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Upper branch magnetism in quantum magnets: Collapses of excited levels
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In many quantum magnets, especially the rare-earth ones, the low-lying crystal-field states are not well
separated from the excited ones and thus they are insufficient to describe the low-temperature magnetic
properties. Inspired by this simple observation, we develop a microscopic theory to describe the magnetic physics
due to the collapses of the weak crystal-field states. We find two cases in which the excited crystal-field states
should be seriously included in the theory. One case is when the bandwidth of the excited crystal-field states
is comparable to the crystal-field gap. The other case is when the exchange-energy gain between the low-lying
and the excited crystal-field states overcomes the crystal-field gap. Both cases could drive a phase transition and
result in magnetic orders by involving the excited crystal-field states. We dub the above physics “upper branch
magnetism and phase transition.” We discuss the multitude of magnetic phases and the emergent selection rules
for the detection of the underlying excitations. We expect that our results will help improve the understanding of
many rare-earth magnets with weak crystal-field gaps such as Tb,Ti,O; and Tb,Sn,O7, and will also provide a
complementary perspective to the prevailing local “J” physics in 4d /5d magnets.
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I. INTRODUCTION

Frustrated quantum magnetism has been a rather active
field of research, both theoretically and experimentally [1,2].
The interest not only lies in the possibility of searching for
a novel quantum phase of matter and the related phenom-
ena [1-5], but also arises from the vast families of quantum
materials with frustrated magnetic interactions [1,3,6—8]. This
prosperous field requires both a microscopic understanding of
quantum materials and their quantum chemistry and a the-
oretical understanding of abstract and fundamental concepts
for quantum matter. More importantly, it establishes a bridge
between fundamental theories and experimental phenomena.
The first step in a theoretical understanding of these complex
quantum magnets is to understand the microscopic degrees
of freedom. For (magnetic) Mott insulators, the conventional
recipe is based on Hund’s rules that clarify the microscopic
local moment structure [9]. From the interaction of the local
moments, one can then establish a microscopic many-body
model for the system.

For the rare-earth based quantum magnets that are cur-
rently under active study [3,6,7], the crystal-field effect is an
important ingredient in the understanding of microscopics.
The widely accepted standard approach is to understand the
crystal-field level and find the local ground states [9]. The
local ground states can be trivial singlets, usual Kramers
doublets [10-18], dipole-octupole doublets [19-25], non-
Kramers doublets [26-33], triplets, quartets, and so on de-
pending on the symmetry of the crystal-field environment
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and the nature of magnetic ions, and these local ground
states control the low-temperature magnetic properties of
many rare-earth magnets. This standard approach has found
great success in the study of rare-earth pyrochlore magnets
such as Yb,Ti,O7 [10,15,34,35] and Er,Ti,O7 [35-39], rare-
earth triangular magnets such as YbMgGaO, [13,40-53],
and rare-earth-based double perovskites [54]. The local
moment structure of the iridate family such as hyper-
kagome Naylr;Og [55-57], honeycomb Na,IrO; [58-60],
hyper-honeycomb S-Li,IrO; [61], and harmonic-honeycomb
Li,IrO; [62] may also be interpreted under this scheme. The
success of this approach requires that the crystal-field gap
between the ground-state doublet and the excited one be suf-
ficiently large. This requirement, however, may not always be
satisfied in many systems. In this paper, we provide a nonstan-
dard approach to understand the magnetic physics for systems
when the crystal-field gap is not so large. For our purposes,
we include the excited crystal-field levels and consider the
interactions between these levels from different lattice sites.
At the same time, we consider the hybridization between the
excited levels and the ground-state level from the neighboring
sites. From these ingredients in the microscopic analysis, we
illustrate this theoretical framework by applying it to a specific
example on a face-centered-cubic (fcc) lattice. Because the
magnetic physics emerges from the excited energy levels, we
dub this piece of physics “upper branch magnetism.”

The remaining part of the paper is organized as follows. In
Sec. II, we first introduce our microscopic model for the spe-
cific case that we consider. In Sec. III, we use both the Weiss
mean-field method and the flavor wave theory to establish the
full phase diagram of this model, and we explain the magnetic
excitations. In Sec. IV, we explain the emergent selection
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FIG. 1. (a) The crystal-field level scheme for a magnetic ion on
a lattice. The lowest three states are viewed as an effective spin-1
local moment. “A” is the crystal-field gap. “- - - ” refers to the excited
doublets that are neglected in our theoretical analysis. (b) The ;" T
process. (c) One of the possible Si+S_/_ processes, i.e., S[+S_l._ [0)i[1); =
11):10);.

rules for the detection of magnetic excitations. This is asso-
ciated with certain symmetry properties of the ground-state
wave functions of the relevant magnetic phases. In Sec. V,
we conclude with a discussion about the general applicability
of our understanding to weak crystal-field quantum magnets,
and we present a list of systems and materials that share
some similarities in terms of local energy level schemes, phase
transitions, and universality.

II. MICROSCOPIC MODEL

The magnetic physics from the weak crystal-field levels
is quite general and applies to many different systems with
different lattice geometries. To illustrate the essential physics,
we focus on only one lattice. We study the interacting local
moments with weak crystal fields on the fcc lattice. To further
simplify the model and maintain the essential physics, we
consider the local crystal-field level scheme in Fig. 1. The
local ground state here is a singlet, and the first excited state
is a doublet. This crystal-field scheme could occur for the
rare-earth ion with an even number of electrons [63,64]. For
the rare-earth ion with an odd number of electrons, the ground
state must at least be a doublet (although the possibility of
being a quartet may still remain), and one then needs to
consider the interaction between these doublets. This would
complicate the problem and cover the essential physics that is
uncovered in this work.

If the crystal-field gap, A, is much larger than other en-
ergy scales that are specified below, the ground state of the
system would be a trivial product state of the local singlets.
There are other microscopic processes that compete with
the crystal-field gap. As we show in Fig. 1, one process is
the superexchange interaction between the upper doublets.
The other process is the hybridization between the ground
state and the excited doublet. Fundamentally, both processes

arise from the superexchange interactions. To distinguish
them, however, we quote them differently.

To model the minimal microscopic physics, we neglect any
additional excited states beyond the three states in Fig. 1.
The three states, one ground-state singlet and one excited
doublet, can be thought of as an effective spin-1 local moment.
We identify the ground-state singlet as the S° = 0 state, and
the excited doublet as S* = +1 states. From this mapping,
the crystal-field splitting can be regarded as a single-ion
anisotropy, i.e.,

Heer = A (85)°. (1)

The superexchange interaction between the upper doublet
is given as

Ho=) Tt —Ju(rfe + He) oo ()
(ij)

where the pseudospin-1/2 operator z; operates on the upper
doublet. For strong spin-orbit coupled systems, there are also
other types of doublet interactions (denotes as - - - ) such as
7,7t and 77 7; that are allowed by symmetry and should be
presented in the Hamiltonian. However, here we only consider
XX Z-type interactions and omit these terms for simplicity.

It is straightforward to establish the following relation
between the pseudospins and the spin-1 operators:

Z

T = ;PSP 3)

1t = 1P(SF)*P, )

where P; is a projection operator onto the upper doublet.
We introduce the hybridization as a conventional superex-
change, i.e.,

Higeria = — Y Ju(S7S7 +578]). ()
(i)

Summarizing the above results, we have our full minimal
model as H = Hcgr + Hex + Huybrig- This model hosts a U (1)
symmetry generated by spin rotation of an arbitrary angle
about the z axis. This continuous symmetry is due to an
oversimplification of our model, and it is expected to vanish
for realistic materials with strong spin-orbit coupling.

Here our model has effective spin-1 degrees of freedom,
which potentially support more kinds of orders than usual
spin-1/2 systems. It is well known that for spin-1 systems,
there are altogether eight nontrivial linearly independent oper-
ators that act on the local Hilbert space, namely $* and Q" =
2(S"SY 4 8"S") — 28, (1, v = x, ¥, 2). The expectation val-
ues of these operators can be used to characterize the orders
in different phases. Here, we mention that while § and 7+ =
%(QX" — Q)£ 2iQ" can be served as symmetry-breaking
order parameters, the operator Q% = (§%)? —% cannot be
served as an order parameter as the crystal-field splitting term
(5%) explicitly enters the Hamiltonian.

The further question is how to detect these orders ex-
perimentally. To answer this question, we have to look into
the physical nature of these orders. Generally, the answer
depends on the symmetry of the crystal field and the details of
crystal-field wave functions. Here we consider the situation in
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TABLE I. Physical properties of different magnetic phases. Both the FM,, state and the FQ,, state have a U (1) degeneracy characterized
by the angular variable 6. For the FM,, state, c? = (48], — A)/(192J,). Note that when J,/A = 1/48, we have ¢ = 0, |¥); = |0), and when
Jy — oo we have ¢ = 1/2; |W); becomes fully polarized in the xy plane.

Magnetic phases Dipoles Quadrupoles Local variational wave function Variational energy per site
Quantum paramagnet (Sy=0 () =0 |0) 0

FM;, (St)y £0 () =0 ce?|1) + /1 =2c2|0) +ce ?|1) —192¢%J,

FM, (59 #0 (t5) =0 1) or [T) Mt A

AFM, (S%) #0 () =0 le2Tiy with @ = (0, 0, 27) —17 + A

FQyy (S) = (T£) #0 %(em/zﬂ)—l—e*m/zli)) =3JL+A

which the crystal field has a D3, or O;, point group symmetry,
as both cases are consistent with fcc structure and support
the singlet-doublet crystal-field scenario that we proposed
here. In both cases, the doublet crystal-field levels carry an
E, irreducible representation, while the singlet level carries
either an A, or Ay, representation. For both cases, all effective
spin components S* are time-reversal odd and behave as
dipole moments, similar to usual spins. The dipolar order
directly couples to neutrons, thus it can be visible in elastic
neutron-scattering experiments. Meanwhile, the spin-bilinear
components Q*¥ behave as quadrupoles that are even under
time reversal, therefore they are often not quite visible in
such conventional experimental probes. We will discuss the
experimental relevance further in Sec. IV.

III. PHASE DIAGRAM

A. Weiss mean-field theory

To establish the ground-state phase diagram of the full
model, we adopt the Weiss mean-field method to decouple
interactions between different sites. The Weiss mean-field
approach is essentially a variational approach with simple
product states as the variational wave function. We express
here the trial ground-state wave function as a product state,

Wes) = [ 1¥):. (6)

To take the antiferromagnetic (AFM) ordering into ac-
count, here we set up a two-sublattice ansatz, i.e., |V); =
[W)4(|W)p), when site i belongs to the sublattice A (B). Here
|[W)4 and |W)p are independent single-site wave functions.
The A (B) sublattice is chosen exactly as the up (down) spin
sites in an AFM spin configuration on the fcc lattice with
wave vector Q = (0, 0, 27). This type of AFM ordering is a
common order pattern on an antiferromagnetically interacting
fcc magnet. The single-site state |\W); is then determined by
minimizing the energy per site E = (Wgs|H|Wgs)/Nsite- The
results are listed in Table I using the S* diagonal basis |5* =
1,0, 1). Our mean-field phase diagram is shown in Fig. 2.
We can understand the magnetic phases with interactions
involving upper branch (excited) states. The corresponding
order parameters for different phases are listed in Table 1.

In the large A limit where the crystal-field gap is dominant,
the ground state is a trivial product state of a nonmagnetic
singlet on each lattice site, which we dub the “quantum para-
magnetic state.” Such a state is protected by the energy gap
A and hence is stable against small perturbations. When the

interactions in Hex and Hyybig become large enough such that
the energy gain from the exchange or hybridization overcomes
the crystal-field gap, various magnetic orders can be realized.
The J, term favors spins to form a dipolar order along the z
axis, leading to the FM, (AFM,) state in the left (right) side
of the quantum paramagnetic state [see Figs. 2(a) and 2(b)].
Similarly, the J, term favors the dipolar order with spins on
the xy plane. This gives the FM,, state in the upper side of
Fig. 2(a). Finally, the hybridization term J, favors spins to
form quadrupolar order with the director of the quadrupolar
order on the xy plane, giving the FQ,, state in the upper part
of Fig. 2(b). Both the FMyy and FQ,, states spontaneously

(a) 0.04F
FM,,,
L0.02t s
- FM, AFM,
Quantum
Paramagnet
(013 : .
-2 0 2 4
Jun) A
(b) 0.6F
<
3 0.3+
FM, AFM,
Quantum
Paramagnet
(03 - )
-2 4
Jun) A

FIG. 2. Phase diagram for (a) J/;, = 0 and (b) J;, = 0. The details
of the ordered phases are explained in the main text. The dashed
line in (a) refers to a continuous phase transition and the remaining
transitions are first-order.
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break the global U (1) symmetry. The details of these states
can be found in Table I.

Although both Hey and Hyyrig could drive the system out of
the quantum paramagnetic state, the mechanisms in which the
excited levels are involved are quite different. For the former
case, the neighboring magnetic states are driven by exchange
terms through first-order transitions, reflecting the compe-
tition between the crystal-field splitting and the exchange
energy gain purely within the excited levels through, for
example, the 7,77, process shown in Fig. 1(b). For the latter
case, however, the hybridization term drives the system into
the FQ,, state through a continuous transition. The excited
states can hop between different sites via the hybridization
processes, and one such process is shown in Fig. 1(c). Huybria
hence introduces the bandwidth to the excited states, and the
criticality is obtained when the bandwidth is comparable with
the crystal-field gap. To further clarify this point, we study the
instability of the quantum paramagnetic state from the flavor
wave theory below.

B. Flavor wave theory and magnetic excitations

We adopt the flavor wave theory to investigate the spin
excitations and reveal the magnetic instability of the quantum
paramagnetic state [65]. Within this framework, different
roles that are played by H., and Hyypig Will be clear.

Under the flavor wave representation, the internal states of
a spin at site i are represented by three flavors of bosons,

bl 1) =

S; =m), @)

where |2) represents the vacuum state. An arbitrary on-site
spin operator O; can be written as Zm,n(m|0|n)bﬁmbin with
m,n = 1,0, 1. The physical Hilbert space is recovered under
the local Hilbert space constraint Y, b} b, = 1.

In the following, we will omit the site index i for simplicity.

The relevant on-site spin operators can be written as

% = 1(blb, — bib)), (8)
tt =bijb;,, T =blb,, 9)
(89> = bb, + blb;, (10)
ST = V2(bjb, + bib,). (11)
S~ = V2(blby + bib)). (12)

In the language of the flavor wave theory, different mag-
netic phases can be obtained by condensing corresponding
flavors of the bosons. For the quantum paramagnet of this
subsection, the b, flavor is condensed and

bly = by = [1 = bl,b;y — bl.b. 1", (13)

while the other two flavors of bosons represent the excited
states above the quantum paramagnetic state. The (quadratic)
flavor wave Hamiltonian is then obtained as

. i Br + A By,
H_Xk:xyk< B Biia)¥ (14)

where Wi = (b, b', )" and By =—2Jyy. with y =
> scos(k - 8), and & is summed over the 12 nearest-neighbor
vectors of the fcc lattice. The magnetic excitation with respect
to the quantum paramagnetic state has a twofold degeneracy
that is protected by the time-reversal symmetry of the quan-
tum paramagnet. The dispersion of the magnetic excitations is

or = [AQBy + M)V (15)

The magnetic excitations are fully gapped inside the quantum
paramagnetic state. As the system approaches the transition to
a proximate ordered phase, the gap of the excitation is closed.
The closing point is at the I point and J, = A/48. At this
critical point, the excitation spectrum disperses linearly near
the T point, contributing to a C, ~ T heat capacity behavior
at low temperatures.

It is apparent that the (quadratic) flavor wave Hamiltonian
depends on J;, while it does not depend on J, or J, . As we have
previously discussed, the hybridization term J;, would create
quantum fluctuations above the quantum paramagnetic state
and bring the dispersion to the excitation crystal-field state.
However, the exchange part He only acts within the upper
branch excited states and does not mix the upper branches
with the local crystal-field ground state. Therefore, the in-
duced transitions from the quantum paramagnet to ordered
states through Hex must be strongly first-order.

C. Flavor wave theory for the FM,, state

For the FM,, state, we choose the magnetization along the
X direction to break the continuous U (1) symmetry such that
the variational wave function has the form

W), = c|1) + V1 =262 10) + ¢ |T). (16)

We introduce a new basis for the three flavors of bosons via a
unitary transformation,

c V1 —2¢2 c b,

ap i

al=| & 0 % |l»]. a7

a . —2c2 . . —2¢2 -
2 i/ =2 22c —i2¢ i/ 22c bi

and we condense the ay flavor. The quadratic flavor wave
Hamiltonian reads

nip 0 ni3 0

1 0 m 0 m
— _ § : il 22 24
H= 2 q)k m3z 0 my 0 . (18)

0 my 0 mp

where the entries in the matrix are given by

myy = (1 —2¢2)(192¢%0, + A)
—[4(1 = 23y — 21 /2. (19)

miz = —[4(1 = 23, + U In /2, (20)

my = (1 —2c¢*)(192¢%0, + A) — A
—2(1 — 4 Iy, 1)

myy = 2(1 — 42V ywi, (22)

_ ¥ T
and @ = (q;,, 4,, a,q a_kz).
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FIG. 3. Flavor wave excitations for (a) the quantum paramagnet, (b) the FM,, state, and (c) the FQ,, state. We set the magnetization of the
FM,, state along the % direction, and the director of the quadrupolar order in the FQ,, state parallel to the x axis. The parameters are shown in
Fig. 4. The inset in (a) indicates the high-symmetry points in the Brillouin zone of the fcc lattice.

D. Flavor wave theory for the FQ,, state

For the FQ,, state, we choose the director of this quadrupo-
lar state along the x axis to break the U (1) rotational symme-
try. The single-site variational wave function is given as

V2

To describe the elementary excitations with respect to this
ground state, we introduce a new basis for the flavors of
bosons by the following transformation:

W) = —=(1) = 1), (23)

ag ﬁ 0 75 bl

— 1 1
a | = 7 0 7 by |, 24)
= 0 i 0/ \b

and we condense the aq flavor. The quadratic flavor wave
Hamiltonian reads

nip 0 ni3 0

1 0 m 0 m
_ i 22 24
H=3 R ms 0 my 0 | (25)

k
0 my 0  mp

where the matrix entries are given as

my = 12J1 — 2/ — J2)/4, (26)
mi3 = —ye(2J1 +J2)/4, (27
my =6J, — A, (28)

myy = 0, (29)

— ¥ il
and O = (4, qpy. a5, a_45)-

IV. EMERGENT SELECTION RULES
A. Selective measurements of dipole and quadrupole moments

In conventional experimental measurements such as neu-
tron and SR, one can only probe the dipolar orders while
the quadrupolar orders are not directly visible in conventional
magnetic measurements. The question thus arises of how to
experimentally detect the phases accompanied by quadrupole
components in our phase diagram. In previous works, some
of the authors have proposed the scheme of selective mea-
surements of dipole and quadrupole components using elastic
and inelastic probes [21,33,66], and a similar approach can be

used here. The dipole moment, S, is directly visible through
conventional magnetic measurements such as NMR and elas-
tic neutron experiment. Since the quadrupole moments do
not commute with dipolar ones along orthogonal directions,
when the neutron scattering measures the dipole components,
it creates quantum fluctuations to the orthogonal quadrupoles,
leading to coherent spin-wave-like excitations. This means
that although the quadrupole itself is invisible in a usual
neutron-scattering measurement, the dynamic excitations of
quadrupolar orders can be visible in experiments, and these
excitations carry information of the underlying quadrupole
structure.

To demonstrate the above discussion, we calculate the
magnetic excitations and the dynamic spin structure factors
for three representative states in Fig. 2 using the flavor wave
theory. The results are shown in Figs. 3 and 4. In the polarized
inelastic neutron-scattering experiment, one measures the dy-
namic spin structure factors

v 1 oo ik-(r;—r;)—iwt | QI v
Sk, w) = mZ/m dt * T (S 0)SY (1)),
1

(30)

where @, v = x,y, z represent the polarizations of incoming
and scattered neutrons. Thus one can read off signatures of the
dipole and quadrupole components separately from the elastic
and inelastic probes.

B. Emergent selection rules

In the plot of relevant dynamic spin structure factors
in Fig. 4, the two branches of magnetic excitations in the
quantum paramagnet are degenerate due to the time-reversal
symmetry, while only one branch of magnetic excitations in
the FM,, and FQXy states is visible. As we show below, the
latter arises from the emergent selection rules.

We start with the FM,, state. For this state, the elastic
neutron scattering is able to reveal an in-plane ferromagnetic
dipolar order (e.g., along the X direction for the choice in
the previous section). For the usual ferromagnet for spin-1,/2
degrees of freedom, the dynamic spin structure factor for
spin components along the ferromagnetic ordering direction
measures the two-magnon continuum. For our effective spin-
1 local moments that have a larger physical Hilbert space,
the microscopic interaction in the Hamiltonian could access
the large Hilbert space at the linear order. This qualitatively
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r X W L r

FIG. 4. Dynamic spin structure factors of (a) the quantum paramagnet, (b) the FM,y state, and (c) the FQ,, state. All three states have
nonvanishing quadrupole components that can be detected via inelastic neutron-scattering measurements with corresponding polarization
channels. Only coherent excitations are considered here. Please see the full spectra of the flavor wave excitations in Fig. 3 as a comparison.

explains the presence of coherent magnetic excitation in
Fig. 4(b). More specifically, within the flavor wave theory, the
S* operator in the reciprocal space is written as

Y =i(1 —4c?)ay, —d' ), 3D

where the static piece for the ferromagnetic order has been
ignored.

The absence of one branch of magnetic excitation in
Fig. 4(b) is a consequence of the emergent selection rule. Our
Hamiltonian is invariant under the following Z, symmetry
operations generated by

Gx — efijr Z].(S;Jrl)’ (32)
Gy — e*in Zj(Sierl)‘ (33)

For the FM,, state, we have chosen the dipolar magnetization
along the £ direction such that the G, symmetry is preserved.
The flavor wave operators a; and a, (in Sec. III C) are odd and
even under G,, respectively. Therefore, the S* operation only
excites the a, flavor with even parity while the a; band that
has odd parity is hidden in this measurement.

The same strategy can be applied to the FQ,, state (we
have chosen the quadrupolar director along the x axis), but
we need to consider the Gy symmetry. Following the same
argument, one can see that in the S¥ channel only odd-
parity a; excitation can be measured in the spectrum. More
explicitly, the S* operator is written as

Si = —i(ay, —a',)) (34)

in the flavor wave formulation of Sec. III D.

V. DISCUSSION

In summary, we have explored the physical consequences
of weak crystal-field splitting for which the standard approach
is insufficient to capture the low-energy magnetic physics.
For concreteness, we study a model system with the weak
crystal-field level scheme on the fcc lattice. Using the Weiss
mean-field method, we obtain the phase diagram of this
model. We also adopt the flavor wave theory to obtain the
magnetic excitations and reveal the effects of the excited
crystal-field states. There are two different mechanisms from
which various magnetic ordering happens. One is related to
the exchange within the excited levels and the other is related

to the hybridization between the ground-state level and the
excited levels. The fcc lattice may not be highly frustrated, and
the states are mostly ordered in our study. On more frustrated
lattices, the collapses of the excited crystal-field states may
lead to more possibilities such as a quantum spin liquid.

As for the physical relevance, we are currently not
aware of many relevant physical systems that explicitly
show the upper branch magnetism. The pyrochlore material
Tb,Ti,O; (and maybe other Tb-based pyrochlore magnets,
e.g., Tb,Sny07) [63,75-82] can be thought of as a potential
relevance, except that the local ground state for the Tb>* ion
is a doublet. The crystal-field gap is not as large as other well-
known pyrochlore magnets such as Yb,Ti;O7 or Er,Ti,O5.
For example, Ref. [80] actually measured a 4 gap of 1.5 meV
between the ground-state doublet and the excited-state doublet
in Tb,Ti»O7. This gap is comparable to the Curie-Weiss tem-
perature and the bandwidth of the magnetic excitations [80].
Thus, the usage of the effective spin-1/2 local moment for
the ground-state doublet of the Tb>* ion may not apply very
well in certain cases. The magnetic entropy of Tb,Sn, 07 does
increase beyond R In 2 as the temperature is increased beyond
4 K [81]. The inelastic neutron scattering measurement in
Tb,Ti,O; shows a clear dispersion for the excited doublets
with a renormalized gap [83]. All these phenomena suggest
the importance of the upper branch physics. It would be inter-
esting in the future to actually suppress the weak crystal-field
gap and drive the system to magnetic orders by collapsing
the excited levels. In fact, Tb,Sn,O; experiences a magnetic
ordering transition around 1 K [81]. The actual modeling
of the magnetic physics should be in terms of an effective
J = 3/2 local moment that takes care of both the ground-state
doublet and the first excited-state doublet, and the interaction
would naturally be a I'-matrix model.

For the 4d/5d magnets such as iridates and others, the
often used description is in terms of the spin-orbit-entangled
local moment J [84]. This should certainly be the case if
the local ground state J is well separated from the excited J
states. The 4d /5d orbitals, however, are very extended. Very
often, the hybridization of the superexchange involving the
upper excited J states may not be that small compared to the
local energy gap due to the spin-orbit coupling. This piece of
physics has been nicely invoked by Khaliullin in Ref. [70]
for the 4d*/5d* magnets, where he described the physics
as the singlet-triplet condensation to make the analogy with
the triplon condensation in the dimerized magnets. Here we
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TABLE II. List of physical contexts that support similar upper branch physics. “Relevant condensation” in the table refers to either a field

driven or an exchange interaction driven transition.

Systems and Materials

Local Low-lying States

Relevant Condensation Refs

Dimerized magnets

A-site spinel FeSc,Sy

4d*/5d* Mott insulators (Ca,RuQy)
3d? /4d® Mott insulators

Magnets with weak crystal-field gaps

Singlet of two neighboring spins
Spin-orbital singlet with e, orbitals
Spin-orbital singlet with #,, orbitals
Spin-orbital singlet with #,, orbitals

Local low-lying crystal-field state

Triplon from the triplets
Spin-orbital excited states
Spin-orbital excitons
Spin-orbital excitons
Excited crystal-field states

Ref. [67]
Refs. [68,69]
Refs. [70-73]

Ref. [74]

This work

think this physics is not restricted to the 4d*/5d* magnets
whose local ground state would be a trivial spin-orbit singlet
with J = 0, but extends broadly to many other nonsinglet
spin-orbit-coupled magnets (as long as the spin-orbit-coupling
induced local gap is not large).

In Table II, we list the relevant systems/materials that
could share a similar physics to the upper branch physics in
this work. Our result simply provides an additional member to
this list of “triplon”-like physics. We expect that the universal
physics like the Higgs mode (or the amplitude mode) could

also emerge in the relevant materials of our work where the
condensation or criticality is from the collapse of the excited
crystal-field states.
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