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This paper proposes a novel stochastic mathematical framework to investigate the connectivity of road 

networks impacted by earthquakes. The concepts of “global connectivity” and “local connectivity” are 

defined and evaluated using percolation theory. Specifically, global connectivity measures the extent 

to which the whole network is connected, and local connectivity measures the distances between each 

node to its neighbors. Furthermore, the concept of efficiency is employed to integrate local connectivity. 

A new percolation process integrating the traditional localized attack and random failure is proposed, 

which sheds light on the application of percolation theory to practical networks when facing disruptions. 
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1 Introduction 

 The human and financial toll of natural disasters have dramatically increased in recent decades. 

According to Statista (statista.com 2016), ten largest natural disasters in the history each caused more 

than 26,200 fatalities and 28 billion U.S. dollars of economic damage. The earthquake and tsunami in 

Japan in March 2011 resulted in economic losses of more than 210 billion U.S. dollars, and the 

earthquake and tsunami in Thailand in December 2004 killed more than 220,000 people. In 2014, China, 

India, and the United States were the three regions that were hit the hardest by natural disasters, and 

each country suffered economic losses of more than 16 billion U.S. dollars.  

 The connectivity of post-disaster road networks are very important since they act as lifelines that 

provide access to affected areas, and support evacuation, emergency response, and long-term recovery 

operations after a disaster (Altay and Green, 2006). Connectivity also frequently acts as the basis of the 

assessment of vulnerability, robustness, and resilience (Reggiani et al., 2015, Hong et al., 2017, Yan et 

al., 2017, Zhou et al., 2017, Wang et al., 2017, and Zhou and Wang, 2018, Zhou et al., 2018). Natural 

disasters, such as earthquakes or floods, may break or block some components of road networks. If 

some roads and intersections, represented by links and nodes respectively, are disrupted in a network, 

the connectivity of the network will change. The disruption of links may break the shortest paths 

between node pairs and increase the traveling distance between them. The failure of one node results 

into the disruption of all the links connected to it. Furthermore, if a disaster is very severe and many 

nodes and/or links are disrupted, the original network could be degraded into isolated subnetworks, and 

there will be no paths connecting some node pairs.  

The concept of connectivity is widely studied in air transport networks and public transit networks. 

Airport networks are usually modelled as complex networks, and connectivity measures the degree to 

which an airport is connected to the other airports. The connectivity of public transit systems focuses 

on the quality of transferring services, especially the time spent on transferring between different 

transportation modes and accessibility of services. However, the studies on the connectivity of road 

road networks are very limited. To our knowledge, the connectivity of road networks impacted by 

disasters have not been systematically studied using analytical methods in the literature.  
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In this paper, we propose an analytical method to study the connectivity of earthquake-impacted 

road networks. The concepts of “global connectivity” and “local connectivity” are defined and 

evaluated using percolation theory. Specifically, global connectivity measures the extent to which the 

whole network is connected, and local connectivity measures the distances between each node to the 

others. Furthermore, the concept of efficiency is employed to integrate local connectivity. A unified 

model is proposed to capture the feature of earthquake-impacted road networks that the probability of 

component disruption varies with its distance to the epicenter.  

 The contributions of this study are twofold: (a) the concepts of global connectivity and local 

connectivity are defined and evaluated using percolation theory, especially the concept of efficiency is 

employed to integrate local connectivity, and (b) a unified model is proposed for modelling post-

earthquake road networks. 

 The remainder of this paper is outlined as follows. Section 2 presents a review of the related 

literature. In Section 3, the concepts used in this paper are introduced. In Section 4, the mathematical 

framework used to study the global connectivity and local connectivity of road networks impacted by 

different magnitudes of earthquakes is proposed. Then, the proposed methodological framework is 

applied to a real-world transportation network for validation in Section 5, which is followed by 

conclusions in the last section. 

2 Literature review 

This paper focuses on the connectivity of post-earthquake road networks. The literature is divided 

into two parts: (1) connectivity of other transportation networks, including air transport networks, public 

transit networks, and logistic networks, and (2) connectivity of road networks, especially post-disaster 

road networks. 

2.1 Connectivity of other transportation networks 

 Air transport networks. In air transport networks, connectivity measures the degree to which an 

airport is connected to the other airports. Airport networks are usually modelled as complex networks, 
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and the metrics used to assess the connectivity of air transport networks include node degree, weighted 

node degree, shortest path length, quickest path length, and so on. Burghouwt and Redondi (2013) 

reviewed the connectivity measures for air transport networks used in the literature by then. Wei et al. 

(2014a) and Wei et al. (2014b) used algebraic connectivity to study the problems of route 

deletion/addition and weight assignment in air transport networks. Algebraic connectivity is defined as 

the second smallest Laplacian eigenvalue of a graph. Allroggen et al. (2015) proposed the Global 

Connectivity Index (GCI) to measure the quality and quantity of all available connections. Zhang et al. 

(2017) used the NetScan model to assess connectivity which considers both direct and indirect 

connections and travel time. The NetSacn model first assigns a quality index to each flight according 

to relative travel time and then brings these indexes together into one single connectivity index of each 

airport. Boonekamp and Burghouwt (2017) used the NetCargo model, which is based on NetScan model, 

to measure the connectivity of air freight networks at the regional level. Zhu et al. (2018) proposed a 

dynamic weighted model based on the NetScan model to quantify the quality of connections with 

consideration of flight capacity, in addition to flight time. 

 Public transit networks. The connectivity of public transit systems focuses on the quality of 

transferring services, especially the time spent on transferring between different transportation modes, 

and accessibility of services. Ceder et al. (2009) proposed a transit connectivity measure using eight 

quantitative attributes, such as average walking time, and three qualitative attributes, such as 

smoothness-of-transfer. Hadas and Ceder (2010) studied the connectivity reliability and comfort of 

transfers in multi-legged trips. Three different types of transfer were analyzed: nonadjacent transfer, 

adjacent transfer, and shared transfer. Hadas and Ranjitkar (2012) developed a model to measure the 

transit-network connectivity based on value of time and quality of transfer, and further used it to identify 

the inefficiencies in the public transit system. Hadas (2013) presented a method to extract, store, and 

analyze the public transit data and analyze the connectivity of the public transport using five different 

indicators. Mishra et al. (2012) proposed measures for determining the connectivity in different levels: 

node and line, transfer center, and region, for the purpose of prioritizing the allocation of funding to 

improve connectivity. Welch and Mishra (2013) proposed a method to assess transit equity using a 

quantity of attributes, including frequency, speed, capacity, and built environment. Mishara et al. (2015) 
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presented a graph theoretic method to assess transit connectivity at different levels and provided a 

platform for visualization. Zimmerman et al. (2015) studied the connectivity of rail and bus systems as 

alternative transportation modes when facing extreme events. Cheng and Chen (2015) developed an 

integrated conceptual measurement approach with Rasch model to find the perceived difficulties for 

public transportation users, and also investigated the relations among accessibility, mobility, and 

connectivity. Lowry et al. (2016) focused on prioritizing bicycle improvement projects to increase the 

connectivity between homes and important destinations, such as banks and restaurants. Psaltoglou and 

Calle (2018) proposed an enhanced connectivity index with consideration of the interaction between 

transportation networks and the urban environment, and further used it to detect critical nodes. 

 Logistic networks. Studies in logistic networks mainly focus on port connectivity. Jiang et al. 

(2015) proposed a minimum transportation time model and a maximum transportation capacity model 

to measure port connectivity and investigate its impact on the global container shipping network. Wang 

et al. (2016) developed an integrated port connectivity index, consisting of three layers, including 

international connectivity, inner bay connectivity, and hinterland connectivity. A thorough overview of 

port connectivity is also provided in that study. 

2.2 Connectivity of post-disaster road networks 

 A related concept to connectivity that has been well studied in road networks is connectivity 

reliability. Connectivity reliability refers to the probability that the network nodes remain connected 

(Wakabayashi and Iida, 1992 and Iida, 1999). For a specific origin-destination pair, it represents the 

probability that there exists at least one path with available capacity between them. The connectivity 

reliability of a network entirely depends on the connectivity reliability of the links, and quantity of 

research has focused on calculating network reliability based on component reliability using different 

methods, such as statistical methods, simulation, and complex network theory (Muriel-Villegas et al., 

2016, Hosseini and Wadbro, 2016). The concept of connectivity reliability is widely used in 

transportation planning and operations to involve the uncertainties in road connectivity (Peeta et al., 

2010, Chu and Chen, 2015, and Wang et al., 2018). Chen et al. (1999) also expended the concept into 
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capacity reliability to consider partial disruption of road links. 

 There are some studies on road networks which consider network connectivity as constraint in 

their model. Kasaei and Salman (2016) studied the arc routing problems for clearing blocked roads to 

restore network connection with two different objectives: to minimize the time and to maximize the 

benefit. Akbari and Salman (2017) provided a solution method to generate a schedule for the road 

clearing teams to restore network connectivity at post-disaster stage.  

 There are some metrics proposed in the literature to evaluate the connectivity of post-disaster road 

networks. Chang and Nojima (1995) employed three performance measures for the post-earthquake 

road network: total length of network open, total distance-based accessibility, and areal distance-based 

accessibility. Yang et al. (2018) defined network connectivity as the average connection state of any 

possible node pairs. Aydin et al. (2018) used the size of giant connected component to represent the 

connectivity of post-disaster networks. These connectivity metrics are applied to determined post-

disaster networks or evaluated with simulations for different scenarios.  

 In summary, there is no analytical approaches in the literature which can be used to study the 

change of connectivity of road networks impacted by different magnitudes of disasters. In this paper, 

we present a framework to study the connectivity of road networks when facing one specific type of 

disaster, i.e. earthquake. We will first propose two concepts for post-earthquake road networks: global 

connectivity and local connectivity, and then present the method to evaluate these two properties using 

percolation theory. In the next section, the concepts to be used in this study and some background 

information of percolation theory will be given. 

3 Percolation theory 

3.1 Concepts 

 In this paper, we propose two important concepts to describe the property of road networks 

impacted by earthquakes, i.e. global connectivity and local connectivity. These two properties are 

quantified by several metrics using percolation theory. Global connectivity is quantified by three metrics: 

threshold of the existence of giant subnetwork, the size of the giant subnetwork, and average sizes of 
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small subnetworks. Local connectivity is quantified by number of neighbors. Furthermore, the number 

of neighbors of different nodes are brought together into one single index for the whole network: 

efficiency. Next, we explain these metrics respectively.  

Percolation theory was founded by Broadbent and Hammersley (1957) to study random physical 

processes, such as the flow of liquid through a disordered porous medium. Quantities of interest include 

(1) the critical probabilities of bond/site occupation, or alternatively link/node removal, for the existence 

of an infinite open cluster, and the phenomena near the critical point, and (2) the size and structure of 

the open cluster given a fraction of links/nodes removed. Percolation in different lattices is well studied 

by physicists and pure mathematicians. One important contribution recently made by Newman et al. 

(2001) is employing generating function formalism to study the percolation on random networks with 

arbitrary node degree distribution. This technique greatly broadens the application of percolation theory 

to different practical complex networks, such as epidemic spreading on networks, Internet networks, 

and interdependent power and communication networks. Li et al. (2015) and Wang et al. (2015) studied 

the percolation in urban road networks. A disrupted link is identified as a congested/overloaded link, 

which is different from that in this work, where a disrupted link is physically broken by disasters. By 

now there is no application of percolation to road networks accounting for the features of disasters in 

road networks. 

 Theoretically, a pre-disaster road network should be well connected as one component, which 

means that from one node, users can reach any other node by following a set of links inside the network. 

Disasters may disrupt certain links/nodes in the network. If only small fraction of links were broken, 

the remaining links and nodes would remain connected. However, if a large fraction of links were 

broken, then these broken links may incur cascading failures, and the original network would be 

separated into many small subnetworks. Therefore, there should exist one critical point. In percolation 

theory, giant component is defined as “the mutually connected cluster spanning the entire network”1 

(page 1026, Buldyrev et al., 2010). If the network is disrupted, “the nodes belonging to the giant 

                                                        
1 Percolation theory was originally founded on infinite networks, where giant component refers to the infinite open cluster 
which spans the network from one side to the opposite side. Since practical networks are always finite, giant component is 
usually regarded as the cluster with size of order of the whole network (Cohen and Havlin, 2009). However, we can still use 
the method derived from infinite networks to find the critical point for the existence of giant component in finite networks. 
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component connecting a finite fraction of the network are still functional, while the remaining small 

clusters become non-functional” (page 1026, Buldyrev et al., 2010). Thus, the threshold of the existence 

of the giant component can be one of the metrics of global connectivity in the network. Giant component 

is a term used in general networks, here we apply the same idea to road networks. In order to 

differentiate this, we name the mutually connected clusters spanning the entire disaster-impacted road 

network as giant subnetwork.  

Given that there exists one giant subnetwork, the size of the giant subnetwork will vary with the 

magnitude of the disaster. We will want to know what fraction of nodes are included in it. For example, 

if 5% of links were disrupted, but all the nodes are still connected, then the disaster-impacted network 

can be viewed as unchanged from the perspective of general connectivity, because users can still reach 

any other node from any node inside the network. Similarly, if 10% of inks were disrupted, as a result, 

98% of nodes remain connected as one giant subnetwork, with only 2% isolated as small subnetworks, 

then the disaster-impacted network can be viewed as nearly unchanged (98%). However, if there is no 

giant subnetwork, we will look into these separated small subnetworks, and get the subnetwork sizes 

distribution, which reflects the impact of the disaster on the global connectivity of the road network. 

Note that even if there is one giant subnetwork, there may still exist some small subnetworks, which 

contains very small fraction of nodes. 

 Local connectivity is quantified by number of neighbors. The number of neighbors with different 

distances and their changes with the magnitude of disasters are respectively investigated. Using the 

example in last paragraph, if 5% of links are disrupted, and all the nodes are still connected, the global 

connectivity of the network can be viewed as unchanged, while the local connectivity is not. The 

disruption of the link between one pair of nodes will increase the travel distance and in turn travel time 

between them. Furthermore, the number of neighbors of different nodes are brought together into one 

single index for the whole network: efficiency. If global connectivity determines whether the nodes can 

be reached, then local connectivity measures how easily these nodes can be reached. 

3.2 Challenges 
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 There are some difficulties in using current percolation methods to study the road networks 

impacted by earthquakes. Currently, in the application of percolation to other networks, two types of 

disasters are modelled: random failures and localized attacks. In a random failure, each node/link has 

the same probability of been disrupted. In a localized attack, a node is firstly affected, then its neighbors, 

and then the neighbors of neighbors, and so on. Finally, all the nodes with less than certain distance 

from the root one are disrupted and those which are out of the scope survive. An example of localized 

attack is the spreading of epidemic disease in the population. However, neither of these two can 

accurately model earthquakes in road networks. In an earthquake-impacted road network, indeed there 

is an epicentre, around which the magnitude of disaster is high. The difference from traditional localized 

attack models is that not all the nodes around epicentre are disrupted, though with higher probability. 

Furthermore, for those nodes not around the epicentre, the probability of being damaged is rather low, 

but not zero. In short, traditional percolation methods assume that all the nodes/links have the same 

probability of being broken. However, in earthquake-impacted road networks, the probability of being 

broken for a road decreases with its distance from the epicentre.  

 Therefore, in this paper, we will first propose an integrated model to describe the percolation 

process on earthquake-impacted road networks, and then investigate the change of global and local 

connectivity under different magnitudes of earthquakes.  

4 Methodology 

 In this section, a mathematical framework is proposed to study the impact of earthquakes on the 

connectivity of road networks. To determine the impact of earthquakes on global connectivity, the 

percolation threshold and subnetwork sizes distribution are calculated. To study the impact of 

earthquakes on local connectivity, the number of neighbors with different distances and efficiency are 

calculated.  

4.1 Earthquake modelling in road networks 

 As discussed in section 3.2, to capture the feature of earthquake-impacted road networks, we 
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propose an integrated model which combines localized attacks and random failures. As shown in Figure 

1 (middle figure), the earthquake-impacted road network is divided into two parts, namely inner 

network and outer network. The impact of the earthquake on the inner network is modelled as a 

localized attack. In the inner network, node disruption is dominant and all the links connected to 

disrupted nodes are also disrupted. There could be some nodes or groups of nodes which are not 

disrupted themselves, while all the nodes/links surrounding them are disrupted. These nodes are also 

regarded as disrupted as they are isolated from the other parts. In the outer network, link disruption is 

dominant, and we assume that all the links have the same probability of being disrupted.   

 

Figure 1. (Colour online) The integrated model, which combines the traditional random failure 

and localized attack in road networks. Red nodes/links are broken. 

In percolation theory, generating function is used to characterize the node degree distribution of 

networks (Callaway et al., 2000, Newman et al., 2001, Buldyrev et al., 2010, Gao et al., 2012). We 

define 

 
!"($) = '(())$*

+

*,"
, (1) 

where (())  is the probability that a randomly chosen node has degree )  and $  is an arbitrary 

complex variable. In generating function formalism, the probabilities of different node degrees are 

treated as the coefficients of a power series. This greatly simplifies the calculation and expression of 

(()).  

 Given that there are 1 − 0 percentage of nodes contained in the inner network, which are attacked. 
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The process of a localized attack is divided into two stages (Shao et al., 2015): (i) remove all the nodes 

belonging to the attacked area (inner network in our model) but keep the links connecting the removed 

nodes to the remaining nodes; (ii) remove those links. After the first stage, the generating function for 

the remaining network is (Shao et al., 2009) 

 !1($) =
!"(2$)
!"(2)

, (2) 

where 2 = !"45(0). After the second stage, the generating function becomes (Shao et al., 2015): 

 !"
6($) = !1(1 − 07 + 07$) =

1
!"(2)

!" 92 +
!":(2)
!":(1)

($ − 1);, (3) 

where 07 = !":(2) !":(1)⁄ . 

 By now, we have obtained the generating function for the node degree distribution after the 

localized attack in the inner network, as in Equation (3). Next we consider the random failure in the 

outer network. Given that the probability of being disrupted for each link in the outer network is 1 − 2>, 

the generating function of the remaining network is (Appendix I) 

 !"
6,?@($) = !"

6(1 − 2> + 2>$) =
1

!"(2)
!" 92 +

!":(2)
!":(1)

2>($ − 1);. (4) 

Therefore, the generating function of the remaining network with 1 − 0 percentage of nodes 

removed in the inner network and 1 − 2>  percentage of links removed in the outer network is 

represented in Equation (4). By setting different values of 2>  and 0 , earthquakes of different 

magnitudes and different areas being affected can be modelled. Specifically, this integrated model 

degrades into a traditional random failure model when 0 = 1; a traditional localized attack model when 

2> = 1 (Figure 1). 

4.2 Global connectivity 

 The original road network represented by Equation (1) should be a mutually connected network 

with no parts being isolated. While it is not true for the remaining network at post-earthquake stage as 

represented in Equation (4). The remaining network may consist of a giant subnetwork and several 

small subnetworks or only small subnetworks. In this section, we calculate (1) the percolation threshold 
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for the existence of the giant subnetwork, (2) the size of the giant subnetwork, and (3) the sizes of the 

small subnetworks for the road networks impacted by different magnitudes of earthquakes. 

4.2.1 Percolation threshold 

 Let !5($) be the generating function for the number of outgoing links in the original network. 

Note that the number of outgoing links is averaged on randomly selected links, not randomly selected 

nodes. It holds 

 
!5($) =

∑ )(()) ∙ $*45+
*,"
∑ )(())+
*,"

= !":($)
!":(1)

. (5) 

It is proven that the percolation criterion for a network is that the average number of outgoing links 

equals 1 (Cohen et al., 2000), i.e. !5:(1) = 1.  

 Next, we apply this percolation criterion to the earthquake-impacted road network. Let !5
6,?@($) 

be the generating function for the number of outgoing links in the network impacted by the earthquake. 

We have 

 

!5
6,?@($) = !"

6,?@:($)
!"
6,?@:(1)

=
!": F2 +

!":(2)
!":(1)

2>($ − 1)G

!":(2)
. (6) 

With !5
6,?@:(1) = 1, we find the percolation threshold (2>, 0)∗ satisfies 

 2>!":: J!"45(0)K = !":(1). (7) 

4.2.2 Size of giant subnetwork 

 Let M"($) be the generating function for the subnetwork sizes distribution in the original network. 

According to Newman et al. (2001), it holds M"($) = $!"NM5($)O , where M5($)  satisfies the 

transcendental equation M5($) = $!5NM5($)O. The size of the giant subnetwork can be represented as 

1 − M"(1). In the original network, we have 1 − M"(1) = 1.  

 Next, we apply the calculation to the earthquake-impacted road network. Letting P6,?@ be the size 

of the giant subnetwork in the road network impacted by the earthquake, we have 



13 
 

 P6,?@ = 1 − M"
6,?@(1), (8) 

where 

 M"
6,?@($) = $!"

6,?@ JM5
6,?@($)K. (9) 

And M5
6,?@($) satisfies the transcendental equation 

 M5
6,?@($) = $!5

6,?@ JM5
6,?@($)K. (10) 

The equations can be numerically solved. 

4.2.3 Average size of small subnetworks 

 Although it is difficult to find a closed-form expression for the subnetwork sizes distribution as 

shown in the last subsection, the closed-form expressions for the average size of subnetworks, can be 

derived. Newman et al. (2001) studied the average component size of a pre-disaster network, 〈U〉, and 

found 

 
〈U〉 = 1

M"(1)
9!"NM5(1)O +

!":NM5(1)O!5NM5(1)O
1 − !5:NM5(1)O

;. (11) 

Similarly, the average size of small subnetworks in the road network impacted by the earthquake, 

〈U6,?@〉, is given by 

 
〈U6,?@〉 = 1

M"
6,?@(1)

W!"
6,?@ JM5

6,?@(1)K +
!"
6,?@: JM5

6,?@(1)K !5
6,?@ JM5

6,?@(1)K

1 − !5
6,?@: JM5

6,?@(1)K
X. (12) 

4.3 Local connectivity  

 Global connectivity measures the impact of earthquakes on the connection of the whole network, 

while it does not reflect the change of local connections between nodes. In other words, global 

connectivity only reflect whether nodes pairs are connected, but cannot answer how close they are 

connected. Assume that a small proportion of links are disrupted by the earthquake and the whole 

network still keeps connected, the global connectivity will remain unchanged. However, the disruption 

of links will absolutely increase the distances between certain node pairs. We use number of neighbors 
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with different distances as a metric to measure local connectivity. The average number of neighbors are 

calculated to give a more comprehensive assessment. Furthermore, to bring number of neighbors with 

different distances into a single index for the local connectivity of the whole network, we combine them 

and employed the concept of efficiency. 

4.3.1 Number of neighbors 

 In a road network, the first-nearest neighbors to one node are the nodes that are directly connected 

to it. Similarly, the second-nearest neighbors are those that can be reached by following at least two 

road links. The generating functions for the probability distribution of the first-nearest and the second-

nearest neighbors in a pre-disaster network are !"($) and !"(!5($)	). By extension, the generating 

function for rth-nearthest neighbors, !(Z)($), satisfies !(Z)($) = !(Z45)N!5($)O. And the average 

number of rth-nearest neighbors, [Z, satisfies [Z = !":(1)[!5:(1)]Z45 (Newman et al., 2001). 

 In the earthquake-impacted road networks, let !(Z)
6,?@($)  be the generating function for the 

distribution of rth-nearthest neighbors in the road network impacted by the earthquake, and [Z
6,?@  be 

the average number of rth-nearest neighbors in the road network impacted by the earthquake. We have 

 
!(Z)
6,?@($) = ^

!"
6,?@($), _ = 1,

!(Z45)
6,?@ J!5

6,?@($)K, _ ≥ 2., (13) 

and 

 [Z
6,?@ = a!5

6,?@:(1)b
Z45

!"
6,?@:(1). (14) 

4.3.2 Integrated local connectivity: efficiency 

 In section 4.3.1, we have calculated the distribution of number of neighbors and average number 

of neighbors with different distances. Next, we will bring them together into one single index for the 

local connectivity of the whole network. Let us first consider the number of neighbors with different 

distances of one specific node c in the pre-disaster network, and let de,Z represent the number 

of rth-nearthest neighbors of node c. We have 
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'dc,_
Zf

Z,5
= g − 1, (15) 

where g is the overall number of nodes in the network, and _h is the distance between node c and 

its farthest neighbour in the network. Obviously, the integer _h  can be determined by solving 

∑ dc,_Zf45
Z,5 ≤ g − 1 ≤ ∑ dc,_Zf

Z,5 . Here we have the fact that if node j is the rth-nearthest neighbor of 

node c, then the length of the shortest path between node c and j is _, if we neglect the different 

lengths of links. Next, we will regard the shortest path length between two nodes as the distance between 

them. Let ke be the sum of the distances between node c and all the other nodes in the network, then 

we have 

 
ke ='_ ∙ dc,_

Zf

Z,5
 (16) 

Then the sum of the distances between each node to all the other nodes in the network should be 

 
k ='ke

l

e,5
=''_ ∙ dc,_

Zf

Z,5

l

e,5
=''_ ∙ dc,_

l

e,5

Zm

Z,5
='_

Zm

Z,5
'dc,_
l

e,5
='_

Zm

Z,5
∙ [Z  (17) 

where _n is the largest distance between any possible node pairs in the network, and [Z  is the average 

number of rth-nearest neighbors in the original network as defined in section 4.3.1. _n  can be 

determined by solving ∑ [ZZm45
Z,5 ≤ g − 1 ≤ ∑ [ZZm

Z,5 . By now, we obtain a single index k to measure 

the local connectivity of the whole network. 

 Similarly as what we do to the above metrics, the total distance k can be calculated when the 

road network is impacted by different magnitudes of earthquakes, and the local connectivity can be 

assessed. However, there comes the problem when the whole network is divided into different parts. 

For the node pair that each of them belongs to different isolated subnetworks, the distance between 

them is infinite, and equations (15-17) do not work anymore. To overcome this problem, we replace _ 

with 1 _⁄  in equations (16-17) and denote the new metrics as oe and o. We have  

 
oe ='1

_ ∙ dc,_
Zf

Z,5
 (18) 

and 
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o ='oe

l

e,5
=''1

_ ∙ dc,_
Zf

Z,5

l

e,5
='1

_

Zm

Z,5
∙ [Z. (19) 

In the new metric, local connectivity is actually quantified by the sum of the inverse of the distances 

between node pairs. The proposed metric o is very similar to the metric called “efficiency” in complex 

networks, where the efficiency of a graph ! is defined as 5
l(l45)

∑ 5
pqrest∈v , and wet is the shortest 

path between node c and j. Therefore, we also call o as the efficiency of the pre-disaster road 

network. 

 The efficiency of a post-earthquake road network should be 

 

o6,?@ = ' oe
6,?@

l∙xy,z@

e,5
= ' 1

_

Zm
y,z@

Z,5
∙ [Z

6,?@ , (20) 

where P6,?@ is the size of the giant subnetwork in the road network impacted by the earthquake as 

defined in equation (8), [Z
6,?@  is the average number of rth-nearest neighbors in the road network 

impacted by the earthquake as defined in equation (14), and _n
6,?@  is the largest distance between any 

possible node pairs in the post-earthquake road network, which can be determined by solving 

∑ [Z
6,?@Zm

y,z@45
Z,5 ≤ g ∙ P6,?@ − 1 ≤ ∑ [Z

6,?@Zm
y,z@

Z,5 . The total number of nodes in the pre-disaster network (g) 

is replaced by the total number of nodes in the giant subnetwork in the post-earthquake network 

(g ∙ P6,?@ ), because in post-earthquake stage, only the nodes in the giant subnetwork can remain 

functionality. The nodes contained in the small subnetworks are disconnected from the others. 

 Table 1 presents a summary of the methodology to show the inputs and outputs of this framework 

step by step. Our contributions in the methodology are (1) modelling of the structure of the post-

earthquake road network, i.e. !"
6,?@($), (2) defining the concepts of global connectivity and local 

connectivity and choose the most appropriate metrics from the literature to quantify them in the post-

earthquake stage, and (3) bringing number of neighbors with different distances together into one single 

index, efficiency, for the assessment of local connectivity of the whole post-earthquake road network. 

It is worth mentioning that most of the metrics are only used to evaluate pre-disaster networks in the 

literature, and we are the first to apply them to post-earthquake road networks.     
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Table 1. Summary of the methodology 

 
 Pre-disaster road network Post-earthquake road network 

Network structure !"($) !"&,()($) 

Outgoing links !*($) =
!",($)
!",(1)

 !*&,()($) =
!"&,()

,($)
!"&,()

,(1)
 

Percolation threshold !*,(1) = 1 !*&,()
,(1) = 1 → /0!",, 1!"2*(3)4 = !",(1) 

Subnetwork sizes 
distribution 

56"($) = $!"76*($)8
6*($) = $!*76*($)8

 9
6"&,()($) = $!"&,() 16*&,()($)4
6*&,()($) = $!*&,() 16*&,()($)4

 

Global Connectivity 

Size of giant subnetwork 
Average size of small 

subnetworks 
Size of giant subnetwork Average size of small subnetworks 

: = 1 −6"(1) 〈=〉 = 6",(1) :&,() = 1 − 6"&,()(1) 〈=&,()〉 = 6"&,()
,(1) 

Number of 
neighbors 

!(?)($) = 5 !"($), @ = 1,
!(?2*)7!*($)8, @ ≥ 2. !(?)&,()($) = D

!"&,()($), @ = 1,
!(?2*)&,() 1!*&,()($)4, @ ≥ 2. 

Local connectivity 

Average number of 
neighbors 

Efficiency Average number of neighbors Efficiency 

E? = !",(1)[!*,(1)]?2* H =IHJ
K

JL*
=I1

@

?M

?L*
∙ E?  E?&,() = O!*&,()

,(1)P
?2*

!"&,()
,(1) H&,() = I HJ&,()

K∙QR,S)

JL*
= I 1

@

?M
R,S)

?L*
∙ E?&,() 
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5 Case study 

 According to Statista.com, the 2008 Sichuan earthquake is one of the ten most significant natural 

disasters in terms of death toll around the world in the past three decades. This disaster was also the 

strongest earthquake since 1950 and the deadliest earthquake in China since the 1976 Tangshan 

earthquake. More than 69,000 people died in the 2008 Sichuan earthquake, and approximately 4.8 

million people were left homeless. Infrastructure systems, including transportation systems, were 

greatly damaged by the earthquake and aftershocks. In the road network, 21 existing highways and 5 

highways that were under construction were partially disrupted. In addition, five national roads and 11 

principle roads were severely destroyed.  

 The specific network that we analyse is the national and provincial road network in the affected 

area, including Mianyang, Ngawa, Deyang, Guangyuan, and Chengdu (Figure 2). After defining the 

specific network, we calculate the node degree distribution in the network (Table 2). This network 

contains 109 nodes and 219 links. Each node represents one junction, and each link represents one road 

between two neighbouring junctions. According to Table 2, the generating function for the probability 

distribution of node degrees should be !(#) = ∑ '(() ∙ #*+
*,- = 0.37#2 + 0.52#6 + 0.08#8 +

0.03#9.  
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Figure 2. (a) The analysed affected area, including all of the national and provincial roads in 

Mianyang, Ngawa, Deyang, Guangyuan, and Chengdu. (b) Instrumental intensity of the Sichuan 

earthquake (earthquake.usgs.gov). 

Table 2. Node degree distribution of the national and provincial road network. 

Node degree (() 3 4 5 6 

Number of nodes 40 57 9 3 

Probability ('(()) 0.37 0.52 0.08 0.03 

5.1 Global connectivity 

5.1.1 Percolation threshold 

 The magnitude of earthquake is described by two variables, i.e. the fraction of nodes not contained 

in the inner network, :, and the probability that one link is not disrupted in the outer network, ;<. Using 

Equation (7), we find the percolation threshold of 	;< for a fixed :, and the percolation threshold of 

	: for a fixed ;< (Figure 3). The region is divided into two parts. There will exist one giant subnetwork 

in the post-earthquake network only if the value of (	:, ;<) falls above the threshold line.  

 From two perspectives, we can find that the random failure in the outer network (;<) have larger 

impact on percolation threshold than the localized attack in the inner network (:). Firstly, if there is no 

random failure in the outer network (;< = 1), the threshold is :∗ = 0.14. It represents that the giant 

subnetwork exists even if up to 86% nodes are damaged by localized attacks. On the contrary, if there 

is no localized attack in the inner network (: = 1), the threshold is ;<∗ = 0.34, which indicates that 

there will be no giant subnetwork if over 66% links are disrupted in the network. Secondly, it can be 

verified by the gradients of the threshold line. When : decrease from 1 to 0.5, ;< increase from 0.34 

to 0.5, while when ;< decrease from 1 to 0.5, : increase from 0.14 to 0.5. The reason why the pure 

localized attack have smaller impact is that all the removed nodes are originally connected as a 

“component”. There is a large overlapping among the removed links. After the removal of these nodes, 

only these links connected to the boundary of this “component” are affected. We can see from the right 

graph in Figure 1, even if a large proportion of nodes are removed from the centre, the remaining nodes 



20 
 

in the outer network can keep connected. 

 

Figure 3. Percolation threshold of (	B, CD)∗ in the earthquake-impacted road network.  

5.1.2 Size of giant subnetwork 

 Using Equation (8-10), the size of the giant subnetwork in the remaining road network impacted 

by different magnitudes of earthquakes can be calculated. Figure 4 shows the size of the giant 

subnetwork with respect to different values of ;< and :. Figure 5 shows the changing trend of the size 

of the giant subnetwork with respect to different value of ;< under six representative value of :. In 

Figure 4, we find that, for a fixed ;<, the size of the giant subnetwork approximately increases linearly 

with :. The value of : determines how many nodes are removed by the localized attack in the inner 

network. The situation is different when we fix : and consider the impact of ;<, in which case there 

exists an apparent phase transition. As shown in Figure 5, after the removal of nodes in the inner 

network, the remaining outer network keeps connected, given that : is not too small. Then a small 

random removal of links will not significant reduce the size of the giant subnetwork. Taking : = 0.8 

as an example, after the removal of 20% of nodes from the centre, the remaining outer network still 

contains 80% of nodes. If we further disrupt 20% of links randomly, the size of the giant subnetwork 

almost keeps unchanged, which means no nodes are isolated. Next, if ;< decrease from 0.6 to 0.4, there 
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will be a sharp decrease of the size. 

 

Figure 4. The size of the giant subnetwork with respect to different values of CD and B in the 

earthquake-impacted road network. 

 

Figure 5. The size of the giant subnetwork with respect to different CD  in the earthquake-

impacted road network. 

5.1.3 Average size of small subnetworks 
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 After excluding the giant subnetwork, the average size of the small subnetworks in the remaining 

road network impacted by different magnitudes of earthquakes are illustrated in Figure 6-7. Note that 

the size of a small subnetwork is represented by the number of nodes contained in it, while the size of 

the giant subnetwork above is represented by the percentage of nodes in it compared with that in the 

pre-disaster network. We find that, for a fixed :, the average size of small subnetworks firstly increases 

with ;<, and then decreases after reaching a maximum value. The maximum value of average size for 

each fixed : exactly occurs at the percolation threshold. We explain this from the perspective of 

building the network. Firstly when ;< = 0, all the nodes are separated, the average size is 1. Then, with 

the increase of ;<, several nodes are connected, and the average size increase. This trend continues until 

the giant subnetwork appears. This giant subnetwork is formed by many small subnetworks and after 

that, more and more small subnetworks will be included into the giant one. Furthermore, the probability 

that a small subnetwork will be included into the giant one increases with its size. Therefore, only those 

very small subnetworks keep isolated. That is why the average size decreases with ;<  after the 

percolation threshold. Finally, when all the nodes are contained in the giant subnetwork, the average 

size of small subnetworks decrease to 1 when : < 1, and decrease to 0 when : = 1, where there is no 

small subnetworks. 

 We also find that the maximal value of the average size of small subnetworks always happens when 

;<  takes a medium value. If ;<  is too large, the network is well connected. If ;<  is too small, the 

network is mostly divided into separate nodes. Differently, : does not have an significant impact on 

the average size of small subnetworks. For a fixed ;<, the value of : only affects the proportion of 

nodes that are removed from the centre, and also the size of the remaining outer network. That is why 

the maximal value of the average size of small subnetworks increases linearly with : in Figure 6. In 

Figure 7, the maximal value of the average size of small subnetworks decreases nonlinearly with ;<. 

When : is small, most nodes are removed from centre, and the remaining outer network is small. 

These small subnetworks caused by random failures of links will be smaller. 
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Figure 6. The average size of small subnetworks with respect to different values of CD and B in 

the earthquake-impacted road network. 

 

Figure 7. The average size of small subnetworks with respect to different value of CD  in the 

earthquake-impacted road network. 

5.2 Local connectivity 



24 
 

5.2.1 Number of neighbors 

 In the last section, we compared the impact of different magnitudes of disasters on global 

connectivity of road networks. Specifically, we find that when a small fraction of links are disrupted, 

i.e. 0.8 ≤ ;< ≤ 1, the global connectivity almost keeps unchanged. However, the distances between 

node pairs may increase due to the disruption of certain links on their shortest path. We quantify local 

connectivity by the number of neighbors with different distances. 

 The probability distribution of the second-nearest neighbors in the original network are provided 

in Table 3. For example, 0.94% nodes in the network have 6 second-nearest neighbors. No nodes have 

less than 6 or more than 23 second-nearest neighbors. The probability distributions of the second-

nearest neighbors in the remaining network impacted by different magnitudes of natural disasters are 

shown in Table 3-6. It is obvious that the numbers of neighbors reduce a lot. Taking the case in Table 4 

as an example (;< = 0.5, : = 1), over 90% nodes have less than 6 second-nearest neighbors, even 

though we find that over 80% nodes keep connected as a giant subnetwork from Figure 5. Local 

connectivity can provide more information that cannot be revealed by global connectivity. 

Table 3. Probability distribution of the number of second-nearest neighbors in the original 

network (CD = G, B = G). 

Neighbors  ≤5 6 7 8 9 10 11 12 13 14 

Probability %  0.00 0.94 5.31 11.36 13.43 14.49 16.50 13.88 9.43 5.93 

Neighbors 15 16 17 18 19 20 21 22 23 ≥24 

Probability %  3.43 2.13 1.36 0.86 0.50 0.26 0.12 0.05 0.02 0.00 

 

Table 4. Probability distribution of the number of second-nearest neighbors (CD = H. I,B = G). 

Neighbors  0 1 2 3 4 5 6 7 8 ≥9 

Probability %  13.36 15.89 20.78 18.13 13.66 8.88 4.97 2.50 1.12 0.72 

 

Table 5. Probability distribution of the number of second-nearest neighbors (CD = G, B = H.I). 
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Neighbors  0 1 2 3 4 5 6 7 8 ≥9 

Probability %  50.99 1.77 4.25 5.99 7.57 8.08 7.15 5.65 3.87 4.68 

  

Table 6. Probability distribution of the number of second-nearest neighbors (CD = H. J,B = H. J). 

Neighbors  0 1 2 3 4 5 6 7 8 ≥9 

Probability %  34.81 6.94 11.56 12.37 11.52 9.18 6.21 3.75 2.01 1.64 

 Next, we further investigate the impact of disasters on local connectivity. The average number of 

first-, second-, third-, and fourth- nearest neighbors in the remaining road networks impacted by 

different magnitudes of earthquakes are illustrated in Figure 8. Both localized attacks in the inner 

network and random failures in the outer network have significant effects on the average number of 

neighbors. Furthermore, this impact increases with the distances. The number of the first-nearest 

neighbors approximately changes linearly with ;<	  for a fixed :	 . While for the fourth-nearest 

neighbors, if ;<	 for a fixed : decreases from 100% to 50%, the number of neighbors almost decreases 

to 10%.  

 

Figure 8. Average number of first-, second-, third-, and fourth- nearest neighbors with respect to 
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different CD in localized natural disasters. 

5.2.2 Integrated local connectivity: efficiency 

To bring number of neighbors with different distances into one single index for the whole network, 

the efficiency of the road network impacted by different magnitudes of earthquakes are calculate and 

illustrate in Figure 9. Different from the situation in global connectivity, localized attacks in the inner 

network and random failures in the outer network have similar impacts on local connectivity. Figure 10 

provides a comparison between global and local connectivity with respect to different value of ;< under 

several representative value of : . We can find that when ;<  is large, local connectivity is more 

sensitive than global connectivity. Even though the disruption of a small proportion of nodes will not 

affect global connectivity, it truly reduces local connectivity. Global connectivity and local connectivity 

decrease to 0 at the same point when the giant component disappears.  

 

Figure 9. Efficiency of the earthquake-impacted road network with respect to different values of 

CD and B. 
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Figure 10. Comparison between global connectivity and local connectivity of the earthquake-

impacted road network with respect to different value of CD. 

5.3 Simulation 

 To validate the proposed method, we conduct simulations on the same road network. The road 

network is built in Matlab and nodes and links are randomly broken according to the values of ;< and 

:. For each case, the simulation is repeated for 100 times and the mean value of the size of the giant 

subnetwork is obtained, which is further compared with the results from the proposed percolation 

method (Figure 11). We first look at the comparison of global connectivity, and find that the value of 

global connectivity by percolation and that by simulation fits well when ;< ≥ 0.6. When 0.4 < ;< <

0.6, the theoretical value of global connectivity is a little larger than the practical value in the first two 

subfigures. The reason is that percolation process is based on infinite networks, while the examined 

road network is too small. The existence of the boundary of the network will make the size of the giant 

subnetwork smaller than the theoretical value. When ;< ≤ 0.4 , the theoretical value of global 

connectivity is a little smaller than the practical value. In an infinite network, if the giant subnetwork 



28 
 

contains finite number of nodes, than the global connectivity of this network will be regarded as 0. 

However, in practical networks, even if a large quantity of links are removed, the giant subnetwork still 

contains several nodes, and that is why the value of global connectivity by simulation will not decrease 

to 0 as we see from the results by percolation. 

 

Figure 11. Comparison of theoretical and practical results with four different values of B. The 

solid lines are the values obtained using our method, and the points are results from simulations. 

The blue lines/points represent global connectivity, and the black lines/points represent integrated 

local connectivity. 

 Figure 11 also shows the comparison of theoretical and practical results of local connectivity. We 

know that the existence of cycles in the road network will result into some overlap when calculating the 

number of neighbors. It means that the value of local connectivity obtained by our method will be larger 

than the practical value. However, we find in Figure 11 that after normalizing local connectivity, the 

practical value and theoretical value fit well. It indicates that our propose method cannot provide the 
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accurate value of local connectivity, but can precisely evaluate the changing trend of local connectivity 

when facing different magnitude of earthquake.  

5.4 Computational complexity and the impact of network sizes 

In this method, the structure of road network is described by the generating function of node degree 

distribution. As shown in Table 1, all of the metrics have closed-form expressions except subnetwork 

sizes distribution, which can only be obtained by iterative computing. Theoretically, to get the 

probability distribution of subnetwork sizes distribution of a network with n nodes, n+1 iterations are 

needed. That is to say, for a network with 1000 nodes, equation (10) has to be iteratively calculated by 

1000 times. This can be completed within 1 second in Matlab R2013a on an Intel 2.8GHz PC with 4 

GB RAM running Windows 7. For a network consisting of 10,000 nodes and 40,000 links, it take 68 

seconds to calculate the subnetwork sizes distribution. Since percolation theory is developed on infinite 

networks, the accuracy of this method increases with the size of networks. 

6 Conclusions 

Connectivity of road networks in post-earthquake stage is vital for evacuation and relief 

distribution. This paper first proposed an analytical method for analyzing the connectivity of road 

networks when being impacted by different magnitudes of earthquakes. Previous methods in the 

literature can only assess the connectivity of road networks with determined structures, and cannot 

analytically study the change of network connectivity with respect to different magnitudes of 

earthquakes. Therefore, we introduced percolation theory to study the connectivity of post-earthquake 

road networks.  

 In post-earthquake road networks, the probability of component disruption decreases with its 

distance from the epicenter. With consideration of this feature, we propose a new percolation process 

which integrates the traditional localized attack and random failure. The post-earthquake network is 

divided into two parts: inner network and outer network. The inner network is affected by a localized 

attack, and the outer network is affected by a random failure. 
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 We proposed the concepts of global connectivity and local connectivity for post-earthquake road 

networks and chose from the literature the most appropriate metrics to measure them. Global 

connectivity measures the extent to which the whole network is connected, quantified by the size of 

giant subnetwork and average size of small subnetworks, and local connectivity measures the distances 

between each node to the other nodes, quantified by number of neighbors. Furthermore, to bring the 

number of neighbors with different distances together into one single index for the whole network, we 

employed the concept of efficiency to combine them into one metric for the local connectivity of the 

whole network. 

 The application to a real-world road network shows that this method can assess the connectivity of 

road networks impacted by different magnitudes of earthquakes from both global and local perspectives, 

in a systematic and efficient way.  

 There are several limitations of this method. The first one is that cycles in the network are neglected 

when using generating function. Although the simulation in section 5.3 shows that cycles do not have 

large impact on the calculation of global connectivity, they truly affect the assessment of local 

connectivity. Due to the existence of cycles, there would be some overlapping when calculating the 

number of neighbors. We also find that the impact of cycles reduces with the increase of the magnitude 

of earthquake, as the road network becomes more and more sparse. One of the future work will focus 

on eliminating the impact of cycles on the assessment of network connectivity. The second limitation 

is that since percolation theory is developed on infinite networks, there could be some differences 

between the theoretical and practical results when the road network is too small. For the network used 

in this study which consists of 109 nodes, the method works well. In spite of these limitations, we still 

think the proposed framework is an alternative way to study the connectivity of post-earthquake road 

networks and it sheds light on the application of percolation to more practical networks with 

consideration of their features.   

More characteristics of road networks, such as the dynamic traffic demand, and continuously 

degradable road capacities, could be considered in the model to make it applicable for analyzing more 

practical issues. 
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Appendix I 

Lemma A1 Given the generating function of the original network is !-(#) = ∑ '(() ∙ #*+
*,- , and the 

probability of being disrupted for each link in the network is 1 − ;<, the generating function of the 

remaining network is !-
NO(#) = !-(1 − ;< + ;<#). 

Proof Because the probability that a randomly chosen link is disrupted is 1 − ;<, the probability that a 

randomly chosen node has degree (P will be 

'((P) = Q '(() R
(
(PS

+

*,*T	

;<*
T		(1 − ;<)*U*

T.																																										 

Thus, the generating function will be  

!-
NO(#) = Q '((P)#*	

+

*T,-

= Q Q '(() R
(
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+

*,*T	
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+
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								= !-(1 − ;< + ;<#).										 

QED. 
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