Integrated Production Planning
and Risk Hedging

Suggested Citation: Liao Wang and David D. Yao (2017), “Integrated Production
Planning and Risk Hedging”, : Vol. issue, No. XX, pp 1-12. DOI: XXX.

Liao Wang
lw2489Q@columbia.edu

David D. Yao
yao@columbia.edu

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval.




Contents

B w N =

Motivation . . . . . . . . .. 1
Problem Formulation . . . . . .. ... ... ... .... 3
Approaches and Solutions . . . . . .. ... ... ... 6
Results and Insights . . . . . ... ... ... ... ... . 9
Further Research . . . . . . . . . . ... ... ... .... 11



Integrated Production Planning
and Risk Hedging

Liao Wang' and David D. Yao?

L2 Department of Industrial Engineering and Operations Research,
Columbia University; lw2489@columbia.edu, yao@columbia.edu.

ABSTRACT

We study production planning integrated with risk hedging.
In addition to using a one-time production quantity decision,
made at the beginning of a planning horizon, as a way to
manage demand uncertainty, we illustrate how to construct
and execute a hedging strategy throughout the horizon,
as a better and more effective approach to mitigating the
risks involved. Furthermore, whereas traditional production
planning models focus on the expected net-profit as an
objective function, we study two risk measures, variance
and shortfall. In both cases, we characterize the efficient
frontier, and demonstrate the improved risk-return profile
over a production-only decision.

1 Motivation

Production planning is essentially a capacity decision: how much to
produce, so as to meet certain revenue/profit target, based on demand
forecast and taking into account its uncertain nature. Once this decision
is made, many other actions (and decisions) will follow — ordering
raw materials and/or sub-assemblies, organizing the work force, setting
up production lines, as well as carrying out the physical process that
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produces the goods. The time between making the production quantity
decision and the time when all units being produced is usually called the
(production) “lead time,” which we will also refer to as the “planning
horizon,” denoted [0, T] below.

Here’s the rub. The actual demand, when it materializes at the end
of the planning horizon, can differ substantially from the forecast at the
beginning of the horizon when the production quantity decision was
first made and then implemented, resulting in serious consequences due
to either over-production (units that cannot be sold will incur a loss)
or under-production (unmet demand means reduced profit).

The classical approach to managing this risk is the newsvendor (NV)
model. It tries to find a production quantity @ so as to maximize a
payoff function (in expectation), which takes the form of the net profit
from sales (the smaller of @ and the realized demand) minus the net
cost (cost minus salvage value). The optimal production quantity Q* is
widely known to be determined by the so-called “critical ratio,” p/(p+c)
(with p being per unit profit and ¢ per unit cost), applied to the inverse
distribution function of the demand. The demand distribution is, of
course, determined by forecast and typically takes the form of a mean
(or rate) plus a Gaussian noise, meaning a normal distribution with
mean and variance say, i7" and 27, with fi and & being two parameters
(determined by forecast) representing the demand rate and volatility.

In Wang and Yao (2017a,b), we have developed a new demand model
that makes the demand rate a function of a financial asset, denoted
f(X¢), where X; is the asset price at ¢ € [0,T]. This is motivated by
the following business cases:

e A firm that manufactures certain equipment for planting or har-
vesting corn, a tradable commodity, experienced volatile demand
for its product as the corn price fluctuates on the futures market.
(Wall Street Journal, May 14, 2014, “Deere Needs to Wait to
Harvest Its Bounty.”)

e Wal-Mart experienced increased demand during the last financial
crisis as consumers sought lower-priced goods and its smaller-sized
competitors went out of business. ( Wall Street Journal, Nov 14,
2008, “Wal-Mart Flourishes as Economy Turns Sour.”)



2. Problem Formulation 3

e The U.S. automobile industry sharply increased forecast and pro-
duction when the last recession ended. (Wall Street Journal, Jan
14, 2014, “Auto Makers Dare to Boost Capacity: North American
Factories Will Build One Million More Cars a Year.”)

In the first case (“Deere”), X; is, naturally, the price of corn futures;
in the other two cases, Xy can be taken as the price of a broad market
index (e.g., S&P500) serving as a proxy for the general economy.

This new model not only captures what really drives the demand for
a product, more importantly, it opens a new dimension in production
planning. In addition to using the production quantity decision as a way
to manage demand uncertainty, we can also do hedging — by taking a
position on the underlying financial asset and adjust it from time to
time throughout the planning horizon — to mitigate the risk in demand
uncertainty. Specifically, in addition to the quantity decision @, which
is made at ¢ = 0, we can now pursue a risk-hedging strategy, denoted
V= {0, t € [0,T]}, with 6; being a position (number of shares long or
short) on the underlying asset at time ¢. More details about this will
be spelled out in §2 below.

Once risk is integrated into production planning, it only makes sense
to consider risk measures as objective functions, instead of the mean
payoff function as in the NV model. In this regard, we consider two
risk objectives in Wang and Yao (2017a,b). The first one is to minimize
the variance of the total payoff (from both production and hedging),
subject to its mean achieving a pre-specified target. The second one
is to minimize the shortfall, the gap between the total payoff and a
pre-specified target. The two models will be overviewed in the rest of
this article. Specifically, we present the problem formulations in §2, with
solutions detailed in §3, and results and insights highlighted in §4.

2 Problem Formulation

The Demand Model

Let X; denote the price at time ¢ of a tradable asset (including a broad
market index such as S&P 500), and assume it follows a geometric



Brownian motion:
dXt = Xt(udt + O'dBt), (1)

where 4 and o are positive constants, and B; is the standard Brownian
motion (BM). Let D; denote the (cumulative) demand up to ¢, and
assume the following dynamics:

dD; = j(Xy)dt + 5dB, (2)

where & is a positive constant; fi(x) > 0 is a non-negative function,
and B; is another BM, independent of B;. Below, we will use F; to
denote the filtration associated with both BM’s, B; and By; and when
we consider partial information — information on the asset price but
not demand forecast, we will use F;* to denote the filtration associated
with B; alone.

Note although B, and Bt are assumed independent, the demand Dy
above does depend on By, and does so in a very strong, first-order manner
via the rate function f(x). (That is, much stronger than statistical
dependence via, for instance, adding a dB; term in (2).) Also note that
here D, is the forecast demand; the actual demand will only realize at
t =T and beyond, not before. Thus, that D; need not be increasing in
t (due to the dB; term) is not a handicap, as forecast typically will be
adjusted up and down over time.

To implement this new demand model, the additional work appears
quite minimal. All one needs is to add a machine learning scheme to
the traditional demand forecast routine. Specifically, first machine-learn
the functional form of the rate function fi(-), and then use forecast
to fine-tune certain parameters involved in the function. To illustrate,
we take monthly sales data from John Deere over the period 2011-15,
along with the daily price data for corn futures over the same time
window. Applying relevant machine learning techniques, we conclude
that a linear function is a good fit for fi(-). The same analysis is also
applied to General Motor’s monthly sales data versus S&P500. Refer to
Figure 1 for both cases. A usual forecast routine can then be called to
fine-tune the parameters involved in the linear function, its intercept
and slope.
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Figure 1: Monthly sales versus tradable asset prices.
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Mean-Variance Hedging

There are two components in the payoff function — the terminal wealth
at t =T, respectively, from production and from hedging:

Hr(Q) =1~ (p+ Q- D), xr(0) = [ " hax,

where @ denotes the production quantity; p is the unit profit (selling
price minus cost), and ¢ the unit net cost (cost minus any salvage value);
0, is the position (number of shares) taken on the asset with per share
price X;. The decisions variables are Q) and ¥ := {6, t € [0,T]}. Note,
DJTr enforces the non-negativity of the realized demand at 7.

For a mean-variance formulation, the problem we want to solve is:
B(m) = inf {VarlHr(@) + xr(9)] | ELHr(@) + xr(0)] =m}, (3)

i.e., we want to minimize the variance of the total payoff, subject to its
mean meeting a given target level m. This formulation essentially follows
the same spirit as Markowitz mean-variance portfolio optimization
model (Markowitz (1987)). Another related study that optimizes a
mean-variance utility objective is Caldentey and Haugh (2006).



Shortfall Hedging

Here we are given a budget (or credit limit) C' > 0, to carry out the
hedging strategy; and we want to minimize the shortfall from a given
wealth level m (which can represent, for example, an earnings target):

inf E{[m ~ Hr(Q) - xr(¥)] "} (4)

Q>0,9

t
st Xt ::/0 0,dX, > —-C, 6,€FX, tel0,1).

Note, by restricting the hedging strategy to {F;¥}, the filtration gen-
erated by {X;} (or, equivalently, by {B;}) alone, we are pursuing a
formulation with “partial information”. This is often a good represen-
tation of reality: in practice the hedging/trading decision is often a
real-time decision taking input from the financial market, as embodied
in the filtration {F7*}. It would be unrealistic to assume that one could
simultaneously also keep track of demand projection, which typically
involves piecing together disperse information garnered from polling
the sales force, and is hence updated much less frequently, at much
longer time scales. Thus, in the research literature partial information
is an important model in its own right; see, e.g., Caldentey and Haugh
(2006).

3 Approaches and Solutions

Mean-Variance Hedging

To solve the problem in (3), we consider its conjugate dual:

A = intE{ [\~ Hr(@) — xr(0)] ) ()

where ) is a given parameter, in parallel to m; and the two are related
via (11) below. Let’s first motivate this conjugate duality. Write Y :=
Hp + x7r, and note

B(m) = Var(Y)=Var(Y — ) =E[(Y —\)?] — [E(Y — \)]?
= E[A-Y)’] = (m =)= A\ — (m =N~ (6)
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Thus, finding the optimal hedging strategy ¥ via solving the B(m)
problem in (3) is the same as via solving the A(\) problem in (5), since
m and A and given parameters. Furthermore, the relation in (6) above
leads to (see Proposition 6.6.5 in Pham (2009)):

A(\) = min [B(m) + (m — ))?|, B(m) = max [AQ) = (m =22 (7)

Note, the problem in (5) is known as a mean-square error (MSE)
problem, from which we can derive the the optimal hedging strategy
(given ) using a numeraire-based approach (Gourieroux et al. (1998)),
and express it quite explicitly as follows:

0 = ~6(Q) + 5 A= Vi(@) — xiJ, (8)
O'Xt

where 1 := pu/o, and Vi(Q) := EM[H7(Q)|F;]. Here EM denotes expec-

tation with respect to the risk-neutral measure PM (as opposed to the

original, physical measure P). Note that V; is a PM-martingale, and

admits the following representation:

WQ) = V0@ + [ &@uax. + [ 5B, (9)

and the two processes & and &; can be derived explicitly via Ito’s
formula.

Having solved the A()\) problem, we can solve B(m) (which we
write as B(m, Q) below to emphasize that @ is given) from the second
equality in (7), and express the solution as follows:

Bm,@) = " 3" _(?]2 * /OT e PITVER QA (10)

Finally, the A and m relation:

AoVo e 11
m_‘/()_en2t—1. ( )

Shortfall Hedging

The hedging problem, given @, is solved through a convex duality
approach (refer to, e.g., Pham (2009)). Applying Jensen’s inequality,



along with conditional expectation on X7 and Ap := f(;[ a(Xy)dt, we
first turn the real-time hedging problem into a static optimization
problem:

min E[(m — Hr - ve) '] st Ve>—C, EM(Vp)<o0.  (12)
Note the objective function in the above optimization problem can be
shown to be a lower bound of the original objective in (4). On the
other hand, the constraint EM (V) < 0 was not present in the original
problem. It follows from y; being a PM-supermartingale; and it serves
the purpose of closing the duality gap: the problem in (12) can be shown
to be equivalent to the original problem in (4).

The dual (lower-bound) problem is solved by a standard Lagrangian
multiplier approach, and the solution is:

Vi=(p+o)(Q-Dj)" +(m-pQ+C)1{NZr <1} - C, (13)

where \* is the positive Lagrangian multiplier, Zp := d;—;w = enBr—n*T/2

is the Radon-Nikodym derivative, and Dy := Ap + GVTO Y\ Z7)
is the “proxy” for Dr (as the latter is not accessible due to partial
information) with ®~! being the inverse distribution function of the
standard normal random variable. Once V(= x7) is derived, the opti-
mal hedging strategy 0; follows from It6’s Lemma along with martingale
representation theorem.

Optimal Production Quantity

Under the optimal hedging strategy corresponding to V in (13), the
minimized shortfall (with @ given) is

s(m,Q) = (p+ )E[(Q A DF — DF)T] + (m — pQ + C)P(\*Zy > 1).(14)

It can be shown (with considerable effort, as both A\* and Dy also
depend on @) that the above is a convex function of Q). Thus, finding
the optimal solution Q*(m), jointly with the optimal hedging, is a
readily solved convex minimization problem. To make it even better, a
universal upper bound (i.e., independent of m) on the optimal @) can
be explicitly identified, and this further facilitates the (line) search for
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Q*(m). Furthermore, it can be shown that s(m, @*(m)) is increasing in
m, hence constitutes an efficient frontier — setting a higher target will
lead to a higher shortfall.

Similarly, the optimal production quantity in the mean-variance
model can also be obtained from a line search on the B(m, Q) expression
in (10), which, however, need not be convex in @ (its first term is, but
not the second one). Also, B(m,Q*(m)) is increasing in m, forming
an efficient frontier — a higher mean return corresponds to a higher
variance.

4 Results and Insights

As a visualization of the efficient frontiers mentioned at the end of the
last section, refer to Figure 2, which illustrates the frontiers for the two
hedging models, corresponding to an instance of the rate function fi(-)
in the demand model. The curve labeled “NV” illustrates the frontier of
the production-only newsvendor solution; not surprisingly, it yields the
highest risk (standard deviation or shortfall) for any given mean/target.
The curve labeled “NV+” uses the NV production quantity along with
a hedging strategy that is optimized given the NV quantity; whereas
the “optimal” curve jointly optimizes both production and hedging
decisions. Both curves lie below “NV”, with “optimal” outperforming
“NV+". For both models, the contribution of the hedging strategy is
quite substantial, in particular at the higher end of the mean/target,
which is where the risk increases more steeply. (Note all the frontier
curves are increasing and convez.)

Next, we take a closer look at the hedging strategies. The optimal
mean-variance hedging in (8), 6}, maintains two positions in the asset
(X:) at any time ¢:

e a position to “cancel” out the & in Vj;

e a position equal to the gap between the current wealth (V; + xj)
and the target (\), weighted by the ratio /o, so as to “catch up.”

For the shortfall hedging, from (13), we have the following intuitive
interpretations:
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Figure 2: Efficient Frontiers.
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e m—Hr(Q) = (p+c)(Q— DE)* + (m— pQ) is the remaining gap
(from the target) after the payoff from production.

e The “put option,” (p + ¢)(Q — ZA?;Q)*, tries to close the first part
of the gap, (p+¢)(Q — D)™, but needs to use Dr as a surrogate
for D due to partial information.

e The “digital option,” (m — pQ + C)1{\*Zr < 1}, aims to close
the other part of the gap (after subtracting C).

In summary, the hedging strategy in the mean-variance model is
to dynamically maintain a portfolio of two positions on the underlying
financial asset. The first position cancels out the tradable component
of the projected wealth from production, i.e., revenue from supplying
demand; thus, its function is one of pure risk mitigation. The second
position uses trading gains to catch up with the target mean return. In
contrast, the shortfall hedging strategy takes the form of two options,
a digital option and a put option, and the underlying for both is the
“surrogate demand” D, necessitated by the partial information on
the real demand. Since the risk measure is shortfall, both options
are designed to contribute more terminal wealth, so as to supplement
production and help to close the gap from the target. In other words,
there is no “cancelling” component in the hedging strategy; and this is
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only natural as the shortfall measure does not penalize any upside risk.

5 Further Research

Many real-world applications will call for an extension of the models
highlighted above to allow multiple products, each with a demand
that depends on multiple financial assets. To motivate, consider several
examples widely reported in the business news. During the (quite recent)
period when oil price was plunging, many car buyers switched out of
smaller models into SUV’s and other gas guzzlers. Yet, due to relevant
standards and regulations (such as Corporate Average Fuel Economy),
car producers had already increased the production of more fuel-efficient
models only to see them suffering from reduced demand. ( Wall Street
Journal, November 19, 2014, “Ford Presses Ahead With Developing
Fuel-Efficient Vehicles.”; Wall Street Journal, January 13, 2015, “Clash
Looms Over Fuel Economy Standard.”) Furthermore, demand for cars
can also depend on multiple financial assets. For instance, in addition to
its dependence on fuel price, the demand can also be a function of the
general economy. (Wall Street Journal, January 14, 2014, “Automakers
Dare to Boost Capacity: North American Factories Will Build One
Million More Cars a Year.”)

Indeed, the above business cases point to the fact that customer
demands on a firm’s various product lines are not just correlated in a
statistical manner, they often exhibit certain functional relationship: a
demand surge on one product typically leads to decreases in demands on
other products. And this functional inter-dependence may also originate
from these demands depending on overlapping sets of financial assets
(such as certain commodities and the general economy). Thus, it will
be useful to have a model for multiple products with the demand rate
functions depending on multiple asset prices.

Another extension is to consider asset price models that are different
or more general than the geometric BM model highlighted above, for
instance, models with a mean-reverting feature (such as the Ornstein-
Uhlenbeck process) so as to accommodate broader asset classes.
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