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Abstract: Anthropogenic activities in coastal regions are endangering marine ecosystems. Coastal
waters classified as case-II waters are especially complex due to the presence of different constituents.
Recent advances in remote sensing technology have enabled to capture the spatiotemporal variability
of the constituents in coastal waters. The present study evaluates the potential of remote sensing
using machine learning techniques, for improving water quality estimation over the coastal waters
of Hong Kong. Concentrations of suspended solids (SS), chlorophyll-a (Chl-a), and turbidity were
estimated with several machine learning techniques including Artificial Neural Network (ANN),
Random Forest (RF), Cubist regression (CB), and Support Vector Regression (SVR). Landsat (5,7,8)
reflectance data were compared with in situ reflectance data to evaluate the performance of machine
learning models. The highest accuracies of the water quality indicators were achieved by ANN for
both, in situ reflectance data (89%-Chl-a, 93%-SS, and 82%-turbidity) and satellite data (91%-Chl-a,
92%-SS, and 85%-turbidity. The water quality parameters retrieved by the ANN model was further
compared to those retrieved by “standard Case-2 Regional/Coast Colour” (C2RCC) processing
chain model C2RCC-Nets. The root mean square errors (RMSEs) for estimating SS and Chl-a were
3.3 mg/L and 2.7 µg/L, respectively, using ANN, whereas RMSEs were 12.7 mg/L and 12.9 µg/L
for suspended particulate matter (SPM) and Chl-a concentrations, respectively, when C2RCC was
applied on Landsat-8 data. Relative variable importance was also conducted to investigate the
consistency between in situ reflectance data and satellite data, and results show that both datasets
are similar. The red band (wavelength ≈ 0.665 µm) and the product of red and green band
(wavelength ≈ 0.560 µm) were influential inputs in both reflectance data sets for estimating SS
and turbidity, and the ratio between red and blue band (wavelength ≈ 0.490 µm) as well as the ratio
between infrared (wavelength ≈ 0.865 µm) and blue band and green band proved to be more useful
for the estimation of Chl-a concentration, due to their sensitivity to high turbidity in the coastal
waters. The results indicate that the NN based machine learning approaches perform better and,
thus, can be used for improved water quality monitoring with satellite data in optically complex
coastal waters.
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1. Introduction

The coastal marine ecosystem is both complex and vulnerable [1] as it is generally close to
areas with high population density. As documented in previous studies [2,3], population density
within 100 km of coastlines is approximately three times higher than the average density of the global
population and a further increase is expected. Increased anthropogenic activities along the coasts
have resulted in the degradation of water quality [4], including runoff of agricultural fertilizers into
rivers, resulting in high suspended solids with large nutrient inflows that can cause eutrophication.
Eutrophication can further contribute to an increase in algal bloom events [5]. These blooms can block
sunlight, resulting in an anoxic condition, in which dissolved oxygen is depleted within the coastal
environment. In addition, some of these blooms are toxic, with adverse effects on aquatic life and
humans [6,7]. Due to the adverse consequences of water pollution, there is a need to monitor potential
changes in water quality in any environmental impact assessment [8,9]. Water quality indicators (WQIs),
such as chlorophyll-a (Chl-a), suspended solids (SS), and turbidity, have been used as indicators for
monitoring coastal and inland water quality [10–13].

The concentration of Chl-a, a measure of phytoplankton biomass, is a key water quality indicator
as it is the base of the marine food chain, and it can also be used to indicate algal blooms [7]. Chl-a is
an optically-active parameter as clean water absorbs most of the visible, and all infrared (IR) radiation,
while nutrient-rich water with the presence of Chl-a, generally reflects green and IR radiation back
to the atmosphere [14]. Similarly, SS is also optically-active parameter as a high concentration of SS
increases water leaving radiance across the whole visible spectrum. Routine monitoring of SS is critical
as the high concentrations of SS have adverse effects on benthic invertebrates [15].

Traditional methods using field measurements for measuring WQI offer high accuracy. However,
these methods are labor-intensive and time-consuming, and hence are not able to provide efficient and
concurrent water quality measurements at a regional scale [16]. On the other hand, satellite remote
sensing-based methods have potential to measure optically-active WQI, such as Chl-a, SS, colored
dissolved organic matter (CDOM), and turbidity, at regular interval and over large areas. In situ sensing
technologies, such as multispectral or hyperspectral radiometers, are of great importance as these are
required for vicarious calibration and in situ spectral data along with WQI data are extensively used to
develop or validated analytical, semianalytical, or empirical models for inland/marine water quality
monitoring using corresponding satellite bands [17–19]. Previous studies have evaluated satellite data
for monitoring Chl-a and SS. For example, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) with
1.1-km resolution has been widely used to estimate the spatial distribution of Chl-a [20,21]. Miller
and McKee [12] used a 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) to map
total suspended solids concentration and Moses, Gitelson, Berdnikov and Povazhnyy [10] combined
MODIS and the Medium Resolution Imaging Spectrometer (MERIS) to map Chl-a in case-II waters.
Other studies have used data of finer-resolution sensors, such as the Landsat 5 (L5) Thematic Mapper
(TM), Landsat 7 (L7) Enhanced Thematic Mapper Plus, (ETM+) the Landsat 8 (L8) Operational Land
Imager (OLI), the Earth Observation Advance Land Imager (EO-1 ALI), Huanjing-1 (HJ-1) A/B,
and Sentinel-2 A/B to design a more comprehensive framework for water quality monitoring over
inland, estuarine, and coastal environments [11,22–24].

However, these studies have several limitations, as they commonly apply linear or multivariate
regression to estimate water quality, this may be suitable for a specific environment (e.g., inland
lake and case-I waters) but may not work well in coastal environments. This is because multiple
factors, such as tides and ocean currents, can influence the flow of water pollutants and the interaction
among these factors cannot be explained by a simple linear relationship. Additionally, linear or
multivariate regression is highly dependent on station-based water quality data for model development.
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Furthermore, the empirical predictive models (EPMs) developed from these linear/multivariate
regressions cannot be simply applied to other areas of interest, because of the complexity of association
among colored dissolved organic matter, Chl-a concentration, and type and size of SS, as the spectral
response of water depends on these factors [25–27]. Thus, several studies [4,28,29] have examined
alternatives such as machine learning techniques and radiative transfer functions to improve water
quality modeling.

Compared with machine learning techniques, radiative transfer models such as Hydrolight and
successive order of scattering (SOS) are physical-based, and therefore depend on Inherent Optical
Properties (IOP) of water and extensive field data [30]. In addition, deriving IOP from satellite data is
challenging. In contrast, the decision-making process of machine learning may require fewer data and
assumptions for training purposes (Kim et al., 2014). This implies that such techniques are more flexible
for application to different types of coastal environments. For example, some studies have developed
machine learning based models for predicting Chl-a and CDOM in temperate regions [4,31,32] and to
map phytoplankton cell counts on a subtropical coast [28]. Although machine learning techniques may
be useful to improve the estimation of Chl-a and related WQIs in a coastal environment, there are two
issues that need to be further addressed: (i) previous studies have used machine learning techniques
for estimating WQIs in temperate regions. Since these machine learning techniques were based
on different assumptions, it is necessary to evaluate such techniques for predicting water quality to
determine which method may be better for mapping WQIs in a coastal environment and (ii) subtropical
areas are influenced by monsoons, typhoons, and high marine biological productivity, resulting in
a more complex coastal system compared to temperate regions. Further investigation into remote
sensing of water quality across the subtropical region is needed, to provide improved and routine
monitoring. Based on these two core issues, the present study aims to develop a systematic approach
to evaluate different machine learning algorithms for estimating water quality of subtropical case-II
waters. The main objectives of this study include (1) an evaluation of four machine learning methods,
including Artificial Neural Network (ANN), Random Forest (RF), Cubist regression (CB), and Support
Vector Regression (SVR), using independent, in situ reflectance data and satellite-derived reflectance
data (Landsat L5, L7, and L8) for water quality prediction over subtropical coastal waters; (2) a further
comparison of machine learning models with EPMs; and (3) sensitivity analysis of spectral bands for
modeling water quality based on variable importance analysis.

2. Study Area and Materials and Methods

2.1. Study Area

Hong Kong is a subtropical city located on the Pearl River Estuary’s eastern coast with 1106 km2

of land and 1649 km2 of marine areas (Figure 1). Development of industries, accompanying the
urbanization of the adjacent Guangdong province of China, has resulted in adverse environmental
degradation in water quality along the coastlines [8]. Due to the combination of anthropogenic
activities and variable geophysical environment, the coastal waters of Hong Kong are physically and
chemically complex. For example, water quality in the western areas of Hong Kong (e.g., Deep Bay
and Northwestern zone) are influenced by the turbidity of the Pearl River discharges and the high
loads of microalgae, usually associated with high nutrients (Figure 2). Conversely, the eastern areas
(e.g., Tolo Harbor and Mirs Bay) are mostly influenced by the Pacific currents, and the central areas are
influenced by both the Pacific currents, and industrial/residential effluents from Hong Kong and the
Pearl River [13]. In addition, SS and turbidity along the coasts of Hong Kong vary spatiotemporally
with the river discharge, winds, and tidal fluctuations. In late summer to early autumn the eastern
and southern waters are affected by frequent algal blooms, due to both natural and anthropogenic
causes [33]. Due to the high variability in this complex coastal environment, using an empirical model
such as linear or multivariate regression may not be promising for predicting WQIs across these
coastal waters.
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Figure 2. Water color in different parts of Hong Kong: (a) clear water near MM19, (b) water with high
Chl-a near NM1, (c) turbid water near NM6, and (d) highly turbid water near the NM5 station of EPD
(shown in Figure 1).

2.2. Materials

2.2.1. Station-Based Water Quality Observations

Station-based data of water quality from 1999 to 2015 were retrieved from the marine WQIs online
database of the Hong Kong Environmental Protection Department (EPD). These WQIs were collected from
10 monitoring zones defined by EPD (Figure 1). The EPD has a dedicated marine monitoring vessel which
uses Differential Global Positioning Systems (DGPS) and an advanced conductivity–temperature–depth
(CTD) profiler to take measurements and collects samples simultaneously once a month from
76 fixed monitoring stations. EPD measures 24 WQIs from three depths: surface water (1 m below
the sea surface), middle water (half the sea depth), and bottom water (1 m above the seabed).
Samples are collected in a 500 mL Nalgene bottle and analyzed for the measurements of Chl-a and SS
concentrations. The American Public Health Association (APHA) 20 ed 10200H 2 spectrophotometric
method based in-house GL-OR-34 method is used to measure Chl-a concentration, the APHA 22ed
2540D weighing method based in-house GL-PH-23 method is used to estimate the SS concentration,
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and turbidity is measured on-site by the OBS-3 turbidity sensor linked to a SEACAT 19+ CTD and
Water Quality Profiler.

2.2.2. Satellite Data

For this study, a total of 38 cloud-free scenes of L5, L7, and L8 from 1999 to 2015, covering all
seasons of the year, were retrieved from the Earth Explorer. Details of satellite data are available in
supplementary material (Table S1). Only visible and near-infrared (VNIR) wavelength (bands 1–4 of
L5/L7 and 2–5 of L8) of same date image with EPD station data were considered as water absorbs
most energy in the shortwave near-infrared (SWIR) region [34] and only “surface water” data of the
station-based WQI data were used for matching with the satellite data.

2.2.3. In Situ Water Surface Reflectance

In situ surface reflectance of water (hereafter in situ SR) data were collected with a CROPSCAN
Multispectral Radiometer (MSR). The CROPSCAN MSR is a handheld multispectral radiometer able
to retrieve spectral information in 16 channels. Such in situ reflectance data can be widely used for
studying vegetation health and for estimating optical properties of water [35]. These in situ SR data
have wavelengths matching the multispectral bands of Landsat (bands 1–4 of L5/L7 and 2–5 for L8)
(Table 1). The above water in situ SR data were collected between 10:00 and 14:00 (local time) from
42 sites under clear weather conditions during seven field visits (06, 08, 09, 13, 15, 16, and 17 Oct 2014).
Multiple spectra (at least 10 values from each sampling site) were collected and averaged for data
modeling (Figure 1). The corresponding WQIs were measured using previous stated standard methods.
Table 2 shows the corresponding WQI data of the same sites.

Table 1. Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land
Imager (OLI) spectral bands and the matching bands of CROPSCAN MSR-16R radiometer.

Band
Landsat TM/ETM+ Landsat OLI CROPSCAN MSR Bands

λ (µm) λ (µm) (µm)

Blue (B1 *) 0.45–0.52 (B1) 0.45–0.51 (B2) 0.4566–0.4634, 0.5062–0.5139

Green (B2 *) 0.52–0.60 (B2) 0.53–0.59 (B3) 0.5553–0.5647

Red (B3 *) 0.63–0.69 (B3) 0.63–0.67 (B4) 0.6540–0.6660

NIR (B4 *) 0.76–0.90 (B4) 0.85–0.87 (B5) 0.7545–0.7655, 0.8045–0.8155, 0.8640–0.8760, 0.8935–0.9065

* band symbols used in this study to indicate corresponding satellite and CROPSCAN MSR band.

Table 2. Summary of station-based water quality indicators (WQIs) matchups with in situ reflectance data.

WQI Sample Size Range Mean Standard Deviation

Chl-a 42 0.5–5.0 µg/L 2.2 1.0
SS 42 0.7–8.0 mg/L 3.3 1.8

TURB 42 1.3–12.0 NTU 4.0 1.1

2.3. Methods

2.3.1. Data Preprocessing

First, the radiometric correction was applied to all satellite images for waveband standardization.
For satellite images of L5, L7, and L8, uncalibrated digital numbers (DN) were converted to the
Top of Atmosphere (TOA) spectral radiance, using radiometric rescaling coefficients provided in
the image metadata file [23,36]. Atmospheric correction was also conducted to reduce atmospheric
interference. An approach for atmospheric correction, the “Second Simulation of the Satellite Signal in
the Solar Spectrum (6S)” [37,38] with the maritime aerosol model, was applied since this setting of 6S
has been demonstrated effectively over complex coastal waters of Hong Kong by [38]. In addition,
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the Normalized Difference Water Index (NDWI) for open waters [39] was applied to all images for
separating waterbodies from land or shadow casted by terrain, and to map the coastlines, based on
a contrast threshold of NIR and visible green radiation.

2.3.2. Estimation of Water Quality with Machine Learning Techniques

Two pairs of datasets—(i) in situ SR along with WQI data and (ii) satellite-derived SR along with
WQI data—were used independently to evaluate four machine learning techniques: support vector
regression (SVR), random forest (RF), artificial neural network (ANN), and Cubist regression trees
(CB), based on their accuracies in estimating WQI concentration.

• Support Vector Regression (SVR)

A regression version of support vector machines, SVR, is a vector-based statistical learning
technique widely used for vegetation mapping [40], land use studies [41], landscape modeling,
water quality research [4], and quantification of soil properties [42]. SVR has demonstrated strong
predictability even when training samples are limited [4]. Mathematically, SVR can be represented on
the network output (Si):

s(Xi) =

(
T

∑
i=1

wi ϕ(Xi) + b

)
(1)

where wi and b are coefficients that are determined by minimizing the errors between target variable
and network output and Xi is nonlinear mapping function. SVR is implemented with a nonlinear
mapping function, a kernel function: K(Xi, X) The kernel function and a hyperplane separate the input
data points linearly and transform the input data to a high dimensional space. Thus model accuracy
highly depends on the selection of kernel function [43]. The kernel functions include polynomial,
linear, and Gaussian radius bias kernel functions. The application domain knowledge and variance
of input (X) values of the training data are important for selecting a kernel type and kernel function
parameters. Iteratively, adjusting the hyperplanes and reducing the errors associated with them is an
optimal solution to select the kernel function [4]. The kernel function in this study was selected based
on its performances for all WQIs. Weka 3.8 [44] was used for applying SVR in this study.

• Artificial Neural Network (ANN)

ANN is a decision-based machine learning technique which uses highly interconnected nodes to
solve a particular problem [45]. It has been confirmed as a means for quantitative predictive modeling
as ANN can handle dynamic, nonlinear, and noisy data. During the training phase, the network was
trained using a supervised learning technique. The information from input layer was distributed to the
hidden layers where summation and activation functions were performed. The results from hidden
layer transfer to output layer which also apply summation and activation function for the estimation
of output WQI value is given as follows.

WQI = aS

(
n

∑
i=1

wizi + b

)
(2)

S =
1

1 + e−ax (3)

where wi and zi are the weights and inputs between the hidden layer and the output layer, b is the bias
associated with the output layer, i is the number of nodes in hidden layer, S is the Sigmoid activation
function (Equation (3)) to handle the nonlinearity, and a is the slope parameter of the sigmoid function.
This activation function transfers the weighted summed inputs to output layer. In order to achieve the
appropriate results, the selected size of network and number of hidden layers and neurons/nodes
are of critical importance, a large network may result in overfitting the target variable [46]. In the
present study, ANN model was implemented in Python using the Levenberg–Marquardt algorithm
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and tangent sigmoid as the activation function. The input layer consists of reflectance bands and band
combinations; the output layer has the values of target variable WQI in the present case.

• Cubist Regression Trees (CB)

Cubist regression (CB), developed based on a combination of the ideas of Quinlan [47,48],
is a rule-based regression technique. CB uses a rule-based regression tree system based on instance
criteria which gives multivariate regression output (i.e., each multivariate regression is based on
a specific rule). Then, an explicit set of predictor variables choose a definite prediction model based on
the rule/rules that best fits the predictors [49]. Since it produces rule-based multivariate regression,
it is more interpretable than RF. Cubist is a commercial, proprietary product developed by RlueQuest
Research, Inc. It became popular and widely used in regression and classification methods after it was
ported into R by Kuhn et al. [50] in 2013. The Cubist model was implemented in R software for the
present study.

• Random Forest (RF)

In brief, RF is an ensemble learning method based on multiple decision trees. It uses a random
selection of the training dataset with a Gini Index to create binary splits and multiple classification and
regression trees, in order to predict values of the dependent class/variable [51]. RF for regression and
classification task was used by multiple studies using earth observation data [4,41,52]. The RF model
of Weka 3.8 [53] was used to retrieve WQIs in this study.

2.3.3. Input Selection for Machine Learning Algorithm

For accurately matching satellite images with EPD station-based WQI data, a spatial window with
3 × 3 pixels was used to extract data located at each sampling station, rather than considering a single
pixel for data extraction. Furthermore, EPD stations located at pixels potentially affected by scan line
error on ETM+ images, wake effects were not considered. This process resulted in 120 observations
of satellite-derived SR corresponding to three WQIs (Table 3). In this study, concentrations of Chl-a,
SS, and turbidity, retrieved from this database, were used for training and validation of all machine
learning models.

Table 3. Summary of station-based water quality indicators (WQIs) matchups with satellite data.

WQI Sample Size Range Mean Standard Deviation

Chl-a 120 0.3–28 µg/L 3.5 3.2
SS 120 0.8–33.0 mg/L 5.6 4.3

TURB 120 0.8–31.3 NTU 9.4 5.6

Landsat bands are calibrated for land-based applications however, researchers have evaluated the
potential of TM, ETM+, and OLI data to monitor coastal and inland WQIs [11,34,54,55]. Most studies
used the reflectance ratio approach for developing linear, exponential, or logistic regressions as a proxy
for WQI [11,56,57]. We have assessed the correlations among three optically-active WQIs and eighteen
different band combinations of water reflectance, for both reflectance datasets. Only band combinations
with a high R > 0.50 and p-values < 0.01 were considered as input variable in machine learning model.
Both in situ SR data and satellite-derived SR data were used to evaluate the appropriate machine
learning model for WQIs, as in situ SR data represent water leaving surface reflectance data from field
measurements, while satellite-derived SR represents water leaving surface reflectance data on satellite
image. The images cover a larger spatial extent, but reflectance values depend on the accuracy of the
atmospheric correction method.
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2.3.4. Empirical Predictive Modeling (EPM)

For consistency, same inputs were used to build multivariate regressions. Stepwise regression
(backward, forward, and bidirectional elimination) was applied to select the best model by considering
Akaike Information Criterion (AIC), coefficient of determination (R2), mean absolute error (MAE),
and root mean square error (RMSE). The backward selection is the best approach when number
of samples n is larger than number of predictors p. Whereas a forward selection approach is
usually applied on high dimensional datasets, but this approach is also a good choice to handle
the multicollinearity issue [58]. Interassociations exist in our input data, as when SS loads are high,
water reflectance increases in all bands linearly, and when Chl-a concentration is high (especially
during algal bloom/red tide event), water reflectance in green/red and IR bands increases. In addition,
the accuracy of regression models was further compared with all machine learning models.

2.3.5. Validation of Water Quality Predictions

Leave-one-out cross-validation (LOOCV) was chosen to evaluate the all predictive models for in
situ SR data due to limited number of training samples (only 42 match-ups). LOOCV provides a near
unbiased prediction with less manual involvement [59] and therefore is often used for model selection
and evaluation. LOOCV is a specific type of k-fold cross-validation. Considering k = N (number of
observations) means that the model was implemented N times, leaving one observation each time for
validation. However, 10-fold cross-validation (where k = 10) was used for satellite-derived SR dataset
(190 samples). In each validation in 10-fold, the coefficient of correlation (R), R2, RMSE, and MAE were
calculated, and the final values were averaged over all folds. The R2, R, MAE, and RMSE were used to
determine the accuracy of each model.

The appropriate model suggested by both SR data sets was further used to derive water quality
maps using atmospherically corrected Landsat image and the results were compared with station
based WQI values recorded by EPD. The model outputs were further compared with WQI retrieved
by ESA’s multilayer neural network (MLNN) method “standard Case-2 Regional/Coast Colour”
(C2RCC) processing chain model C2RCC-Nets. C2CRR-Nets is case-II processor originally developed
by Doerffer and Schiller [60]. It uses a large database of radiative transfer simulations of water leaving
radiances, as well as top-of-atmosphere radiances and neural networks for inversion modeling. It is
now available through SNAP software [61].

2.3.6. Evaluation of Model Parameters

The RF model has an inherent procedure of calculating variable importance. In this study, we have
evaluated the relative importance of input variables (bands and band combinations) based on a relative
importance analysis with the RF model. This analysis evaluated all input variables using a mean
decrease in impurity (MDI) or impurity reduction contribution by input variables while data splitting
procedure. Mean square error reduction (MSR reduction) has been adopted to evaluate the relative
importance of each variable. A high value of MSR reduction shows the importance of the variable.
More details of MDI and impurity reduction can be referred to Breiman [51].

The Cubist model also provides variable usage information based on rules and conditions used in
model building. This information can also be used to evaluate the input variable importance.

3. Results and Discussion

3.1. Selection of Band Combinations for Data Input

Based on a comparison of Pearson’s R coefficients of 18 band combinations for both SR data
sets, the combinations of (B3)2, B3/B1, B1*B3, and B2*B3 are highly correlated with SS and turbidity.
Therefore, these band combinations along with the first four bands were used as input variables in
four machine learning models, as well as for developing a multivariate regression model for predicting
SS and turbidity for both SR data sets.
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In addition, Chl-a has lower correlation with all individual bands of satellite-derived SR data,
but the ratios of B3 and (B1)2 and B4 and (B1)2 are highly correlated. The high correlation between
Chl-a and B4/(B1)2 is consistent with previous studies as clear water has low reflectance in blue
and green regions and absorbs red and IR light, although water with Chl-a can reflect a relatively
high amount of green and IR radiation [62]. However, because B3 and B1 are equally absorptive
for Chl-a, but SS scatters more in the red region than blue, this ratio is helpful to separate Chl-a
from SS in turbid coastal waters. For both SR data sets, the variables B1-B4, B3/(B1)2, and B4/(B1)2

ratios, six inputs variables (Table 4) were used to train the machine learning models and to develop
multivariate regression for estimating Chl-a across the coastal areas of Hong Kong.

Table 4. Bands and band combinations used in machine learning and stepwise regression models for
in situ and satellite-derived SR data.

WQI Bands and Band Combinations

Chl-a B1-B4, B3/(B1)2, B4/(B1)2

SS B1-B4, (B3)2, B3/B1, B1*B3 and B2*B3
TURB B1-B4, (B3)2, B3/B1, B1*B3 and B2*B3

3.2. Model Selection

Model parameters, such as number of hidden layers and number of nodes (neurons) in hidden
layer greatly, affect the model accuracy in the case of ANN. In order to select the best fit model,
a cross-validation (k-fold) method was used to select the best fit model. Among all tested models,
for in situ SR data one hidden layer with eight nodes model has resulted in the highest R2 and lowest
RMSE for all WQIs (Figure 3a–c). Whereas, for satellite SR data, in the network design, one hidden
layer with fifteen nodes was selected for Chl-a and turbidity model (Figure 3d, f), and one hidden layer
with 20 nodes was selected for the SS-model (Figure 3e) based on the highest cross-validation R2 and
the lowest RMSE. In the present study, for selecting SVR model, multiple kernel functions were tested
using cross-validation, and finally, a polynomial kernel function was adopted with its outperformance.
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Figure 3. Different model designs with cross-validation R2 and Root Mean Squared Error (RMSE).
First row shows different models for Chl-a (a), SS (b), and turbidity (c) when in-situ SR data was
considered; and second row shows different models for Chl-a (d), SS (e), and turbidity (f) when satellite
SR data was considered. The symbol “:” on the x-axis indicates the model with two hidden layers,
while the number shows the number of neurons in each layer.
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3.3. Evaluation of Machine Learning Regression by Using In-Situ SR Data

Based on using in situ water reflectance data collected by the MSR, four machine learning
techniques (RF, SVR, ANN, and CB) were applied to estimate three optically-active WQIs.
The correlation between the observed and predicted WQI derived by these machine learning
approaches is shown in Figure 4; the comparison of all machine learning model against the data
range is shown in Table 5.

For Chl-a concentration, there are high correlations for all models, in which ANN has the best
performance with an R of 0.89, MAE of 0.20 µg/L, and RMSE of 0.27 µg/L, followed by SVR with an R
of 0.76, MAE of 0.54 µg/L, and RMSE of 0.66 µg/L. The lowest performance was observed for the
RF with an R of 0.71, MAE and RMSE of 0.57 µg/L, and 0.72 µg/L, respectively. CB showed slightly
better results than RF with a R of 0.76, MAE with 0.54 µg/L, and RMSE with 0.66 µg/L (Figure 4).
Similar findings were obtained when four machine learning regressions were applied to estimate SS
concentration and turbidity. The ANN showed the best results with an R of 0.93 for SS prediction
and an R of 0.82 for turbidity prediction; with the lowest values of MAE and RMSE of 0.68 mg/L
and 0.70 mg/L for SS prediction, respectively, and 0.82 NTU and 0.94 NTU for turbidity prediction.
The Cubist and RF model underperformed compared to the multivariate regression model (Table 6).
Forward selection performed the best in case of Chl-a, and backward and bidirectional selection model
perform superior in case of SS concentration estimation

Table 5. Cross-validation results of machine learning methods (using in situ reflectance data, N = 42).
Coefficient of determination (R2), Pearson’s correlation coefficient (R), Mean Absolute Error (MAE),
and Root Mean Square error (RMSE) are shown.

WQI R2 R MAE RMSE

Chl-a (0.5–5.0 µg/L)

ANN 0.79 0.89 0.2 0.27
SVR 0.62 0.76 0.54 0.66
Cubist 0.6 0.78 0.56 0.68
RF 0.5 0.71 0.57 0.72

SS (0.7–8.0 mg/L)

ANN 0.87 0.93 0.68 0.7
SVR 0.56 0.74 0.98 1.18
Cubist 0.55 0.75 0.98 1.18
RF 0.47 0.69 1.02 1.29

Turbidity (1.3–12.0 NTU)

ANN 0.82 0.9 0.82 0.94
SVR 0.75 0.87 0.79 0.97
Cubist 0.67 0.78 0.73 0.94
RF 0.43 0.66 1.2 1.6

Table 6. Regression models developed for predicting coastal water quality in Hong Kong using in situ
reflectance data (N = 42).

Regression Models (Chl-a) R2
RMSE MAE

(µg/L) (µg/L)

Forward Selection −3.93 + 0.36 B1 + 0.16 B3 + 0.44 B4 + 30.31 B3/(B1)2

− 12.59 B4/(B1)2 0.77 0.61 0.53

Backward Selection −4.30 + 0.35 B1 + 0.10 B2 + 0.52 B4 + 32.31 B3/(B1)2

− 13.36 B4/(B1)2 0.70 0.59 0.51

Stepwise Selection −2.23 + 0.78 B3 + 14.75 B3/(B1)2 0.66 0.60 0.50

Full Model −4.04 + 0.32 B1 + 0.06 B2 + 0.10 B3 + 0.47 B4 + 30.83
B3/(B1)2 − 12.62 B4/(B1)2 0.60 0.64 0.54
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Table 6. Cont.

Regression Models (Chl-a) R2
RMSE MAE

(µg/L) (µg/L)

Regression Models (SS) (mg/L) (mg/L)

Forward Selection 0.63 + 1.58 B2 − 0.64 B3 − 1.17 B4 − 0.02 B3 × B2 −
0.47 B3 × B1 + 0.68 (B3)2 0.71 0.97 0.83

Backward Selection 0.77 + 1.26 B2 − 1.39 B4 − 0.46 B3 × B1 + 0.62 (B3)2 0.73 0.93 0.74

Stepwise Selection 0.77 + 1.26 B2 − 1.39 B4 − 0.46 B3 × B1 + 0.62 (B3)2 0.73 0.93 0.78

Full Model −3.03 + 1.64 B1 + 1.16 B2 − 2.67 B3 − 1.14 B4 + 0.84
(B3)2 − 0.69 B3 × B1 − 0.09 B3 × B2 + 6.02 B3/B1 0.63 1.10 0.86

Regression Models (Turbidity) (NTU) (NTU)

Forward Selection 2.68 − 2.64 B1 + 4.38 B2 − 1.90 B3 − 1.22 B4 − 1.31
B3 × B2 + 0.76 B3 × B1 + 0.96 (B3)2 0.60 0.99 0.80

Backward Selection Same as Forward Selection 0.60 0.99 0.80

Stepwise Selection Same as Forward Selection 60 0.99 0.80

Full Model 1.25 − 0.36 B1 + 1.96 B2 − 0.88 B3 − 0.93 B4 + 0.54
(B3)2 − 0.04 B3 × B1 − 0.35 B3 × B2 + 0.20 B3/B1 0.50 1.07 0.82

3.4. Evaluation of Machine Learning Regression Using Satellite-Derived SR Data

A further test with satellite-derived SR data was conducted to evaluate the machine learning
techniques for selecting a robust model. Figure 5 compares the predicted and measured WQIs
when satellite-derived SR data were used as input variables in the machine learning models.
With satellite-derived SR as input, ANN outperformed the others while predicting all three WQIs,
obtaining R of 0.91, 0.92, and 0.85 for the estimation of Chl-a, SS, and turbidity, respectively.
The prediction errors of the ANN models are also lower than those of SVR, CB, and RF. For the
ANN model, the MAE and RMSE for Chl-a prediction are 1.13 µg/L and 1.40 µg/L, respectively;
for SS the predictions are 1.83 mg/L and 2.06 mg/L, respectively; and for turbidity, the predictions
are 2.61 NTU and 3.10 NTU, respectively. Compared to ANN, the performance of SVR is the second
highest with R = 0.89 of 0.77 for Chl-a, SS predictions, respectively. The SVR model also showed the
second-best results in case of turbidity with R = 0.75 with RMSE = 3.97. Cubist model also showed
reliable results with R ≥ 0.75 for all Chl-a, SS, and turbidity. The RF model exhibits the poorest
performance in comparison to other machine learning methods, like the comparison based on in situ
SR data. The reason behind comparatively below average performance of RF could be due to the small
training dataset [4,63,64]. On the other hand, SVR showed good performance and good agreement
with the previous studies, in which SVR worked well with a small sample size of input variables [43].
Table 7 shows the comparison of different machine learning models along with data used for training,
testing, and validation.

Machine learning methods outperformed the multivariate regression models (Table 8). Overall,
all machine learning models underestimated WQIs with high concentrations, due to the fewer training
samples available with high WQI concentration (Figure 6). This underestimation is small in ANN,
compared to that of SVR, CB, and RF.
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Table 7. Cross-validation results of machine learning methods (using satellite data N = 120). Coefficient
of determination (R2), Pearson’s correlation coefficient (R), Mean Absolute Error (MAE), and Root
Mean Square error (RMSE) are shown.

WQI R2 R MAE RMSE

Chl-a (0.3–28 µg/L)

ANN 0.87 0.91 1.13 1.4
SVR 0.79 0.89 1.32 1.790
Cubist 0.64 0.80 1.57 2.41
RF 0.64 0.80 1.48 2.67

SS (0.8–33.0 mg/L)

ANN 0.89 0.92 1.8 2
SVR 0.59 0.77 1.9 2.8
Cubist 0.56 0.75 1.88 3.3
RF 0.51 0.72 1.78 3.11

Turbidity (0.8–31.3 NTU)

ANN 0.80 0.85 2.61 3.10
SVR 0.62 0.79 2.83 3.97
Cubist 0.56 0.75 2.9 4.11
RF 0.51 0.72 3.3 4.4

Table 8. Regression models developed for predicting coastal water quality in Hong Kong using
satellite-derived SR data (N = 120).

Regression Models (Chl-a) R2
RMSE MAE

(µg/L) (µg/L)

Forward Selection −1.66 + 0.89 B1 − 1.35 B2 + 0.59 B3 − 54.6 B3/(B1)2

+ 4.07 B4/(B1)2 0.60 1.99 1.49

Backward Selection −1.93 + 0.98 B1 − 1.45 B2 + 0.63 B3 + 59.75 B3/(B1)2 0.64 1.94 1.48

Stepwise Selection −1.93 + 0.98 B1 − 1.45 B2 + 0.63 B3 + 58.7 B3/(B1)2 0.63 1.98 1.51

Full Model −1.26 + 0.83 B1 − 1.36 B2 + 0.78 B3 − 0.22 B4
+ 48.8 B3/(B1)2 + 10.7 B4/(B1)2 0.63 2.00 1.51

Regression Models (SS) (mg/L) (mg/L)

Forward Selection −2.09 + 0.60 B1 + 1.42 B2 − 1.14B4 + 0.73 (B3)2

− 0.61 B3 × B1
0.51 2.64 1.95

Backward Selection −7.3 + 1.70 B1 + 1.34 B2 − 4.13 B3 − 1.24 B4
+ 15.8 (B3)2 0.51 2.68 1.95

Stepwise Selection −0.62 + 1.55 B1 − 1.14 B4 + 0.65(B3)2 − 0.50 B3 × B1 0.47 2.76 2.03

Full Model −7.3 + 1.70 B1 + 1.34 B2 ± 4.13 B3 − 1.24 B4 + 0.80
(B3)2 − 0.44 B3 × B1 − 0.001 B3 × B2 + 15.8 B3/B1 0.58 3.88 2.70

Regression Models (Turbidity) (NTU) (NTU)

Forward Selection 3.68 − 0.57 B2 + 2.34 B3 − 1.31 B4 − 0.55 (B3)2

− 0.56 B3 × B1
0.45 4.17 3.56

Backward Selection 5.24 + 2.72 B3 − 1.48 B4 + 0.51 (B3)2 − 4.47 B3 × B1 0.44 4.16 3.53

Stepwise Selection Same as Backward Selection - - -

Full Model 7.3 − 1.34 B1 + 1.1 B2 + 3.80 B3 − 1.28 B4 + 0.53 (B3)2

− 0.43 B3 × B1 − 0.12 B3 × B2 − 6.8 B3/B1
0.41 4.15 3.44
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3.5. The Relative Importance of Model Parameters

The RF model uses an out-of-bag data approach to calculate the relative importance of input
variables. Variable usage in rule and condition building in the Cubist regression model also suggests
variable importance. Therefore, the relative importance of input bands and band combinations was
calculated for both SR datasets based on the MSE reduction method of the RF model and percentage
usage in Cubist model (Tables 9 and 10). Based on the data retrieved from the MSR to estimate Chl-a
concentrations, MSE reduction is the highest for B3 (Red, wavelength ≈ 0.665 µm), as water with
Chl-a shows a prominent absorption in band 3 [62]. The second most influential band is B2 (green,
wavelength ≈ 0.560 µm) as MSE reduction is second highest for B2. MSE reduction is also high
for B3/(B1)2. B3, B2, and B3/(B1)2 are also used in rule setting of the Cubist model when in situ
reflectance data were used. This implies that the B3, B2, and B3/(B1)2 are the influential inputs for
predicting Chl-a using data from a hand-held spectroradiometer. Interestingly, almost similar results
are observed for the RF and Cubist models when satellite-derived SR is used to predict Chl-a (Tables 9
and 10). The relative importance analysis by RF indicated that the ratio of B3 and (B1)2 is the most
influential inputs and Cubist model also shows the same results as this band combination is used in
rules and condition building of model. Dinoflagellates and diatoms—two main algal classes present in
coastal waters of Hong Kong [33]—show high specific absorption (absorption coefficient at a given
wavelength, normalized to chlorophyll concentration in the sample) in the red region (0.63–0.69 µm)
but low absorption in blue (wavelength ≈ 0.490 µm) [62]. Therefore, the ratio of B3 to (B1)2 is well
able to discriminate Chl-a concentration due to dinoflagellates and diatoms in complex waters.

For predicting SS concentration, MSE reduction is the highest for B3 as suggested by RF and B3 is
also used in both rule and condition building of a Cubist model for SS when in situ SR data was used.
MSE reduction is the highest for B3*B2 and this band combination also shows 98% importance for rule
building in Cubist model when satellite SR data is used. These results are consistent with a local study
for estimating SS in Deep Bay, Hong Kong [57], which found that B3 and B2 were highly correlated
with SS concentration. B3*B1, (B3)2, and B4 are other important variables suggested by RF and Cubist
for both reflectance datasets. For turbidity prediction, MSE reduction is the highest for band 3 and its
square when using in situ and satellite-derived SR data, respectively. Similar results have been found
for variable importance in Cubist regression (Table 10). This implies that band 3 and its combinations
with other visible bands are sensitive for predicting SS and turbidity.

Results show that the relative variable importance method is able to identify the most influential
bands for Chl-a, SS, and turbidity. This can further help to select the spectral range to identify
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phytoplankton groups or to study coastal sediments in detail using in situ, airborne, or spaceborne
hyperspectral data consisting of a large number of bands.

Table 9. Variable importance of Random Forest for regression (MSE reduction %; normalize to
sum 100%).

Input Data Chl-a Concentration SS Concentration Turbidity

In Situ Reflectance

B3 33 B3 41 B3 34

B2 21 B3*B2 20 B2 27

B3/(B1)2 20 (B3)2 14 B3*B2 25

B4 12 IR 9 B3*B1 8

B4/(B1)2 9 B3/B1 9

B1 5 B2 7

total 100 100 100

Landsat Reflectance

B3/(B1)2 82 B3*B2 28 (B3)2 42

B4/(B1)2 10 B3 22 B3 27

B1 3 B3*B1 18 B4 15

B4 2 B2 12 B3/B1 9

B2 1 (B3)2 12 B1 6

B3 1 B4 8

total 100 100 100

Table 10. Variables used in Cubist regression tree.

Input Data Chl-a Concentration SS Concentration Turbidity

In Situ Reflectance

B3 (100%) B3 (100%) B3 (100%)

B2 (100%)

B3/(B1)2 (100%) IR (60%)

B3*B2 (60%)

(B3)2 (60%)

Landsat Reflectance

B3/(B1)2 (18%/49%) B3 (14%/47%) (B3)2 (100%)

B2 (66%) (B3)2 (47%/14%) B3*B1 (60%)

B3 (58%) B2 (8%/7%) B3 (40%)

B1 (20%) B3*B2 (98%) B4 (40%)

B3*B1 (59%) B3*B2 (40%)

B4 (46%) B1 (20%)

B3/B1 (46%) B2 (20%)

B1 (13%)

3.6. Comparison of ANN with In Situ and C2RCC-Nets Derived Data

Based on the accuracy of the model comparison, ANN was demonstrated to be the best model for
predicting WQIs in this subtropical area. Therefore, ANN was further applied to the satellite images
for mapping the spatial concentration of WQIs across the coastal waters of Hong Kong. Station-based
values of WQIs measured within a one day gap were considered to validate the predicted WQI
concentration, as the EPD station data within a one day gap were available considering the cloud-free
and glint-free conditions of satellite data. The Chl-a and SS data estimated by the ANN model were
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also compared with Chl-a and suspended particulate matter (SPM) concentration retrieved by the
C2RCC-Nets model (Figure 7). The ANN model developed in this study has underestimated the high
values of WQI with RMSE 3.5 mg/L for SS (22–31 mg/L) and RMSE 5.0 µg/L for Chl-a concentration
(22–30 µg/L), the reason for this could be due to less data records against the high values of WQI used
during training of model. C2RCC-Nets overestimated the WQIs and the RMSE is high, especially for
SS and Chl-a > 20. The RMSE for SS is 31.1 mg/L and for Chl-a 11.1 µg/L. This trend is also visible
during algal bloom event occurred in the Deep Bay on 2nd Jan 2017 and southwestern waters on
4th Jan 2017 due to phytoplankton specie Phaeocystis globose [65]. Both events prolonged to nearly three
weeks and captured in OLI image dated 8th Jan 2017 (Figure 8).
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Figure 7. Scatter plots of in situ and estimated SS by ANN and C2RCC-Nets (Row-1) and scatter plots
of in situ and estimated Chl-a by ANN and C2RCC-Nets (Row-2).

Remote Sens. 2019, 11, x FOR PEER REVIEW 19 of 24 

 

 
Figure 8. High Chl-a concentration observed by ANN and C2RCC-Nets Model during an algal bloom 
in the southwestern waters. 

3.7. Spatial Distribution of Water Quality across Coastal Areas of Hong Kong 

Figure 9 shows the synoptic view of three WQIs and graphs of observed and estimated values 
of WQIs using ANN model. MAE in case of Chl-a was 0.88 µg/L (data range 0.9–3.8 µg/L), MAE for 
SS was 0.89 mg/L (data range 0.6–4.5 mg/L), and MAE was 1.72 NTU (data range 2–7 NTU) in the 
case of turbidity. 

The overall map shows a high concentration of SS (7.5–22.6 mg/L) in the Deep Bay and the 
northwestern zones, while turbidity is also high (12.0–26.3 NTU) across these zones. The sediment-
laden shallow water of Deep Bay, with an approximately 2–8 m depth, is affected by discharges from 
Shenzhen River, discharges from Hong Kong rivers, and discharges from some local unsewered 
villages and land runoff [66]. The Victoria Harbour also showed high concentrations of SS and 
turbidity, as ship traffic is high over this area and it also receives residential and industrial effluents 
from adjacent urban areas [33]. 

Chl-a concentrations are high near the shorelines of Hong Kong, where concentrations of SS and 
turbidity are also high, due to nutrient-rich waters discharging from the land [33]. The high 
concentrations of Chl-a (8.0–15.6 µg/L) are observed in the shallow waters of Deep Bay, owing to 
nutrient-rich agricultural discharges. The maps also indicate higher concentrations of Chl-a in the 
Tolo Harbour and some areas of Mirs Bay, and these WCZs are often affected by algal blooms 
specifically red tides [66]. In the Victoria Harbour, moderate values of Chl-a, ranging from 7.0 to 10.0 
µg/L, are observed. It is noticeable that the model predictions of this study are consistent with station-
based measurements of Chl-a, SS, and turbidity, even considering the one-day gap with the satellite 
overpass during normal coastal conditions. 

Figure 8. High Chl-a concentration observed by ANN and C2RCC-Nets Model during an algal bloom
in the southwestern waters.



Remote Sens. 2019, 11, 617 18 of 23

3.7. Spatial Distribution of Water Quality across Coastal Areas of Hong Kong

Figure 9 shows the synoptic view of three WQIs and graphs of observed and estimated values of
WQIs using ANN model. MAE in case of Chl-a was 0.88 µg/L (data range 0.9–3.8 µg/L), MAE for SS
was 0.89 mg/L (data range 0.6–4.5 mg/L), and MAE was 1.72 NTU (data range 2–7 NTU) in the case
of turbidity.Remote Sens. 2019, 11, x FOR PEER REVIEW 20 of 24 
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The overall map shows a high concentration of SS (7.5–22.6 mg/L) in the Deep Bay and the
northwestern zones, while turbidity is also high (12.0–26.3 NTU) across these zones. The sediment-laden
shallow water of Deep Bay, with an approximately 2–8 m depth, is affected by discharges from
Shenzhen River, discharges from Hong Kong rivers, and discharges from some local unsewered
villages and land runoff [66]. The Victoria Harbour also showed high concentrations of SS and turbidity,
as ship traffic is high over this area and it also receives residential and industrial effluents from adjacent
urban areas [33].

Chl-a concentrations are high near the shorelines of Hong Kong, where concentrations of SS
and turbidity are also high, due to nutrient-rich waters discharging from the land [33]. The high
concentrations of Chl-a (8.0–15.6 µg/L) are observed in the shallow waters of Deep Bay, owing to
nutrient-rich agricultural discharges. The maps also indicate higher concentrations of Chl-a in the Tolo
Harbour and some areas of Mirs Bay, and these WCZs are often affected by algal blooms specifically
red tides [66]. In the Victoria Harbour, moderate values of Chl-a, ranging from 7.0 to 10.0 µg/L,
are observed. It is noticeable that the model predictions of this study are consistent with station-based
measurements of Chl-a, SS, and turbidity, even considering the one-day gap with the satellite overpass
during normal coastal conditions.

3.8. Limitations and Future Directions

The water quality data provided by the Hong Kong EPD were used in the present study.
The environmental agency has routine measurements of biophysical and chemical properties of water,
but not of bio-optical properties, which would be a useful indicator for various marine applications
such as biodiversity, marine ecology, sediment monitoring, and recreation. This study has acquired
and collected limited bio-optical data from numerous field visits; limited satellite reflectance data was
available corresponding to high concentrations of WQIs. Further studies may be conducted when such
data are available, for better evaluation of remote sensing methods to estimate water quality across
this subtropical coastal area.

4. Conclusions

The study examined four machine learning approaches for retrieval of water quality indicators
(Chl-a, SS, and turbidity) over the coastal waters of Hong Kong using water reflectance from both
a hand-held spectroradiometer and satellite data and mapped the spatial extent of these parameters.
Such maps can be used to identify hotspots for algal blooms and point pollution sources relating to
high nutrient concentrations. Based on the results of cross-validation, ANN was outperformed for
water quality estimation as ANN exhibits the best performance than other three machine learning
approaches, irrespective of the input data used (i.e., in situ reflectance or Landsat reflectance data),
resulting in R ≈ 0.9 and RMSE ≈ 0.2–1.4 for Chl-a, R ≈ 0.9 and RMSE 0.7–2.6 for SS, and R ≈ 0.85 and
RMSE ≈ 0.9–3.1 for turbidity. Spatially synoptic mapping of three WQIs—Chl-a, SS, and turbidity
concentrations—were derived using the ANN approach. Outputs of ANN model and standard Case-2
Regional/Coast Colour (C2RCC) processing chain model C2RCC-Nets, using a separate set of satellite
data, was further compared with station-based water quality data. The coefficient of determinations
are 0.70 and 0.71 for estimating SS and Chl-a, respectively, using locally calibrated ANN and R2 of 0.51
and 0.22, respectively, were found using C2RCC-Nets for estimating SS and Chl-a, respectively.

In addition, the relative importance of each predictor variable was also examined for both
reflectance data sets, in order to evaluate the contribution of each variable (wave band) for water
quality prediction. In summary, both in situ and satellite-derived reflectance datasets showed similar
patterns in identifying sensitive variables to predict water quality parameters. The green band and red
bands are more sensitive for predicting Chl-a, and the red band and its combination with blue and
green bands are sensitive for predicting SS and turbidity. The effectiveness of sensitive bands also
depends on to the absorption and scattering properties of phytoplankton classes (dinoflagellates and
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diatoms) present in Hong Kong waters. This approach can help to select a suitable spectral range for
a detailed study in other regions where the phytoplankton species may be different.

The derived spatial distributions indicated that the observed high concentrations of SS and
turbidity result from residential and industrial effluents and nutrient-rich discharge from agricultural
land in shallow waters. This study suggests that machine learning approaches with satellite data
have promising potential for regular water quality monitoring over large complex coastal areas.
The focus of future research is to investigate the seasonal and annual patterns of Chl-a and SS using
hyperspectral data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/6/617/s1,
Table S1: Clear day satellite images for which same date corresponding in-situ water quality dataset was available.
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