Data and Risk Analytics for
Production Planning

Suggested Citation: Liao Wang and David D. Yao (2018), “Data and Risk Analytics
for Production Planning”, : Vol. issue, No. XX, pp 1-14. DOI: XXX.

Liao Wang
lwang98@hku.hk

David D. Yao
yao@columbia.edu

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval.




Contents

A wWw NN =

Motivation and Description of the Problem . . . . . . ..
Modeling Approach and Methodology . . . . . . ... ..
Results and Insights . . . . . ... ... ... ... ....

Further Research



Data and Risk Analytics for

Production Planning
Liao Wang! and David D. Yao?

L Faculty of Business and Economics, The University of Hong Kong;
lwang98@hku.hk.

2 Department of Industrial Engineering and Operations Research,
Columbia University; yao@columbia.edu.

ABSTRACT

We examine the classical productional planning model, where
a capacity decision that has to be made at the beginning of
the planning horizon is the primary means to protect against
demand uncertainty. We provide a critique on the model
focusing on its profit maximizing objective, its underlying
assumptions on demand and related forecasting scheme, and
its overall business relevance (or the lack thereof); and we
do so in the context of data, risk and analytics. Specifically,
we will consider minimizing a shortfall risk relative to a
profit target, with a demand model that captures impacts
from the financial market and can be learned from data
sets that are application specific. With a jointly optimized
production and hedging strategy, we show the new model
outperforms traditional approaches in risk mitigation as well
as in expected profit.

1 Motivation and Description of the Problem

Driven by the economy of scale, modern production typically runs in
batches: to produce a sizable batch of goods is often cheaper and more
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profitable. This calls for a production quantity or capacity decision.
Following this decision, it takes time to complete the production for
goods due to many other subsequent actions (e.g. procuring raw ma-
terials, organizing the work force, arranging production lines as well
as the physical production processes). This time span, usually called
production lead-time, is referred to as the planning horizon below and
denoted [0, 7.

The challenge is, when the capacity decision is made, at time 0,
there will only be limited visibility about demand on the produced
goods at T', as T' can be several weeks or months away; whereas once
the capacity decision is made, it is often impossible or too costly to
change. For example, in the automotive industry, suppliers of certain key
parts (with high costs and/or long lead-times) will require car makers to
make firm commitments on order quantities. (Ernst & Young Advisory
Services, Automotive & Transportation Report, “Shifting Gear — Ca-
pacity Management in the Automotive Industry.”) Thus, the uncertainty
involved in demand at the end of the horizon implies the possibility of
over-production and under-production, both will negatively impact the
profit.

Production planning teaches how to make the time-zero capacity
decision so as to mitigate the negative impact of demand uncertainty.
A representative approach is the newsvendor (NV) model. It makes this
decision so as to maximize the expected terminal (time T") profit; and
unsurprisingly, its starting point is the demand distribution, which can
be estimated from some forecasting scheme.

The goal of this paper is to provide a critique on this classical ap-
proach to production planning, by examining both its profit-maximizing
objective and its demand modeling (or forecast). We will bring forth the
following important points, supported by analyses, results and insights:

e Maximizing profit is not even wrong; it’s irrelevant, in the context
of a firm’s sales and operations planning (of which production
planning is a component). What’s relevant, and practical as well,
in this context is to address a risk measure as objective; or even
better, to characterize the entire efficient frontier, the risk-return
profile (curve) associated with the decision.
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e Demand modeling can be enhanced by bringing out explicitly
its functional dependence on certain financial assets (such as
commodities and exchange rates) and/or on the general economy
(motivation on this below). To specify this functional dependence
is quite doable via machine learning; and there’s no reason why
this should not be incorporated into and integrated with demand
forecasting schemes.

e With the enhanced demand model, one can develop a risk-hedging
strategy, a real-time control executed throughout the planning
horizon [0, T]; and this hedging strategy can be jointly optimized
with the time-zero capacity decision. The combined capacity and
hedging decisions can be shown to both reduce the risk and
increase the terminal profit from the classical model.

1.1 Classical Production Planning—A Critique

The classical approach to production planning is the newsvendor (NV)
model and its many variations. The basic model tries to find a production
quantity @ at time ¢t = 0 to supply a random demand Dy at time T > 0,
the end of the planning horizon (or production lead-time) when the
finished goods will supply demand; and the the objective is to maximize
the expected profit, maxg>o E[Hr(Q)], with

Hr(Q) = p(QADr) —e(Q - Dr)" =pQ — (p+)(Q - Dr)", (1)

where p is the unit profit (selling price minus cost), ¢ is the net cost
(cost minus salvage value) per unit, A denotes the min operator, and
(z)T := max{z,0}. As motivated above, in the context of production
planning, ) can be viewed as a proxy for capacity.

Taking derivative w.r.t. (), and recognizing

d‘é?E[(Q — D))" =P(Dr < Q) := F(Q),

where F(-) denotes the distribution function of Dy, yields the optimal
solution:

QW =F( 1), (2)



Taking variance on Hp(Q) in (1), we have

Var[Hr(Q)] = (p + ¢)*Var[(Q — Dr)*]. 3)

Direct derivation yields

TGValn (@) = 200+ PE(Q - D)L~ P(Dr < Q) 20 (4

That is, Var[Hr(Q)] is increasing in @, for all Q). Furthermore, from
(1), we know E[Hp(Q)] is concave in Q; and specifically, it is increasing
in Q € [0,QYV] and decreasing in Q > QNV.

Thus, we can conclude:

(i) For Q € [0, QNV], where QNV follows (2), E[H7(Q)] and Var[Hr(Q)]
form an efficient frontier: they are both increasing in ) — a larger
mean corresponds to a larger variance and vice versa.

In fact, more can be said about the efficient frontier; the following
result can be directly verified:

(i) Given m, let Qn(< QNV) be the solution to E[H7(Q)] = m, and
let mNV := E[H7(QNV)]. Then, Var[Hr(Q,,)] is increasing and
convex in m, for m € [0, mNV].

Denote v(m) := Var[Hp(Q,,)]. Then, the efficient frontier (m,v(m))
is an increasing and conver curve, meaning at a higher level of return
(mean) any further increase is associated with a even steeper incremental
increase in risk (variance). Thus, as we increase the production quantity
towards the profit-maximizing QV, the price we pay is the mazimal
incremental increase in risk.

Another weakness of the NV model is, it is out of context: who
is exactly its intended user? Production planning is part of a firm’s
SOP (sales and operations planning) process, by which the executive in
charge works out production decisions together with sales and operations
managers. In that context, the profit/revenue target must have already
been set by the firm’s board, and it is imperative for the executive to
meet (or beat) the target. In other words, maximizing profit is not even
a relevant objective, not to add the enormous risk associated with such
a pursuit as analyzed above.
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With this application context in mind, it is useful to modify the
classical NV model, replacing the profit-maximizing objective by mini-
mizing a risk measure, the shortfall: [m — Hp(Q)]", where the constant
m > 0 is a pre-specified profit target. Using the Hp expression in (1) and
considering the two cases pQ) < m or p() > m, we reach the following
result:

(iii) Given m, the solution to mingsoE[m — Hr(Q)]* = sNV(m)
is QVV(m) = A QNV, with QN following (2). Furthermore,
sNV(m) is increasing (and convex) in m, which constitutes an

efficient frontier.

Note when m > pQNV, QNV(m) = QNV, and it is direct to verify:
sV (m) = m — E[Hp(Q"V)]. (5)

That is, the shortfall will grow linearly in m. In this case, a production-
only decision becomes a handicap; and this motivates the risk-hedging
strategy, to be detailed below in §2.2.

Last but not least, the primary concern of production planning is
to deal with demand uncertainty. Specifically, the quantity decision @
in the NV model is to strike the right balance between over- and under-
production against the uncertain demand Dp that will only realize
at the end of the planning horizon. Thus, a central issue is demand
forecast, which traditionally is carried out via some statistical analysis
applied to past data (time series), so as to discern any trend (mean
or rate) and to characterize the fluctuation (variance or “noise”). Yet,
in this age of big data and analytics, one surely wonder, can’t we do
better?

2 Modeling Approach and Methodology

2.1 Machine Learning for Demand Modeling/Forecast

In Wang and Yao (2017a,b), we have developed a new demand model
that allows the demand rate to be a function of certain financial assets:

th = ,U,(Xt)dt + O'dBt, (6)



where X; = (th)le is a vector, with Xj; representing the price of

k-th financial asset at time ¢. B; is a Brownian motion that represents

the noise independent from X; and o > 0 is the associated volatility

parameter. To motivate, consider a couple of examples from corporate
reports as well as business news:

e A major producer for farming equipment recognizes agricultural

commodity prices as a significant risk factor affecting its sales.

Note the agricultural commodities are tradable via futures. (Deere

& Company’s 2017 10K Filing: Risk Factors, December 18, 2017.)

e Besides lower oil prices, demand for cars also increases as the
economic condition improves. A proxy for the economic condition
can be a stock index such as S&P500, which is tradable in the
market as an index fund or ETF. (Wall Street Journal, January
8, 2015, “GM CEO Sees U.S. Auto Industry Gains in 2015.”)

e Baltic Dry Index (BDI), which tracks freight costs of around
twenty routes, closely reflects the demand for dry-bulk shipping:
falling BDI usually accompanies weak sales of the shipping firms.
While BDI is known to be very volatile, it takes about two years
to build a ship, which makes vessel investment a risky decision for
the shipping companies. Recently, an ETF was created to track
the daily changes in the prices of ocean freight futures. (Forbes,
April 25, 2012, “High Ambitions, Rough Seas”; Reuters, March 8,
2018, “U.S. Fund Manager Breakwave to Launch First ETF for
Shipping Futures.”)

So far, no functional form is imposed on the rate function in (6),
and we allow this to be learned from data specific to any particular firm
in interest. To obtain p(-) from data, we apply machine learning (ML)
approaches, and this involves: (i) variable selection — identifying, from
a set of financial assets in the market, the ones exhibiting most relevance
to the demand; and (ii) function learning — finding the functional form
in the selected assets to describe how the demand rate moves with the
selected variables. We detail the procedure below.

Learning pu(-) from Data Assume the pre-processed data are in the
following format:
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e Demand: {AD;,i=1,---, N}, where AD; is the demand realized
for the i-th period which starts on time ¢; and ends on t;41.
Typically each [t;,t;+1] spans a month, a quarter or a year.

e Assets: The daily price data of asset k is in form of { Xy, ;,i =
1,---,N,j=1,---,N;}. Here t;; is the time of j-th trading day
within [¢;, t;11] (thus N; is the total number of trading days within
this period). Then, X;,; = (X, )j—; is the vector of asset prices
on tij-

Accordingly, (6) is discretized as the following:

N;
AD; = 6;u(Xy,,) +0/6i&, i=1,---,N. (7)
j=1

On the right hand side, the first term (the sum) is the quadrature
approximation for the time-integral in (6), and J;; are the associated
weights which only depend on the time points ¢;;. The second term
uses the distribution of Brownian increments, and &; are i.i.d. standard
normal random variables (which are also independent from Xy,.); 6; =
t;+1 — t; are also constants.

Variable Selection. There is a rich set of variable selection methods;
refer to Guyon and Elisseeff (2003). Among others, linear predictor with
a variable selection feature is immediately applicable. Specifically, this
means imposing (x) = fo + 3K, Bray (for variable selection purpose)
and using algorithms to reduce some of the f; to 0; then, variables
associated with non-zero i are selected. One commonly used approach
is £1-regularization, and here it amounts to solving:

N 4 N; K N; 9 K
o min ; 5 {ADi—ﬁo(; 5ij) _kZ::l ﬁk(; 5z‘ijtij)} +>\kz::1 |Bkl;
A > 0 is a chosen tuning parameter that can be set to control the number
of selected assets. The formulation above is essentially a Least Absolute
Shrinkage and Selection Operator (LASSO) (Tibshirani (1996)) with
Z;V:il 0;j Xkt;;, the daily average asset price over the i-th period, as the
k-th predictor.

Function Learning. Based on (7), finding the functional form of p(-) in
the selected assets can be cast into the following generic least squares



problem:
' N 1 N; 2
211615{1 ; 5—2 [ADZ' — J;l 5ij/L(Xtij )} ; (8)

where U is the function space of candidates of y(-). The problem above
can be further reduced to structured regression by imposing restrictions
on U. Specifically, pu(-) is represented by a linear combination of basis
functions (Hastie et al. (2009)):

M
p(x) = Bmbm(x;0). 9)
m=1

Each by, (x;0) is a basis function with a specified functional form pa-
rameterized by . Rearranging the terms, (8) reduces to:

N 4 M N; 9
min > [AD; = 3 B (Y 0ibm(Xa,;0)) | (10)
Bmd =] O m=1 j=1
Common choices of the basis functions include polynomials, logarithm,
and logit functions.

In Figure 1, we illustrate a preliminary study of General Motors’s
sales versus S&P500. In the graph on the left side of the figure, we
examine the relationship between the firm’s monthly sales (y-axis) and
the daily (average) S&P500 within the same month (z-axis). A linear
fit appears to capture the relationship quite well, and the learning is
further improved by using a logit function. The plot presented in the
graph slightly deviates from the demand model in (6) since the predictor
is ,u(fOT X,dt) as opposed to fOT p(Xy¢)dt. Results for implementing (6)
(with discretization in (7)) are collected in the table next to the graph.
Note, it is obvious that the linear model in the table coincides with
that in the plot. For logit model, there is a slight modification to the
functional form but the improvement from the linear fit is not altered.

2.2 Incorporating the Hedging Strategy

With the new demand model, in addition to the one-time capacity
decision that must be made at t = 0, we can carry out a real-time
hedging strategy throughout the planning horizon [0,77], by taking
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Figure 1: Monthly sales of General Motors versus S&P500. In the graph,
y-axis represents monthly sales (in units) and z-axis represents daily average
of S&P500 within the same month. For the graph, “linear” stands for u(x) =
Bo + 1z (z is the daily average of S&P500 over a month); “logit” stands
for p(2) = Bo + P1log(2/(1 — 2)), where 0 < & < 1 is the transformed x:
&= (x—L)/(U-L) with (L, U) = (1000, 5000). For the table, “linear” stands
for pu(x) = By + iz (z is the daily quote of S&P500); “logit” stands for
w(z) = Bo + f1log(2/(1 — &)) with & defined in the same way as above.

105 General | Motors (2010 - 2016)

32 . data
logit, R%= 59.7%

- - - linear, R?=57.7%

monthly sales

model R?
linear 57.7%
logit  60.8%

1000 1200 1400 1600 1800 2000 2200 2400
daily average of S&P500 over the same month

positions on the underlying asset(s) involved in the rate function. So,
the new problem formulation is as follows, where to facilitate exposition,
we consider a single asset X; (instead of the vector X;):

inf E{[m ~ Hr(Q) — xr(9)]"} (11)

Q20,9

t
st oxe = /0 0sdXs > —C, 0;¢€ ]:tX, t € [0,T].

Here, m > 0 is the given target and Hrp(Q) is the payoff due to pro-
duction, both following what have been specified in §1.1; y7 (1) is the
terminal wealth from the hedging strategy 9 := {6, t € [0,T]}, where
f; denotes the position taken at time ¢ on the underlying asset with
price X;. For simplicity, assume X; follows the geometric Brownian
motion, the standard asset price model; with additional complexity, X;
can be allowed to follow a general diffusion process.

Note, by restricting the hedging strategy to {F;X}, the filtration
generated by {X;}, we are pursuing a formulation with “partial infor-



10

mation”. This is often a good representation of reality: in practice the
hedging/trading decision is often a real-time decision taking input from
the financial market, as embodied in the filtration {F;X}. It would be
unrealistic to assume that one could simultaneously also keep track of
demand projection, which typically involves piecing together disperse
information garnered from polling the sales force, and is hence updated
much less frequently, at much longer time scales. Thus, in the research
literature partial information is an important model in its own right;
see, e.g., Caldentey and Haugh (2006).

Optimal Hedging Strategy To solve the above problem, we first as-
sume @ is given. Then, the hedging problem is solved through a convex
duality approach (refer to, e.g., Pham (2009)). Applying Jensen’s inequal-
ity, along with conditional expectation on X7 and Ap := fOT w(Xy)dt,
we first turn the real-time hedging problem into a static optimization
problem:

min E[(m — Hr — Ve) '] st Ve >—C, EM(Vp) <0, (12)
Note the objective function in the above optimization problem can be
shown to be a lower bound of the original objective in (11). On the
other hand, the constraint EM (V7) < 0 was not present in the original
problem. It follows from x; being a PM-supermartingale. (Here PM
denotes the probability under the risk-neutral measure — as opposed to
the physical measure, without the superscript M; and EM denotes the
expectation under the risk-neutral measure.) This additional constraint
serves the purpose of closing the duality gap: the problem in (12) can
be shown to be equivalent to the original problem in (11).

The above dual problem is solved by a standard Lagrangian multi-
plier approach, and the solution is:

Vi=(p+o)(Q—DE)* +(m—pQ+C)1{\Zr <1} - C, (13)

where \* is the (positive) Lagrangian multiplier, Zp := SSI = e~ "1Br—"T/2
is the Radon-Nikodym derivative, and Dy = Ap + J\/T(Ifl()\*ZT)
is the “proxy” for Dr (as the latter is not accessible due to partial
information) with ®~! being the inverse distribution function of the
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standard normal random variable. Once V(= x7) is derived, the opti-
mal hedging strategy 0; follows from It6’s Lemma along with martingale
representation theorem.

Optimal Production Quantity Under the optimal hedging strat-
egy corresponding to V7 in (13), the minimized shortfall (with @ given)
can be expressed as

s(m, Q) = (p+ E[(QADF — DF)*] + (m —pQ + C)P(\"Zr > 1).(14)

It can be shown (with considerable effort, as both A* and Dy also
depend on @) that the above is a convex function of Q. Thus, finding
the optimal solution Q*(m), jointly with the optimal hedging, is a
readily solved convex minimization problem. To make it even better, a
universal upper bound (i.e., independent of m) on the optimal @) can
be explicitly identified, and this further facilitates the line search for
Q*(m). Furthermore, it can be shown that s(m, @*(m)) is increasing in
m, hence constitutes an efficient frontier — setting a higher target will
lead to a higher shortfall.

3 Results and Insights

From the V' expression in (13), observe the following:

e m— Hp(Q) = (p+¢)(Q — DE)* + (m — pQ) is the remaining gap
(from the target) after the payoff from production.

o The first term of Vi, (p + ¢)(Q — ﬁ;)ﬂ can be viewed as a “put
option”. It tries to close the first part of the gap, (p + ¢)(Q —
D; )*, but needs to use Drasa surrogate for D due to partial
information.

e The second term of V7' is a “digital option”, (m—pQ+C)1{\*Zp < 1}.
(Note A\*Zp < 1 if and only if Dy < 00.) It aims to close the other
part of the gap (after subtracting C).
In summary, the shortfall hedging strategy takes the form of two options,
a put option and a digital option, and the underlying for both is the
“surrogate demand” ﬁT, necessitated by the partial information on
the real demand. Since the risk measure is shortfall, both options
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are designed to contribute more terminal wealth, so as to supplement
production and help closing the gap from the target.

Note here any loss from the hedging strategy is limited by C,
in a pathwise (i.e., almost sure) sense. On the other hand, sensitiv-
ity /asymptotic analysis will show that the upside of hedging is closely
tied to m, which in our application setting is usually set at no greater
than pQNV. This is reassuring as it guarantees that the hedging strat-
egy will not result in any extreme swings on profit/revenue (in either
direction).

Next, we compare the efficient frontiers of the NV model (with a
shortfall objective) and our new model highlight above. In Figure 2, the
left panel, we plot the two efficient frontiers. Clearly the new model
results in a significant improvement: for any target value (z-axis), the
corresponding shortfall (y-axis) is substantially lower. Of particular
interest is the range of target values (moderately) above 4100, which
coincides with m = pQ™V in this problem instance. Recall from (5), for
m > pQNV, the shortfall of the NV model will increasing linearly in m,
at a slope of 1; and this is confirmed here in the figure. In particular,
note the right panel, which plots the rate of increase (first derivative)
of the frontier curves. In contrast, with the addition of the hedging
strategy, the increase of the shortfall is at a substantially lower slope
(peaked at slightly below 0.7, and this is achieved via a modest hedging
budget of C' = 0.1m).

Another insightful result is this. One might be concerned that by
minimizing a shortfall objective, we may do poorly in the expected profit
at T', the end of the horizon. It turns out this concern is unwarranted.
It can be shown (Proposition 9 in Wang and Yao (2017b)) that the
shortfall-minimizing objective leads to a jointly optimized production
and risk-hedging decision that will contribute more profit than the
profit-maximizing production-only decision. In other words, even if
one chooses to do profit maximization, what can be achieved (via a
production-only decision) will be inferior to minimizing a shortfall risk
measure along with a hedging strategy. Indeed, the improvement in
expected total terminal wealth (at 7"), above and beyond the NV model,
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Figure 2: Efficient Frontiers. The left panel shows the shortfall as an increasing
function of the target level, for both the NV model and the new model with risk
hedging. The right panel shows the derivatives (w.r.t. the target) of the two curves.
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can be lower-bounded as follows:
E[H7(Q*(m)) + V7] — E[Hp(QYY (m))] = B(m — pQ"V)" + Cy > 0,

where 8 € [0,1] and ¢ € [0, A\] are two positive parameters that only
depend on given data, via A (recall A is the Lagrangian multiplier from
solving the hedging problem).

4 Further Research

So far, risk originating from the supply side is not considered — we
have assumed a constant production cost ¢ (per unit). In reality, this
cost may also depend on certain financial assets with volatile prices.
Examples include commodities, taking into account that a bulk of cost
is due to raw materials; another example is exchange rates, given the
global nature of supply chains. Thus, a better model is to replace ¢
with ¢(X;), in the same spirit as the demand rate function pu(X;) in (6).
(Without loss of generality, X; can be a vector that collects the union
of assets that impact cost and demand respectively.) This way, certain
functional dependence as well as statistical correlation can be built into
the cost and demand models, and will be reflected accordingly in the
hedging strategy. We are currently working on this more general model,
and expect to report results in the near future.
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