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ABSTRACT Here, we report the draft genome sequence of Chlorobium phaeofer-
rooxidans, a photoferrotrophic member of the genus Chlorobium in the phylum Chlo-
robi. This genome sequence provides insight into the metabolic capacity that under-
pins photoferrotrophy within low-light-adapted pelagic Chlorobi.

Members of the bacterial phylum Chlorobi are best known for growth through
anoxygenic photosynthesis, oxidizing reduced sulfur to replace electrons lost

from the photosystem during fixation of CO2 into biomass (1). One previously cultured
Chlorobi member, Chlorobium ferrooxidans strain KoFox, however, grows by oxidizing
ferrous iron [Fe(II)] instead of reduced sulfur (2). Over long stretches of Earth’s history
during the Precambrian eons, the oceans were anoxic and Fe(II) rich (ferruginous) (3),
making photoferrotrophy the most likely mode of primary production (4, 5). Photofer-
rotrophs are also implicated in the deposition of the world’s largest iron ore deposits,
banded iron formations (BIFs), which deposited from ferruginous oceans (6, 7). C. fer-
rooxidans strain KoFox and all other photoferrotrophs in previous culture collections
were isolated from benthic habitats, making them imperfect analogues of the pelagic
photoferrotrophs that likely deposited BIFs and supported early Earth primary produc-
tion. Chlorobium phaeoferrooxidans was isolated from the water column of a ferrugi-
nous subbasin of Lake Kivu (East Africa), bringing the first known pelagic photoferro-
troph into culture (8).

The 16S rRNA gene of C. phaeoferrooxidans is 99% similar to that of C. ferrooxidans
strain KoFox (8), but the two organisms have distinct physiological characteristics (8).
C. phaeoferrooxidans grows in axenia, whereas KoFox grows in coculture with Geospi-
rillum sp. strain KoFum. C. phaeoferrooxidans is adapted to low light, using bacterio-
chlorophyll (BChl) e as its light-harnessing pigment, rather than the BChl c used in
KoFox. The genome of C. phaeoferrooxidans was sequenced to determine the metabolic
capacity of pelagic photoferrotrophic organisms and inform models for photoferrotro-
phy during the Precambrian eons.

C. phaeoferrooxidans was grown and its DNA extracted and purified as previously
described (8, 9). Genomic DNA was subjected to Illumina paired-end library construc-
tion and sequenced (MiSeq platform, version 3 chemistry) to generate 16,133,652
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paired 250-nucleotide (nt) reads. Quality-filtered reads were assembled into 116 con-
tigs, with an N50 of 44,807 bp, using ABySS 1.3.5 (10), with default settings. The genome
was screened for contaminants based on coverage, G�C composition (49.72%), and
conserved single-copy genes. Open reading frame (ORF) prediction and annotation
were conducted using MetaPathways (11).

The draft genome is 2.573 Mb, with 2,403 predicted ORFs, one 16S rRNA gene, 51
tRNA genes, and two clustered regularly interspaced short palindromic repeat (CRISPR)
arrays. It is 99.45% complete based on 272 conserved single-copy genes (12) and only
71% identical to strain KoFox at the nucleotide level. This genome-level diversity is the
basis for defining the two organisms as different species. The C. phaeoferrooxidans
genome encodes an assimilatory sulfur metabolism but not the canonical oxidative
sulfur metabolisms found in most other Chlorobi. C. phaeoferrooxidans has the genomic
capacity to fix carbon using the reverse tricarboxylic acid (TCA) cycle, key genes for the
type 1 photosynthetic reaction center, and the Fenna-Matthews-Olson complex char-
acteristic of the Chlorobi (13). The genome also encodes an outer membrane cyto-
chrome (cyc2PV-1) implicated in Fe(II) oxidation in the microaeorphillic Fe(II)-oxidizing
zetaproteobacterium Mariprofundus ferrooxidans strain PV1 (14). These data expand the
metabolic blueprint for photoferrotrophy in the Chlorobi and provide an opportunity to
define the physiological basis for BIF deposition and primary production in the Pre-
cambrian oceans.

Accession number(s). This whole-genome shotgun project has been deposited in

GenBank under the accession no. MPJE00000000. The version described in this paper
is the first version.
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