnon in this case.
The proximity of the square-lattice Heisenberg AFM to a

so-called AF* phase has been proposed as the reason for
the ðπ; 0Þ anomaly [33]. The AF* phase has topological Z2

order but still also has AFM long-range order, and it hosts
gapped spinon excitations in addition to low-energy mag-
nons [44,45]. In our scenario, it is instead the proximity to a
VBS and the intervening deconfined quantum-critical point
that are responsible for the presence of high-energy spinons
and the excitation anomaly in the Heisenberg model. Our
results for the J-Q model show that the q ¼ ðπ; 0Þ magnon
pole is very fragile in the Heisenbergmodel, and the magnon
picture should fail completely around this wave vector even
with a rather weak deformation of the model, likely alsowith
perturbations other than the Q term considered here (e.g.,
frustrated further-neighbor couplings, ring exchange, or
perhaps even spin-phonon couplings). Thus, although the
almost-ideal Heisenberg magnet CFTD should only host
nearly deconfined spinons, other materials may possibly
have sufficient additional quantum fluctuations to cause full
deconfinement close to q ¼ ðπ; 0Þ.
Our numerical results for Sðq;ωÞ rely heavily on an

improved stochastic method for analytic continuation of
QMC-computed imaginary-time correlation functions. It
allows us to test for the presence of a δ function in the
spectral function and determine its weight. In Sec. II, we
summarize the features of the method that are of critical
importance to the present work (leaving more extensive
discussions of a broader range of applications of similar
ideas for a future publication [46]). We also present tests
using synthetic data, which show that the kind of spectral

function expected in the Heisenberg model indeed can be
reproduced with QMC data of typical quality. Readers who
are not interested in technical details can skip this section
and go directly to Sec. III, where we present a brief
recapitulation of the key aspects of the method before
discussing the dynamic structure factor of the Heisenberg
model. In addition to the QMC results, we also compare
with Lanczos exact diagonalization (ED) results for small
systems and study finite-size scaling behavior with both
methods. We compare our results with the recent exper-
imental data for CFTD. In Sec. IV, we discuss results for
the J-Q model, focusing on the points q ¼ ðπ; 0Þ and
q ¼ ðπ=2; π=2Þ, where the excitation spectrum evolves in
completely different ways as the Q interactions are
increased and the deconfined critical point is approached.
In Sec. V, we present the effective magnon-spinon mixing
model for the excitations and discuss numerical solutions of
it. We summarize and further discuss our main conclusions
in Sec. VI.

II. STOCHASTIC ANALYTIC CONTINUATION

We consider a spectral function—the dynamic spin
structure factor—at temperature T ¼ 0. A general spectral
function of any bosonic operatorO can bewritten in the basis
of eigenstates jni and eigenvalues En of the Hamiltonian as

SðωÞ ¼ π
X
n

jhnjOj0ij2δðω − ½En − E0�Þ: ð1Þ

For the dynamic spin structure factor Sðq;ωÞ at momentum
transfer q and energy transfer ω, the corresponding operator
is the Fourier transform of a spin operator, e.g., the z
component,

Szq ¼ 1ffiffiffiffi
N

p
XN
i¼1

e−iri·qSzi ; ð2Þ

where ri is the coordinate of site i—here on the square lattice
with the lattice spacing set to unity. In this section, we keep
the discussion general and do not need to consider the form
of the operator.

A. Preliminaries

In QMC simulations, we calculate the corresponding
correlation function in imaginary time,

GðτÞ ¼ hOðτÞOð0Þi; ð3Þ
where OðτÞ ¼ eτHOe−τH, and its relationship to the real-
frequency spectral function is

GðτÞ ¼ 1

π

Z
∞

0

dωSðωÞe−τω: ð4Þ

Some QMC methods, such as the SSE method [47] applied
here to the Heisenberg model, can provide an unbiased
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stochastic approximation Ḡi ≡ ḠðτiÞ to the true correlation
function Gi ≡GðτiÞ for a set of imaginary times τi, i ¼
1;…; Nτ [48,49]. These data points have statistical errors
σi (1 standard deviation of the mean value). Since the
statistical errors are correlated, their full characterization
requires the covariance matrix, which can be evaluated
with the QMC data divided up into a large number of
bins. Denoting the QMC bin averages by Gb

i for bins
b ¼ 1; 2;…; NB, we have Ḡi ¼

P
bG

b
i =NB, and the covari-

ance matrix is given by

Cij ¼
1

NBðNB − 1Þ
XNB

b¼1

ðGb
i − ḠiÞðGb

j − ḠjÞ; ð5Þ

where we also assume that the bins are based on sufficiently
long simulations to be statistically independent. The
diagonal elements of C are the squares of the standard
statistical errors: σ2i ¼ Cii.
In a numerical analytic continuation procedure, the

spectral function is parametrized in some way, e.g., with
a large number of δ functions on a dense grid of frequencies
or with adjustable positions in the frequency continuum.
The parameters (e.g., the amplitudes of the δ functions) are
adjusted for compatibility with the QMC data using the
relationship Eq. (4). Given a proposal for SðωÞ, there is then
a set of numbers fGig whose closeness to the correspond-
ing QMC-computed function is quantified in the standard
way in a data-fitting procedure by the “goodness of fit,”

χ2 ¼
XNτ

i¼1

XNτ

j¼1

ðGi − ḠiÞC−1
ij ðGj − ḠjÞ: ð6Þ

In practice, we compute the eigenvalues ϵi and eigenvectors
of C and transform the kernel e−τω of Eq. (4) to this basis.
With Δi ¼ Gi − Ḡi transformed to the same basis, the
goodness of fit is diagonal,

χ2 ¼
XNτ

i¼1

Δi
2

ϵi
; ð7Þ

and can be more rapidly evaluated.
A reliable diagonalization of the covariance matrix

requires more than Nτ bins, and here we typically use at
least 10 × Nτ bins, with Nτ in the range 50–100 and the τ
points chosen on a uniform or quadratic grid. We evaluate
the covariance matrix (5) by bootstrapping, with the total
number of bootstrap samples (each consisting of NB
random selections out of the NB bins) even larger than
the number of bins. In the Appendix, we show some
examples of covariance eigenvalues and eigenvectors.
Minimizing χ2 does not produce useful results. If

positive-definiteness of the spectrum is imposed, the “best”
solution consists of a typically small number of sharp peaks
[50,51], and there are many other very different solutions
with almost the same χ2 value, reflecting the ill-posed

nature of the inverse of the Laplace transform in Eq. (4).
Without positive-definiteness, the problem is even more
ill-posed. Some regularization mechanism therefore has to
be applied.
In the standard maximum-entropy (ME) method

[52–54], an entropy E,

E ¼ −
Z

∞

0

dωSðωÞ ln
�
SðωÞ
DðωÞ

�
; ð8Þ

of the spectrum with respect to a “default model” DðωÞ is
defined (i.e., E is maximized when S ¼ D), and the data are
taken into account by maximizing the function

Q ¼ αE − χ2: ð9Þ

This produces the most likely spectrum, given the data and
the entropic prior. Different variants of the method pre-
scribe different ways of determining the parameter α, or, in
some variants, results are averaged over α.
Here, we use stochastic analytic continuation [51,55–57]

(SAC), where the entropy is not imposed explicitly as a
prior but is generated implicitly by a Monte Carlo sampling
procedure of a suitably parametrized spectrum. We intro-
duce a parametrization that enables us to study a spectrum
containing a sharp δ function, which is impossible to
resolve with the standard ME approaches (and also with
standard SAC) because of the low entropy of such spectra.

B. Sampling procedures

Following one of the main lines of the SAC approach
[51,55–57], we sample the spectrum with a probability
distribution resembling the Boltzmann distribution of a
statistical-mechanics problem, with χ2=2 playing the role of
the energy of a system at a fictitious temperature Θ:

PðSÞ ∝ exp

�
−

χ2

2Θ

�
: ð10Þ

Lowering Θ leads to less fluctuations and a smaller mean
value hχ2i, and this parameter therefore plays a regulari-
zation role similar to α in the ME function, Eq. (9) [55].
Several proposals for how to choose the value of Θ have
been put forward [51,55–57]. There is also another line
of SAC methods in which good spectra (in the sense of low
χ2 values) are generated not by sampling at a fictitious
temperature but according to some other distribution with
other regularizing parameters [58]. Using Eq. (10) allows
us to construct direct analogues with statistical mechanics,
e.g., as concerns configurational entropy [59]. Before
describing our scheme of fixing Θ, we discuss a para-
metrization of the spectrum specifically adapted to the
dynamic spin structure factor of interest in this work.
We parametrize the spectrum by a number Nω of δ

functions in the continuum, as illustrated in Fig. 1:
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SðωÞ ¼
XNω−1

i¼0

aiδðω − ωiÞ; ð11Þ

working with a normalized spectrum, so that

XNω−1

i¼0

ai ¼ 1; ð12Þ

which corresponds to Gð0Þ ¼ 1 in Eq. (4). The prenor-
malized value of Gð0Þ is used as a factor in the final result.
In sampling the spectrum, we never change the normali-
zation, and Gð0Þ therefore is not included in the data set
defining χ2 in Eq. (7). The covariance matrix, Eq. (5), is
also computed with normalization to Gð0Þ ¼ 1 for each
bootstrap sample, which has a consequence that the
individual statistical errors σi → 0 for τi → 0, as discussed
further in the Appendix.
In Fig. 1(a), the δ functions all have the same weight,

ai ¼ N−1
ω , with Nω typically ranging from 500 to 2000 in

the calculations presented in this paper. The sampling
corresponds to changing the locations (frequencies) ωi
of the δ functions, with the standard Metropolis probability
used to accept or reject a change ωi → ωi þ d, with d
chosen at random within a window centered at d ¼ 0. The
width of the window is adjusted to give an acceptance rate
close to 1=2. We collect the spectral weight in a histogram,
averaging over sufficiently many updating cycles of the
frequencies to obtain smooth results. In practice, in order to
be able to use a precomputed kernel e−ωjτi in Eq. (4) for all
times τi and frequencies ωj, we use a very fine grid of
allowed frequencies (much finer than the histogram used
for collecting the spectrum), e.g., with spacing Δω ¼ 10−5

in typical cases where the dominant spectral weight is
roughly within the range 0–5. We then also need to impose
a maximum frequency, e.g., ωmax ¼ 20 under the above
conditions. With approximately 100 τ-points, the amount
of memory needed to store the kernel is then still reason-
able, and in practice, the fine grid produces results

indistinguishable from ones obtained in the continuum
(strictly speaking, double-precision floating-point num-
bers) without limitation, i.e., without even an upper bound
imposed on the frequencies.
We have found that not changing the amplitudes of the δ

functions is an advantage in terms of the sampling time
required to obtain good results, and there are other
advantages as well, as will be discussed further in a
forthcoming technical article [46]. One can also initialize
the amplitudes with a range of different weights (e.g., of the
form ai ∝ iα, with α > 0) while maintaining the normali-
zation Eq. (12). This modification of the scheme can help if
the spectrum has a gap separating regions of significant
spectral weight since an additional amplitude-swap update,
ai ↔ aj, can easily transfer weight between two separate
regions when the weights are all different, thus speeding up
the sampling (but we typically do not find significant
differences in the final results as compared with all-equal
ai). This method was already applied to spectral functions
of a 3D quantum-critical antiferromagnet in Ref. [60].
Here, we do not have any indications of midspectrum gaps,
and we use the constant-weight ensemble—however, with
a crucial modification.
As illustrated in Fig. 1(b), in order to reproduce the kind of

spectral function expected in the 2D Heisenberg model—a
magnon pole followed by a continuum—we have developed
a modified parametrization where we give special treatment
to the δ function with the lowest frequency ω0. We adjust its
amplitude a0 in a manner described further below but keep it
fixed in the sampling of frequencies. The common amplitude
for the other δ functions is then ai ¼ ð1 − a0Þ=ðNω − 1Þ.
The determination of the best a0 value also relies on how the
sampling temperature Θ is chosen, which we discuss next.
Consider first the case of all δ functions having equal

amplitude: Fig. 1(a). As an initial step, we carry out a
simulated annealing procedure with slowly decreasing Θ to
find the lowest, or very close to the lowest, possible value of
χ2 (which will never be exactly 0, no matter how many δ
functions are used, because of the positive-definiteness
imposed on the spectrum). We then raiseΘ to a value where
the sampled mean value h χ2i of the goodness of fit is
higher than the minimum value χ2min by an amount of the
order of the standard deviation of the χ2 distribution, i.e.,
going away from the overfitting region where the process
becomes sensitive to the detrimental effects of the statistical
errors (i.e., producing a nonphysical spectrum with a
small number of sharp peaks). We consider the statistical
expectation that the best fit should have χ2min ≈ Nd.o.f. ¼
Nτ − Npara, where Npara is the (unknown) effective number
of parameters of the spectrum and the minimum χ2 value
can be taken as an estimate of the effective number of
d.o.f.: χ2min ≈ Nd.o.f.. Hence, the standard deviation σχ2 ¼
ð2Nd.o.f.Þ1=2 can be replaced by the statistically valid
approximation

(a)

(b)

ω

S

S

FIG. 1. Parametrizations of the spectral function used in this
work. In diagram (a), a large number of δ functions with the
same amplitude occupy frequencies ωi in the continuum (or, in
practice, on a very fine frequency grid). The locations are
sampled in the SAC procedure. In diagram (b), the δ function
at the lowest frequency ω0 has a larger amplitude, a0 > ai for
i > 0, and this amplitude is optimized in the way described in the
text. The frequencies of all the δ functions, including ω0, are
sampled as in (a) but with the constraint ω0 < ωi ∀ i > 0.
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σχ2 ≈
ffiffiffiffiffiffiffiffiffiffiffi
2χ2min

q
: ð13Þ

Thus, we adjust Θ such that

hχ2i ≈ χ2min þ a
ffiffiffiffiffiffiffiffiffiffiffi
2χ2min

q
; ð14Þ

with the constant a of order one. For spectral functions
with no sharp features, we find that this method with the
parametrization in Fig. 1(a) produces good, stable results,
with very little dependence of the average spectrum on a as
long as it is of order one [60,61]. For a → 0, the data
become overfitted, eventually leading to a spectrum con-
sisting of a small number of sharp peaks with little
resemblance to the true spectrum.
Using the unrestricted sampling with the parametrization

in Fig. 1(a), with QMC data of typical quality, one cannot
expect to resolve a very sharp peak—in the extreme case, a
δ function—because it will be washed out by entropy.
Therefore, in most of the calculations reported in this paper,
we proceed in a different way in order to incorporate the
expected δ function. After determining χ2min, we switch to
the parametrization in Fig. 1(b), and the next step is to find
an optimal value of the amplitude a0. To this end, we rely
on the insight from Ref. [59] that the optimal value of a
parameter affecting the amount of configurational entropy
in the spectrum can be determined by monitoring hχ2i as a
function of that parameter at fixed sampling temperature Θ.
In the case of a0, increasing its value will remove entropy
from the spectrum. Since entropy is what tends to spread
out the spectral weight excessively into regions where there
should be little weight or no weight at all, a reduced entropy
can be reflected in a smaller value of hχ2i. Thus, in cases
where the spectrum is gapped, a sampling with the para-
metrization in Fig. 1(a) will lead to spectral weight in the
gap and an overall distorted spectrum. However, upon
switching to the parametrization in Fig. 1(b) and gradually
increasing a0, no weight can appear below ω0 and hω0iwill
gradually increase (and note again that ω0 is not fixed but is
sampled along with the other frequencies ωi) because a
good match with the QMC data fḠg cannot be obtained if
there is too much weight in the gap. In this process, hχ2i
will decrease. Upon increasing a0 further, hω0i will
eventually be pushed too far above the gap, and then
hχ2i clearly must start to increase. Thus, if there is a δ
function at the lower edge of the spectrum pursued, one
can, in general, expect a minimum in hχ2i vs a0, and, if the
QMC data are good enough, this minimum should be close
to the true value of a0. When fixing a0 to its optimal value
at the hχ2i minimum, the frequency ω0 should fluctuate
around its correct value (normally with very small fluctua-
tions so that the final result is a very sharp peak). If there is
no such δ function in the true spectrum, one would expect a
hχ2iminimum very close to a0 ¼ 0. Extensive testing, to be
reported elsewhere [46], has confirmed this picture. Here,

we show test results relevant to the type of spectral function
expected for the 2D Heisenberg model.
One might think that we could also sample the weight a0

instead of optimizing its fixed value. The reason why this
does not work is at the heart of our approach: By including
Monte Carlo updates that change the value of a0 (and thus
also of all other weights ai>0 to maintain normalization),
entropic pressures will favor values close to the other
amplitudes, and the results (which we have confirmed) are
indistinguishable from those obtained without special
treatment of the lower edge, i.e., the parametrization in
Fig. 1(a). The entropy associated with different paramet-
rizations will be further discussed in a separate article [46].

C. Tests on synthetic data

To test whether the method can resolve the kind of
spectral features that are expected in the 2D Heisenberg
model, we construct a synthetic spectral function with a δ
function of weight a0 and frequency ω0, followed by a
continuum with total weight 1 − a0. The relationship in
Eq. (4) is used to obtain GðτÞ for a set of τ points, and
normal-distributed noise is added to the G values, with
standard deviation typical in QMC results. To provide an
even closer approximation to real QMC data, we construct
correlated noise. Here, one can adjust the autocorrelation
time of the correlated noise to be close to what is observed
in QMC data. The way we do this is discussed in more
detail in the Appendix.
As we discuss in Sec. III, for the 2D Heisenberg model,

we find that the smallest relative weight of the magnon pole
is approximately 0.4 at q ¼ ðπ; 0Þ. Here, we therefore test
with a0 ¼ 0.4, set ω0 ¼ 1, and take, for the continuum, a
truncated Gaussian (with no weight below ω0) of width
σ ¼ 1. This situation of no gap between the δ function and
the continuum is expected to be very challenging for any
analytic continuation method. Extracting a0 and ω0 by
simply fitting an exponential a0e−ω0τ to the QMC data for
large τ is difficult because there will never be any purely
exponential decay (unlike the case where there is a gap
between the δ function and the continuum), and the best
one could hope for is to extrapolate the parameters based on
different ranges of τ included in the fit, or with some more-
sophisticated analysis [43]. As we see below, with noise
levels in the synthetic data similar to our real QMC data, the
SAC procedure outlined above not only produces good
results for a0 and ω0 but also reproduces the continuum
well.
When looking for the minimum value of hχ2i vs a0, it

is better to start with a somewhat higher Θ than what is
obtained with the χ2 criterion in Eq. (14) so that the
minimum can be more pronounced. Staying in the
regime where the fit can still be considered good and
the effects on SðωÞ of a slightly elevated Θ are very
minor, we aim for hχ2i ≈ χ2min þ bNτ with b ¼ 1 or 2 at
the initial stage of fixing Θ without the special treatment
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of the lowest δ function. With the so-obtained Θ, we scan
over a0 with some step size Δa0. The scan is terminated
when hχ2i has increased well past its minimum. The hχ2i
curve can be analyzed later to locate the optimal a0
value. If all the spectra generated in the scan have been
saved, one can simply use the best one. Since hχ2i
normally will be significantly smaller at the optimal
value of a0 than at the starting point with a0 ¼ 0, there is
typically no need for further adjustments of Θ later,
though one can also do a final run at the optimal a0 with
the criterion in Eq. (14).
Figure 2 shows typical hχ2i behaviors in tests with a

spectrum consisting of a δ function and a continuum of
relative size and width similar to what we report for the
Heisenberg model in the next section. Here, we use 80τ
points on a uniform grid with spacing Δτ ¼ 0.1 and noise
level σi ≈ 10−5 for τ points sufficiently away from τ ¼ 0.
We built in covariance similar to what is observed in the
QMC data (also discussed in the Appendix). We can indeed
observe a clear minimum in the hχ2i curve close to the
expected value a0 ¼ 0.4. The deviations from this point
reflect the effects of the statistical errors. In several runs at
much smaller noise level, σi ≈ 10−6, the minimum was
always at 0.40 in scans with Δa0 ¼ 0.01.
The effects of the noise are smaller in the mean location

hω0i of the lowest δ function. Figure 3 shows results versus
a0 from several different runs. At the correct value
a0 ¼ 0.4, the error in the frequency is typically less than
10−3 at noise level 10−5 and smaller still at 10−6.
Considering the uncertainty in the location of the minimum
in Fig. 2, the total error on ω0 of course becomes higher,

but still the precision is typically better than 10−2 for noise
level 10−5 and much better at 10−6.
The full SAC spectral functions at both noise levels are

shown in Fig. 4, for two noise realizations in each case
(with the spectra taken at their respective optimal a0
values). When constructing the histogram for averaging
the spectrum, here with a bin with Δω ¼ 0.005, we also
include the main δ peak. If the fluctuations inω0 are large, a
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FIG. 2. The goodness of fit vs the amplitude a0 of the lowest δ
function in three runs with different noise realizations for a
synthetic spectrum with a δ function of weight a0 ¼ 0.4 at
ω0 ¼ 1. The continuum is a Gaussian of width 1 centered at the
same ω0, with the weight below ω0 excluded. The noise level is
σi ≈ 10−5, and the errors are correlated with autocorrelation time
1 according to the description in the Appendix. The inset shows
the data close to the hχ2i minimum on a different scale.
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broadened peak will result. Here, the fluctuations are very
small, and no significant broadening is seen beyond that
due to the histogram binning. As discussed above, the
location of the main peak is very well reproduced. The
continuum typically shows the strongest deviations from
the correct curve close to the edge. The improvements
when going from noise level 10−5–10−6 are obvious in the
figure.
Statistical errors of order 10−5 in the correlation function

GðτÞ normalized to 1 at τ ¼ 0 are relatively easy to achieve
in QMC calculations, and in many cases, it is possible to go
to 10−6 or even better. The tests here show that quite
detailed information can be obtained with such data for
spectral functions with a prominent δ function at the lower
edge followed by a broad continuum. Importantly, the
approach also involves the estimation of the statistical error
on the weight of the δ function through a bootstrapping
procedure, and based on tests such as those above, as well
as additional cases, we do not see any signs of further
systematical errors in the weight and location of the δ
function; i.e., the method is unbiased in this regard. Of
course, it is still not easy to discriminate between a
spectrum with an extremely narrow peak and one with a
true δ function, but a broad peak will manifest itself in the
loss of amplitude a0, in accumulation of the “background”
δ functions as a leading maximum at the edge, and in large
fluctuations in the lower edge ω0. We therefore have good
reason to believe that the approach is suitable, in general,
both for reproducing spectra with an extremely narrow
peak and for detecting when such a peak is absent.

III. HEISENBERG MODEL

In quantum magnetism, the most important spectral
function is the dynamic spin structure factor Sαðq;ωÞ,
corresponding to the correlations of the spin operator Sαq
(α ¼ x, y, z), the Fourier transform of the real-space
spin operator Sαr as in Eq. (2). This spectral function is
directly proportional to the inelastic neutron-scattering
cross section at wave-vector transfer q and energy transfer
ω [62]. In this paper, we focus on isotropic spin systems
and do not break the symmetry in the finite-size calcu-
lations; thus, all components α are the same, corresponding
to the total cross section averaged over the longitudinal
and transverse channels (i.e., as obtained in experiments
with unpolarized neutrons). We consider the z component
in the SSE-QMC calculations and hereafter use the
notation Sðq;ωÞ without any α superscript. With suffi-
ciently large inverse temperature—here β ¼ 4L in most
QMC simulations—we obtain ground-state properties
for all practical purposes for q at which the gap ωq is
sufficiently large. More precisely, we have well-converged
data for all q except for q ¼ ðπ; πÞ, where the finite-size
gap closes as 1=L2 (this being the lowest excitation in the
Anderson tower of quantum-rotor states), much faster than

the lowest magnon excitation, which has a gap ∝ 1=L.
Therefore, in the following, we do not analyze the
q ¼ ðπ; πÞ data that are not fully converged. In addition
to the QMC calculations, where we go up to linear system
sizes L ¼ 48, we also report exact T ¼ 0 Lanczos ED
results for lattices with up to N ¼ 40 spins.
For the square-lattice Heisenberg antiferromagnet, the

spectral function in calculations such as conventional spin-
wave expansions [21–24] and continuous similarity trans-
formations (an approach that also starts from spin-wave
theory, formulated with the Dyson-Maleev representation
of the spin operators) [18,19] contains a dominant δ
function at the lowest frequency ωq and a continuum
above this frequency,

Sðq;ωÞ ¼ S0ðqÞδðω − ωqÞ þ Scðq;ωÞ; ð15Þ

where ωq is also the single-magnon dispersion and S0ðqÞ is
the spectral weight in the magnon pole. We define the
relative weight of the single-magnon contribution as

a0ðqÞ ¼
S0ðqÞR

dωSðq;ωÞ ; ð16Þ

in the same way as the generic a0 in Sec. II.
In principle, the single-magnon pole may be broadened;

however, the damping processes causing this broadening
are of very high order in the spin-wave interaction terms,
and we are not aware of any calculations estimating these
effects quantitatively. In general, it is expected that the
broadening of the magnon pole itself should be very small
in bipartite (collinear AFM-ordered) Heisenberg systems
[63,64]. Accordingly, here we can make the simplifying
assumption that there is no broadening at T ¼ 0 of the
single-magnon pole itself, i.e., that interaction effects are
only manifested as spectral weight being transferred from
the δ function to the continuum above it. In contrast, in
nonbipartite (frustrated) antiferromagnets with noncollin-
ear order, there are other lower-order magnon damping
mechanisms present that cause significant broadening of
the δ function [63,64].
In a previous QMC calculation where the analytic

continuation was carried out by function fitting including
a δ-function edge [17], the continuum Scðq;ωÞ was
modeled with a specific functional form with a number
of parameters (adjusted to fit the QMC data). Here, we
do not make any prior assumptions on the shape of the
continuum, instead applying the SAC procedure with the
parametrization illustrated in Fig. 1(b). If the δ function is
actually substantially broadened, such that the separation of
the spectrum into two distinct parts in Eq. (15) becomes
inappropriate, we expect our SAC approach to simply give
a very small amplitude S0ðqÞ when this is the case. We see
examples of this kind of full depletion of the magnon
pole in Sec. IV, where other interactions are added to the
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Heisenberg model (the J-Q model). Later in this section,
we also show some results for the Heisenberg model
obtained without assuming a δ function in Eq. (15).
To briefly recapitulate the version of SAC we developed

in Sec. II, after fixing a proper sampling temperature using
the spectrum without special treatment of the leading δ
function, i.e., the parametrization of the dynamic structure
factor illustrated in Fig. 1(a), in the final stage of the
sampling process, we use the parametrization of Fig. 1(b).
The amplitude of the leading δ function is optimized based
on the entropic signal—a minimum in the mean goodness
of fit, hχ2i, versus the amplitude. The location of this
special δ function is sampled along with all the other
“small” ones representing the continuum, and the spectral
weight as a function of the frequency is collected in a
histogram (here typically with bin size Δω ¼ 0.005). Thus,
in the final averaged spectrum, the magnon pole may be
broadened by fluctuations in its location; however, as we
see below, the width is typically very narrow, and for all
practical purposes, it remains a δ-function contribution.
Here, the level of the statistical QMC errors, with the
definitions discussed in Sec. II, is 10−5 or better (some raw
data are shown in the Appendix). Extensive testing,
exemplified in Fig. 4, demonstrates that the method is
quite capable of reproducing the type of spectral function of
interest here to a good degree with this data quality. The
number Nω of δ functions required in the continuum in
order to obtain well-converged results depends on the
quality of the QMC data. We have carried out tests with
different Nω and found good convergence of the results
when Nω ≈ 500–1000. The results presented below were
obtained with Nω ¼ 2000.

A. Spectral functions at different wave vectors

For an overview, we first show the spectral function for
the L ¼ 48 system with a color plot in Fig. 5, where the
x axis corresponds to the wave vector along a standard path
in the BZ and the y axis is the frequency ω. The location of
the magnon pole (the dispersion relation) is indicated, and
for the continuum, a color coding is used. We also show an
upper spectral bound defined such that 95% of the weight
for each q falls between the two curves. Because of matrix-
elements effects related to conservation of the magnetiza-
tion (Szq¼0) of the Heisenberg model, the total spectral
weight vanishes as q → 0, and it is seen in Fig. 5 that it is
small in a wide region around this point. Both the total
weight and the low-energy scattering are maximized as
q → ðπ; πÞ. As mentioned above, exactly at ðπ; πÞ, our
calculations are not T → 0 converged, and we therefore do
not show any results for this case. The width in ω of the
region in which 95% of the weight is concentrated is seen to
be almost independent of q. However, since the total
spectral weight for q close to ðπ; πÞ is very large, there
is significant weight extending up to ω ≈ 6, while in other q

regions, the weight extends roughly up to 4.5–5 [except
close to (0,0), where no significant weight can be discerned
in the density plot with the color coding used].
More detailed frequency profiles at four different wave

vectors are shown in Fig. 6. In addition to the points ðπ; 0Þ
and ðπ=2; π=2Þ, on which many prior works have focused,
results for the points closest to the gapless points (0,0) and

FIG. 5. The dynamic structure factor of the 2D Heisenberg
model computed on an L ¼ 48 lattice along a standard path in the
BZ indicated on the x axis. The y axis is the energy transfer ω in
units of the coupling J. The magnon peak (δ function) at the
lower edge of the spectrum is marked in white irrespective of its
weight, while the continuum is shown with color coding on an
arbitrary scale where the highest value is 1. The upper white curve
corresponds to the location where, for given q, 5% of the spectral
weight remains above it.
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NEARLY DECONFINED SPINON EXCITATIONS IN THE … PHYS. REV. X 7, 041072 (2017)

041072-9



ðπ; πÞ are also shown. The results at ðπ; 0Þ and ðπ=2; π=2Þ
are, in general, in good agreement with the previous QMC
calculations [17] in which the δ-function contributions
were also explicitly included in the parametrization of
the spectrum. The relative weight in the δ function,
indicated in each panel in Fig. 6, is also in reasonably
good agreement with series expansions around the Ising
limit [20]. The relative spectral weight of the continuum,
1 − a0ðqÞ, can be taken as a measure of the effect of
spin-wave interactions that lead to the multimagnon con-
tributions often assumed to be responsible for the continuum.
We argue later that the particularly large continuum at ðπ; 0Þ
is actually due to nearly deconfined spinons.
It is not clear whether the small maximum to the right of

the δ function, which we see consistently through the BZ, is
a real spectral feature or whether it reflects the statistical
errors of the QMC data in a way similar to the most
common distortion resulting from noisy synthetic data, as
seen in the tests presented in Fig. 4. The error level of the
QMC data in all cases is a bit below 10−5, i.e., similar to
Fig. 4(a). The behavior does not suggest any gap between
the δ functions and the continuum.

B. Finite-size effects

It is important to investigate the size dependence of the
spectral functions. For very small lattices at T ¼ 0, Sðq;ωÞ
computed according to Eq. (1) for each q contains only a
rather small number of δ functions, and it is not possible to
draw a curve approximating a smooth continuum following
a leading δ function. Therefore, the SAC procedure does
not reproduce exact Lanczos results very well—we obtain a
single broad continuum following the leading δ function,
instead of several small peaks. Because the continuum also
has weight close to the leading δ function, between it and
the second peak of the actual spectrum, the SAC method
also slightly underestimates the weight in the first δ
function. If the continuum emerging as the system size
increases indeed is, as expected, broad and does not exhibit
any unresolvable fine structure, the tests in Sec. II suggest
that our methods should be able to reproduce it.
For the 6 × 6 lattice at q ¼ ðπ; 0Þ, our SAC result

underestimates the weight in the magnon pole by about
5%, while the energy deviates by less than 1%. We expect
these systematic errors to decrease with increasing system
size, for the reasons explained above. Figure 7 shows the
size dependence of the single-magnon weight and energy at
wave vectors q ¼ ðπ; 0Þ, ðπ=2; π=2Þ, and ðπ; πÞ. At ðπ; πÞ,
we only have Lanczos results, but even with the small
systems accessible with this method, it can be seen that the
energy indeed decays toward zero. The magnon weight is
large, converging rapidly toward about 97%, which is
similar to the series-expansion result [20]. The energies
at q ¼ ðπ; 0Þ and ðπ=2; π=2Þ also converge rapidly, with no
detectable differences between L ¼ 32 and L ¼ 48, and a
smooth transition between the ED results for small systems

and QMC results for larger sizes. The magnon weight at
these wave vectors shows more substantial size depend-
ence, though again the results for the two largest sizes agree
within error bars. Here, the connection between the ED and
QMC results does not appear completely smooth at ðπ; 0Þ
because of the difficulties for the SAC method to deal
with a spectrum with a small number of δ functions.
Nevertheless, even the ED results indicate a drop in the
amplitude for the larger system sizes. The trends in 1=L for
the QMC results suggest that the weight converges to
slightly below 40% at q ¼ ðπ; 0Þ and slightly below 70% at
q ¼ ðπ=2; π=2Þ, both in very good agreement with the
series-expansion results [20]. This agreement with a com-
pletely different method provides strong support for the
accuracy of the QMC-SAC procedures. The energies also
agree very well with the previous QMC results where
particular functional forms were used to model the
continuum, and the magnon amplitudes agree within
5%–10% (with the values indicated in the insets of
Fig. 3 in Ref. [17]).

C. Comparisons with experiments

In the discussion of the recent neutron-scattering experi-
ments on CFTD [33], it was argued that the large
continuum in the ðπ; 0Þ spectrum is due to fully deconfined
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FIG. 7. Size dependence of the single-magnon energy (a) and
weight in the magnon pole (b) at wave vectors q ¼ ðπ; 0Þ,
ðπ=2; π=2Þ, and ðπ; πÞ. Lanczos ED results for small systems
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the SAC procedure multiple times with random samples of the
QMC data bins).
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spinons, and a variational RVB wave function was used to
support this interpretation. We discuss a different picture of
nearly deconfined spinons further in Sec. V. Here, we first
compare the ðπ; 0Þ and ðπ=2; π=2Þ results with the exper-
imental data without invoking any interpretation. The
experimental scattering cross section in Ref. [33] was
shown vs the frequency ω=J normalized by the estimated
value of the coupling constant (J ≈ 6.11 meV). Keeping
the same scale, we should only convolute our spectral
functions with an experimental Gaussian broadening. We
optimize this broadening to match the data and find that a
half-width σ ¼ 0.12J of the Gaussian works well for both
wave vectors—which is the same as the instrumental
broadening reported for the experiment [33]. Since the
neutron data are presented with an arbitrary scale for the
scattering intensity, we also have to multiply our Sðq;ωÞ
for each q by a common factor. The agreement with the
data at both ðπ; 0Þ and ðπ=2; π=2Þ is very good and can be
further improved by dividing ω=J in the experimental data
by 1.02, which corresponds to J ≈ 6.23 meV, which
should still be within the errors of the experimentally
estimated value. As shown in Fig. 8, the agreement with
the experiments is not perfect but probably as good as
could be expected, considering small effects of the weakly
q-dependent form factor [62] and some influence of
weak interactions beyond J (longer-range exchange, ring
exchange, spin-phonon couplings, disorder, etc.).
The single-magnon dispersion, the energy ωq in

Eq. (15), is compared with the corresponding experimental
peak position in Fig. 9. The linear spin-wave dispersion is
shown as a reference, using the best available value of the
renormalized velocity c ¼ 1.65847 [65]. Our results agree
very well with the spin-wave dispersion at low energies
and also with the experimental CFTD data [33] in the
high-energy regions where the spin-wave results are not

applicable. The only statistically significant deviation,
though rather small, is at q ≈ ðπ=2; π=2Þ, where the
experimental energy is lower (as seen also in the peak
location in Fig. 8). Still, overall, one must conclude that
CFTD is an excellent realization of the square-lattice
Heisenberg model at the level of current state-of-the-art
experiments. It would certainly be interesting to improve
the frequency resolution further and try to analyze higher-
order effects, which should become possible in future
neutron-scattering experiments.

D. Wave-vector dependence of the
single-magnon amplitude

We next look at the variation of the relative magnon
weight a0ðqÞ along the representative path of the BZ for
L ¼ 48, shown in Fig. 10. For q → ð0; 0Þ and ðπ; πÞ, the
weight a0 increases and appears to tend close to 1. From the
results exactly at ðπ; πÞ in Fig. 7, we know that, in this case,
the remaining weight in the continuum should be about 3%,
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FIG. 9. Single-magnon dispersion ωq along a representative
path of the BZ. The CFTD experimental data from Ref. [33] are
shown as blue squares, and the QMC-SAC data (the location of
the magnon pole) are shown with red circles. We also show the
linear SWT dispersion (black curve) adjusted by a common factor
corresponding to the exact spin-wave velocity c ¼ 1.65847 [65].
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which is also in good agreement with the series results in
Ref. [20], where a similar nonzero multimagnon weight
was also found as q → 0. At q ¼ ðπ=2; π=2Þ, as also shown
in Fig. 7, the magnon pole contains about 70% of the
weight, while at q ¼ ðπ; 0Þ, this weight is reduced to about
40%. Both of these are also in good agreement with
Ref. [20], and in fact, throughout the BZ path, we find
no significant deviations from the series results. This again
reaffirms the ability of the SAC procedure to correctly
optimize the amplitude of the leading δ function. It should
be noted that the series expansion around the Ising model
does not produce the full spectral functions, only the single-
magnon dispersion and weight.
The depletion seen in Fig. 10 of the single-magnon

weight in a neighborhood of q ¼ ðπ; 0Þ can also be related
to the experimental data for CFTD. In Fig. 1(a) of Ref. [33],
a color coding is used for the scattering intensity such that
even a modest reduction in the coherent single-magnon
weight has a large visual impact. The region in which the
spectral function is smeared out with no sharp feature in
this representation corresponds closely to the region where
the single-magnon weight drops from about 60% to 40% in
our Fig. 10.

E. Alternative ways of analytic continuation

One could of course argue that the existence of the
magnon pole at ðπ; 0Þ is not proven by our calculations since
it has been built into our parametrization of the spectral
function. While it is clear that our approach cannot dis-
tinguish between a very narrow peak and a δ function, if the
broadening is significant for some q, so that the main peak
essentially becomes part of the continuum, we would expect
the optimal amplitude a0ðqÞ to be very small or to vanish.
Nevertheless, to explore the possibility of spectra without a
magnon pole, we also have carried out the analytic con-
tinuation in two alternative ways, by using the parametriza-
tion in Fig. 1(a) without special treatment of the lowest
frequency or by imposing a lower frequency bound.
Sampling without any constraints with Nω ¼ 1000 δ

functions gives the results at q ¼ ðπ; 0Þ and ðπ=2; π=2Þ
shown in Fig. 11. Here, one can distinguish a peak in each
case in the general neighborhood of where the δ function is
located in Figs. 6(b) and 6(c), with the maximum shifted
slightly to higher frequencies and weight extending sig-
nificantly to lower frequencies. At q ¼ ðπ=2; π=2Þ, there is
now a shallow minimum before a low broad distribution at
higher energies. This kind of behavior is typical for analytic
continuation methods when there is too much broadening at
low frequency, which leads to a compensating (in order to
match the QMC data) depletion of weight above the main
peak. Similarly, the up-shift of the location of the peak
frequency at both q relative to Fig. 6 is because there is
weight also at ω < ωq, where there should be no weight
or much less weight. In the insets of Fig. 11, we show
comparisons with the CFTD experimental data. Here, the

SAC spectral functions are broader than the experimental
profiles, and we have not applied any additional broad-
ening. It is clear that the SAC results here do not match the
experiments as well as in Fig. 8, most likely because the
QMC data are not sufficiently precise to reproduce a
narrow magnon pole, thus also leading to other distortions
at higher energy.
In order to reduce the broadening and other distortions

arising as a consequence of spectral weight spreading out in
the SAC sampling procedure due to entropic pressure [59]
into regions where there should be no weight, we also
carried out SAC runs with the constraint that no δ function
can go below the lowest energy determined with the
dominant δ function present. These energies, ωq ¼ 2.13
and 2.40 for q ¼ ðπ; 0Þ and ðπ=2; π=2Þ, respectively, are in
excellent agreement with the series expansions around the
Ising limit [20] and, in the case of ðπ=2; π=2Þ, also with the
well-converged high-order spin-wave expansion [21–24].
There is therefore good reason to trust these as being close
to the actual energies. As seen in Fig. 12, there is a dramatic
effect of imposing the lower bound—the main peak is
much higher and narrower than in Fig. 11, and an edge is
formed at ωq. Most likely, the peaks are still broadened
on the right side, and again, this broadening has, as a
consequence, a local minimum in spectral weight before a
broad second peak, which is now seen for both q points. In
this case, the comparison with the experiments (insets of
Fig. 12) is somewhat better overall than with the com-
pletely unconstrained sampling in Fig. 11, but still, we see
signs of a depletion of spectral weight to the right of the
main peak that is not present in the experimental data. We
take the ω0-constrained spectra as upper limits in terms of
the widths of the main magnon peaks, and most likely, the
true spectra are much closer to those obtained with the
optimized δ functions in Fig. 6.
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FIG. 11. Spectral functions at q ¼ ðπ; 0Þ and ðπ=2; π=2Þ
obtained using unconstrained SAC with the parametrization in
Fig. 1(a). The insets show comparisons with the experimental
data [33], where we have only adjusted a common amplitude to
match the areas under the peaks.
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In summary, the results of these alternative ways of
carrying out the SAC process reaffirm that there indeed
should be a leading very-narrow magnon pole, close to a δ
function, at both q ¼ ðπ; 0Þ and ðπ=2; π=2Þ. While the pole,
strictly speaking, may have some damping, our good fits
with a pure δ function in Fig. 8 indicate that such damping
should be extremely weak, as also expected on theoretical
grounds [63,64].

IV. J-Q MODEL

The AFM order parameter in the ground state of the
Heisenberg model is significantly reduced by zero-point
quantum fluctuations from its classical value ms ¼ 1=2 to
about 0.307 [6,9]. It can be further reduced when
frustrated interactions are included, eventually leading
to a quantum phase transition into a nonmagnetic state,
e.g., in the frustrated J1-J2 Heisenberg model [66–71]. In
the J-Q model [36], the quantum phase transition driven
by the four-spin coupling Q appears to be a realization of
the deconfined quantum-critical point [39], which sepa-
rates the AFM state and a spontaneously dimerized
ground state: a columnar VBS. The model is amenable
to large-scale QMC simulations, and we consider it here in
order to investigate the evolution of the dynamic structure
factor upon reduction of the AFM order and approaching
spinon deconfinement.
The J-Q Hamiltonian can be written as [36]

H ¼ −J
X
hiji

Pij −Q
X
hijkli

PijPkl; ð17Þ

where Pij is a singlet projector on sites ij,

Pij ¼ 1=4 − Si · Sj; ð18Þ

here on the nearest-neighbor sites. In the four-spin inter-
action Q, the site pairs ij and kl form horizontal and
vertical edges of 2 × 2 plaquettes. All translations and 90°
rotation of the operators are included in Eq. (17) so that all
the symmetries of the square lattice are preserved.
In addition to strong numerical evidence of a continuous

AFM-VBS transition in the J-Q model (most recently in
Ref. [39]), there are also results pointing directly to spinon
excitations at the critical point, in accordance with the
scenario of deconfined quantum criticality [40,41] (where,
strictly speaking, there may be weak residual spinon-spinon
interactions, though those may only be important in
practice at very low energies [34]). Moreover, the set of
gapless points is expanded from just the points q ¼ ð0; 0Þ
and ðπ; πÞ in the Néel state to also q ¼ ðπ; 0Þ and ð0; πÞ
[42,43] at the critical point. Recent results point to linearly
dispersing spinons with a common velocity around all the
gapless points [43].
Here, our primary aim is to study how the magnon poles

and continua in Sðq;ωÞ at q ¼ ðπ; 0Þ and ðπ=2; π=2Þ
evolve as the coupling ratio Q=J is increased. We use
the same SAC parametrization as in the previous section,
with a leading δ function whose amplitude is optimized by
finding the minimum in hχ2i versus a0ðqÞ. We first
consider the L ¼ 32 lattice and show our results for the
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FIG. 12. Spectral functions obtained using sampling with the
parametrization in Fig. 1(a) under the constraint that no weight
falls below the lower bounds determined with a δ function at the
lower edge (Fig. 6): ωq ¼ 2.13 and 2.40 for q ¼ ðπ; 0Þ and
ðπ=2; π=2Þ, respectively. The inset shows the results on a different
scale to make the continua more visible. The insets of the inset
show comparisons with the experimental data, where we have
broadened the numerical results by Gaussian convolution and
adjusted a common amplitude.
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FIG. 13. Results for the J-Q model at q ¼ ðπ; 0Þ and
ðπ=2; π=2Þ, calculated on the L ¼ 32 lattice. The lowest ex-
citation energy ωq (a) and the relative weight of the single-
magnon contribution (b) are shown as functions of the coupling
ratioQ=J from the Heisenberg limit (Q=J ¼ 0) to the deconfined
quantum-critical point (Qc=J ≈ 22).
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energy and the relative amplitude in Fig. 13 as functions of
the coupling ratio Q=J all the way from the Heisenberg
limit to the deconfined quantum-critical point. Here, the
most notable aspect is the rapid drop in the magnon weight
at q ¼ ðπ; 0Þ, even for small values of Q=J, while at q ¼
ðπ=2; π=2Þ the weight stays large, 70%–80%, over the
entire range. The energies depend on the normalization, and
we have chosen J þQ as the unit. We know from past work
that the q ¼ ðπ; 0Þ energy at Qc=J vanishes in the thermo-
dynamic limit, but the reduction in the finite-size gap with
the system size is rather slow [43]; for the L ¼ 32 lattice
considered here, we are still far from the gapless behavior.
We focus on the effects of a small Q, where reliable

extrapolations to infinite size are possible, and we show
the size dependence of the lowest excitation energy and
the magnon amplitude at q ¼ ðπ; 0Þ for several cases in
Fig. 14. We again show Lanczos ED results for small
systems and QMC-SAC results for larger sizes. For the
only common system size, L ¼ 6, the energies agree very
well, as in the pure Heisenberg case discussed in the
previous section, while the QMC-SAC calculations under-
estimate the magnon weight by a few percent because of the
inability to resolve the details of a spectrum consisting of
just a small number of δ functions. The most interesting
feature is the dramatic reduction in the magnon weight even
for very small ratiosQ=J. ForQ=J ¼ 0.25 and 0.5, the size
dependence indicates small remaining magnon poles, while
at Q=J ¼ 1, it appears that the δ function completely
vanishes in the thermodynamic limit.

In Fig. 15, we show the full q ¼ ðπ; 0Þ dynamic structure
factor at Q=J ¼ 4, obtained with both the parametrizations
in Fig. 1. The optimal weight of the leading δ function is
only 1.4% for this L ¼ 32 lattice, and the finite-size
behavior indicates that no magnon pole should be present
at all in the thermodynamic limit in this case. When no
leading δ function is included in the SAC treatment, i.e.,
with unrestricted SAC sampling with the parametrization in
Fig. 1(a), there is a little shoulder close to where the δ
function is located with the other parametrization. The
differences at higher frequencies are very minor. This is
very different from the large change in the entire spectrum
when unrestricted sampling is used for the same wave
vector in the pure Heisenberg model, Fig. 11, which is
clearly because of the much larger magnon pole in the latter
case. This comparison also reinforces the ability of our
SAC method to extract the correct weight of the leading δ
function.
These results for the J-Q model show that the magnon

picture at q ¼ ðπ; 0Þ fails even with a rather weak defor-
mation of the Heisenberg model. Thus, it seems likely that
the reduced excitation energy and coherent single-magnon
weight at q ¼ ðπ; 0Þ, observed in the Heisenberg model as
well as experimentally in CFTD, are precursors to decon-
fined quantum criticality. If that is indeed the case, then it
may be possible not only to describe the continuum in
Sðq;ωÞ around q ¼ ðπ; 0Þ in terms of spinons [33] but also
to characterize the influence of spinons on the remaining
sharp magnon pole. We next consider a simple effective
Hamiltonian to address this possibility.

V. NATURE OF THE EXCITATIONS

Motivated by the numerical results presented in Secs. III
and IV, we propose here a mechanism of the excitations in
the square-lattice Heisenberg model where the magnons
have an internal structure corresponding to a mixing with
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FIG. 14. Size dependence of the excitation energy ωq (a) and
the relative weight of the magnon pole a0ðqÞ (b) at q ¼ ðπ; 0Þ
close to the Heisenberg limit of the J-Q model.
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FIG. 15. The q ¼ ðπ; 0Þ dynamic structure factor of the J-Q
model at Q=J ¼ 4 obtained using SAC with the two para-
metrizations of the spectrum in Figs. 1(a) and 1(b). The relative
weight of the leading δ function in (b) is 1.4%.
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spinons at higher energy. Our physical picture is that the
magnon resonates in and out of the spinon space, which, in
the absence of spinon-magnon couplings, exists above the
bare magnon energy. We construct a simple, effective,
coupled magnon-spinon model describing such a mecha-
nism. The model resembles the simplest model for the
exciton-polariton problem, where the mixing is between
light and a bound electron-hole pair (exciton). Here, a bare
photon can be absorbed by generating an exciton, and
subsequently, the electron and hole can recombine and emit
a photon. This resulting, collective, resonating, electron-
hole-photon state is called an exciton-polariton [72,73].
The spinon-magnon model introduced here is more com-
plex because the magnon interacts not just with a single
bound state but with a whole continuum of spinon states
with or without (depending on model parameters) spinon-
spinon interactions.
We start by discussing the dispersion relations of the bare

magnon and spinons and then present details of the mixing
process and the effective Hamiltonian. We show that the
model can reproduce the salient spectral features found for
the Heisenberg and J-Qmodels in the preceding section, in
particular, the differences between wave vectors ðπ; 0Þ and
ðπ=2; π=2Þ and the evolution of the spectral features when
the Q interaction is turned on, which, in the effective
model, corresponds to lowering the bare spinon energy.

A. Effective Hamiltonian

In spin-wave theory, the excitations of the square-lattice
Heisenberg antiferromagnet are described as magnons that,
to order 1=S, disperse according to

ωmðqÞ ¼ cm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

1

2
½cosðqxÞ þ cosðqyÞ�2

r
; ð19Þ

where cm is the spin-wave velocity (the value of which is
cm ¼ 1.637412 when calculated to this order). We take this
form of ωmðqÞ as the bare magnon energy in our model but
treat the velocity as an adjustable bare parameter.
Spinons are well understood in the S ¼ 1=2 AFM

Heisenberg chain, where the dispersion relation is [74,75]

ωðkÞ ¼ π

2
sinðkÞ; ð20Þ

and an S ¼ 1 excitation with wave number q can exist at
all energies ωðk1Þ þ ωðk2Þ with k1 þ k2 ¼ q. In 2D, we
use as input results of a recent QMC study of the excitation
spectrum at the deconfined quantum-critical point of
the J-Q model [43], where four gapless points at
q ¼ ð0; 0Þ; ðπ; 0Þ; ð0; πÞ, and ðπ; πÞ were found in the
S ¼ 1 excitation spectrum (confirming a general expect-
ation of a system at a continuous AFM-VBS transition
[42]). This dispersion relation is interpreted as the lower
bound of a two-spinon continuum, which should also be the

dispersion relation for a single spinon. In the effective
model, we use the simplest spinon dispersion relation with
the above four gapless points and a q dependence in general
agreement with the findings in Ref. [43],

ωsðqÞ ¼ cs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2ðqxÞcos2ðqyÞ

q
; ð21Þ

which can also be regarded as a 2D generalization of the 1D
spinon dispersion, Eq. (20). The common velocity cs at the
gapless points was determined for the critical J-Q model
[43], but here, we regard it as a free parameter.
One of our basic assumptions is that spinons also exist in

the system in the AFM phase; however, they are no longer
gapless, and they interact with the magnon excitations. We
add a constant Δ to the spinon energy, Eq. (21), to model
the evolution of the bare spinon dispersion from completely
above the magnon energy ωmðqÞ at all q deep in the AFM
phase to gradually approaching ωmðqÞ and eventually
dipping below the magnon in parts of the BZ—which
happens first at q ¼ ðπ; 0Þ—as the AFM order is reduced.
For two spinons, with one of them at wave vector p and the
total wave vector being q, the bare energy of the spinon pair
is then

~ωsðq;pÞ ¼ 2Δþ cs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2ðpxÞcos2ðpyÞ

q

þ cs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2ðqx − pxÞcos2ðqy − pyÞ

q
: ð22Þ

Here, it should be noted that, in the simple picture of
spinons in the basis of bipartite valence bonds, an S ¼ 1
excitation corresponds to breaking a valence bond (singlet),
thereby creating a triplet of two spins, one in each of the
sublattices A and B [34]. The unpaired spins are always
confined to their respective sublattices. There are also two
species of magnons, and creating one of them corresponds
to a change in magnetization by ΔSz ¼ 1 or ΔSz ¼ −1,
depending on the sublattice. Since Sz must be conserved,
we only need to consider one species of the magnons (e.g.,
ΔSz ¼ 1, which we associate with sublattice A), and that
dictates the magnetization of the spinon pair that it can
resonate with.
Instead of adding twice the gap as we do in Eq. (22), we

could include Δ2 under each of the square roots. This
would cause some rounding of the V shapes of the spinon
dispersion. We have confirmed that there are no significant
differences between the two ways of lifting the spinon
energies in the coupled spinon-magnon system.
Using second-quantized notation, the noninteracting

effective Hamiltonian in the space spanning single-magnon
and spinon-pair excitations can be written as

Heff−0
A ¼

X
q

ωmðqÞd†A;qdA;q

þ
X
q;p

~ωsðq;pÞc†A;pc†B;q−pcA;pcB;q−p; ð23Þ
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where c† (c) and d† (d) are the spinon and magnon creation
(annihilation) operators, respectively, and there is also an
implicit constraint on the Hilbert space to states with either
a single magnon (here, on the A sublattice) or two spinons
(one on each sublattice). Note that both kinds of particles
are bosons based on the broken-valence-bond picture of the
spinons [34]. For brevity of notation, we hereafter drop the
sublattice index, but in the calculations, we always treat
the two spinons as distinguishable particles.
Figure 16(a) shows an example of the spinon and

magnon dispersions corresponding to the situation we
posit for the Heisenberg model. Here, the spinon offset
Δ is sufficiently large to push the entire two-spinon
continuum (of which we only show the lower edge) up
above the magnon energy, but at ðπ; 0Þ the spinons almost
touch the magnon band. It is clear that any resonance
process between the magnon and spinon Hilbert spaces will
be most effective at this point, thus reducing the energy and
accounting for the dip in the dispersion found in the QMC
study of the Heisenberg model. In Fig. 16(b), we show how
well the dispersion relation can be reproduced by the
effective model, using a simple spinon-magnon mixing
term that we specify next.
Our basic premise is that the magnon and spinon

subspaces mix, through processes where a magnon is split

into two spinons and vice versa. We use the simplest form
of this mechanism, where the two spinons are created on
neighboring sites, one of those sites being the one on which
the magnon is destroyed. The interaction Hamiltonian in
real space is

HI ¼ g
X
r;e

ðc†rþec
†
rdr þ d†rcrcrþeÞ; ð24Þ

where e denotes the four unit lattice vectors as illustrated in
Fig. 17. In motivating this interaction, we have in mind how
an S ¼ 1 excitation is created locally, e.g., in a neutron-
scattering experiment, by flipping a single spin. Spin-wave
theory describes the eigenstates of such excitations in
momentum space, and this leads to the bare magnon
dispersion. A spinon in one dimension can be regarded
as a pointlike domain wall and, as such, is associated with a
lattice link instead of a site. However, in the valence-bond
basis, the spinons arise from broken bonds and are
associated with sites (in any number of dimensions)
[34]. In this basis, the initial creation of the magnon also
corresponds to creating two unpaired spins, and the
distinction between a magnon and two deconfined spinons
only becomes clear when examining the nature of the
eigenstates (where the spinons may or may not be well-
defined particles, and they can be confined or deconfined).
In the actual spin system, the magnon and spinons in the
sense proposed here would never exist as independent
particles (not even in any known limit), but the simplified
coupled system can still provide a good description of the
true excitations at the phenomenological level, as was also
pointed out in the proposal of the AF* state (which also
hosts topological order that is not present within our
proposal) [44]. Our way of coupling the two idealized
bare systems according to Eq. (24) is intended as a
simplest, local description of the mixing of the two posited
parts of the Hilbert space. In the end, beyond its compelling
physical picture with key ingredients taken from decon-
fined quantum criticality and the AF* state, the justification
of the effective model will come from its ability to
reproduce the key properties of the excitations of the
Heisenberg model.
The magnon-spinon coupling in reciprocal space is

HI ¼
X
q;p

IðpÞðc†pc†q−pdq þ H:c:Þ; ð25Þ
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FIG. 16. (a) Dispersions of the bare excitations of the effective
model along a path through the BZ. The lower branch is for the
magnon, and the upper branch is for a single spinon. The latter is
also the lower edge of the two-spinon continuum. In this example,
the spinons in the circled region close to q ¼ ðπ; 0Þ almost touch
the magnon band, leading to significant spinon-magnon mixing.
(b) The black curve shows the lowest energy of the mixed spinon-
magnon system obtained with the dispersions in panel (a) and
strength g ¼ 5.1 of the mixing term. The red circles show the
results of the QMC-SAC calculations for the Heisenberg model
on the L ¼ 48 lattice from Sec. III.

g

FIG. 17. Illustration of the mixing process between the magnon
(black circle) and the spinon pair (red circles). With mixing
strength g, a magnon on a given sublattice splits up into a spinon
pair occupying nearest-neighbor sites. The spinon pair can
recombine and form a magnon on the original sublattice.
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where q again is the conserved total momentum and p is
the momentum of the A spinon (more precisely, the above
spinon-pair-creation operator is c†A;pc

†
B;q−p), and the form

factor corresponding to the mixing strength g in real
space is

IðpÞ ¼ g

ffiffiffiffi
2

N

r
½cosðpxÞ þ cosðpyÞ�: ð26Þ

If this interaction is used directly in a Hamiltonian with
the bare magnon and spinon dispersions, we encounter
the problem that the ground state is unstable—the mixing
term will push the energy of the lowest excitations below
that of the vacuum because the magnon mixes with the
spinon and reduces its energy also at the gapless points.
This behavior is analogous to what would happen to the
exciton-polariton spectrum by including the light-matter
interaction without the diamagnetic term. In reality,
since p2 → ðp − qAÞ2, the minimal exciton-photon cou-
pling is also responsible for a modification of the photon
Hamiltonian, in a way that preserves the gapless spec-
trum [72,73]. Following the analogy between magnons
and spinon pairs in our model and photons and particle-
hole pairs in the exciton-polariton system, we consider
the coupling to arise from a modified spinon-pair
operator by the following substitution in Eq. (23):

c†pc
†
q−p → c†pc

†
q−p þ Gðq;pÞd†q; ð27Þ

where the mixing function is given by

Gðq;pÞ ¼ IðpÞ
~ωsðq;pÞ : ð28Þ

This substitution generates the following effective mag-
non-spinon Hamiltonian:

Heff ¼
X
q

�
ωmðqÞ þ

X
p

~ωsðq;pÞG2ðq;pÞ
�
d†qdq

þ
X
p;q

½ ~ωsðq;pÞc†pc†q−pcpcq−p

þ IðpÞc†pc†q−pdq þ H:c:�: ð29Þ

Here, we see explicitly how the interaction also affects
the magnon dispersion (similar to the effect of the
diamagnetic term on the exciton-polariton problem), so
the dressed magnons acquire a slightly renormalized
velocity. This procedure guarantees that the ground state
is stable and that the full spectrum of the coupled system
is still gapless.
Some aspects of the observed behaviors in the

Heisenberg and J-Q models can be better reproduced if
we also introduce a spinon-spinon interaction term V, to be
specified later. Defining the modified magnon dispersion

~ωmðqÞ ¼ ωmðqÞ þ
X
p

~ωsðq;pÞG2ðq;pÞ; ð30Þ

the Hamiltonian in the sector of given total momentum q
can be written as

HeffðqÞ ¼ ~ωmðqÞd†qdq þ
X
k;p

Vðk;pÞc†kcpc†q−kcq−p

þ
X
p

½ ~ωsðq;pÞc†pc†q−pcpcq−p

þ IðpÞc†pc†q−pdq þ H:c:�: ð31Þ

Here, it should be noted that, if spinon-spinon interactions
are present, V ≠ 0, the definition of the function G changes
from Eq. (28) in the following simple way: The non-
interacting two-spinon energies ~ωsðq;pÞ should be
replaced by the eigenenergies of the interacting two-spinon
subsystem, and the momentum label p accordingly changes
to a different index labeling the eigenstates. The mixing
term is also transformed accordingly by using the proper
basis in Eq. (27).
We study the effective Hamiltonian by numerical ED on

L × L lattices with L up to 64. Our effective model is
clearly very simplified, and one should of course not expect
it to provide a fully quantitative description of the excita-
tions of the many-body spin Hamiltonians. Nevertheless, it
is interesting that the parameters cm, cs, Δ, and g can be
chosen such that an almost perfect agreement with the
Heisenberg magnon dispersion obtained in Sec. III is
reproduced, as shown in Fig. 16(b) (where no spinon-
spinon interactions are included). In the following, we do
not attempt to make any further detailed fits to the results
for the spin systems but focus on the general behaviors of
the model and how they can be related to the salient features
of the Heisenberg and J-Q spectral functions.

B. Mixing states and spectral functions

For a given total momentum q, the eigenstates jn;qi of
the effective Hamiltonian in Eq. (32) have overlaps hn;qjqi
with the bare magnon state jqi. Without spinon-spinon
interactions (V ¼ 0), with the bare spinons above the
magnon band for all q, and when the mixing parameter
g is suitable for describing the Heisenberg model [i.e.,
giving good agreement with the QMC dispersion relation,
as in Fig. 16(b)], we find that all but the first and the last of
these overlaps become very small when the lattice size L
increases. Thus, the two particular states are magnon-
spinon resonances, and the rest are essentially free states
of the two spinons. When attractive spinon-spinon inter-
actions are included, the picture changes qualitatively, with
the magnon also mixing strongly with all spinon bound
states. An example of spinon levels in the presence of
spin-spin interactions is shown in Fig. 18, where a number
of bound states separated by gaps can be distinguished.
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The stronger mixing with the bound states is simply a
reflection of the fact that two bound spinons have a finite
probability to occupy nearest-neighbor sites so that the
mixing process with the magnon (Fig. 17) can take place,
while the probability of this vanishes when L → ∞ for free
spinons. Note that the total overlap hn;qjqi summed over
all free-spinon states can still be nonzero because of the
increasing number of these states.
The fact that the dispersion relation resulting from Heff

can be made to match the QMC-SAC results for the
Heisenberg model (Fig. 16) is a tantalizing hint that the
dispersion anomaly at q ¼ ðπ; 0Þ may be a precursor of
spinon deconfinement as some interaction brings the
system further toward the AFM-VBS transition. In the
weak magnon-spinon mixing limit, the lowest-energy
spinons will, in the absence of attractive spinon-spinon
interactions V, deconfine close to q ¼ ðπ; 0Þ if the spinon
continuum falls below the magnon band at this wave vector,
while the magnon-spinon resonance remains the lowest
excitation in parts of the BZ where the bare spinons stay
above the magnon. The resonance state should still be
considered as a magnon, as the spinons are spatially
confined and constitute an internal structure of the magnon.
This simple behavior, which essentially follows from

the postulated bare dispersion relations, is very intriguing
because it is precisely what we observed in Sec. IV for
the J-Q model when Q is turned on but is still far away
from the deconfined critical point. We found (Figs. 13
and 14) that the low-energy magnon pole vanishes at ðπ; 0Þ,
while it remains prominent at ðπ=2; π=2Þ. Thus, we propose
that increasing Q=J corresponds to a reduction of the
energy shift Δ in the bare spinon energy in Eq. (22),
reaching Δ ¼ 0 at the deconfined quantum-critical point.
At the same time, the bare magnon and spinon velocities
should also evolve in some way. The observation that the
ðπ=2; π=2Þ magnon survives even at the critical point
would suggest that the magnon band remains below the
spinon continuum at this wave vector.

Let us now investigate the spectral function of the
effective model. Within the model, the spectral function
corresponding to the dynamic spin structure factor of the
spin models is that of the magnon creation operator d†q,

Sðq;ωÞ ¼
X
n

jhnjd†qjvacij2δðω − EnÞ; ð32Þ

where jvaci is the vacuum representing the ground state of
the spin system and En is the energy of the eigenstate jni.
The matrix element is nothing but the absolute squared of
the magnon overlap hn;qjqi discussed above. Thus, with
noninteracting spinons, the spectral function consists of
two δ functions, corresponding to the two spinon-magnon
resonance states, and a weak continuum arising from a
large number of deconfined two-spinon states. The sit-
uation changes if we include spinon-spinon interactions.
Then, as mentioned above, the spinon bound states mix
more significantly with the magnon and give rise to more
spectral weight in Eq. (32) away from the edges of the
spectrum, and the δ function at the upper edge essentially
vanishes. To attempt to model the spinon-spinon inter-
actions quantitatively would be beyond the scope of the
simplified effective model, but by considering a reasonable
case of short-range interactions, we observe interesting
features that match to a surprisingly high degree with what
was observed in the spin systems.
The q dependence of the total spectral weight of the spin

system cannot be modeled with our approach here because
the effective model completely neglects the structure of the
ground state, replacing it by trivial vacuum, and the magnon
creation operator is also an oversimplification of the spin
operator. Because of these simplifications, the total spectral
weight is unity for all q. Amain focus in Secs. III and IVwas
on the relativeweight a0ðqÞ of the leadingmagnon pole, and
this quantity has its counterpart in Eq. (32):

a0ðqÞ ¼ jhn ¼ 0jd†qjvacij2 ¼ jh0jqij2; ð33Þ

where jn ¼ 0i is the lowest-energy eigenstate and a0ðqÞ can
be compared with the QMC-SAC results in Fig. 10. Given
that the Hilbert space of the effective model contains only a
single magnon, the spectral function should correspond to
the transverse component in situations where the transverse
and longitudinal contributions are separated (e.g., polarized
neutron scattering).
We now include attractive spinon-spinon interactions

such that bare (before mixing with the magnon) bound
states are produced, as in Fig. 18. The other model
parameters are again adjusted such that the dispersion
relation resembles that in the Heisenberg model, with the
anomaly at q ¼ ðπ; 0Þ. The resulting dispersion (location of
the dominant δ function, which constitutes the lower edge
of the spectral function) and the relative magnon amplitude
are graphed in Fig. 19. The dispersion relation is very
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FIG. 18. Energy levels versus the total wave vector of two
spinons interacting through a potential VðrÞ ¼ −6.2e−r=2. The
bare dispersion relation of the single spinon is given by Eq. (21)
with cs ¼ 3.1. We only show a few of the levels between the
lower and higher energy bound.
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similar to that obtained without spinon-spinon interactions
in Fig. 16. Comparing the amplitude a0ðqÞ in Fig. 19(b)
with the Heisenberg results in Fig. 10, we can see very
similar features, with minima and maxima at the samewave
vectors, though the variations in the amplitude are larger in
the Heisenberg model.
The full spectral functions at q ¼ ðπ; 0Þ and ðπ=2; π=2Þ

are displayed in Fig. 20. Here, we have broadened all δ
functions to obtain continuous spectral functions. As
already discussed, the prominent δ function corresponding
to the magnon is similar to what is observed in the
Heisenberg model, though clearly the shapes of the
continua above the main δ function are different from
those in Fig. 6. Upon reducing the spinon energy offset Δ
so that the bare energy falls below the magnon energy close
to q ¼ ðπ; 0Þ, we observe a very interesting behavior in
Fig. 21. We see that the main magnon peak is washed out
because of the decay into the lower spinon states. This is
very similar to what we found for the J-Qmodel in Sec. IV,
where a relatively small value of Q=J already led to a
broad spectrum without a magnon pole at q ¼ ðπ; 0Þ. At
ðπ=2; π=2Þ, the magnon pole remained strong, however,
and this is also what we see for the effective model in
Fig. 21. Without spinon-spinon interactions, when the bare
magnon is inside the spinon continuum, a sharp (single
δ-function) spinon-magnon resonance remains inside the
continuum of free spinon states. Thus, for the magnon pole
to completely decay, spinon-spinon interactions are essen-
tial in the effective model.

These results for a simple effective model provide
compelling evidence for the mechanism of magnon-spinon
mixing outlined above. The results also suggest that the
absence of a magnon pole at and close to q ¼ ðπ; 0Þ does
not necessarily imply complete spinon deconfinement, as
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FIG. 19. Dispersion relation (a) and wave-vector dependence
of the relative weight of the magnon pole (b) calculated with the
effective Hamiltonian with the parameters cm ¼ 3.1, cs ¼ 3.1,
Δ ¼ 1.94, g ¼ 1.86, and the spinon-spinon potential VðrÞ ¼
−6.2e−r=2.
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FIG. 20. Spectral functions of the effective model at
(a) q ¼ ðπ; 0Þ and (b) q ¼ ðπ=2; π=2Þ, using model parameters
corresponding to the Heisenberg model: cm ¼ 3.1, cs ¼ 3.1,
Δ ¼ 1.94, g ¼ 1.86, and the spinon-spinon potential VðrÞ ¼
−6.2e−r=2 (same as used in Figs. 18 and 19). The δ functions in
the exact spectral function (computed here using an L ¼ 64
lattice) have been broadened for visualization.
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FIG. 21. Spectral functions as in Fig. 20 but with the parameters
of the effective model chosen to give behaviors similar to the J-Q
model with Q ≈ J: cm ¼ 3.1, cs ¼ 6.2, Δ ¼ 0.39, g ¼ 1.86, and
the spinon-spinon potential VðrÞ ¼ −6.2e−r=2.
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we have to include explicitly attractive interactions in the
effective model in order to reproduce the behavior in the
full spin systems. Weak attractive spinon-spinon inter-
actions have previously been detected explicitly in the
J-Q model at the deconfined critical point [34], and they
are also expected based on the field-theory description,
where the spinons are never completely deconfined because
of their coupling to an emergent gauge field [40]. The loss
of the magnon pole observed here then signifies that the
magnon changes character, from a single, spatially well-
resolved, small resonance particle to a more extended
particle (with more spinon characteristics) as a weak Q
interaction is turned on, and finally, the particle completely
disintegrates into a continuum of weakly bound spinon
pairs and deconfined spinons.

VI. CONCLUSIONS

We have investigated the long-standing problem of the
excitation anomaly at wave vectors q ≈ ðπ; 0Þ in the spin-
1=2 square-lattice Heisenberg antiferromagnet and estab-
lished its relationship to deconfined quantum criticality by
also studying the J-Qmodel. Using an improved stochastic
(sampling) method for analytic continuation of QMC
correlation functions, we have been able to quantify the
evolution of the magnon pole in the dynamic structure
factor Sðq;ωÞ as the AFM order is weakened with
increasing ratio Q=J, all the way from the Heisenberg
limit ðQ ¼ 0) to the deconfined critical point at Q=J ≈ 22.
For the Heisenberg model, our results agree with other
numerical approaches (series expansions [20] and continu-
ous similarity transformations within the Dyson-Maleev
formalism [18]) and also with recent inelastic neutron-
scattering experiments of the quasi-2D antiferromagnet
CFTD [33]. Upon increasing Q=J, we found a rapid loss
of single-magnon weight at q ≈ ðπ; 0Þ but not at
q ≈ ðπ=2; π=2Þ, where the magnon pole remains robust
even at the critical point. At first sight, these behaviors
appear surprising, but we can consistently explain them
through the proposed connection to deconfined quantum
criticality.
Motivated by the numerical results, we have constructed

an effective model of magnon-spinon mixing that can not
only phenomenologically explain the fragile, almost frac-
tionalized ðπ; 0Þ magnon of the Heisenberg model and its
decay into spinon pairs with increasing Q=J, but also
establishes the reason of the stability of the ðπ=2; π=2Þ
magnon in the J-Q model for large Q (as discovered with
the QMC-SAC calculations). The essential ingredient is a
gapped spinon band with a dispersion minimum at ðπ; 0Þ,
for which we find motivation in the fact that this point
becomes gapless at the deconfined quantum-critical point.
If the continuum of bare spinon excitations remains above
the magnon band throughout the BZ (as in Fig. 16), then the
lowest excitations are always magnons. However, since the
two bands are coupled in the effective model, via a term that

destroys a magnon and creates two spinons (as well as its
conjugate destroying the spinons and creating a magnon),
the magnons fluctuate in and out of the spinon space, and
this effect is the largest at the point in the BZ where the gap
between the two bare branches is the smallest, i.e., at
q ¼ ðπ; 0Þ. We find that this effect can quantitatively
account for the dip in the magnon dispersion relation,
and qualitatively, the wave-vector dependence of the
relative weight of the δ function at the lower edge of the
spectrum is also captured.
Within this effective model, the deconfinement mecha-

nism in the J-Q model is explained as the bare spinon
dispersion dipping below the magnon at q ¼ ðπ; 0Þ. This
can happen already for small Q=J, far away from the
AFM-VBS transition because the bare magnon-spinon gap
is already small forQ ¼ 0. AsQ=J increases, an increasing
fraction of the BZ becomes deconfined, until finally the
gapless spinons deconfine at the critical point. Our
QMC-SAC results indicate that the excitations at higher
energy remain confined, as exemplified by q ¼ ðπ=2; π=2Þ.
Within the effective model, this follows from the bare
spinon dispersion staying above the magnon band in this
region of wave vectors.
Clearly, the effective model should not be taken as a

quantitative description of the Heisenberg and J-Q systems;
motivated by aspects of deconfined quantum criticality and
the AF* state, we have introduced it mainly as a phenom-
enological tool for elucidating the behaviors observed in
the QMC studies of the model Hamiltonians. Nevertheless,
it is remarkable how well the essential observed features are
captured and how otherwise nonintuitive aspects of the
deconfinement mechanism follow naturally from the mag-
non-spinon mixing under mild assumptions on the bare
parameters of the effective model. Thus, even in the absence
of a strict microscopic derivation, the effective model can be
justified by its many nontrivial confirmed predictions.
Considering the mechanism leading to the loss of a

magnon pole with increasingQ, it is interesting to note that
it does not appear to involve significant broadening of the δ
function, but instead, the spectral weight of this peak is
distributed out into the continuum by the spinon-mixing
process. This behavior is in accordance with the general
belief that quantum antiferromagnets with collinear order
lack the damping processes that cause the broadening of
the magnon pole in frustrated, noncollinear magnets
[63,76,77]. Our proposed mechanism of spinon mixing
is thus very different from standard magnon damping.
The scenario of a nearly fractionalized magnon in the

Heisenberg model does not necessarily stand in conflict
with the expansion in multimagnon processes [18,19],
which can account for the dynamic structure factor without
invoking any spinon mixing effects. We have only dis-
cussed the effective model of the excitations at the level
of a single magnon and its mixing with the spinon
continuum, and our results for the Heisenberg model show

SHAO, QIN, CAPPONI, CHESI, MENG, and SANDVIK PHYS. REV. X 7, 041072 (2017)

041072-20



that the magnon is significantly dressed by spinons around
q ¼ ðπ; 0Þ but is not yet fractionalized. The magnon-spinon
mixing then represents a description of the internal struc-
ture of the magnon, and we have not considered the further
effects of multimagnon processes. It is remarkable that the
results of Ref. [19] match the experimental data (and also
numerical data for the Heisenberg model) so well without
taking into account the internal spinon structure of the
magnons, if indeed this structure is present. Here, we can
draw a loose analogy with nuclear physics, where the
internucleon force has an effective description in terms of
exchange of mesons (pions) between nucleons. Yukawa
proposed mesons as the carriers of the force without
knowledge of the quark structure of the nucleons and
mesons that is ultimately involved in the interaction
(residual strong force) process, and quantitatively satisfac-
tory results in nuclear physics are obtained with the
effective interaction (and calculations with the full strong
force between quarks mediated by gluons are, in practice,
too complicated to work with quantitatively). The signifi-
cant attractive interaction between magnons in the
Heisenberg model [18,19] might similarly be regarded as
mediated by spinon pairs (which themselves constitute
magnons), and, by the pion analogy, the magnons and their
residual attractive interactions could also provide an accu-
rate description of the excitations without invoking the
internal spinon structure. To investigate the relationship
between the two pictures further, it would be interesting to
treat the J-Q model with the method of Ref. [19]. Based on
our scenario, we predict that the multimagnon expansion
should break down rapidly close to q ¼ ðπ; 0Þ as the Q
interaction is turned on, but it should remain convergent at
low energies until the system comes close to the deconfined
quantum-critical point.
The fragility of the magnons at and close to q ¼ ðπ; 0Þ

suggests that these excitations may also become completely
fractionalized by interactions other than the Q terms
considered here, e.g., ring exchange or longer-range pair
exchange. These interactions have also recently been
investigated in the context of possible topological order
and spinon excitations in the cuprates [78]. The so-called
AF* state [44,45] was proposed largely on phenomeno-
logical grounds; here, topological order coexists with AFM
order, and there is a spinon continuum similar to the one
in our effective model. Though in our scenario the reason
for the spinon continuum is different—the proximity to a
deconfined quantum-critical point—a generic conclusion
that is valid in either case is that spinon deconfinement can
set in at q ¼ ðπ; 0Þ well before any ground-state transition
at which the low-energy spinons deconfine.
In this context, the quasi-2D square-lattice antiferromag-

net CuðpzÞ2ðClO4Þ2 is very interesting. It has a weak,
frustrated, next-nearest-neighbor coupling and has been
modeled within the J1-J2 Heisenberg model [79]. Neutron-
scattering experiments on the material and series-expansion

calculations for the model show an even larger suppression
of the ðπ; 0Þ energy than in the pure Heisenberg model,
similar to what we have observed in the presence of a weak
Q interaction. The experimental ðπ; 0Þ line shape also
seems to have a smaller magnon pole than CFTD, in
accordance with our scenario of a fragile magnon pole,
although we are not aware of any quantitative analysis of
the weight of the magnon pole and no line-shape calcu-
lations were reported in Ref. [79]. It would clearly be
interesting to carry out neutron experiments at higher
resolution and to make detailed comparisons with calcu-
lations beyond the dispersion relation.
Ultimately, the J1-J2 system should be different from the

J-Q model because the deconfined quantum-critical point
of the latter most likely is replaced by an extended gapless
spin liquid phase of the former [68–71]. However, since
this phase should also be associated with deconfined
spinons, the evolution of the excitations as this phase is
approached may be very similar to what we have discussed
within the J-Q model on its approach to the deconfined
quantum-critical point. A state with topological order and
spinon excitations may instead be approached when strong
ring-exchange interactions are added [78], but given that J
is weak in CuðpzÞ2ðClO4Þ2, these interactions may not play
a significant role in this case. Ring exchange should be
more important in Sr2CuO2Cl2, where excitation anomalies
have also been observed [80].
The magnetic-field (h) dependence of the excitation

spectrum of CuðpzÞ2ðClO4Þ2 was also studied in
Ref. [79]. Since the energy scale of the Heisenberg
exchange is even smaller than in CFTD, it was possible
to study field strengths of order J and observe significant
changes in the dispersion relation and the ðπ; 0Þ line shape.
The methods we have developed here can also be applied to
systems in an external magnetic field, and it would be
interesting to study the dynamics of the J-Q-h model.
Some results indicating destabilization of magnons due to
the field in the Heisenberg model are already available [81],
and our improved analytic continuation technique could
potentially improve on the frequency resolution.
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APPENDIX: COVARIANCE IN QMC
AND SYNTHETIC DATA

As discussed in Sec. II A, the QMC-computed imaginary
time data ḠðτiÞ for different i are correlated, and it is well
known [54] that this has to be taken into account in
any statistically proper analytic continuation procedure
(though, in practice, good results can still be obtained with
just the diagonal elements σi, if they are sufficiently small).
While the covariance may seem like a nuisance, there is
actually a silver lining, in that correlations between differ-
ent τ points typically imply that the data are actually better
than the individual statistical errors σi might indicate.
As an extreme example of the above, imagine a situation

in which all data points are perfectly correlated, in the sense
that the computed Ḡi (over a bin or the whole simulation) is
of the form

Gi ¼ Gexact
i ð1þ σÞ ðA1Þ

for all i, where σ is the common noise source. Then, upon
normalization, Gi → Gi=G0, one obtains the exact values
Gexact

i =Gexact
0 (where the subscript 0 corresponds to τ ¼ 0).

In reality, the noises for different τ points are not perfectly
correlated, but they have an autocorrelation function that
decays with τ; nevertheless, the presence of covariance
corresponds to additional information content in the data set,
and this information can improve the frequency resolution
when compared to the case of no off-diagonal elements of C
and the same values of all σi ¼ Cii. Here, we show some
examples of covariance effects in QMC data, and also
explain how we build in correlated noise in synthetic data.

1. Real QMC data

In Fig. 22, we show an example of data underlying the
SAC calculations in Sec. III; at the most interesting wave
vector, q ¼ ðπ; 0Þ, for a system with L ¼ 48. Here, we have

used a quadratic τ grid, in order to take advantage of the
reduced error bars close to τ ¼ 0 after normalizing to
Ḡð0Þ ¼ 1, while not including an excessively large number
of points (in which case, there is a lot of redundancy in the
correlated data, and it also becomes difficult to diagonalize
the covariance matrix). We only include data points for
which the relative errors σi=Ḡi are less than 10%.
Figure 22(a) shows the ḠðτÞ data on a lin-log scale, so a

pure exponential decay (arising from a spectrum with a
single δ function) corresponds to a straight line. From the
analysis in Sec. III, we see that the amplitude of the magnon
δ function is a0 ¼ 0.405� 0.025 and its frequency is
ω0 ≈ 2.13. The two straight lines in the figure correspond
to the contribution from this δ function when the amplitude
is the mean value plus or minus one error bar, i.e., 0.38 and
0.43, respectively. These lines are still significantly below
the data points, and it is also clear that the data have not
quite converged to a pure straight line at the largest τ
available. Therefore, it is not easy to extract a0 and ω0 from
a simple exponential fit to the large-τ data, and the SAC
procedure with the special treatment of the magnon pole
should be an optimal way to take into account the effects of
the continuum.
It is also interesting to examine the eigenvectors vn of the

covariance matrix, which determine the transformed cor-
relation functions,
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FIG. 22. (a) Imaginary-time correlation function at q ¼ ðπ; 0Þ
for a 2D Heisenberg lattice with L ¼ 48, computed in SSE QMC
simulations at β ¼ 192 (giving T ¼ 0 results for all practical
purposes). The two straight lines correspond to the contribution
from the leading δ function obtained in the SAC procedure, with
amplitude a0 ¼ 0.405� 0.025. (b) The statistical errors (diago-
nal elements of the covariance matrix) σðτÞ and the eigenvalues of
the covariance matrix (ordered from smallest to largest).
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~Gn ¼
X
i

vnðiÞḠðτiÞ; ðA2Þ

which fluctuate independently of each other in the QMC
simulations (and for which the eigenvalues ϵn represent
the error bars). Figure 23 shows three of the normalized
eigenvectors corresponding to the eigenvalues in Fig. 22.
Note that the normalization of GðτiÞ has already removed a
significant component of the covariance—the uniformly
fluctuating component—and without the normalization, the
largest eigenvector has the most weight for small τi, instead
of being shifted to higher τi with the normalized data set
(seen for n ¼ 1 in the figure). The vector corresponding to
the smallest eigenvalue has alternating positive and neg-
ative values and decays rapidly with τi.

2. Synthetic data

In order to be able to test all aspects of the SAC
procedures used with real QMC data, we generate a number
NB of bins of noisy data starting from the exact GðτÞ
computed from Eq. (4) with the given synthetic spectrum
SðωÞ. These bins are used to compute the mean values Ḡi
and the covariance matrix with the same program used to
process the QMC data. To construct correlated noise similar
to that present in QMC data, for each bin we first generate
a set of normal-distributed random numbers σ0i , with a
given standard deviation (the same for all i, which is not
necessarily exactly the case with QMC data but should be
good enough for testing purposes). We then run these data
through a correlation procedure, where a new noise set is
generated according to

σi ¼
P

jσ
0
je

−jτi−τjj=ξτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
je

−2jτi−τjj=ξτ
q ðA3Þ

with a given autocorrelation time ξτ. These noise values
are then added to Gi. The autocorrelation time and the
original noise level σ0i can be adjusted so that the

eigenvalues of the covariance matrix are similar to those
of typical QMC data, though the QMC correlations
cannot, of course, be expected to exactly follow what
is produced by Eq. (A3). An example is shown in Fig. 24,
where we have adjusted the parameters of Eq. (A3) to
match the real QMC data in Fig. 22 closely (apart from
an overall factor ≈2 in the τ scale). As is apparent, we can
indeed obtain very similar forms of the standard errors
and the eigenvalues of the covariance matrix.
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