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ABSTRACT 

A theoretical study on the occurrence of internal rogue waves in density stratified 

flows is conducted. While internal rogue waves for long wave models have been studied 

in the literature, the focus here is on unexpectedly large amplitude displacements arising 

from the propagation of slowly varying wave packets. In the first stage of the analysis we 

calculate new exact solutions of the linear modal equations in a finite domain for realistic 

stratification profiles. These exact solutions are then used to facilitate the calculations of 

the second harmonic and the induced mean motion, leading to a nonlinear Schrödinger 

equation for the evolution of a wave packet. The dispersion and nonlinear coefficients 

then determine the likelihood for the occurrence of rogue waves. Several cases of 

buoyancy frequency (N) are investigated. For N2 profiles of hyperbolic secant form, 

rogue waves are unlikely to occur as the dispersion and nonlinear coefficients are of 

opposite signs. For N2 taking constant values, rogue waves will arise for reasonably small 

carrier envelope wavenumbers, in sharp contrast with the situation for a free surface, 

where the condition is kh > 1.363 (k = wavenumber of the carrier envelope, h = depth). 

Finally, a special N2 profile permits an analytical treatment for a linear shear current. 

Unexpectedly large amplitude waves are possible as the dispersion and nonlinear 

coefficients can then be of the same sign. 
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1. Introduction 

 Stratified flows and internal waves occur frequently in the atmosphere and the 

oceans [1,2]. The dynamics and properties of such flows play an essential role in 

processes such as transport, mixing and the movement of nutrients in the oceans. Studies 

of small amplitude disturbances in stratified flows will then enhance the analytical 

description of the fluid motion, and have developed into a branch of classical 

hydrodynamic theory [3]. Concerning the dynamics of the oceans, a commonly used 

assumption is to employ the Boussinesq approximation, where the variation in the density 

is ignored except in the buoyancy term. In this approximation the governing equation for 

small disturbances is defined as an eigenvalue problem for the phase speed: 

( )( )
2

2 0yy yy
NU c k U

U c
φ

− φ − φ − φ + =
−

,                                                                          (1)                    

where ϕ, U = U(y), k, c are the modal function of the linearized vertical velocity field, 

background shear, wavenumber and wave speed respectively, and y is the vertical 

coordinate. N is the buoyancy frequency given by 

2 g dN
dy
ρ

ρ
= −      (g is gravity),   (2) 

where ρ  is the mean density profile in the undisturbed state. Extensive studies have been 

performed on this classical equation, ranging from special exact solutions [4] to stability 

considerations [5]. 

 For the special case where a background shear flow is absent (U(y) = 0), this 

eigenvalue problem becomes the modal equation 
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N k
c

 
φ + − φ = 

 
,  (3) 

which, together with the boundary conditions, defines an eigenvalue problem for the 

speed c with a given input wavenumber k.  For stable stratification, there is no instability 

in the absence of a current. In developing the theory for the propagation of waves with a 

modal function given by Eq. (3), it is necessary to determine the dispersion relation ω = 

ω(k) where ω is the wave frequency, the group velocity  

cg = ∂ω/∂k,  

and frequently cgk = ∂2ω/∂k2 as well. For this purpose, it is useful if explicit solutions of 

Eq. (3) can be found. One objective of this work is to establish exact solutions for this 

reduced form of the eigenvalue problem Eq. (3), in particular for a special class of 

density profiles, namely, the buoyancy frequency being the square of the hyperbolic 

secant with respect to the vertical coordinate. The underlying methodology is to note a 

connection with the nonlinear Schrödinger equation (NLSE) from the theory of solitons. 

Special solutions from the NLSE theory are then employed in solving the eigenvalue 

problem Eq. (3). While knowledge from classical linear differential equations, e.g. 

Pöschl–Teller and reflectionless potentials [6], hypergeometric and Legendre functions, 

could be invoked for this ‘sech square’ profile, utilizing coupled Schrödinger models can 

generate eventually solutions for more complicated, and even asymmetric, density 

profiles.   
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 To describe waves with larger amplitude, a Hamiltonian formulation or higher 

order perturbation scheme will be necessary. A Hamiltonian approach of a two-layer 

fluid with nonzero mean flow can demonstrate the properties of wave-current interactions 

vividly [7]. Investigations of higher order series expansion, e.g. the Witting series and the 

Karabut system, can also be utilized to elucidate solitary waves for fluids of a finite depth 

[8]. Indeed ingenious mathematical methodologies have been applied to reveal intriguing 

nonlinear dynamics of these hydrodynamic systems, e.g. an implicit function approach is 

employed for the propagation of capillary-gravity waves in a spherical coordinate system 

[9]. 

Similar to the case of surface waves, the propagation of weakly nonlinear internal 

wave trains in a continuously stratified fluid is described by the NLSE [10]. Among 

various solutions of the NLSE which are physically relevant to water waves, the 

Peregrine breather (PB) solution [11] has attracted substantial attention recently due to its 

application to model rogue waves in the ocean [12]. The localized nature of the PB in 

both space and time resembles the character of a rogue wave as an entity which ‘appears 

from nowhere and disappears without a trace’. Remarkably, PB and its higher order 

variations are realizable in water wave tanks [13,14]. In the context of surface waves, PB 

exists only in the focusing or deep water regime, i.e., the regime of kh > 1.363 (where k is 

the wavenumber of the carrier envelope and h is the depth) [15,16]. Indeed elegant 

mathematical techniques have been applied to find analytical expressions for rogue 

waves for other nonlinear evolution systems, e.g. Mel’nikov, Sasa-Satsuma and Fokas-
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Lenells equations [17,18,19]. The objective here is to study the corresponding existence 

criterion of internal rogue waves in a stratified fluid. 

 The main results and the structure of this paper can now be explained. Starting 

from the traveling waves of coupled NLSEs [20–23], an exact solution of Eq. (3) for 

linear modes without background shear is derived for a density profile which resembles a 

pycnocline in the ocean. On utilizing formulation of systems of four and five coupled 

NLSEs [22,23], solutions with increasing complexity in terms of the vertical structures 

are established for flows in a finite channel (Section 2). The group velocity and the 

second derivative of the dispersion relation of these wave packets are derived analytically 

too (Section 3). The occurrence of internal rogue waves in a channel with or without 

background shear is then examined (Section 4). A further example with constant 

buoyancy frequency is studied in Section 5. Concluding remarks will be presented in 

Section 6.   

 

2. Exact solutions of the linear modal problem in a finite channel 

For a system consisting of multiple or P (P = positive integer) wave packets, the 

evolution of weakly nonlinear, weakly dispersive, complex valued envelopes (Ap, p = 1, 

2…P) in many physical applications is governed by the coupled nonlinear Schrödinger 

equations [3, 20–24] (σ is a real parameter): 

2 2

2
1

0
P

n n
p n

p

A Ai A A
t x =

 ∂ ∂
+ + σ = ∂ ∂  

∑ ,   n = 1, 2,…P.                                                             (4) 
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On looking for time harmonic oscillations  

An = ψn(x)exp(–iΩnt),                                                                                                (5) 

where ψn(x) is real-valued, the reduced form is 

2
2

2
1

ψ ψ ψ 0
P

n
n p n

p

d
dx =

 
+ Ω + = 
 

∑ ,      n = 1, 2,…P.                                                                         (6) 

Periodic solutions with multiple peaks per period can be derived [20–23]. However, a 

surprising and remarkable feature is that the sum of the intensities ( 2

1

P

p
p=
ψ∑ ) in Eq. (6), or 

the total induced mean flow in the context of hydrodynamic waves, can be expressed in 

terms of the square of the hyperbolic secant. On comparing Eq. (6) and Eq. (3), one can 

deduce that the coupled nonlinear Schrödinger model can be applied to the stratified flow 

problem provided that the buoyancy frequency can also be expressed in terms of 

hyperbolic functions. 

 More precisely, we shall first consider a stratification profile in the form of the 

square of a hyperbolic secant: 

( )2 2
1 0sechN ry= α + α ,  with constants r, 1α , 0 0α > .                                                   (7) 

The three parameters r, α1, α0 will be the input/starting point and in terms of fluid 

dynamics, they measure respectively the width of the pycnocline, the density jump and 

the far field density from the viewpoint of internal waves modeling. 
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To illustrate how the theory of nonlinear waves can be used, consider a concrete 

example with an elementary solution from the literature of the coupled nonlinear 

Schrödinger model Eq. (6),  

( )2 2sech
3

ryφ = − ,                 (8) 

where we use the symbol φ  for the convenience in subsequent presentations. This 

functional form will satisfy the linear modal problem Eq. (3) for the density profile Eq. 

(7) for a special wavenumber k and the associated wave speed c given by 

2 2 0

1

6k r α
=

α
,    2 0

2c
k
α

= .                  (9) 

The actual background density can be readily computed from Eq. (2) and Eq. (7). The 

fluid will be stably stratified provided the parameters α0, α1 are positive. Figure 1 shows 

the buoyancy frequency N and the mean density profile ρ  for typical values of the input 

parameters (–H < y < H, r = 0.658, H = 1, α0 = α1 = 1, density being unity at y = 0). 

 
a 
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b 

 
Fig. 1. (a) Plot of N2 as a function of the vertical coordinate y, –H < y < H, r = 0.658, α0 = 
α1 = 1, H = 1. (b) Plot of the mean density profile ρ  as a function of the vertical 
coordinate y, –H < y < H, r = 0.658, α0 = α1 = 1, H = 1. 
  

 

 

2.1 Four coupled Schrödinger equations 

Based on the solutions for a system of four coupled NLSEs [22,23], two of them 

will satisfy the boundary conditions of a finite channel with rigid boundaries, namely, 

( ) ( ) 0H Hφ − = φ = . The other solutions are valid for an infinite domain and will not be 

discussed in this paper. The first family of solutions of the linear modal problem Eq. (3) 

generated from four coupled nonlinear Schrödinger equations will thus be: 

( ) ( ) ( )2 4sech tanh sech
7a a a ar y r y r y φ = −  

,                                                             (10) 

2 2 0

1

20 1a ak r
 α

= + α 
, 2 0

2 2a
a a

c
k r
α

=
−

,                               (11) 
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11 4sech
7ar H

−= .               (12) 

The special value for ra is calculated from the boundary condition where the 

eigenfunction ϕa must vanish at the rigid walls located at y = ± H (Fig. 2). 

 

Fig. 2 The eigenfunction ϕa , Eq. (10), as a function of the vertical coordinate y,  
–H < y < H, H = 1, with ra given by Eq. (12).  
 
2.2 Five coupled Schrödinger equations 

Based on a system of five coupled Schrödinger equations [23], five exact solutions 

of the linear modal problem Eq. (3) will be further identified where only three of them 

will satisfy the boundary conditions of a finite channel. We focus on the odd 

eigenfunction: 

( ) ( ) ( )2 2 2sech tanh sech
3b b b br y r y r y φ = −  

,           (13) 

2 2 0

1

30 4b bk r
 α

= + α 
,    2 0

2 24b
b b

c
k r
α

=
−

,                                                                         (14) 

11 2sech
3br H

−=  .                                                                                                         (15) 
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This eigenfunction must vanish at rigid walls located at y = ± H (Fig. 3). Eigenfunctions 

with more interior nodes can be found. Moreover, two other solutions with no finite zeros 

are possible. They are valid for fluids in unbounded domain and will not be discussed 

further in this paper.  

 

 
 

Fig. 3 The eigenfunction ϕb , Eq. (13), as a function of the vertical coordinate y,  

–H < y < H, H = 1, with rb given by Eq. (15). 

2.3 Numerical solutions of the linear modal equation for arbitrary wavenumber k 

The exact solutions just tabulated are valid for special values of k (wavenumber) 

and r (stratification parameter). Numerical solutions of Eq. (3) would be necessary for 

arbitrary values of k and r. As an illustrative example, we consider the analytical solution 

for k = 3.590, c = 0.284, corresponding to H = 1, α1 = 1, α0 = 1 of Eqs. (10) through (12). 

The phase speed c for other values of k can be obtained by solving Eq. (3) numerically 

(Fig. 4). In general c will vary smoothly as a function of k, with the analytic solution 

picking out a few particular values of k. 
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We believe that the existence of analytical solutions will enhance our 

understanding of the fluid dynamics and will facilitate the development of nonlinear 

evolution of the wave trains. Furthermore, these settings of propagating internal waves 

also contrast sharply with certain scenarios in the stability of shear flows, where special 

analytic solutions have no other counterparts in the vicinity of that particular parameter 

regime. 

 

Fig. 4 A plot of the phase speed c versus the wavenumber k for a continuous range of k 
beyond the special analytical solution of k = 3.590, c = 0.284 for Eqs. (10-12), where the 
remaining data points are obtained by solving Eq. (3) numerically. 
 

3. Group velocity 

The analytic solutions described in Section 2 are valid for a specific fixed 

wavenumber k and angular frequency ω (or speed c). However, in applications we often 

need to find also the group velocity cg = ∂ω/∂k, and usually cgk = ∂2ω/∂k2 as well [24]. 

Since those two quantities are not available directly for these special solutions, we 

describe here how such information may be obtained, given only the knowledge of the 



13 
 

eigenfunction and the associated speed at this specific wavenumber. The modal equation 

Eq. (3) and boundary value problem are 

2
2

2 1 0yy
Nk

 
φ + − φ = ω 

,    H y H− < < ,    0φ =  at y H= ± . 

Multiply by φ  and integrate by parts, 

( )
2

2 2 2
2, 1 0

H H

yH H

ND k dy k dy
− −

 
ω ≡ φ − − φ = ω 

∫ ∫ . 

This defines the dispersion relation ( )kω = ω  and also ( ),y kφ = φ . Noting that we can 

regard ω as a “free variable”, differentiation with respect to k then yields 

0g kD c Dω + = , 

2
2 2

32
H

H

ND k dyω −
= φ

ω∫ , 

2
2

22 1
H

k H

ND k dy
−

 
= − − φ ω 
∫ . 

The terms in kD  given by 

2
2

22 1 2 0
H H

y yk kH H

Ndy k dy
− −

 
φ φ − − φφ = ω 

∫ ∫ , 

vanish after integrating by parts. Differentiating again with respect to k will yield 

( )2 0gk g k k g kkD c D c D D c Dω ωω ω ω+ + + + = , 

which will give an expression for gkc , 

2
2 2

46
H

H

ND k dyωω −
= − φ

ω∫ , 
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2 2
2 2

3 34 4
H H

k kH H

N ND k dy k dyω − −
= φ + φφ

ω ω∫ ∫ , 

2
2

34
H

k H

ND k dyω −
= φ

ω∫ , 

2 2
2

2 22 1 4 1
H H

kk kH H

N ND dy k dy
− −

   
= − − φ − − φφ   ω ω   
∫ ∫ . 

The function kφ  satisfies the forced Taylor-Goldstein equation 

2 2 2
2 2

2 2 31 2 1 2kyy k g
N N Nk k k c

   
φ + − φ = − − φ + φ   ω ω ω   

,   H y H− < < ,   0kφ =  at y H= ± . 

The compatibility condition yields gc  as above, but kφ  is not unique, as k Cφ + φ  is a 

solution for any constant C. However, the formula for gkc  is independent of C. Hence any 

possible solution for kφ  will be sufficient. These expressions can all be evaluated at the 

fixed wavenumber k. 

 

4. Occurrence of internal rogue wave 

A remarkable application of these exact linear eigenfunctions to the nonlinear 

dynamics of slowly varying wave packets will now be discussed. Following procedures 

outlined in the literature [10], a perturbation series is developed for the stream function Ψ 

using a small non-dimensional amplitude parameter (ε): 

Ψ = Ψ0 + εΨ1 + ε2Ψ2 + ε3Ψ3 +… 

The leading order term will give a background shear flow while the first order term will 

yield the linear modal equation. The second harmonic, induced mean flow, and group 



15 
 

velocity for the wave packet can be obtained by collecting second order perturbation 

terms. 

On applying the Fredholm Alternative Theorem at the level of the third order 

perturbation, a NLSE for a slowly varying envelope A can be derived: 

iAτ + βAξξ + γA2A* = 0,              (16) 

with τ = ε2t, ξ = ε(x – cgt) being slow time and group velocity coordinate respectively, and 

* denotes the complex conjugate. The likelihood for the occurrence of internal rogue 

wave modes can then be assessed from the considerations of the second order dispersion 

term (measured by β), the cubic nonlinear term (γ) and the possible instability of plane 

waves. The sign of the product βγ  will dictate the dynamics, with envelope solitons, 

modulation instability and rogue wave only possible for βγ> 0 [10,11]. 

Two different models will be discussed, with no background current in the first 

one (the ‘no shear’ model), while the second one can allow for a linear shear flow. The 

formulations for calculating the second harmonic, induced mean motion, dispersion and 

cubic nonlinearity are developed earlier in the literature [10] (Appendix), with the 

calculations for the present situation being facilitated by the exact linear eigenfunctions 

obtained in Section 2. 
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4.1 ‘No shear’ model 

           Three eigenfunctions ( ( )2 2sech
3

ryφ = − , ϕa, and ϕb) are selected as the linear 

modes in the calculations in the nonlinear regime for the parameters of second order 

dispersion (β ) and cubic nonlinearity ( γ ) for the ‘no shear’ model. The full formulation 

is given in the Appendix. Figure 5 and 6 show the second harmonic and induced mean 

flows associated with linear eigenfunctions of φ  and ϕa. 
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a 

 
b 

 
Fig. 5 (a) The profile of the second harmonic as a function of the vertical coordinate y, 
using the eigenfunction φ  (Eq. (8)) as input, –H < y < H, H = 1; (b) Solution of the 
induced mean motion equation versus the vertical coordinate y using the eigenfunction φ  
(Eq. (8)) as input, –H < y < H, H = 1. 
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a 

 

b 

 

Fig. 6 (a) The profile of the second harmonic as a function of the vertical coordinate y,  
using the eigenfunction ϕa (Eq. (10)) as input, –H < y < H, H = 1; (b) Solution of the 
induced mean motion equation versus the vertical coordinate y, using the eigenfunction 
ϕa (Eq. (10)) as input, –H < y < H, H = 1. 
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Table 1 lists the coefficients of second order dispersion (β) and cubic nonlinearity 

(γ) for these three cases. All these three cases display negative values for the product βγ , 

which indicate that internal rogue waves are unlikely to occur. 

 

Eigenfunction β  γ  Sign of βγ  

φ  0.1161 -0.9315 Negative 

ϕa 0.0525 -1.2203 Negative  

ϕb 0.0499 -0.4746 Negative  

TABLE 1. Coefficients of dispersion and cubic nonlinearity for cases with eigenfunctions 
φ , ϕa and ϕb. 
 

4.2 Linear shear model 

           Attempts to align the linear stability equation for stratified flows (Eq. (1)) with a 

linear Schrödinger equation with a ‘sech2’ potential generally fail for an arbitrary shear 

profile U(y). However, a special case of a linear shear will permit analytical progress, as 

the curvature of the profile (the vorticity gradient or theoretically the second derivative) 

will vanish. In that case, choosing a special buoyancy frequency N2/(U – c)2 = sech2ry 

will also allow exact solutions. More precisely, for the linear shear model ( ( )U y y= λ ), 

the eigenfunction ( )2 2sech
3

ryφ = −  will be applied to elucidate the wave packet 

dynamics. The wavenumber k and the associated wave speed c will be evaluated using 
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mechanisms developed earlier. Figure 7 shows the solutions of the second harmonic and 

the induced mean motion equations with k = 1, c = 2 and 1λ = .  

 
a 

 

b 

 

Fig. 7 (a) The profile of the second harmonic as a function of the vertical coordinate y, 
using the eigenfunction φ  (Eq. (8)) as input, k = 1, c = 2, 1λ = , –H < y < H, H = 1;  
(b) Solution of the induced mean motion equation versus the vertical coordinate y, using 
the eigenfunction φ  (Eq. (8)) as input, k = 1, c = 2, 1λ = , –H < y < H, H = 1. 
 

           Table 2 lists the coefficients of quadratic dispersion (β) and cubic nonlinearity (γ) 

for a few selected examples. All these cases display positive values for the product βγ , 

which indicate internal rogue waves may likely occur. 



21 
 

Values of k and c β  γ  Sign of βγ  

k = 1, c = 1.5 0.2074 0.8942 Positive 

k = 1, c = 2 0.2913 0.2963 Positive 

k = 1, c = 3 0.4511 0.1523 Positive 

TABLE 2. Coefficients of dispersion and cubic nonlinearity for cases with fixed k and 
varied c by starting with the linear eigenfunction φ  (Eq. (8)). 
 

5. A further example with constant buoyancy frequency 

A simple example of constant buoyancy frequency permits explicit analytical 

expressions for the coefficients of the NLSE [10,11], and hence further insights on the 

formation and profile of rogue waves can be gained. In sharp contrast to surface waves 

where rogue waves exist only if the carrier wave packet is reasonably short (kh > 1.363), 

rogue waves in density stratified fluids can exist when the internal mode is much longer. 

More precisely, PB exists if a non-dimensional wavenumber is smaller than the critical 

threshold of π−= mkc 143 , where m is the mode number. Since the critical 

wavenumber kc increases with m, the existence regime of rogue wave is extended for 

higher-order modes. 

The wave profile and amplification ratio of a rogue wave are crucial elements in 

the dynamics. While the maximum amplitude of the PB is always three times the 

background amplitude, the spatial extent of the PB depends on both the coefficients of 
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dispersion and nonlinearity. More precisely, the PB with normalized background 

amplitude is given by [11], 

( )
( )

i
2 2

2 1 2 i
e 1

2 1 2
A γτ

 + γτ = − 
 γ ξ β + γτ + γ   

                                                                            (17) 

The maximum is located at the origin and the minima are attained at )2/()3( γβ±=ξ . 

In the case with a constant buoyancy frequency, the coefficients of dispersion (β) and 

nonlinearity (γ) are related by 

( ) 








π
−

+π

π
=

γ
β

443222

22

2

2 14
4 mkm

m
k

N .                (18) 

Thus the PB occupies a larger spatial domain for a carrier wave with a smaller 

wavenumber. The PBs at various carrier wavenumbers are shown in Fig. 8 and the exact 

coefficients are documented in Table 3. In other words, the rogue wave arising from a 

carrier envelope packet with a larger wavenumber is steeper and more localized. 

Furthermore, for a fixed wavenumber, the PB corresponding to a high-order mode is 

steeper.    
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a       b 

 
 
c 

 
Fig. 8 The wave profile of the Peregrine breather of the NLSE versus space and time at N 
= 1, m = 1 and (a) k = 1; (b) k = 1.5. (c) The waveform at τ = 0 with N = 1, m = 1: k = 0.5 
(dotted line); k = 1 (solid line); k = 1.5 (dashed line). 
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k β  γ  Sign of βγ  

 0.5 0.0227 0.817 Positive 

1 0.038 7.42 Positive 

1.5 0.0434 32.8 Positive  

TABLE 3. Coefficients of dispersion and cubic nonlinearity for various wavenumbers at 
N = 1 and m = 1. 
 

6. Discussion and conclusions 

The main goal of this work is to elucidate theoretically the occurrence of internal 

rogue waves in density stratified flows. While internal rogue waves in long wave models 

have been studied in the literature [25], the present work focuses on unexpectedly large 

amplitude displacements arising from the propagation of internal wave packets. The first 

stage concentrates on calculating new exact solutions of the linear modal equations in a 

finite domain for realistic stratification profiles. The second step utilizes these exact 

solutions to facilitate the calculations of the second harmonic and the induced mean 

motion, leading to a nonlinear Schrödinger equation for a slowly varying wave packet. 

The balance of dispersion and nonlinearity would then determine the likelihood for the 

occurrence of rogue waves. 

Firstly, exact solutions for the governing equation of the vertical spatial structure 

of linearized disturbances in a stratified flow are derived by comparison with solutions of 

coupled systems of nonlinear Schrödinger equations. The Boussinesq approximation is 

assumed, where the variation in the background density is neglected except in the 
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consideration of the buoyancy. Such coupled Schrödinger systems may display a 

remarkable feature, where the total induced mean flow (for hydrodynamic applications) 

or the total light beam intensity (for optical applications) can be expressed as the square 

of a hyperbolic secant, while each component consists of higher algebraic powers of 

hyperbolic functions.  

As illustrative examples, coupled systems with four and five components are 

employed to calculate solutions for linearized stratified flows. One constraint on this 

technique is that these explicit expressions for linear modes are applicable only to 

specific values of the wavenumber. Nevertheless, a scheme to calculate the group 

velocity and the curvature of the dispersion relation (or the second derivative of the 

angular frequency with respect to the wavenumber) is presented. For an arbitrary 

wavenumber, a numerical solution of the linear modal equation may still be required, but 

the existence of such special analytical solutions will provide valuable insights about the 

flow structure.  

Secondly, the nonlinear evolution of a wave packet is developed through 

calculations of the second harmonic, induced mean flow and eventually a canonical form 

of the nonlinear Schrödinger equation [3,10], facilitated by the exact expressions of the 

linear eigenfunctions. The likelihood for the occurrence of internal rogue wave modes 

can be assessed. For the cases where the buoyancy frequency has a hyperbolic secant 

profile, computations for the present family of modes typically yield cases of dispersion 

and nonlinearity of opposite signs, i.e. regimes devoid of rogue waves. However, in the 
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presence of a linear shear and a slightly modified density profile, dispersion and 

nonlinearity can share the same sign and rogue waves may thus exist in such regime. This 

feature highlights the importance of background current on the formation of rogue waves.  

The existence of internal rogue waves is further examined for the special case 

where the buoyancy frequency is a constant. As opposed to surface rogue waves, internal 

rogue waves exist in the long wave regime where the wavenumber of the carrier envelope 

packet can be small. The threshold wavenumber varies among different internal modes. 

In terms of the wave form, the PB is steeper and more localized when the carrier 

envelope packet has a larger wavenumber. The methodology discussed in this work can 

be extended to systems with more components to obtain higher order solutions. Such 

higher order solutions and other density profiles will be tested in the future.  

The present work thus hopefully serves as a remarkable application of nonlinear 

analysis to fluid mechanics and probably other real world applications. Firstly, known 

solutions of coupled nonlinear Schrödinger equations are utilized to establish special 

exact solutions of linear modes of stratified flows. Secondly, perturbation schemes in 

fluid mechanics confirm that a single component nonlinear Schrödinger equation will 

govern the evolution of a wave packet. On studying the nonlinear dynamics, one finally 

deduces the likelihood of the occurrence of internal rogue waves. In terms of further 

hydrodynamic applications, parameters for the buoyancy frequency can be chosen to 

model a realistic pycnocline density profile in the upper ocean. Further theoretical and 

computational efforts would then be fruitful. 
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Appendix 

 The nonlinear dynamics of a slowly varying wave packet will now be formulated, 

following similar schemes developed earlier in the literature [10]. For simplicity, we first 

discuss the case of no background shear (U(y) = 0) and the fluid is confined between y = 

y1 and y = y2. As discussed in the text, the buoyancy frequency will be either given by 

hyperbolic functions 

( )2 2
1 0sechN ry= α + α , 

or a constant value.  

The second harmonic equation is given by (ϕ1 being the linear mode) 

( )
2 2

2 2 2
2 12 2 3

14
y

d Nk N
dy c c

 
− + φ = φ 

 
. 

The induced mean motion equation is governed by 

( ) ( )
2 2

2 2 2 2
0 1 12 2 3 3 2 2

2 2 1 1
y y

g g g

d N N N
dy c c c c c cc

   
+ φ = φ + − − φ      

   
, 

where the group velocity is obtained by applying the Fredholm alternative condition, 

2

1

2

1

2
1

2
2
13

y

y
g y

y

dy
c c

kN dy

φ
= −

φ
ω

∫

∫
. 

The coefficients of dispersion and cubic nonlinearity of Eq. (16) are given by 
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( )( ) ( )2 2

1 1

2

1

2 2
2
1 11 12 4 3

2
2
13

3
1 2

22

y yg g g

y y

y

y

N c c c c c c N
dy k dy

k c kc

kN dy

   − − −
+ φ + − + φ φ   

      β =
φ

ω

∫ ∫

∫
, 

2

1

2

1

1 1

2 2
2
132

y

y

y

y

g dy

k N dy

φ
γ = −

φ
ω

∫

∫


, 

where the function 11φ  is determined from 

( ) 22 2
2

11 12 2 32 gc c Nd Nk k
dy c kc

 − 
− + φ = − + φ  

    
, 

the other functions 1g , 0f , 0g , 2f , 2g  are listed as follows 

( ) ( ) ( ){ } ( )2
1 1 2 2 1 0 2 0 2 1 22

1 12 2
y

g cf g g g c f f N
c c
 ′ ′ ′ ′ ′= φ − + φ − − − + φ φ

  

        ( )2 20 1
1 0 2

1 21
y

g g g g

c cN N
c c c c c

   φ φ ′+ + + φ φ + −            
, 

( ) ( )2 2 2 2
0 1 13 3 2 2

2 2 1 1
y y

g g

f N N
c c c c cc

 
= φ + − − φ  

 
, 

( ) ( )2 2 2 2
0 1 12 2

1 1 1
y y

g

cg N N
c c c

 
= − φ + − φ  

 
, 

( )2 2
2 13

1
y

f N
c

= φ , 

( )2 2
2 12

1
2 y

g N
c

= − φ . 
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           If we allow for a linear shear ( ( )U y y= λ ), the buoyancy frequency is given by 

( )( )( )22 2
1 0sechN ry y c= α + α λ − .  

The second harmonic equation for the linear shear model is then found by 

( ) ( )
( )

( )

2 2 2 2 2
2 1

22 2 22 4
2 yy

d N N Nk k U c
dy U cU c U c k U c

      φ  − + φ = − − −     −− − −          
. 

The induced mean motion for the linear shear model is determined by 

( )
( )
( ) ( )

( )
( )

2 22 2
2

0 12 3 22

21 1g g

g gg y y

N c U c N U cd N
dy U c U cU c U cU c

      + − −  + φ = φ − −      − −− −   −        
 

                                      ( ) ( )
( ) ( ) ( ) ( )

2
2
1 2

2 1g

y
gg

c c N
U c U cU c U c

 −
− φ + 

− −− −   
. 

where the group velocity is obtained by 

( )

2

1

2

1

2
1

2
2
132

y

y
g y

y

dy
c c

N dy
k c U

φ
= −

φ
−

∫

∫
. 

The coefficients of quadratic dispersion and cubic nonlinearity of Eq. (16) are given by 

( )( )
( )

( )
( )

( )

2 2

1 1

2

1

2 2
2
1 11 14 32

2
2
132

3 2
1 2

4

y yg g g

y y

y

y

N c c c U c c c N
dy k dy

k U c k U c
N dy

k U c

   − − − −
+ φ − + φ φ   

− −      β = −
φ

−

∫ ∫

∫
, 
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( )

2

1

2

1

1 1

2
2
132

y

y

y

y

g dy

N dy
k U c

φ
γ =

φ
−

∫

∫


, 

where the function 11φ  is solved by this equation 

( )
( )
( )

22 2
2

11 12 32 2 gc c Nd Nk k
dy U c k U c

   −
− + φ = − + φ  

− −     
. 

The other functions 1g , 0f , 0g , 2f , 2g  are listed as follows 

( )
( ) ( ) ( )( )1

1 2 2 1 0 2 0 22
1 2 2dg U c f g g g U c f f

dyU c
 φ ′ ′ ′ ′= − − − + φ − + − −      − 

  

    ( )
( )

( )
( )

2 2 2 2

1 2 0 12 2
gy ygy y

N N N NU c U c
U c U cU c U c

            +φ φ − − − + φ φ − − −          − −−   −            

 

    ( )
( )

22 2
0

1 2
2

gg

U c Nd N N
dy U c U cU c

 −ψ  +φ − −  − −−  

, 

( )
( ) ( )

( )
( )

2 2
2

0 1 3 2

21 1g g

g gy y

N c U c N U c
f

U c U cU c U c

    + − − = φ − −    − −− −        
 

        ( ) ( )
( ) ( ) ( ) ( )

2
2
1 2

2 1g

y
gg

c c N
U c U cU c U c

 −
− φ + 

− −− −   
, 

( )
( )( )

( ) ( )
( )

2 2
2 2

0 1 12 2
1g g

y
gg y

c c N U c N
g

U cU c U c U c

 − −
= − φ − φ 

−− − −  
, 
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( )
( )

( )

2 2 2
1

2 2 22 yy

N Nf k U c
U cU c k U c

    φ  = − − −   −− −      
, 

( ) ( )
2

2
2 12

y

k Ng
U c k U c

 
= − φ − − 

. 
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