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In this paper, we consider the inertial measurement units
(IMUs)-based attitude estimation, a common core problem in
a large variety of robotic systems. In particular, we focus on
the case where the IMU measurements are contaminated by
narrow-band vibration noises caused by the system flexible mode,
aerodynamic turbulence, or rotating parts (e.g. motors). Our
proposed scheme is a complete solution to adaptively estimate
the narrow-band noise and actively compensate it in the attitude
estimation. More specifically, the scheme adopts a notch filter
to attenuate the narrow-band noise and subsequently embeds
such filter into a multiplicative extended Kalman filter (MEKF)
framework to eliminate the induced transient error. Furthermore,
a least mean square (LMS) method is utilized to estimate the
dominant noise frequency in real time, forming an adaptive notch
filter that can effectively attenuate narrow-band noise with time-
varying dominant frequency. The complete algorithm is verified
on an actual gimbal system with exhaustive experiments.

I. INTRODUCTION

Attitude estimation, determining the orientation of a rigid
body from a series of non-ideal and noisy sensors, is a fun-
damental task in the robot attitude control, such as unmanned
aerial vehicles (UAVs) [1] and multi-axis gimbal system [2].
Attitude are generally measured by or resolved from two
types of sensors: 1) line-of-sight attitude sensors by which
vehicle’s attitude is obtained via known models and reference,
e.g. accelerometers and magnetometers, and 2) gyro sensors
(either rate or rate-integrating type [3]). Accelerometers, gyros
and optional magnetometers are commonly integrated into one
package, namely, the inertial measurement units (IMUs), to
provide combined measurements of body acceleration, angular
rate and direction of Earth magnetic field, from which the
attitude can be (fully) resolved. With the advent of micro-
electro-mechanical system (MEMS) technology, IMUs can be
manufactured into very small and cheap electronic chips, being
vastly used in consumer electronics (e.g. smart phones, tablets,
gaming systems) [4], imaging stabilization devices and micro
aerial vehicles (MAVs) [5], etc. However, the MEMS IMU has
inherent defects. For example, accelerometers are sensitive to
vibrations and translational acceleration, and the commonly
used MEMS rate gyros randomly drift over time (i.e. gyro
bias), which, once integrated, results in accumulated errors.

To achieve precise attitude estimation, various methods have
been proposed over decades. A non-linear complementary
filter operating on SO(3) was introduced by Mahony et
al [6]. In this method, the estimation of attitude and gyro
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bias is corrected by the residual error between the attitude
estimation and measurement. This algorithm is with cheap
computation and easy implementation. But due to the pre-
setting constant correction gains, the estimation is usually
suboptimal. Another vastly used attitude estimation approach
is the extended Kalman filter (EKF), which is the workhorse
of real-time attitude estimation in many robotic applications
such as simultaneous localization and mapping (SLAM) [7],
visual odometry (VO) [8], visual inertial navigation system
(VINS) [9], virtual reality (VR) /augmented reality (AR) [10],
etc. EKF is a well known and generic state estimation method
for nonlinear systems. It extends the Kalman filter, which was
first derived for linear systems and proved to be a minimum
variance state estimator, to nonlinear systems by first-order
linearization. Schmidt and his collaborators in the Apollo
program [11] first applied the EKF framework to attitude
estimation based on kinematic model. Nevertheless, in cases
of the highly nonlinear dynamics or poor priori estimation
of the state, the EKF usually fails [12]. The multiplicative
EKF (MEKF) [13]-[15] based on the attitude error state
was proposed to diminish the influence of linearization on
SO(3) and to avoid the covariance matrix being singular.
Furthermore, unscented Kalman filter (UKF) [16] was proved
to have relatively superior accuracy when the initial estimation
error is large, by exploiting the second or higher order of
Taylor series expansion of the nonlinear system.

One major limitation of both standard EKF and UKF based
attitude estimation methods is that they often assume the ob-
servation (attitude measurements, e.g. acceleration, magnetic
field, etc.) noises are white noise, and usually fail for more
complicated but practical observation noises such as colorful
noise, narrow-band noise, etc. that are caused by vibrations
and environmental factors. Taking these non-ideal noises into
consideration, further studies have been done based on specific
assumptions or models. Sebesta et al [17] and Sarkka et al
[18] respectively illustrated methods of adaptively estimating
the measurement covariance matrix and tuning the EKF in-
novation in presence of white measurement noise with time-
varying covariance. Qian et al [19] assumed a multiplicative
measurement noise with unknown external disturbances, which
lie in a bounded domain. Accordingly, the minimization of
the estimated covariance can, to some extent, be achieved
by minimizing the upper bound of the estimated covariance.
Kumar and Crassidis [20] considered a colored measurement
noise. In this scenario, the authors first characterized the noise
by a second order vibration model and then augmented this
model into the standard EKF framework.

Precisely modeling the noise is usually problematic because
the noise is susceptible to various time-varying factors such as



system features and hostile environments. In contrast, digital
filters like the low-pass filter can effectively attenuate the noise
over a wide frequency range, eliminating the need for accurate
noise modeling. One drawback of using such filter is that it
may introduce considerable delay in attitude estimation, which
is one of the main causes of overshoot and even divergence in
attitude feedback control. Lozano et al [21] and Sanz et al [22]
proposed to compensate constant delays by a state predictor,
which predicts the current state by delayed state measurement,
previous control input and lag time. Although constant delays
caused by data transfer or computation can be accurately
captured, they can barely describe a digital filter (e.g. low-
pass filter), whose delay nonlinearly depends on frequencies
of input signals. In this paper, we regard the digital filter as
a part of the system model, leading to an augmented attitude
kinematic model. We then incorporate such filters into the state
observer (e.g. MEKF) framework to eliminate the transient
error caused by the filter. It is not hard to imagine that when
both the state observer predicted output and the actual system
output are filtered by the same filter, the resulting estimation
error will remain synced and no transient error will be present.
Accordingly, modeling a digital filter in the observer, instead
of approximating to the complex noise, can be a more generic
and robust solution.

The original motivation of this paper is to solve the IMU-
based attitude estimation problem of multi-axis gimbal sys-
tems [2], which have been increasingly used in unmanned
aerial vehicles (UAVs) for imaging stabilization. The gimbal
system is susceptible to various vibrations, caused by structural
modes of itself and the host aerial vehicle , as well as the
propeller induced vibration. These vibrations are translational
motions and will be picked up by accelerometers. Since a
gimbal system uses the accelerometer measurements to deter-
mine its payload attitude, the picked up translational vibrations
will behave as a noise and significantly degrade the attitude
estimation accuracy. To address these vibrations, vibration
absorbers made by particular mechanism or soft material, are
usually used to isolate vibrations from the aircraft. Due to
their frequency response, vibration absorbers can effectively
suppress high frequency noises such as propeller vibration and
certain flexible modes of the aircraft. However, as shown in
Fig.1, a low frequency translation acceleration is commonly
seen at high speed forward flight, possibly due to the unsteady
aerodynamic turbulence being created on the gimbal system.
Such a noise is characterized by its narrow bandwidth (e.g.
several Hz) and concentration on very low frequency (e.g.
under 10 Hz), that cannot be effectively attenuated by the
vibration absorber.

In this work, we consider the IMU based attitude estimation
in the presence of narrow-band noise. Our main contribution is
an attitude estimation algorithm that can effectively attenuate
narrow-band noise concentrating at a very low frequency
range and with time-varying dominant frequency. The devel-
oped algorithm comprises three components: an augmented
MEKF framework in discrete time domain, a notch filter that
attenuates the narrow-band noise, and a least mean square
based adaptive algorithm that accurately identifies the noise
dominant frequency in real time [23]. Experiments on actual
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Fig. 1. Frequency spectrum of the accelerometer noise when the host aerial
vehicle is flying at high speed.

gimbal systems show that the developed algorithm can ac-
curately track the noise dominant frequency and attenuate the
narrow-band noise without inducing much delay in the attitude
estimation. Although verified on gimbal systems, the proposed
algorithms can also be applied to other robotic platforms (e.g.
UAVy5) for attitude estimation in the presence of narrow-band
noise.

This paper is organized as follows. Section II briefly
introduces the attitude kinematics and the sensor models
concerned in this paper. In section III, the standard MEKF
framework is derived in discrete time domain. Section IV
extends the standard MEKF to account for the dynamics of
notch filter. With additional consideration on noise frequency
drifting, adaptive frequency estimation method is adopted in
section V. Section VI details the application to an inertially
stabilized gimbal system and presents our experimental results
to demonstrate the effectiveness of noise rejection and real-
time attitude estimation. Finally, section VII arrives at our
conclusion.

II. ATTITUDE KINEMATICS AND SENSOR MODELS
A. Special Orthogonal Group SO(3)

Because a gimbal system only involves orientation, it is
sufficient to consider the special orthogonal group SO(3).

A rotation R can be interpreted as a rotation about an axis
& of angle 6. The axis £ and angle 6 are related to the rotation
matrix by an exponential map [24]:

R = exp(fx) (D)
where 6 = 0¢ and ||¢]| = 1. exp (A) = 300 4+ is matrix

n=0
exponential. The subscript operation 8 takes the elements of

0 to form a skew-symmetric matrix as follows

0 —0; 0,
6.=| 6; 0 -6 2
-0, 6, 0
The inverse map of (-) is denoted as (-) such that
(0x)v =6; VO cR? 3)
In practice, Eq. (1) is computed by Rodrigue’s formula
exp (0€,) =1+ &, sinf + &% (1 — cosb) 4)

The inverse of Eq. (1) is called logarithmic map

logR =

T
2sin 6 (R_R ) ©®)



1 (tr(R)—1
where 0 = cos™! %

). The formula given by (5) is
singular at @ = 7 (or equivalently ¢r(R) = —1), which should
therefore be excluded from SO(3). 8« = logR € so(3) is
called the exponential coordinate of R.

The attitude is related to angular rate w by [24]

R = Ruw, (6)

which implies that, if the rotation is about a fixed axis b
(IIb|| = 1) and the amount of rotation is «(t) at time ¢, then
the instantaneous attitude is

R(t) = R(0)ePx® (7)

The relation between angular rate w in (6) and the time
derivative of the instantaneous exponential coordinate 8 of R
in (1 is given as follows [25].

M(0)To ®)

w =

where
_ 1—cos||0]\ O«
M(6) = I+ < CRVACRAS

B. Sensor Models

The body frame is practically defined as the frame of
the IMU enclosure, where the axis orientation of gyros and
accelerometers is assumed to be calibrated and aligned. As
a result, the measurement of gyros and accelerometers is
immediately interpreted as that in the body frame.

The gyro is typically modeled as [26]

_sinHOH) 02 )

e/ lel?

(10)
Y

where At is the sampling time, w,,, and wy, are respectively
the measured and true angular rate at the k-th time step, n,. is
the measurement noise and assumed to be Gaussian white with
zero mean, and b denotes the random-walk gyro bias driven by
another zero-mean Gaussian white noise n,,. Combining (7),
(10) and (11) yields the system state space model in discrete
time domain

Wimy,
b, =

wi +br +n,,
by_1 + nwk_lAt

Ri =Ry_1exp (wr—1)x At) (12a)
Wr—1 = wmk_l - bk}*l - nTk_l
b, =bp_1 + IlwkflAt (12b)

Considering the vibration noise, the accelerometer noise
model is no longer white. Instead, the measurement a,, is
related to the gravity g and translational acceleration a., both
expressed in body frame, by [27]

(13a)
(13b)

gr =Rje;
Am, — —8k + Ac, + dk + ng,

where e; = [0 01]", d denotes the vibration noise and
n, is a zero-mean Gaussian white noise to capture the
random measurement noise. (13) simply states the fact that
the accelerometer measures all forces acted on the body
but gravity. This agrees with two common facts: 1) a free
falling accelerometer leads to zero measurements; and 2) a

static accelerometer reads an acceleration that is opposite to
gravity. Also note that the translational acceleration a. can be
compensated via methods like GPS-derived acceleration, thus
can be omitted from (13b).

In our concerned application, the yaw angle of the gimbal
payload is computed from the host UAV attitude and the
forward kinematics [2]. Its measurement model takes the
following form, which is essentially the formula for computing
yaw angle in ZXY Euler angles from a rotation matrix.

el Ryes

1 = — arctan (14a)

T
e; Ries

Vmy, = Y + Ny, (14b)

wheree; =[1 0 O]T ande; =[0 1 O]T, 1 and 1),,, are respec-
tively the true and measured yaw angle, n,, is the measurement
noise caused by host vehicle attitude measurements and gimbal
joint measurements. In cases where magnetometer is used,
the measurement model will take a similar form as that of
accelerometer in (13).

III. MULTIPLICATIVE EXTENDED KALMAN FILTER IN
DISCRETE TIME DOMAIN

The kinematic model (12) is problematic for the use of
extended Kalman filter, due to the orthogonality constraint
on the rotation matrix R. This leads to singularity issues
when propagating the corresponding covariance matrix [13]
on the kinematic model (12). To overcome this, [14] and [15]
proposed to project the state error into an unconstrained space
according to the linear relationship between the state repre-
sentation and its corresponding error representation, instead
of propagating the estimated state vector (i.e. the rotation
matrix or quaternion which are constrained) directly. Then
it propagates the covariance matrix and update a-posteriori
state estimate using its error kinematic model (see (19)). To
ease the following description, we call the original kinematic
model defined in (12) as the “primal system” and the error
kinematic model (see (19)) as the “error state system”. Since
the linear relationship between the primal state representation
and error state representation implies a multiplication on the
rotation matrix or quaternion, the resulting extended Kalman
filter (EKF) is called a multiplicative EKF (MEKF) [14], [15].
The multiplicative EKF usually requires the state (e.g. attitude)
estimate error to be very small, such that the error state
system can well approximate the primal system. In practice,
this requirement is usually met well for IMU based attitude
estimation.

The original MEKF derivation in [13]-[15] are based on
quaternion representation in continuous time domain. The
derived MEKF is then discretized for actual implementation.
In this paper, we derive the multiplicative EKF directly on
SO(3) in the discrete time domain (12), and subsequently
extend it to the case with narrow-band noise.

A. Propagation of The Primal System

To start with, let us be at present time step k, with the
a-posteriori state estimate at previous step Ry 1,1 and



Bk,l‘ k—1. The goal of the EKF is to obtain the a-priori
estimate and the a-posteriori estimate at the present time step.

The a-priori estimate can be immediately obtained from the
state equation (12) by following the EKEF, i.e.,

ﬁk\kq = ﬁk71|k71 exp ((@g_1jp—1)x At) (15a)
Wh—1lk—1 = Wmy_y — Pr_1jk—1 (15b)
bijr—1 = br_1jp-1 (15¢)

B. Propagation of The Error State System

Since the state R is on a nonlinear differential manifold
SO(3), directly applying the EKF on the state R will cause
singularity in the convariace propagation. To avoid this, we
employ the attitude error representations over time steps 7 >
k — 1 as below

SR, 2R, R,

Ab'r = b'r - B-r|k—1

(16a)
(16b)
where f{ﬂk,l is the attitude prediction at step 7 based on all

outputs up to the previous time step k — 1, and is updated by
the following state equation

ﬁ~r|k_1 = ﬁ‘r—l\k—l exp ((537-_1|k_1)><At) (172)
&\JT_1|]€_1 =Wm, ; — bT—1|k—1
b1 =br k1 (17b)

for 7 > k. From the definition in (16), one can easily obtain
R _1p—1 = R£_1|k_1Rk—1\k—1 =I3x3 (18a)
Abj_1jk—1 = bp_1jx—1 — br—1jx—1 = 03x1 (18b)

The key idea of MEKF is that it estimates the error state (i.e.
O0R and Ab) instead of the original system state (i.e. R and
b). To do so, the state equation of the error state is required.
Substituting the state equation of ground truth system (12) and
the predicted system (17) into error state system (16) leads to

5RT = exp (7(&'\’7’—1|k'—1)><At) 5R‘r—1

exp ((wr—1)x At)
Ab, = Ab,_; +n,_ At

(19a)
(19b)

Let 60, &€ and 60 be respectively the rotation angle, rotation
axis and axis-angle associated with the error attitude R such
that 60 = 6 - € and JR = exp ((60)«), then (19a) can be
rewritten as

exXp (((SGT)X) = exp (_("/‘}Tfl\kfl)XAt) exp ((60771)><)
exp ((a‘rfukfl - Ab7’—1 - nr.r,])XAt) (20)

Equation (20) is the exact nonlinear error state equation.
This extremely nonlinear state equation can be linearized by
assuming the error state being small, which leads to the axis-
angle presentation

OR = exp (50><) ~ I3x3+ (50)>< (21)

Substituting (21) into (20) and neglecting higher order terms
yields the linearized error state equation as follows:

60, | _ [exp (—(@r—1k—148)x)
Ab, 0O3x3

100:-1 “M(@r 11 A)AL O3x3 | [nr
|:Ab-rfl:| * { O3x3 IsxsAt| [0y, (22)

where w(T — 1) ~ N(0,Q(r — 1)), 7 > k, meaning that the

error system starts from the previous time step k — 1, and M(-)
takes the definitions of (9). For MEMS gyros concerned in this
paper, the sampling rate is quite high (e.g. up to several kHz),
second order terms (At)? can be safely neglected, which leads to
M(©,_1k—1At)At =~ Iszx3At. In practice, the linearized error
system in (22) can be simplified as

[597] _ {exp (—(@r—1p1At)x)

M@, s At)AL
13><3

—13x3At} {507—1 }

Ab, 03x3 I3x3 Ab,_1
~—— —
Xr Fry Xr_1
—I5x3At  Osxs n, _,
+ { O3x3 I3xsAt| Dy, _, 23)
~————
By Wr—1

The multiplicative extended Kalman filter propagates the error state
and the associated covariance matrix by the linearized state equation
(23) instead of the original system equation (12). When the attitude
measurements are received at a lower rate than that of the gyro, there
are multiple gyro measurements in between two consecutive attitude
measurements. In this case, as the error system (23) is defined over
all time steps 7 > k — 1, it enables the state and covariance matrix
to keep propagating from previous measurement at time step k — 1
until the next measurement is received.

Without loss of generality, we assume the attitude measurement is
at the same rate of gyro. That is, the attitude measurement is received
at each gyro sample. In this case, we would only be required to
propagate the state and covariance matrix by one step forward (i.e.
to step k), where new attitude measurement is received and used to
update the propagated state estimate. Applying the standard Kalman
filter procedure to (23), which is a time varying linear system, we
have the error state and covariance matrix propagation,which are
respectively denoted as Xj ;1 and Pyj,_1, as follows:

Xpjh—1 = Fr1Xp_1j5—1 = O6x1

Pijpor =Fe1Pr_ 11 Fi 1 + Bu Q1B

(24a)
(24b)

where X}cfukq and Pj_q,_1 are respectively the a-posteriori
estimate of the error state and the covariance matrix of the estimate.
We have X _1jx—1 = Osx1 as a result of (18).

C. Update of The Error State System

Next, to derive the output equation, the standard EKF assumes
that the attitude R is obtainable at the rate of system measurements,
either by the combination of an accelerometer and a magnetometer
or by other means (e.g. visual sensors). Denote R, be the attitude
measurement, R, is generally modeled as

R,. =RR, (25)

where R, is the measurement noise, which is very small and
assumed as R, = exp(vx), where v ~ N(0,R) is the axis-angle
representation of the measurement noise R.,,.

The output in the standard EKF, at the time step k, is then
defined as exponential coordinate of the error attitude between the
measurement and the most recent estimate (i.e. the a-priori estimate)

2= (o (0 )

where log(-) is the matrix logarithm map.

(26)



Substituting (16a) and (25) into (26) and neglecting higher order
terms such as 66j, X vi, we obtain the output equation as below

Zy = [I3xs  Osxs] [2‘&} + Vi (27)
———

Hy

Recalling (24) and following the standard Kalman filter procedure,
we obtain the update of the error state system as below

Sk = HiPyje 1 H + Ry (28a)
Ki = Py Hi S, (28b)
ik“@ =KiZy (28¢)
Py = (Isxe — KeHy)Pyjp_1 (28d)
Therefore, we have
80k = EAKiZy, (29a)
Abyp = E2KiZy, (29b)

where E1 = [ngg 03><3] and E1 = [03><3 I3><3}.

D. Update of The Primal System

After obtaining the prediction and update of the error state system
respectively given in (24) and (28), the next is to derive the update
step of the primal system (i.e. attitude and gyro bias). Again, recalling
the definition in (16), we have

Ry = Ryje_10Ry (30a)
by, = byx_1 + Aby (30b)
which leads to the estimate respectively shown as below

ﬁk|k = ﬁk\k—lfsﬁkw (31a)

by = brjr—1 + Aby (31b)

Substituting (29) into the above equation yields

Ryjr = Rt exp (E1KiZ) %) (32a)

by = brjr—1 + E2KiZy (32b)

E. The multiplicative EKF Algorithm on SO(3)

Finally, the complete multiplicative extended Kalman filter on
SO(3) can be summarized in Algorithm. 1.

Algorithm 1 Multiplicative EKF algorithm on SO(3)
Initialization: Ro_; = E[Ro]; bo_1 = bo; Poj_1 = Po
1: fork=0,1, 2, .. ,Ndo
2 Update:
3 Zy = (1og (R{‘k,lRmk))
4: Sk = HkPk‘k,1H£ + R
5: Ky =Py HfS; "
6
7
8

\%

Rije = Rigjr—1 exp (E1KiZr)x )
by = brjr—1 + E2KpZy
: Py = (Tsxe — KeHy)Ppjp—1
9:  Predict:

10: @k“ﬂ = Wiy, — bk\k

11: Bk+1|k :Bk\k exp ((‘:’Hk)xAt)
12: bii1jx = bijk

13: Piie = FkPk\ka + B, 9yBL
14: end for
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Fig. 2. Bode diagram of notch filters with wo = 10H 2, o = 1.0 and different
values of B, the sampling frequency is 50H z (i.e. At = 0.02 sec)

IV. AUGMENTED MEKF WITH THE NOTCH FILTER

As mentioned in the introduction, the translational vibration
considerably contaminates the accelerometer measurement, usually
leading to poor attitude estimation based on the multiplicative EKF
algorithm presented previously. Since the frequency range of such
noise is narrow, we apply a notch filter to attenuate the vibration
noise. The transfer function of a notch filter in discrete time domain
is represented as

22 — 2« cos(woAt)z + o?
22 — 28 cos(woAt)z + B2

where z is the Z-transform variable, At is the sampling time as
before, wp is the dominant noise frequency, o and [ are damping
ratio-like parameters that are used to tune the depth and width of the
notch filter. In practice, we usually set o« = 1 for large attenuation
at the notch frequency wo and use S to tune the width of the notch.
Fig. 2 shows the Bode plot of notch filters with wg = 10Hz, o =1
and different values of (. It is seen that a smaller S8 results in a
wider attenuation around the notch frequency but with the drawback
of amplifying noise at high frequenc;/ range. When 8 = 0.7, notch
filter achieves around 150dB (i.e. 10~ %) attenuation at the frequency
wo without considerably amplifying noise in other frequencies.

The employed notch filter can be explicitly represented by a linear
state space model, known as state space realization [28]

Gy(z) = (33)

xp, = Axyp,_, +B (amk71 - ack—l)

(34)
an = fok +D (amk - ack)

where x; is the state of the notch filter, an,, — ac, is the ac-
celerometer raw measurements compensated by translational accel-
eration, and ay, is the filtered accelerometer readings, which will
be fed into the MEKF for attitude and bias estimation. Assume
M notch filters are used for each channel to achieve the required
level of noise attenuation, the filter for each channel is order of
N = 2M , and A = diag(A; Ay A3) € R¥V*3N.B —
diag(B1 B2 B3) € R*V*3: C = diag(C1 C2 C3) € R***N and
D = diag(D; D2 D3) € R**3, The group of A;, B;, C; and D; is
the state space representation of (33) for each channel. When only one
notch filter is used for the channel, one possible group of A;, B;, C;
and D; are as follows (i.e. the controllable canonical realization [28]).

0 1 0
Ai = -p% 28 cos(woAt)] » Bi= {1] (35
C; = [oﬁ —-B% 2(8—-q) cos(woAt)] , Di=1 (35b)

Shown in Fig. 2, due to the large attenuation around the notch
frequency wo, which is the dominant frequency components of the
narrow-band noise, the filtered accelerometer measurements will be
susceptible to no such vibration noise. However, Fig. 2 shows that the



added notch filter introduces significant phase lag to the input signal,
which in turn potentially leads to overshoot or even divergence in
attitude control.

To eliminate the delay, we regard the added notch filter as a part of
the original system and form an augmented system model. We then
explicitly incorporate the notch filter dynamics in the state observer.
In the case of linear system, the augmented system will remain
observable and the resulting Kalman filter will therefore converge
to ground truth state [28]. Furthermore, due to the large attenuation
of the notch filter, the narrow-band vibration noise shows no effect on
the filter output and can be removed from the accelerometer model
in (13b). As a result, the augmented system can be written as

Rk = Rk—l exp ((wk71)><At) (36a)
Wk-1 = Wmy,_; — br—1 — 1Ny,

by =br_1 + l’lwkilAt (36b)

xp, = Axp_, +B(am,_, —ac,_,) (36¢)

Amy_; = —8k-1 + Acy_q + Ng,

To linearize the augmented system similar to the standard EKF case,
we predict the augmented states based on all the outputs up to k — 1
by the following system

R e ARy ., —BRI_j,_ie5; 7>k (37)

The prediction of attitude and gyro bias is identical to (17).

Following the standard EKF case, we define the error filter state
Axy as the deviation between the predicted filter state X frip_y and
its true value xy,_

Axy =xp — §f7|k:—1 (38)
Substituting (36¢), (37) and (16) into (38), one can obtain
AXf7 = AAXf771 - B (ﬁf_”k_leg) 507—_1
X
+Bn.._, 39

Therefore, the augmented system represented by its error state can
be written as

50 [exp (—(@r—1k—1)xAt)  —I3x3At O3x3n
Ab, | = O3x3 I3xs 03x3N
AXf_r -B (RZ—1\1€—193) 03N><3 A
~ / L X
X(7) F._,
00,1 —I3x3At  Osx3  Osxs| D _,;
Ab,;_1 | +| Osxs Isx3At  O3x3| |Dw,_, (40)
Axy, | O3nx3  Osnxs B Ng, _,
—_————
X, 1 Buw Wr_1
where W(7 — 1) ~ N(0, Q(1 — 1)), and 7 > k.
Implied by (38), we have Ax,:kil‘kil Xfp_1)h1
Xfp_1jh—1 — O3nx1 and Xk—l“g—l = O(sn+6)x1. Similar to the

standard EKF case, we assume the attitude measurement is at the
same rate of gyro and would be only required to propagate for one
step forward:

Xioo1 = Fro1Xp 151 = O@an46)x1
= = = =T = — =T
Prr—1 =Fr1Pr_qjp1Fr1 + By Qr_1B,,

(41a)
(41b)

Next, the measurements of the augmented system are the filtered
accelerometer signal and the yaw measurement, i.e,

(42a)
(42b)

af, = fok +D (amk - ack)
Yy, = Y + Ny,

The output of the augmented system is then defined as

7, = Afy T Afpp—1 >k

- mek _wklkfl ’ -

where ay and 12 are respectively the predicted filter output and the
predicted yaw angle, i.e.,

(43)

as,,_, = Oy, — DRjji_res (44a)
e
~ ei Ryjx_1e
Yr|k—1 = — arctan W (44b)
el Ryjp_1€2
Substituting (42) and (44) into (43) produces
5 00
zk = -D (Rz‘lkileS) X OSXS C Abkk
Hy, 01x3 Oix3n] |Axy,
Y N——
Hy X}
D 03><1:| |:nak:|
+ 45
{o 1 [|n,| @
——— A —
D, Vi
where Vi, ~ N(0, Ry) and
_ | P23T12—T13722 T11T22—T21712
Hy = [ 1t 0 12752 ] (46)

735 is the i-th row j-th column element of matrix Ryx—1.

Similar to the standard multiplicative EKF case, recalling (41) and
following the standard Kalman filter procedure, we obtain the update
of the augmented error state system

Sk = ﬁkﬁkM—lﬁf +D,RiD, (47a)

— — T
Ki = Pgjr—1Hy Sy (47b)
Xk = KiZg (47¢)
Piir = Ianteyx@ante) — KeHe)Prjr—1 (47d)

Therefore, we have

Aby, = BoKiZy, (48b)
Aifk\k = Egikzk (48C)
where E1 = [Isx3 O3x3 O3x3sn], E2 = [03x3 Isxs Osxan] and

Es; = [03nvx3 Osnxs Isnxsn].
Finally, the complete multiplicative extended Kalman filter with a
notch filter can be summarized in Algorithm. 2.

V. ADAPTIVE NOISE FREQUENCY ESTIMATION

As the dominant noise frequency usually drifts over time or over
the environment, it is necessary to identify the noise frequency in real
time and tune the notch frequency accordingly. We adopt the adaptive
frequency estimation (AFE) scheme proposed by Jia in [23]. Assume
the noise dominant frequency is wo, then the vibration noise d can
be written as

di, = Asin(wokAt + @) (49)

where A, ¢ are respectively the amplitude and phase of the dominant
noise.

Using the parameterization in (49), we can prove that the following
relation holds

dy —ndi—1 +dp—2=0 (50)

where 7 = 2 cos(woAt). The residual error for a candidate 7 is then
defined as

ex(n) = dp — (ndr—1 — dr—2) (51)



Algorithm 2 Agumented MEKF algorithm with Notch Filter

Algorithm 3 Adaptive frequency estimator

Initialization: 1?{0‘,1 = E[Ry]; Bo|71 = byg; §f0‘71 =
Xfo; Poj—1 =Po

1: fork=0,1, 2,..., ndo
2: Notch Filter
3: Filter output:
4: as, = Cxys, + D (am, —ac,)
5 State update:
6: Xfrp1 = Axpy + B(am, —ac,)
7: Extended Kalman Filter
8: Update: R
9: Afpi1 = fok|k—1 _ADR£|k—1e3

: b [ ei Ryjp-1e2
10: Yg|k—1 = — arctan TRy 1e2 .
11: Zi = |: ayg, —ﬁfk‘k_l ’(,Dmk — wk|k—1 :|
12: Sy = ﬁkﬁku@qﬁz + ﬁvﬁkﬁv’r

= = —Te—1
13: Ifk = PEJ\“C*lHk‘ Sk -
14: Bk\k :,\R/k\k—l GPEJ (LELKka)x)
15: bk|k = bk\k—l + EiKLZE
16: gfmk, = ifk\k—l +E3K’€Z’€7 o
17: P = Isnvte)xan+6) — KeHi)Prjp—1
18: Predict: N
19: WOkl = Wmy, — by
20: Ryt1jk = Ry exp (@) x At)
21: bit1)x = bujk ~
22: Xfri1in :A.kalk 7BR£U€€3
= == =T = —= =T

23: Piiix = FiPyFy + By OBy,
24: end for

In [17], a Least Mean Square (LMS) is utilized to estimate 7 in
real time, i.e.,

dex(n)
877 Mk
=1k + Mdi—1k(Tk)

—~ —h
Ne+1 = Nk (52)

where A is the adaptation gain. The estimated 7,41 can be directly
used in (35) to construct the notch filter in real time, forming an
adaptive notch filter, and also in (40) and (45) to update the system
matrix (i.e. A, B, C and D) used in augmented MEKF.

One problem with the frequency estimation method in (52) is that,
it requires to know the vibration noise d, which is apparently not
measurable in the actual system. In this work, we estimate dominant
noise frequency (i.e. 1) from the reconstructed vibration noise signal.
Recalling the accelerometer model (13b), the actual vibration noise
can be rewritten as

dp = am, + gk — Ac;, — Ng, (53)

Accordingly, the reconstructed vibration noise can be obtained as
follows

(54a)
(54b)

~ ~7
8kk = Rynes
di = am, + 8rjx — acy

Furthermore, to mitigate the effect of measurement noise ng,
and noise frequency components other than the dominant noise,
a low-pass filter (or band-pass filter) is implemented to limit the
reconstructed vibration noise d; within a prescribed frequency range.
The resulting frequency estimation algorithm is summarized in Al-
gorithm. 3.

Putting all the notch filter, augmented EKF and the adaptive
frequency estimation together produces the completed algorithm,
whose structure is seen in Fig. 3. We should highlight that, there
are two places where the notch filter is used: one is the notch filter

Initialization: \ = X\, 7, = 7,
1: for k=2,3,..,n do
2 ék = am,, +gk\k — ag,
3 dy, = LPF[dk]
4 er =dyg, +dyp,_, — ?]kdfkfl
50 My =0y + Ay, e
6: end for

structure (in state space form together with other state such as attitude
and gyro bias) within the augmented MEKF and the other one is
notch filter external to the augmented MEKF and is used to filter the
accelerometer measurements.

VI. APPLICATION AND EXPERIMENTS

To verity the proposed attitude estimation algorithms, experiments
are carried out on a three-axis gimbal system shown in Fig.4. The
gimbal system is mounted on a host quadrotor UAV for imaging
stabilization. The gimbal comprises an endpoint camera, whose
attitude is to be estimated and controlled, and three joints that are
actuated by three direct drive motors and can respectively rotate along
the yaw, roll and pitch axis. A MEMS IMU (MPU6000) containing
a 3-axis gyro and a 3-axis accelerometer is soldered on the camera
electronics rigidly to provide measurements of camera angular rate,
pitch and roll angles. The yaw measurement is computed from the
host vehicle attitude and the gimbal forward kinematics [2].

We inspect the performance of the different types of attitude
estimation algorithms on the gimbal system in the presence of narrow-
band noise. In parallel to the attitude estimation algorithm, the
gimbal system also runs an active attitude controller that tracks a
commanded attitude in real time, using the attitude estimate of the
estimation algorithms under investigation. The estimation algorithm
has its attitude propagation step (i.e. Line 11 - Line 13 in Algorithm.
1 or Line 20 - Line 22 in Algorithm. 2) running at a rate of 2000H z,
which is also the rate of the attitude feedback controller, and its
update step (i.e. Line 4 - Line 9 in Algorithm. 1 or Line 10 -
Line 18 in Algorithm. 2) running at 50H z, which is the sampling
rate of the accelerometer and yaw measurements. The notch filter
(i.e. Line 5 and Line 7 in Algorithm. 2) and adaptive frequency
estimator (i.e. Algorithm. 3) also run at 50Hz if present. All
algorithms are implemented on a low-end microcontroller equivalent
to STM32F30x with a main frequency of 72M hz. In the experiments,
we intentionally add a sinusoidal signal with the proper frequency and
amplitude to the accelerometer measurements, to emulate the narrow-
band vibration noise as shown in Fig. 1. For the sake of simplicity and
the computational limitation, we consider the narrow-band noise in
only one channel (i.e. channel X of the accelerometer measurements
which corresponds to the pitch direction of the camera attitude), so
only channel X of the accelerometer measurements are contaminated
by the synthesized narrow-band noise.

We conduct four experiments, incrementally validating each com-
ponent of the proposed attitude estimation algorithm. They are
respectively described as follows.

o Experiment 1: An ordinary MEKF (i.e. Algorithm. 1) without
any augmentation nor notch filter, is implemented to estimate
the attitude. The synthesized narrow-band noise is a sinusoidal
signal with frequency 2.5H z and amplitude of 1g.

o Experiment 2: An ordinary MEKF (i.e. Algorithm. 1) without
any augmentation is implemented to estimate the attitude, but a
notch filter external to MEKF is used to filter the accelerometer
measurements. The synthesized narrow-band noise is the same
as that of Experiment I and accordingly, the notch filter has its
parameters as wo = 2.5Hz,a = 1,8 = 0.7, At = 0.02 (see
(33)).

o Experiment 3: An augmented MEKF with notch filter augmenta-
tion (i.e. Algorithm. 2) is implemented to estimate the attitude,
and the notch filter external to MEKF is also used to filter the
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accelerometer measurements. The narrow-band noise and notch
filter parameters are identical to those of Experiment 2.

o Experiment 4: An augmented MEKF with notch filter aug-
mentation (i.e. Algorithm. 2) is implemented to estimate the
attitude, the notch filter external to MEKF is used to filter
the accelerometer measurements, and the adaptive frequency
estimator (i.e. Algorithm. 3) is employed to estimate the noise
dominant frequency (the full version of Fig. 3). Different from
the first three experiments where the synthesized narrow-band (b
noise has a constant frequency and amplitude, we intentionally [_

o

|
__Ww}ﬁu_d\@m.. R

Estimation Error (deg)
N
o

IS
S

/

]
400 450

&
3

50 100 150 200 250 300
Time (sec)

Roll
Pitch
Yaw

N
S

change the noise dominant frequency to different values (in the
range of 2 ~ 4Hz) every a few minutes. To account for the
unknown and time-varying nature of the noise dominant fre-
quency, the adaptive frequency estimator is applied. It runs at the
same frequency of the augmented MEKF and the external notch
filter (i.e. 50 H z), and produces the estimate of noise dominant
frequency in real time. The estimated dominant frequency &o
(instead of the ground truth wy) is then used in (35) to construct
the external notch filter in real time and also to update the A0 W0 7e0 200 20 300 350 400 4o
system matrix of augmented MEKF (i.e. (40) and (45)). The Time (sec)

adaptation gain A in (52) is set to 0.005. ©
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Again, we should mention that in all the four experiments, the
synthesized narrow-band noise is only added to the X channel
of accelerometer measurements (so the augmented MEKF, external

Fig. 5. Experiment 1: ordinary MEKF without notch filter nor augmentation.
(a) Measurement residual. (b) Estimation error. (¢c) Command trajectory.
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Fig. 6. Experiment 2: ordinary MEKF with notch filter but no augmentation.
(a) Measurement residual. (b) Estimation error.

notch filter and adaptive frequency estimator are only implemented in
that channel while ordinary MEKF is used for the other two channels)
and the gimbal system runs an active controller that constantly tracks
the commanded attitude using attitude estimate produced by the
attitude estimation algorithm under investigation. The commanded
attitude used in the four experiments are a pitch command from zero
to —90° every several ten seconds to trigger the attitude estimation
error (if any). Since the attitude commands are specified by human
operator via a remote controller, they are not ensured exact the
same throughout all the four experiments. An example of the attitude
command is shown in Fig. 5(c).

To evaluate the effectiveness of the different attitude estimation
algorithms used in the four experiments, we use two performance
metrics: 1) the measurement residual (i.e. the vector Zj in Algo-
rithm. 1 or Z; in Algorithm. 2) which indicates the deviation
between the a-priori estimate of the observer output and their actual
measurement. When the vibration noise is completely compensated,
the measurement noise will be white and the measurement residual
will be mean zero according to the Kalman filter theory. Note that we
project the four-dimension Zj, in Algorithm. 2 to three Euler angles
for intuitive comparison. 2) the error between the a-posteriori attitude
estimate Ry, and the ground truth attitude, which can approximately
computed by the gimbal forward kinematics. This error is referred as
“estimation error” in the following discussion. To provide an accurate
attitude measurement for evaluating the algorithms in this paper, the
gimbal forward kinematic parameters are calibrated by the method
in [2].

Fig. 5 shows the results of the first experiment (i.e. ordinary MEKF
without notch filter nor augmentation). We can see that when the
camera moves to —90°, the MEKF diverges and the measurement
residual are oscillatory at the noise dominant frequency due to the
unmodelled narrow-band noise.

Fig. 6 illustrates results of the second experiment (i.e. ordinary
MEKEF with notch filter but no augmentation). Compared to the first
experiment, measurement residual in Fig. 6(a) and estimation error in
Fig. 6(b) suffer from no such sinusoidal noise since the external notch
filter effectively attenuates the narrow-band noise in the accelerometer
X-axis. The notch filter, however, introduces considerable time delay
and causes a transient measurement residual (i.e. Fig. 6(a)) around
5° on pitch direction every time the camera pitch moves from zero
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Fig. 7. Experiment 3: augmented MEKF with know notch filter and in the
presence of narrow-band noise with known dominant noise. (a) Measurement
residual. (b) Estimation error.

to —90° or back forth. Similarly, the pitch estimation error (i.e.
Fig. 6(b)) has a transient response around 4° before convergence.
Indeed, an overshoot and a nuisance transient response over 40 secs
is clearly observed from the video captured by the camera. Because
no filters are implemented on the other two accelerometer channel
(i.e. Y and Z channel) and yaw measurement, there are no such
transient response in roll and yaw measurement residual, as well as
their estimation error.

Results of the third experiment (i.e. augmented MEKF with known
notch filter) are shown in Fig. 7. In Fig. 7(a), it is seen that the
measurement residual of all three angles are almost identical even
though the accelerometer measurement in X channel is filtered by
a notch filter. The smooth and zero-mean measurement residual
suggests that the augmented EKF converges fast throughout the
camera movement and also effectively compensates the delay induced
by the notch filter. Due to the residual kinematics calibration error
[2], static estimation error of about 0.5° can be seen on roll and
pitch, as shown in Fig. 7(b). The estimation error is indeed zero-
mean with negligible transient response, because of the zero-mean
measurement residual. As a result, the attitude response exhibits no
nuisance overshoot in the captured video.

Finally, results of the fourth (i.e. augmented MEKF with adaptive
notch filter) are presented in Fig. 8. It is seen in Fig. 8(c) that the
estimated frequency quickly (i.e. within 0.5 sec) converges to the
ground truth value. Furthermore, the measurement residual, shown in
Fig. 8(a), is nearly zero mean, similar to that in the third experiment.
Although in this case the pitch measurement residual is slightly more
noisy than that of the third experiment due to the noisy frequency
estimation, the estimated attitude shown in Fig. 8(b), is almost the
same as the third experiment, suffering from no narrow-band noise
nor overshoot.

Table. I summarizes the results of the four variants of MEKF. In
this table, we inspect their maximum estimation error, average con-
vergence time and whether they oscillate or diverge. The convergence
time is the period from the time when the pitch command is received
by the gimbal to the time when the attitude correction (i.e. §0y) is
less than 0.01°. Note that this convergence time takes into account
the delay of both estimation and control. From this table, we can see
that the baseline MEKF does not even converge. With an external



Observers Maximum Estimation Error ~ Average Convergence Time  Oscillation  Divergence
(deg) (sec)

Ordinary MEKF without notch filter nor augmentation 53.88 N/A Y Y

Ordinary MEKF with notch filter but no augmentation 4.16 49.65 N N

Augmented MEKF with known notch filter 0.92 2.13 N N

Augmented MEKF with adaptive notch filter 1.1 2.67 N N
TABLE I
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Fig. 8. Experiment 4: augmented MEKF with adaptive notch filter and in
the presence of narrow-band noise with time-varying dominant noise. (a)
Measurement residual. (b) Estimation error. (c) Estimated noise frequency
versus the ground truth value.

notch filter, the MEKF converges but has a very long (i.e. near 50
seconds) transient response and a significant overshoot. In contrast,
our proposed augmented MEKF can effectively estimate the gimbal
attitude with negligible overshoot and very small convergence time
(i.e. less than 3 seconds), even with time-varying dominant frequency
in the noise.

VII. CONCLUSION AND FUTURE WORK

In this paper, we posed the problem of the IMU-based attitude
estimation in the presence of narrow-band noise, a common problem
in gimbal system due to the complicated aerodynamic effects of the
robot and hostile environments where they operate. An augmented
MEKEF algorithm, based on multiplicative EKF framework, with
a notch filter whose notch frequency is adaptively estimated, was
proposed and derived on SO(3). The proposed algorithm with one

channel augmentation is implemented and verified on a three-axis
gimbal system. The main advantage of the proposed scheme is that
it effectively attenuates narrow-band noise with unknown and time-
varying dominant frequency while inducing negligible delay in the
attitude estimate. Future work should concentrate on development
of computationally efficient algorithms and platforms with more
computation power to compensate vibration noises for all three
channels and with multiple narrow bands, and to form a complete
and practical solution for field use.
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