1	Delay of cone degeneration in retinitis pigmentosa using a 12-month treatment with Lycium	
2	barbarum supplement	
3		
4	Henry Ho-lung Chan ^a , Hang-i Lam ^a , Kai-yip Choi ^a , Serena Zhe-chuang Li ^a , Yamunadevi	
5	Lakshmanan ^a , Wing-yan Yu ^a , Raymond Chuen-chung Chang ^b , Jimmy Lai ^c , Kwok-fai So ^{c,d}	
6		
7	^a Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong	
8	Polytechnic University, Hong Kong SAR, China.	
9	^b Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, The University o	
10	Hong Kong, Hong Kong SAR, China	
11	^c Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, China	
12	^d Guangdong-Hongkong-Macau (GHM) Institute of CNS Regeneration, Jinan University,	
13	Guangzhou, China	
14		
15		
16	Declarations of interest: None	
17		
18	Trial registration: clinicaltrials.gov Identifier NCT02244996	
19		
20	Corresponding author:	
21	Dr. Henry H.L. Chan	
22	School of Optometry,	
23	The Hong Kong Polytechnic University,	
24	Hung Hom, Kowloon,	
25	Hong Kong SAR.	
26	E-mail: <u>henryhl.chan@polyu.edu.hk</u>	
27		
28		

29 Abstract

30 Ethnopharmacological relevance:

Lycium barbarum L. (also known as "Goji berry"), a traditional Chinese herbal medicine, has
been a common herb in the traditional Chinese pharmacopoeia for centuries. The main active
component is the Lycium barbarum polysaccharides and its antioxidative effect has been widely
shown to provide neuroprotection to the eye, and it would, therefore, be interesting to
determine if Lycium barbarum help delay vision deterioration in patients with retinitis
pigmentosa.

37 Aim of the study:

38 Cone rescue is a potential method for delaying deterioration of visual function in Retinitis

39 pigmentosa (RP). This study aimed to investigate the treatment effect of Lycium barbarum L. (LB)

40 supplement on retinal functions and structure in RP patients after a 12-month intervention trial.

41 Methods:

42 The investigation was a double-masked and placebo-controlled clinical study. Each of forty-two

43 RP subjects who completed the 12-month intervention (23 and 19 in the treatment and placebo

44 groups respectively) received a daily supply of LB or placebo granules for oral administration.

45 The primary outcome was change of best corrected visual acuity (VA) (90% and 10% contrast)

46 from the baseline to the end of treatment. The secondary outcomes were sensitivity changes of

47 the central visual field, amplitude of full-field electroretinogram (ffERG) (including scotopic

48 maximal response and photopic cone response), and average macular thickness.

49 Results:

50 The compliance rates for both groups exceeded 80%. There were no deteriorations of either

51 90% or 10% contrast VA in the LB group compared with the placebo group (p=0.001). A thinning

52 of macular layer was observed in the placebo group, which was not observed in the LB group

53 (p=0.008). However, no significant differences were found in the sensitivity of visual field or in

54 any parameters of ffERG between the two groups. No significant adverse effects were reported

55 in the treatment group.

56 **Conclusions:**

- 57 LB supplement provides a neuroprotective effect for the retina and could help delay or minimize
- 58 cone degeneration in RP.
- 59
- 60 Classifications: Clinical Studies (1.05)
- ⁶¹ Keywords: Clinical Trial (2.172), Traditional Chinese Medicine (2.592), Antioxidant (2.084),
- ⁶² Specific keywords: Lycium barbarum, Retinitis pigmentosa, Retinal degeneration,
- 63 Neuroprotection
- 64
- 65

66 **1. Introduction**

67 Retinitis pigmentosa (RP) is a heredofamilial disease, characterized by progressive visual field 68 loss, night blindness, and an abnormal electroretinogram (ERG). Patients often initially present 69 with poor night vision, followed by deterioration in day vision. The genetic mutation associated 70 with RP initially causes rod degeneration, with later cone degeneration. It has been reported 71 that the cone cells in RP initially remain in a semi-stable state with preserved normal phenotype 72 (Lin et al., 2009) and cone number and that their function can be maintained independently for 73 a relatively long period (Chrysostomou et al., 2009). Hence, cone rescue has recently been introduced to preserve photopic vision, becoming an important strategy for treatment of RP. 74

75

76 There are different approaches, including pharmacological therapy, gene therapy, cell 77 transplantation and retinal prostheses, for the management of RP. Gene therapy aims to target 78 and replace the mutated genes using viral vectors (Dalkara et al., 2016) and cell transplantation 79 focuses on replacement of the damaged cells by normal cells (Jones et al., 2017). Both 80 procedures address the fundamental cause of RP, but there are limitations in their clinical 81 application. Retinal prostheses use advanced electronic devices to overcome the vision loss 82 (Yue et al., 2016), but this technique is still hindered by the current electronic technology. Most 83 recently, genome editing, which rectifies the disease-causing mutation by means of TALENS or CRISPR-cas (Yanik et al. 2017), is being developed for the treatment of heredity diseases. 84 85 However, although major advances have been made, such therapies are still far from being 86 available for management of RP. Neuroprotection using antioxidants is widely employed as a 87 pharmacological approach, which aims to delay the progression of retinal degeneration. 88 Although it cannot correct the underlying cause of RP, it is the most acceptable and effective 89 current therapy.

90

91 It has been hypothesized that an abnormal high oxidative load may explain damage to cones
92 (Shen et al., 2005). Abnormal neural rewiring (i.e. ectopic synapse) in the RP retina provides
93 evidence of a re-construction of the neural network and this rewiring between cone and rod

94 systems has been shown to lead to an overloading activity on the cone pathway (Ng et al., 95 2008). It has been suggested that the presence of an ectopic synapse in RP would form a collision circuit, which may corrupt the cone pathway (Marc et al., 2007). Numerous treatments 96 have been suggested to minimize oxidative damage to cones. For example, different mixtures 97 98 of antioxidants have been suggested as treatments intended to slow the rate of degeneration, 99 thus reducing cone death (Sanz et al., 2007). Neuronal nitric oxide synthase (NOS) has been 100 reported to cause oxidative damage to cones in RP and an NOS-inhibitor has been suggested to 101 reduce cone death (Komeima et al., 2008). Another therapy, using Ciliary Neurotrophic Factor 102 (CNTF), has shown a positive result in a rat RP model, in which the thickness of the retinal layer 103 was increased (Zeiss et al., 2006).

104

105 Lycium barbarum L. (LB) (from The Plant List, 2013) is a Solanaceous defoliated shrubbery, also 106 known as Goji berry or Wolfberry, which can be found in Europe and China, used in a traditional 107 Chinese herbal medicine for centuries (Lam and But, 1999). It is recognised as one of the two 108 Lycium species having proven pharmacological benefit to our body health (Yao et al., 2018). 109 Traditional use of LB fruits has been shown to help maintain the function of the eyes and 110 replenish the liver and kidneys through balancing "Yin" and "Yang" in the body (Chang and So, 2008; Potterat, 2010), which is attributable to the presence of a very effective antioxidant. 111 112 Based on recent studies using chromatography analysis, dried fruits comprised of 5-8% Lycium 113 barbarum polysaccharides (LBP) (Jin et al., 2013; Tang et al., 2015) together with other 114 potential beneficial substances including 0.4% flavonoids, 0.4% flavan-3-ols, 1.5% phenolic acids, 115 0.03% amino acids and derivatives, and 0.1% carotenoids (Protti et al., 2017). The main active 116 antioxidative component in LB is the LBP which are a mixture of six different monosaccharides, 117 including arabinose, galactose, glucose, mannose, rhamnose and xylose (Wang et al., 2009; 118 Tang et al., 2015). The antioxidative effect have been widely shown to provide neuroprotection 119 in various conditions (Chang and So, 2008). Moreover, several studies have demonstrated the 120 beneficial effect of LBP in various animal disease models, eg., protecting the retinal function and 121 retinal ganglion cells after partial optic nerve section (Chu et al., 2013; Li et al., 2015), and 122 preserving the retinal vasculature from retinal ischemia/ reperfusion injury (Li et al., 2011).

- 123 Recently, LBP was also reported to protect against the degeneration of photoreceptors in animal
- 124 RP models (Wang et al., 2014; Zhu et al., 2016). We believe that treatment with LB may also
- help prevent or delay vision deterioration in the patients with RP.
- 126

127 In this double-masked, placebo-controlled clinical study, we aimed to evaluate the treatment 128 effect of LB over a 12-month period of in RP patients, by conducting several clinical ophthalmic 129 assessments in terms of functional and structural approaches, including visual acuity (VA), 130 Ganzfeld full-field electroretinogram (ffERG), Humphrey Visual Field Analysis (HFA), and 131 Spectral-domain Optical Coherent Tomography (SD-OCT).

132

133 2. Materials and Methods

134 *2.1 Drugs*

A proprietary extract of Lycium barbarum L. granules (batch no.: 90436) and placebo (lactose) 135 136 granules were prepared by a Traditional Chinese Medicine manufacturer (Eu Yan Sang (Hong 137 Kong) Ltd., Hong Kong) in Hong Kong. According to the technical bulletin, this product was 138 standardized to 3.5% LB polysaccharides as active ingredients and the remaining non-active 139 ingredients was mainly lactose for granulation. The LB of this product was the premium grade 140 "Gonqui (Wolfberry)" sourced from Ningxia province of China. To repeat the experiments of this 141 study, the LB polysaccharides could be extracted by boiling pure fruit of LB at 80°C for 30 142 minutes and followed by another 30 minutes of soaking, then concentrated into approximately 143 40% of the original mass by the soaking extracting method (Tian et al., 2017; Xu et al., 2012). 144 Each pack of LB was specified to have $5g (\pm 7\%)$ net weight of granules, and thus each 5g pack of 145 LB granules was estimated to contain about 0. 175g of polysaccharides. 146

147 2.2 Subjects

148 Subjects who met our inclusion criteria[#] were recruited from Retina Hong Kong (a retinal

149 disease patient association in Hong Kong) and the Optometry Clinic at The Hong Kong

- 150 Polytechnic University. All procedures adhered to the tenets of the Declaration of Helsinki and
- 151 Toyko for humans, and were approved by the human ethics committee of The Hong Kong

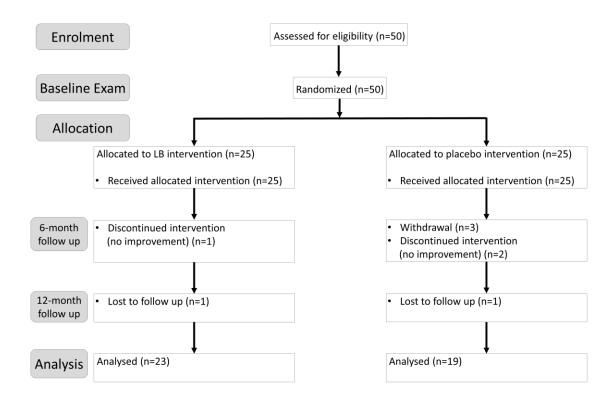
Polytechnic University. All subjects were fully informed of the possible risks and gave writtenvoluntary consent.

154 # Ocular conditions: Retinitis pigmentosa diagnosed by an ophthalmologist and confirmed by visual field 155 testing and full-field ERG. All subjects had: IOP <21 mmHg; van-Herick ratio ≤0.5; no other ocular 156 diseases; **Dietary conditions:** Fruit and vegetable intake <10 servings/day; spinach or kale intake ≤ 1 157 serving/day; no daily intake of lutein supplement; no intake of cod liver oil or omega-3 capsules; dietary 158 Wolfberry intake \leq 10 fruits/week; supplement intake \leq 5000 IU/day of Vitamin A and \leq 30 IU/day of 159 Vitamin E; alcoholic consumption \leq 3 beverages/day; *Other conditions:* Age 18 years or above; no intake 160 of any anti-coagulants (especially Warfarin), not pregnant or planning to be pregnant; no smoking; no 161 other clinically significant systemic diseases.

162

163 *2.3 Protocol*

164 The subjects were randomly assigned (by computer-generated numbers) to either LB 165 (treatment) group or placebo (control) group. The daily dosage by oral administration was 2 166 packs/day, each containing 5g net weight, for each subject. One pack of granules was ingested 167 after mixing with 200ml of water in the morning and evening. All subjects received sufficient 168 packs (either LB or placebo) for 12 months. A follow-up call was made to subjects to check 169 compliance with taking the assigned treatment, to check for any side-effects 1-2 weeks after 170 beginning the intake and to remind the requirement of dietary conditions regularly during the 171 study. An eye examination was performed before commencing the trial, after 6 months, and at 172 the end of the 12-month study period. At each eye examination, the remaining packs of 173 granules were examined to counter-check compliance and the history of dietary conditions was 174 also recorded. This ensured that all the subjects followed the treatment plan and met the 175 dietary requirements. Figure 1 shows the study design, including when subjects were lost from 176 the study pool.


177

178 2.4 Clinical procedures

All eligible subjects had a general eye examination, including visual acuity (VA) using the Early Treatment of Diabetic Retinopathy Study (ETDRS) charts with letters at 90% and 10% contrast levels, refractions, tonometry, external and internal ocular health assessments, and fundus

photo-documentation. Three additional tests were conducted to investigate functional and 182 183 structural changes in the eyes of all patients. Ganzfeld ERG (Espion E3, Diagnosys LLC, Lowell, 184 US) was applied to assess retinal function. The ffERG measurement followed the ISCEV standard 185 (McCulloch et al., 2015). The pupils of the tested eyes were dilated (1% tropicamide) for ffERG 186 measurement. DTL electrodes and gold-cup electrodes were used for recording. Each subject had at least 45 minutes initial dark adaptation before commencement of ERG measurement. 187 188 Two standard ffERGs (Scotopic (3.0) maximal response and Light-adapted (3.0) cone response) 189 were measured. The 30-2 full threshold visual field test was conducted to investigate the 190 sensitivity of the visual field using the Humphrey Visual Field Analyser (HFA) (Carl Zeiss, Dublin, 191 US). Spectral-domain Optical Coherent Tomography (SD-OCT) (Spectralis, Heidelberg Engineering, US) was used to assess the retinal thickness at the macula. 192

- 195 Figure 1. Study design of the clinical study. Visual acuity, visual field, electroretinogram and
- 196 macular thickness measurements were conducted at baseline examination and two follow up
- 197 visits at 6 months and 12 months.

198

The primary outcomes were the best-corrected visual acuities (VA) in 90% contrast (HCVA) and in 10% contrast (LCVA)). The secondary outcomes were the sensitivity in central 30-degree of visual field, the amplitudes of scotopic maximal ERG and photopic cone ERG response, and the average macular thickness.

203

204 2.5 Statistical Analysis

205 The better eye (in terms of HCVA) from each subject at the first visit was selected for the 206 analysis. The HCVA and LCVA in LogMAR, as the primary outcomes, were compared between 207 treatment and placebo groups from the baseline to the first post-treatment (6-month), then the 208 second post-treatment (12-month) visits using repeated-measures Two-way ANOVA with 209 Bonferroni post-hoc adjustment. Similar analysis was also conducted for the secondary 210 outcomes, including scotopic b-wave amplitude, photopic a- and b-wave amplitudes of ffERG, 211 mean defect (MD) of central 30-2 Humphrey visual field test, and macular thickness by SD-OCT. 212 Furthermore, non-parametric partial correlation was used to assess the relationship between 213 the treatment type (treatment group vs. placebo group) and change of the clinical outcomes 214 from baseline to 6- and 12-month follow-up visits respectively, adjusted for the baseline value of 215 that particular test as the co-variate. Because of the multiple comparisons, a statistical 216 correction was made for the partial correlation, in which $p \le 0.0125$ was considered as 217 statistically significant. For comparison of the compliance between the two groups, $p \le 0.05$ was 218 considered as statistically significant. All statistical analyses were performed using SPSS (IBM, ver. 219 22, United States).

220

221 3. Results

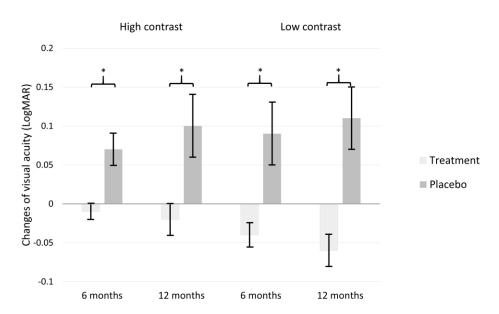
- 222 3.1 Clinical and Demographic Data
- A total of 50 eligible RP subjects were recruited and randomly allocated into treatment and
- 224 placebo groups. Of the original 25 subjects in each group, 23 in the LB group (age:
- 50.4±12.2year) and 19 in the placebo group (age: 47.7±9.5year) completed the 12-month
- intervention. The compliance rates for treatment and placebo groups after 12 months were

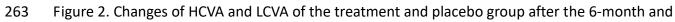
- 227 88.8±8.9% and 85.5±10.2% respectively. No significant difference was found in compliance rate
- between the two groups (*p*>0.05). Previously reported adverse effects of taking LB were
- 229 hypoglycaemic or hypolipidemic effects, sensitivity to sunlight, and allergic reaction. However,
- 230 no such adverse effects were reported in this study. Only 3 cases reported side effects, including
- 231 mild epistaxis (1 case from treatment group) and thirst (2 cases from placebo group). The
- characteristics of these 42 subjects at baseline are shown in Table 1. All the results of different
- 233 outcomes at baseline, 6-month and 12-month intervention are listed in Table 2.
- 234

	Treatment (n = 23)	Placebo (n = 19)
Male: Female	9:14	5:14
Age (years)	50.4 (SD: 12.2) (Range: 26-69)	47.7 (SD: 9.5) (Range: 32-57)
Visual Acuity (ETDRS)	HCVA: Range: -0.10 to 1.68 LCVA: Range: 0.06 to 0.86	HCVA: Range: -0.12 to 1.04 LCVA: Range: 0.12 to 1.18
Visual Field (MD) (dB)	Range: -3.15 to -32.06	Range: -7.43 to -32.25
Scotopic maximal response (b-wave) (µV)	Range: 2.05 to 314.40	Range: 2.49 to 202.30
Photopic cone response (μV)	a-wave: Range: 0.50 to 13.22 b-wave: Range: 3.11 to 41.75	a-wave: Range: 0.90 to 12.35 b-wave: Range: 3.06 to 58.56
Macular thickness (µm)	Range: 118 to 360	Range: 96 to 244
Compliance (after 12 months) (%)	88.8 (SD: 8.9)	85.5 (SD: 10.2)
Reported side effect(s) (within 12 months)	Mild epistaxis (1 case)	Thirst (2 cases)

235 Table 1. Demographic information of the subjects

236


		Treatment (n = 23)	Placebo (n = 19)
Visual Acuity (ETDRS)	baseline	HCVA: 0.30 (SD: 0.44) LCVA: 0.34 (SD: 0.25)	HCVA: 0.50(SD: 0.34) LCVA: 0.67 (SD: 0.29)
	6-month intervention	HCVA: 0.26 (SD: 0.43) LCVA: 0.30 (SD: 0.22)	HCVA: 0.61 (SD: 0.30) LCVA: 0.74 (SD: 0.37)
	12-month intervention	HCVA: 0.25 (SD: 0.45) LCVA: 0.27(SD: 0.21)	HCVA: 0.63 (SD: 0.33) LCVA: 0.75 (SD: 0.38)
Visual Field (MD) (dB)	baseline	-25.84 (SD: 7.75)	-29.06 (SD: 7.20)
	6-month intervention	-25.62 (SD: 8.66)	-29.63 (SD: 6.10)
	12-month intervention	-25.52 (SD: 8.91)	-29.01 (SD: 7.07)
Scotopic maximal response (μV)	baseline	35.85 (SD: 72.8)	23.60 (SD: 59.34)
	6-month intervention	39.03 (SD: 76.47)	23.31 (SD: 57.30)
	12-month intervention	37.30 (SD: 80.72)	27.06 (SD: 62.50)
Photopic cone response (μV)	baseline	a-wave: 3.92 (SD: 6.11) b-wave: 13.20 (SD: 19.07)	a-wave: 3.36 (SD: 3.51) b-wave: 9.48 (SD: 16.58)
	6-month intervention	a-wave: 5.00 (SD: 4.22) b-wave: 14.44 (SD: 21.76)	a-wave: 3.16 (SD: 7.60) b-wave: 8.10 (SD: 12.83)
	12-month intervention	a-wave: 4.91 (SD: 7.59) b-wave: 16.27 (SD: 24.46)	a-wave: 2.72 (SD: 3.83) b-wave: 8.07 (SD: 12.35)
Macular thickness (µm)	baseline	226.52 (SD: 52.68)	158.29 (SD: 47.12)
	6-month intervention	228.57 (SD: 53.43)	155.88 (SD: 47.19)
	12-month intervention	229.14 (SD: 54.86)	161.54 (SD: 36.18)


238	Table 2. Results of the different outcomes at 6-month and 12-month interventions

- 240 3.2 Primary Outcome
- 241 3.2.1 Visual Acuity
- 242 The treatment group showed less reduction in visual acuity, compared to the placebo group
- after both 6-month and 12-month intervention. (Figure 2) Overall, the ANOVA analysis revealed
- significant differences for both HCVA [Pillai's trace=0.229, F(2)=5.79, p=0.006] and LCVA [Pillai's
- trace=0.374, F(2)=8.36, p=0.001]. Interaction effect between time and treatment type was
- 246 significant [HCVA: F(1.36)=7.59, *p*=0.004; LCVA: F(1.28)=12.62, *p*<0.001]. Pairwise comparison

247 did not show a significant time effect in neither treatment nor placebo groups in either HCVA or

- LCVA (all *p*>0.99), nor a significant difference between the baseline values of treatment and
- 249 placebo groups (*p*=0.11). However, the treatment group had significantly better HCVA (6-month
- 250 0.26±0.43 vs. 0.61±0.30, *p*=0.01; 12-month 0.25±0.45 vs. 0.64±0.33, *p*=0.004) and LCVA (6-
- 251 month 0.30±0.22 vs. 0.74±0.37, *p*=0.03; 12-month 0.27±0.21 vs. 0.75±0.38, *p*=0.004) than the
- 252 placebo group at both 6- and 12-month follow-ups. (Note: the smaller the LogMAR VA is, the
- 253 better the vision is.)
- 254 For the change from baseline, the treatment group showed significantly less reduction in HCVA
- than the placebo group after both 6-month [-0.01±0.05 vs. 0.07±0.10, ρ(39)=-0.58, *p*=0.001],
- and 12-month intervention (-0.02 \pm 0.09 vs. 0.11 \pm 0.17, ρ (39)=-0.63, p=0.001) after adjusting for
- 257 the baseline value. Similarly, the treatment group showed significantly less reduction in LCVA
- 258 than the placebo group after both 6-month [-0.04 \pm 0.07 vs. 0.09 \pm 0.15, ρ (29)=-0.59, p=0.001],
- and 12-month intervention (-0.06±0.08 vs. 0.11±0.16, $\rho(28)$ =-0.71, p=0.001) after adjusting for
- 260 the baseline value. (Figure 2)
- 261

264 12-month interventions. The error bars are the standard errors of the mean. (**p*<0.0125)

265

262

266 3.3 Secondary Outcomes

- 267 3.3.1 Visual Field
- 268 Two-way ANOVA did not reveal any significant effect of time nor treatment type on MD of
- 269 central 30-2 [Pillai's trace=0.006, F(2)=0.09, p=0.91]. There was a slight difference in change in
- 270 MD between treatment and placebo groups after 6-month (0.22±3.02dB vs. -0.02±0.52dB) and
- 271 12-month (0.32±2.93dB vs. -0.16±0.94 dB) intervention, but these did not reach statistical
- significance [6-month $\rho(34)$ =-0.07, p=0.693; 12-month $\rho(30)$ =-0.10, p=0.573].
- 273
- 274 3.3.2 Full-field Electroretinogram
- 275 The two-way ANOVA did not show a significant result for the scotopic maximal response [Pillai's
- trace=0.10, F(2)=1.36, *p*=0.28], photopic a-wave [Pillai's trace=0.12, F(2)=1.76, *p*=0.19], nor
- 277 photopic b-wave [Pillai's trace=0.16, F(2)=2.39, p=0.11].
- 278 A non-statistically significant improvement in scotopic maximal response, was observed in the
- b-wave amplitude after 6-month intervention in the treatment group compared to the placebo
- 280 group [3.17±4.91μV vs. -0.28±3.89μV, ρ(29)=0.41, *p*=0.02), which was similar but less
- 281 pronounced after 12-month intervention [0.08±12.15μV vs. -3.80±7.22μV, ρ(25)=0.32, *p*=0.11].
- 282 (Figure 3A)
- 283
- The changes of photopic cone response after 6-month intervention in a-wave amplitude for the treatment and placebo groups were $1.06\pm2.3\mu$ V and $-0.20\pm1.19\mu$ V respectively, whilst changes in b-wave amplitude were $1.24\pm3.85\mu$ V and $-1.42\pm3.96\mu$ V respectively. Neither of these changes significantly differed between the treatment and placebo groups [a-wave: $\rho(30)$ =-0.27, *p*=0.14; b-wave: $\rho(30)$ =0.22, *p*=0.23]. Similarly, at 12-month, although changes for both in a-wave and bwave amplitudes differed between the treatment and placebo groups (a-wave: $0.96\pm2.44\mu$ V vs. - $0.91\pm2.87\mu$ V; b-wave: $2.75\pm9.17\mu$ V vs. $-4.00\pm7.38\mu$ V), they did not reach statistical significance
- 291 [a-wave: ρ(26)=-0.29, *p*=0.13; b-wave: ρ(26)=0.41, *p*=0.03]. (Figure 3B)

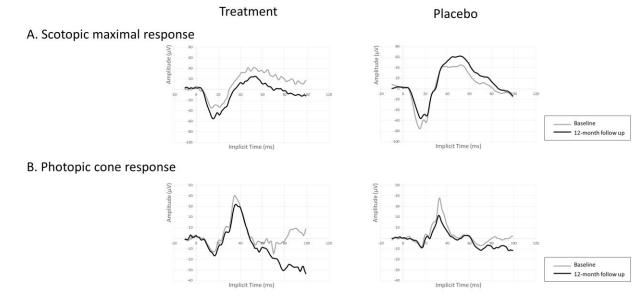


Figure 3. (A) The scotopic maximal responses of typical RP subjects from treatment or placebo group were similar in terms of b-wave amplitude between the baseline and 12-month follow up. (B) The photopic cone responses of a typical RP subject from treatment group were similar in terms of a-wave and b-wave amplitudes between the baseline and 12-month follow up; while the response from another subject from the placebo group showed a mild reduction of b-wave amplitude at 12-month follow up.

300

301 3.3.4 Macular thickness

302 Overall, the two-way ANOVA analysis was significant for macular thickness [Pillai's trace=0.29,

303 F(2)=6.19, p=0.005]. There was significant interaction effect between time and treatment type

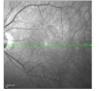
304 [F(1.58)=7.95, p=0.002]. Pairwise comparison did not show significant time effect on the

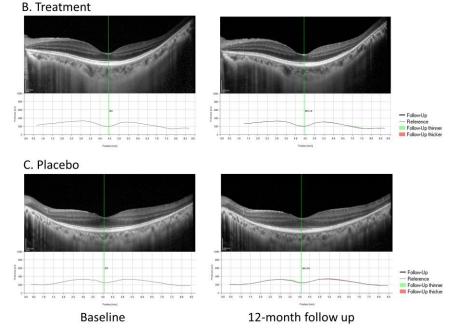
305 macular thickness within group (all *p*>0.99) but showed effect of treatment type after 6-month

306 (228.57±53.42um vs. 155.88±47.19um, *p*=0.008) and 12-month (229.14±54.86um vs.

307 161.54±36.18um, *p*=0.002) intervention. However, there was a significant difference between

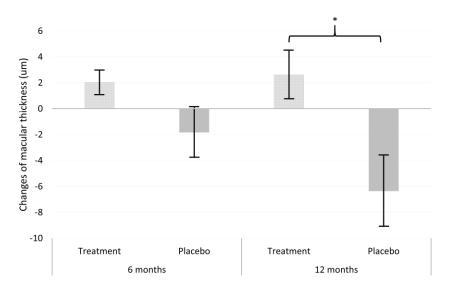
308 groups at baseline (226.52±52.68um vs. 158.29±47.12um, *p*=0.006).


309


310 Figure 4 illustrates that the 12-month LB treatment maintained the macular thickness in a

311 subject as compared with another subject in the placebo group whose macular thickness

- reduced. A significant difference in the change of macular thickness was found between the
- 313 treatment types (2.62±8.81um vs. -6.36±11.91um) after 12-month intervention [ρ(31)=0.45,
- 314 *p*=0.008]. There was also a slight difference in change of macular thickness between the
- 315 treatment types (2.05±4.49um vs. -1.83±8.41um) after 6-month intervention but it did not
- reach statistical significance [p(35)=0.25, p=0.132] (Figure 5).
- 317


A. Position of scanning

319 Figure 4. (A) The green line illustrated the position of scanning for the measurement of retinal

- thickness. (B) In the treatment group, a typical RP subject was seen to maintain the macular
- retinal thickness between the baseline and 12-month follow up. (C) In the placebo group, a
- 322 typical RP subject displayed thinning of macular retinal thickness between the baseline and 12-
- month follow up.
- 324

326 Figure 5. The changes of macular thickness of the treatment and placebo group after the 6-

327 month and 12-month interventions. The error bars are the standard errors of the mean.

- 328 (*p<0.0125)
- 329

330 **4. Discussion**

331 Different neuroprotective agents have been shown to be able to delay the retinal degeneration 332 of RP. They include neurotrophic agents (eg. ciliary neurotrophic factor (CNTF)) (Sahni et al., 333 2011), anti-inflammatory agents (eg. fluocinolone acetonide) (Glybina et al., 2009) and 334 antioxidants (eg. vitamin A, lutein, DHA, etc.) (Berson et al., 1993, 2010; Hoffman et al., 2015). 335 As many plants, including traditional Chinese herbs, contain antioxidative substances, the use of 336 such herbs has become a popular approach for treatment of RP. In addition, the use of 337 antioxidative supplements can provide a beneficial therapy until the development of other 338 techniques come to fruition as well as offering a relatively inexpensive therapy for use in 339 developing countries where more advanced techniques would be unlikely to be available. Our 340 results suggested that treating RP patients with the extract of Lycium barbarum L. over a 12-341 month period delayed deterioration of vision and retinal thinning in the macular region. The 342 preservation of VA was first detected at the 6 months follow up examination. Cone rescue in the 343 early stage of RP thus appears to be a possible way to preserve vision, especially photopic vision.

344 Oxidative challenge is a suggested explanation for cone damage in RP. The isomers of lutein and 345 zeaxanthin, which are antioxidants, were recently reported to lower the oxidative stress 346 thereby protecting the photoreceptors in a mouse RP model (Yu et al., 2018). A mixture of anti-347 oxidants has been even reported to reduce the death of photoreceptors in a mouse RP model 348 with retinal degeneration (Sanz et al., 2007) which is similar to the degeneration observed in RP 349 in humans. RP patients have been reported to have a reduced anti-oxidative status in their eyes 350 (Martínez-Fernández de la Cámara et al., 2013). Collectively, the evidence suggests that 351 oxidative stress is indeed one of the key factors in cone degeneration in RP and reduction of 352 oxidative stress may help delay or minimize cone degeneration, thereby preserving vision in RP 353 patients. Lutein which is an antioxidant, has been reported to slow mid-peripheral visual field 354 loss in RP patients (Berson et al., 2010). LB contains active components, including LBP, which 355 has also been widely reported to have strong antioxidative effects. This further suggests that the 356 LB granules may provide sufficient antioxidative effects to have a beneficial in RP patients.

357

358 Our findings reveal that the VA (both high and low contrast) was significantly better preserved in 359 the treatment group than the placebo group. As cone degeneration in RP would cause 360 deterioration of VA, the observed preservation of VA in the treatment group implies that intake of LB provided a neuroprotective effect for the cone cells. Such a protective effect was also 361 362 evident in the maintenance of electrophysiological responses in the treatment group. Although 363 change in central visual field sensitivity were not significant, general preservation of sensitivity 364 in this region after the LB treatment was observed. Importantly, retinal thickness at the macular 365 region did not show any deterioration after treatment, further illustrating the protective effect 366 of LB, in slowing retinal thinning in RP patients.

367

The results of our study are comparable with those from other clinical studies (Berson et al.,
1993, 2010, 2012; Rotenstreich et al., 2013; Hoffman et al., 2015), which employed treatment
with other supplements, including DHA, β-Carotene, Omega 3, Lutein, and Vitamin A or E as
antioxidants. Two of our four outcome measures showed significant effects. This suggests that
the neuroprotective effect of LB is effective in delaying the deterioration of vision in RP patients.

373

374 Lycium barbarum polysaccharide, the most effective antioxidant in LB, has been shown to 375 preserve the photoreceptors against degeneration through anti-oxidative, anti-inflammatory, 376 and anti-apoptotic mechanisms in a mouse RP model (Wang et al., 2014). It appears that LBP 377 can elicit anti-oxidative effects in the eye regardless of the blood-brain barrier or blood-retina 378 barrier (Ho et al., 2007). Apart from the above mentioned properties, LB has also been 379 proposed to act in other ways against cell degeneration. Increase of reactive oxidative species 380 (ROS) has been shown in RP retina (Oka et al., 2008) and Lycium chinensis has been reported to 381 reduce cell death by attenuating ROS generation and increasing the antioxidative defence 382 capacity (Olatunji et al., 2016). In addition, changes in the insulin/mechanistic target of 383 rapamycin (mTOR) pathway have been found to delay cone death in RP (Punzo et al., 2009). As 384 LBP has been found to improve insulin resistance activity (which is related to the mTOR pathway) 385 (Zhao et al., 2016). Recently, LBP was reported to reduce the protein levels of procaspase and 386 increase the poly (ADP-ribose) polymerase (PARP) which would attenuate the apoptosis of 387 photoreceptor cells (Zhu et al., 2016). All above findings indicate that LB can protect the cone 388 cells and also contributes to delay of cone death.

389

390 The findings from this study indicate that LB is a useful as a supplement to effectively preserve 391 the photopic vision of RP patients, helping to maintain their quality of life. There were, however, 392 several limitations in this study. As the sample size was relatively small, the results may not 393 reflect the experience of the whole RP population, and, as the duration of the treatment was 394 only 12 months, it was not possible to show persistent long-term treatment effects. If the study 395 could be extended to follow up the cases to 6 or 12 months who had chosen not to continue, 396 this will help to confirm the beneficial changes. In addition, as the dose of the active ingredients 397 in the LB granules remains unclear, it is better to repeat the study using the pure compound of 398 those active components to reconfirm the findings. Lastly, the changes in VA and macular retinal 399 thickness though reaching statistical significance were and may not be clinically significant. The 400 genotypes of the RP subjects were also not identified in this study and thus any differences in 401 the treatment effect of LB between genotypes could not be determined. Hence, a large-scale

- 402 longitudinal study is necessary to further investigate the long-term protective effect of LB in RP403 patients with different genotypes.
- 404

405 **5.** Conclusions

Our results demonstrated that a 12-month treatment of RP patients with *Lycium barbarum* L.
was able to preserve visual acuity and macular structure. Its neuroprotective effect is believed
to delay or minimize the deterioration of central visual function. Treatment with *Lycium barbarum* L. is believed to be a potential supplement to protect retinal functions in RP patients
helping to and thereby maintain photopic vision.

411

Acknowledgement: This work was supported by Health and Medical Research Fund (01121876,
Department of Health, HKSAR) and PolyU Internal Grants (G-YBBS, G-YBGS, Z-OGF). We thank for
Retina Hong Kong for the help in the recruitment of subjects; Eu Yan Sang (Hong Kong) Ltd. for
supporting the Lycium barbarum supplement; Dr. CP Leung (Chinese Medical Practitioner) for
providing the advice/consultation in the use of Traditional Chinese Medicine.

417

Authors' contributions: Chan HHL, So KF, Chang RCC and Lai J designed the study. Lam HI
recruited and selected the subjects. Lai J confirmed the ocular condition of each subject. Lam HI,
Choi KY, Li SZC and Yu WY conducted the eye examinations. Chan HHL and Lakshmanan Y
allocated the supplement of LB and placebo to subjects. Lam HI checked the compliance and all
the data obtained. Choi KY performed the statistical analysis. Chan HHL and Yu WY prepared the
manuscript.

424

425 Glossary:

CNTF	Ciliary Neurotrophic Factor
DHA	Docosahexaenoic acid
ERG	Electroretinogram
ETDRS	Early Treatment of Diabetic Retinopathy Study
ffERG	Full-field electroretinogram
HFA	Humphrey Visual Field Analyzer

IOP	Intra-ocular pressure
LB	Lycium barbarum
mTOR	Insulin/mechanistic target of rapamycin
NOS	Nitric oxide synthase
OCT	Optical Coherence Tomography
PARP	Poly (ADP-ribose) polymerase
ROS	Reactive oxidative species
RP	Retinitis Pigmentosa
VA	Visual acuity
VF	Visual field

427 References

428 Berson, E.L., Rosner, B., Sandberg, M.A., Hayes, K.C., Nicholson, B.W., Weigel-DiFranco, C.,

429 Willett, W.C. 1993. A randomized trial of vitamin A and vitamin E supplementation for retinitis

- 430 pigmentosa. Arch Ophthalmol 111, 761-772.
- 431 Berson, E.L., Rosner, B., Sandberg, M.A., Weigel-DiFranco, C., Brockhurst, R.J., Hayes, K.C.,
- 432 Johnson, E.J., Anderson, E.J., Johnson, C.A., Gaudio, A.R., Willett, W.C., Schaefer, E.J. 2010.
- 433 Clinical trial of lutein in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol
- 434 128, 403-411.
- 435 Berson, E.L., Rosner, B., Sandberg, M.A., Weigel-DiFranco, C., Willett, W.C. 2012. ω-3 intake and
- 436 visual acuity in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol 130,
- 437 707-711.
- 438 Chang, R.C., So, K.F. 2008. Use of anti-aging herbal medicine, Lycium barbarum, against aging-
- 439 associated diseases. What do we know so far? *Cell Mol Neurobiol* 28, 643-652.
- 440 Chrysostomou, V., Stone, J., Valter, K. 2009. Life history of cones in the rhodopsin-mutant P23H-
- 441 3 rat: evidence of long-term survival. *Invest Ophthalmol Vis Sci* 50, 2407-2416.
- 442 Chu, P.H.W., Li, H.Y., Chin, M.P., So, K.F., Chan H.H.L. 2013. Effect of Lycium Barbarum (Wolfberry)
- 443 *Polysaccharides* on Preserving Retinal Function after Partial Optic Nerve Transection. *PLoS One* 8,
 444 e81339.
- 445 Dalkara, D., Goureau, O., Marazova, K., Sahel, J.A. 2016. Let there Be light: gene and cell thera-
- 446 py for blindness. *Hum Gene Ther* 27, 134–147.

- 447 Glybina, I.V., Kennedy, A., Ashton, P., Abrams, G.W., Iezzi, R. 2009. Photoreceptor neuroprotec-
- 448 tion in RCS rats via low-dose intravitreal sustained-delivery of fluocinolone acetonide. Invest

449 *Ophthalmol Vis Sci* 50, 4847–4857.

- 450 Ho, Y.S., Yu, M.S., Lai, C.S., So, K.F., Yuen, W.H., Chang, R.C. 2007. Characterizing the 451 neuroprotective effects of alkaline extract of Lycium barbarum on beta-amyloid peptide 452 neurotoxicity. *Brain Res* 1158, 123-134.
- 453 Hoffman, D.R., Hughbanks-Wheaton, D.K., Spencer, R., Fish, G.E., Pearson, N.S., Wang, Y.Z., Klein,
- 454 M., Takacs, A., Locke, K.G., Birch, D.G. 2015. Docosahexaenoic Acid Slows Visual Field 455 Progression in X-Linked Retinitis Pigmentosa: Ancillary Outcomes of the DHAX Trial. *Invest*
- 456 *Ophthalmol Vis Sci* 56, 6646-6653.
- Jin, M.L., Huang, Q.S., Zhao, K., Shang, P. 2013. Biological activities and potential health benefit
 effects of polysaccharide isolated from Lycium barbarum L. *Int J Biol Macromol* 54, 16–23.
- Jones, M.K., Lu, B., Girman, S., Wang, S. 2017. Cell-based therapeutic strategies for replacement
 and preservation in retinal degenerative diseases. *Prog Retin Eye Res* 58, 1–27.
- 461 Komeima, K., Usui, S., Shen, J., Rogers, B.S., Campochiaro, P.A. 2008. Blockade of neuronal nitric
- 462 oxide synthase reduces cone cell death in a model of retinitis pigmentosa. *Free Radic Biol Med*463 45, 905-912.
- Lam, K.W., But, P. 1999. The content of zeaxanthin in Gou Qi Zi, a potential health benefit to improve visual activity. *Food Chem* 67, 173-176.
- Li, H.Y., Ruan, Y.W., Kau, P.W.F., Chiu, K., Chang, R.C., Chan, H.H., So, K.F. 2015. Effect of Lycium
- 467 *Barbarum* (wolfberry) on Alleviating Axonal Degeneration after Partial Optic Nerve Transection.
- 468 *Cell Transplant* 24, 403-417.
- Li, S.Y., Yang, D., Yeung, C.M., Yu, W.Y., Chang, R.C.C., So, K.F., Wong, D., Lo, A.C.Y. 2011. Lycium barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in retinal ischemia/reperfusion injury. *PLoS One* 6, e16380.
- 472 Lin, B., Masland, R.H., Strettoi, E. 2009. Remodeling of cone photoreceptor cells after rod
 473 degeneration in rd mice. *Exp Eye Res* 88, 589-599.

- 474 Marc, R.E., Jones, B.W., Anderson, J.R., Kinard, K., Marshak, D.W., Wilson, J.H., Wensel, T., Lucas,
- 475 R.J. 2007. Neural reprogramming in retinal degeneration. *Invest Ophthalmol Vis Sci* 48, 3364476 3371.
- 477 Martínez-Fernández de la Cámara, C., Salom, D., Sequedo, M.D., Hervás, D., Marín-Lambíes,
- 478 C., Aller, E., Jaijo, T., Díaz-LLopis, M., Millán, J.M., Rodrigo, R. 2013. Altered antioxidant-oxidant
- 479 status in the aqueous humor and peripheral blood of patients with retinitis pigmentosa. *PLoS*
- 480 *One* 8, e74223.
- 481 McCulloch, D.L., Marmor, M.F., Brigell, M.G., Hamilton, R., Holder, G.E., Tzekov, R., Bach, M.
- 482 2015. ISCEV standard for full-field clinical electroretinography (2015 update). *Doc Ophthalmol*
- 483 130, 1-12.
- 484 Ng, Y.F., Chan, H.H., Chu, P.H., To, C.H., Gilger, B.C., Petters, R.M., Wong, F. 2008. Multifocal
- 485 Electroretinogram in Rhodopsin P347L Transgenic Pigs. *Invest Ophthalmol Vis Sci* 49, 2208-2215.
- 486 Oka, S., Ohno, M., Tsuchimoto, D., Sakumi, K., Furuichi, M., Nakabeppu, Y. 2008. Two distinct
- pathways of cell death triggered by oxidative damage to nuclear and mitochondrial DNAs. *EMBO J* 27, 421-432.
- Olatunji, O.J., Chen, H., Zhou, Y. 2016. Lycium chinensis Mill attenuates glutamate induced
 oxidative toxicity in PC12 cells by increasing antioxidant defense enzymes and down regulating
- 491 ROS and Ca(2+) generation. *Neurosci Lett* 616, 111-118.
- 492 Potterat, O. 2010. Goji (Lycium barbarum and L. chinense): phytochemistry, pharmacology and
- 493 safety in the perspective of traditional uses and recent popularity. *Planta Med* 76, 7–19
- 494 Protti, M., Gualandi, I., Mandrioli, R., Zappoli, S., Tonelli, D., Mercolini, L. 2017. Analytical profil-
- ing of selected antioxidants and total antioxidant capacity of goji (Lycium spp.) berries. *J Pharm*
- 496 *Biomed Anal* 143, 252-260.
- 497 Punzo, C., Kornacker, K., Cepko, C.L. 2009. Stimulation of the insulin/mTOR pathway delays cone
 498 death in a mouse model of retinitis pigmentosa. *Nat Neurosci* 12, 44-52.
- 499 Rotenstreich, Y., Belkin, M., Sadetzki, S., Chetrit, A., Ferman-Attar, G., Sher, I., Harari, A., Shaish,
- 500 A., Harats, D. 2013. Treatment with 9-cis β -carotene-rich powder in patients with retinitis
- 501 pigmentosa: a randomized crossover trial. JAMA Ophthalmol 131, 985-992.

- 502 Sahni, J.N., Angi, M., Irigoyen, C., Semeraro, F., Romano, M.R., Parmeggiani, F. 2011. Therapeu-
- tic challenges to retinitis pigmentosa: from neuroprotection to gene therapy. *Curr Genomics* 12,
 276–284.
- 505 Sanz, M.M., Johnson, L.E., Ahuja, S., Ekström, P.A., Romero, J., van Veen, T. 2007. Significant 506 photoreceptor rescue by treatment with a combination of antioxidants in an animal model for
- 507 retinal degeneration. *Neurosci* 145, 1120-1129.
- 508 Shen, J., Yang, X., Dong, A., Petters, R.M., Peng, Y.W., Wong, F., Campochiaro, P.A. 2005.
- 509 Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa. *J Cell Physiol* 510 203, 457-464.
- 511 Tang, H.L., Chen, C., Wang, S.K., Sun, G.J. 2015. Biochemical analysis and hypoglycemic activity
- of a polysaccharide isolated from the fruit of Lycium barbarum L. *Int J Biol Macromol* 77, 235–
 242.
- 514 Tian, X.J., Jing, B.Y., Wang, C.X., Lu, H.N., Chen S.E. 2017. Research progress on extraction
- 515 methods of Lycium barbarum polysaccharides. *J Food Saf Qual* 8, 439-445.
- 516 The Plant List, 2013. (www.theplantlist.org)
- 517 Wang, C.C., Chang, S.C., Chen, B.H. 2009. Chromatographic determination of poly-saccharides in
- 518 Lycium barbarum Linnaeus. *Food Chem* 116, 595–603.
- 519 Wang, K., Xiao, J., Peng, B., Xing, F., So, K.F., Tipoe, G.L., Lin, B. 2014. Retinal structure and
- function preservation by polysaccharides of wolfberry in a mouse model of retinal degeneration. *Sci Rep* 4, 7601.
- 522 Xu, C., Guo, W., Zhao, Y., Tan, Y., You, Y., Zhou, H. 2012. Extraction and decolouration technology
- 523 for polysaccharide from Lycium barbarum in XinJiang. *J Anhui Agric Sci* 40, 2887-2889.
- 524 Yanik, M., Muller, B., Song, F., Gall, J., Wagner, F., Wende, W., Lorenz, B., Stieger, K. 2017. In
- 525 vivo genome editing as a potential treatment strategy for inherited retinal dystrophies. *Prog*
- 526 *Retin Eye Res* 56, 1–18.
- 527 Yao, R., Heinrich, M., Weckerle, C.S. 2018. The genus Lycium as food and medicine: A botanical,
- 528 ethnobotanical and historical review. *J Ethnopharmacol* 212, 50-66.
- 529 Yu, M., Yan, W., Beight, C. 2018. Lutein and zeaxanthin isomers reduce photoreceptor degener-
- ation in the *Pde6b*^{rd10} mouse model of retinitis pigmentosa. *Biomed Res Int* 2018:4374087.

- 531 Yue, L., Weiland, J.D., Roska, B., Humayun, M.S. 2016. Retinal stimulation strategies to restore
- vision: fundamentals and systems. *Prog Retin Eye Res* 53, 21–47.
- Zeiss, C.J., Allore, H.G., Towle, V., Tao, W. 2006. CNTF induces dose-dependent alterations in
 retinal morphology in normal and rcd-1 canine retina. *Exp Eye Res* 82, 395-404.
- 535 Zhao, R., Gao, X., Zhang, T., Li, X. 2016. Effects of Lycium barbarum polysaccharide on type 2 536 diabetes mellitus rats by regulating biological rhythms. *Iran J Basic Med Sci* 19, 1024-1030.
- 537 Zhu, Y., Zhao, Q., Gao, H., Peng, X., Wen, Y., Dai, G. 2016. Lycium barbarum polysaccharides at-
- 538 tenuates N-methy-N-nitrosourea-induced photoreceptor cell apoptosis in rats through regula-
- tion of poly (ADP-ribose) polymerase and caspase expression. *J Ethnopharmacol* 191, 125-134.

541 Figures/Table Captions

- 542 Figure 1. Study design of the clinical study. Visual acuity, visual field, electroretinogram and
- 543 macular thickness measurements were conducted at baseline examination and two follow up

544 visits at 6 months and 12 months.

- 545 Figure 2. Changes of HCVA and LCVA from the treatment and placebo group after the 6-month
- and 12-month interventions. The error bars are the standard errors of the mean. (*p<0.0125)
- 547 Figure 3. (A) The scotopic maximal responses of typical RP subjects from treatment or placebo
- 548 group were similar in terms of b-wave amplitude between the baseline and 12-month follow up.
- (B) The photopic cone responses of a typical RP subject from treatment group were similar in
- terms of a-wave and b-wave amplitudes between the baseline and 12-month follow up; while
- the response from another subject from placebo group showed a mild reduction of b-wave
- amplitude at 12-month follow up.
- 553 Figure 4. (A) The green line illustrated the position of scanning for the measurement of retinal
- thickness. (B) In the treatment group, a typical RP subject was found to maintain the macular
- retinal thickness between the baseline and 12-month follow up. (C) In the placebo group, a
- 556 typical RP subject was found to have the thinning of macular retinal thickness between the
- 557 baseline and 12-month follow up.
- 558 Figure 5. The changes of macular thickness from the treatment and placebo group after the 6-
- 559 month and 12-month interventions. The error bars are the standard errors of the mean.
- 560 (*p<0.0125)
- 561 Table 1. Demographic information of the subjects
- 562 Table 2. Results of the different outcomes at 6-month and 12-month interventions