Multivariate zero-and-one inflated Poisson model with applications

Chi ZHANG ${ }^{\text {a,* }}$, Guo-Liang TIAN ${ }^{\text {b }}$, Kam Chuen YUEN ${ }^{c}$, Qin WU ${ }^{\text {d }}$ and Tao LI ${ }^{\mathrm{e}}$
${ }^{\text {a }}$ College of Economics, Shenzhen University, Nanhai Ave 3688, Shenzhen City, Guangdong 518060, P. R. China
${ }^{\mathrm{b}}$ Department of Statistics and Data Science, Southern University of Science and Technology, No. 1088, Xueyuan Road, Shenzhen City, Guangdong 518055, P. R. China
${ }^{\text {c }}$ Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
${ }^{\text {d }}$ Department of Statistics, School of Mathematical Sciences, South China Normal University, Guangzhou City, Guangdong 510631, P. R. China
${ }^{\mathrm{e}}$ Department of Mathematics, Southern University of Science and Technology, No. 1088, Xueyuan Road, Shenzhen City, Guangdong 518055, P. R. China
*Corresponding author's email: loezc727@163.com

Abstract

This paper extends the univariate zero-and-one inflated Poisson (ZOIP) distribution (Melkersson \& Olsson, 1999; Zhang et al., 2016) to its multivariate version, which can be used to model correlated multivariate count data with large proportions of zeros and ones marginally. More importantly, this new multivariate ZOIP distribution possesses a flexible dependency structure; i.e., the correlation coefficient between any two random components could be either positive or negative depending on the values of the parameters. The important distributional properties are explored and some useful statistical inference methods without and with covariates are developed. Simulation studies are conducted to evaluate the performance of the proposed methods. Finally, two real data sets on healthcare and insurance are used to illustrate the proposed methods.

Keywords: Expectation-maximization (EM) algorithm; Multivariate zero-and-one inflated Poisson; Univariate zero-and-one inflated Poisson; Zero-inflated Poisson.

1. Introduction

Count data on the number of sex partners among the young within a fixed period, on motor vehicle crashes among young drivers in one year and on occupational safety involving accidents or injuries in a half year exhibit the characteristics of excessive zero and excessive one observations (Lee et al., 2002; Carrivick et al., 2003). The traditional Poisson and zeroinflated Poisson (ZIP; Lambert, 1992) are no longer appropriate distributions to model such count data. Motivated by the data set on Swedish visits to a dentist with higher proportions of zeros and ones and one-visit observations being even much more frequent than zerovisits, Melkersson \& Olsson (1999) proposed a so-called zero-and-one inflated Poisson (ZOIP) distribution as a generalization of the univariate ZIP to seize the feature of such count data. Their main objective is to fit the dentist visiting data with covariates in Sweden. Later, Saito \& Rodrigues (2005) presented a Bayesian analysis of the same dentist visiting data without considering covariates by the data augmentation algorithm. Recently, Zhang et al. (2016) defined the univariate ZOIP distribution, denoted by $Y \sim \operatorname{ZOIP}\left(\phi_{0}, \phi_{1} ; \lambda\right)$, via the following stochastic representation (SR):

$$
Y=Z_{0} \cdot 0+Z_{1} \cdot 1+Z_{2} X=Z_{1}+Z_{2} X= \begin{cases}0, & \text { with probability } \phi_{0} \tag{1.1}\\ 1, & \text { with probability } \phi_{1} \\ X, & \text { with probability } \phi_{2}\end{cases}
$$

where $\mathbf{z}=\left(Z_{0}, Z_{1}, Z_{2}\right)^{\top} \sim \operatorname{Multinomial}\left(1 ; \phi_{0}, \phi_{1}, \phi_{2}\right), X \sim \operatorname{Poisson}(\lambda)$, and \mathbf{z}, X are independent (symbolized as $\mathbf{z} \Perp X$). The corresponding probability mass function (pmf) is

$$
f\left(y \mid \phi_{0}, \phi_{1} ; \lambda\right)=\left(\phi_{0}+\phi_{2} \mathrm{e}^{-\lambda}\right) I(y=0)+\left(\phi_{1}+\phi_{2} \lambda \mathrm{e}^{-\lambda}\right) I(y=1)+\left(\phi_{2} \frac{\lambda^{y} \mathrm{e}^{-\lambda}}{y!}\right) I(y \geqslant 2),
$$

where $I(\cdot)$ denotes the indicator function. Liu, Tang \& Xu (2018) further discussed the Bayesian estimation of the ZOIP model. Tang et al. (2017) compared the maximum likelihood estimation with the Bayesian estimation for the ZOIP model parameters.

Extra zeros and extra ones in multivariate count data also appear frequently in practice. For instance, there exist different types of defects in manufacturing process, there are various types of injuries in accident events and so on. Sometimes, both types of defects or injuries
rarely occur (in other words, there are too many $(0,0)^{\top}$ observations) due to excellent safety precautions; sometimes, one type of defect/injury often occurs once (i.e., there are extra $(1,0)^{\top}$ and/or $(0,1)^{\top}$ observations) because some specific defects/injuries are prone to happen and hard to be prevented; sometimes, both types of defects/injuries could simultaneously occur (namely, there are excessive $(1,1)^{\top}$ observations) if they are intrinsically correlated. This kind of multivariate count data share a common characteristic; i.e., each component marginally follows a univariate ZOIP distribution.

To model multivariate correlated count data, the multivariate Poisson distribution was constructed (e.g., Johnson et al., 1997, p.139) by adding a common Poisson variable $X_{0}^{*} \sim$ Poisson $\left(\lambda_{0}\right)$ to each $X_{i}^{*} \sim \operatorname{Poisson}\left(\lambda_{i}\right)$ to form the new components $X_{i}=X_{0}^{*}+X_{i}^{*}$, where the correlations among $\left\{X_{i}\right\}$ come from the common X_{0}^{*} while the i-th component X_{i} is still a Poisson variable. Li et al. (1999) proposed a multivariate ZIP distribution to model manufacturing data with extra zeros while each marginal is a univariate ZIP distribution. Liu \& Tian (2015) used the stochastic representation to construct a multivariate ZIP distribution and Tian et al. (2018) extended it to a multivariate zero-adjusted Poisson (ZAP) distribution. Later, Liu et al. (2018) proposed a more flexible multivariate ZAP model for multivariate count data analyses. Diallo et al. (2018) proposed a zero-inflated regression model for multinomial counts with joint zero-inflation.

In addition, considerable work has been concentrated on the bivariate case. For example, Walhin (2001) proposed three new bivariate ZIP models and used two real data sets to illustrate the proposed methods. Wang et al. (2003) applied a bivariate ZIP regression model with covariates to analyze occupational injuries data. Karlis \& Ntzoufras (2005) extended the bivariate Poisson distribution by incorporating the diagonal inflation into the model to fit data with higher probabilities in diagonal elements. Deshmukh \& Kasture (2002) even investigated the bivariate distribution problem with truncated Poisson marginal distributions. These researches are not available when the dimension is larger than or equal to 3 . More importantly, these models can only produce zero-inflated or zero-truncated Poisson marginal distribution (except for Karlis \& Ntzoufras, 2005); in other words, all above models cannot capture the characteristic of ZOIP marginal distributions. Therefore, the major objective
of this article is to propose a multivariate Poisson distribution with ZOIP margins by developing its important distributional properties and the useful statistical inference methods without and with covariates. It is expected that this new multivariate model can provide a better fit especially for those correlated count data with large proportions of zeros and ones marginally.

The rest of the paper is organized as follows. In Section 2, the multivariate ZOIP distribution constructed by SR is proposed and its joint pmf is derived. In Section 3, the likelihood-based methods are developed for the general and related reduced models, including the maximum likelihood estimation, bootstrap confidence interval construction, hypothesis testing and a regression model analysis. In Sections 4, Bayesian methods are further considered. Simulations are conducted to evaluate the performance of the proposed methods in Section 5. Two real examples are used to illustrate the proposed methods in Section 6. A discussion is presented in Section 7 and some technical details are put into the Appendix.

2. Multivariate ZOIP distribution

Let $\left\{X_{i}^{*}\right\}_{i=0}^{m} \stackrel{\text { ind }}{\sim}$ Poisson $\left(\lambda_{i}\right)$ and $X_{i}=X_{0}^{*}+X_{i}^{*}, i=1, \ldots, m$. Then, the discrete random vector $\mathbf{x}=\left(X_{1}, \ldots, X_{m}\right)^{\top}$ is said to follow an m-dimensional Poisson distribution with parameters $\lambda_{0} \geqslant 0$ and $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{\top} \in \mathbb{R}_{+}^{m}$, denoted by $\mathbf{x} \sim \operatorname{MP}\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)$ or $\mathbf{x} \sim \operatorname{MP}_{m}\left(\lambda_{0}, \boldsymbol{\lambda}\right)$, accordingly. The joint pmf of \mathbf{x} is

$$
\begin{equation*}
\operatorname{Pr}(\mathbf{x}=\boldsymbol{x})=\mathrm{e}^{-\lambda_{0}-\lambda_{+}} \sum_{k=0}^{\min (\boldsymbol{x})} \frac{\lambda_{0}^{k}}{k!} \prod_{i=1}^{m} \frac{\lambda_{i}^{x_{i}-k}}{\left(x_{i}-k\right)!}, \tag{2.1}
\end{equation*}
$$

where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right)^{\top},\left\{x_{i}\right\}_{i=1}^{m}$ are the corresponding realizations of $\left\{X_{i}\right\}_{i=1}^{m}, \lambda_{+} \hat{=} \sum_{i=1}^{m} \lambda_{i}$, and $\min (\boldsymbol{x}) \hat{=} \min \left(x_{1}, \ldots, x_{m}\right)$.

Let a discrete random vector $\mathbf{y}=\left(Y_{1}, \ldots, Y_{m}\right)^{\top}$ have the following mixture distribution:

$$
\begin{aligned}
\mathbf{y} & \sim(\underbrace{0,0, \ldots, 0}_{m})^{\top} \hat{=} \mathbf{0}_{m} & \text { with probability } \phi_{0}, \\
& \sim(\underbrace{0, \ldots, 0}_{i-1}, 1, \underbrace{0, \ldots, 0}_{m-i})^{\top} \hat{=} \boldsymbol{e}_{m}^{(i)} & \text { with probability } \phi_{i}, \quad 1 \leqslant i \leqslant m, \\
& \sim(\underbrace{1,1, \ldots,}_{m})^{\stackrel{2}{=} \mathbf{1}_{m}} & \text { with probability } \phi_{m+1}, \\
& \sim \operatorname{MP}_{m}\left(\lambda_{0}, \boldsymbol{\lambda}\right) & \text { with probability } \phi_{m+2},
\end{aligned}
$$

where $\sum_{k=0}^{m+2} \phi_{k}=1$. The joint pmf of \mathbf{y} is given by (2.3), which is very complicated. To extensively explore the distributional properties and develop efficient statistical methods such as the expectation-maximization (EM) algorithm and the data augmentation (DA) algorithm, we then employ the tractable SR rather than the intractable joint pmf to define the above mixture distribution.

Definition 1 A discrete random vector $\mathbf{y}=\left(Y_{1}, \ldots, Y_{m}\right)^{\top}$ is said to have a multivariate ZOIP distribution with parameters $\left(\phi_{0}, \boldsymbol{\phi}, \phi_{m+1}, \lambda_{0}, \boldsymbol{\lambda}\right)$, where $\boldsymbol{\phi}=\left(\phi_{1}, \ldots, \phi_{m}\right)^{\top}, \phi_{k} \in[0,1)$ for $k=0,1, \ldots, m+1, \phi_{m+2} \hat{=} 1-\sum_{k=0}^{m+1} \phi_{k} \in(0,1]$ and $\lambda_{0} \geqslant 0, \boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{\top} \in \mathbb{R}_{+}^{m}$, denoted by $\mathbf{y} \sim \operatorname{ZOIP}_{m}\left(\phi_{0}, \boldsymbol{\phi}, \phi_{m+1} ; \lambda_{0}, \boldsymbol{\lambda}\right)$, if \mathbf{y} has the following SR:

$$
\begin{align*}
\mathbf{y} & = \begin{cases}\mathbf{0}_{m}, & \text { with probability } \phi_{0}, \\
\boldsymbol{e}_{m}^{(i)}, & \text { with probability } \phi_{i}, \quad 1 \leqslant i \leqslant m, \\
\mathbf{1}_{m}, & \text { with probability } \phi_{m+1}, \\
\mathbf{x}, & \text { with probability } \phi_{m+2},\end{cases} \\
& \xlongequal{\mathrm{d}} Z_{0} \boldsymbol{\xi}_{0}+\sum_{i=1}^{m} Z_{i} \boldsymbol{\xi}^{(i)}+Z_{m+1} \boldsymbol{\xi}_{1}+Z_{m+2} \mathbf{x} \\
& =\left(Z_{1}, \ldots, Z_{m}\right)^{\top}+Z_{m+1} \boldsymbol{\xi}_{1}+Z_{m+2} \mathbf{x}, \tag{2.2}
\end{align*}
$$

where $\mathbf{z}=\left(Z_{0}, Z_{1}, \ldots, Z_{m+2}\right)^{\top} \sim \operatorname{Multinomial}\left(1 ; \phi_{0}, \boldsymbol{\phi}, \phi_{m+1}, \phi_{m+2}\right), \boldsymbol{\xi}_{0} \sim \operatorname{Degenerate}\left(\mathbf{0}_{m}\right)$, $\boldsymbol{\xi}^{(i)} \sim \operatorname{Degenerate}\left(\boldsymbol{e}_{m}^{(i)}\right)$ for $i=1, \ldots, m, \boldsymbol{\xi}_{1} \sim \operatorname{Degenerate}\left(\mathbf{1}_{m}\right), \mathbf{x}=\left(X_{1}, \ldots, X_{m}\right)^{\top} \sim$ $\mathrm{MP}_{m}\left(\lambda_{0}, \boldsymbol{\lambda}\right)$ and $\mathbf{z} \Perp \mathbf{x}$. In particular, when $\phi_{0}=0$, it reduces to the one-inflated Poisson distribution.

We discuss several special cases of (2.2):
(1) If $\phi_{i}=0(i=1, \ldots, m+1)$, then \mathbf{y} has the Type II multivariate ZIP distribution, denoted by $\mathbf{y} \sim \operatorname{ZIP}_{m}^{(\mathbb{I I})}\left(\phi_{0} ; \lambda_{0}, \boldsymbol{\lambda}\right)$, see Appendix C.
(2) If $\phi_{i}=0(i=1, \ldots, m+1)$ and $\lambda_{0}=0$, then \mathbf{y} has the Type I multivariate ZIP distribution (Liu \& Tian, 2015), denoted by $\mathbf{y} \sim \operatorname{ZIP}_{m}^{(\mathrm{I})}\left(\phi_{0} ; \boldsymbol{\lambda}\right)$, see Appendix B.
(3) If $\phi_{i}=0(i=0,1, \ldots, m+1)$, then \mathbf{y} follows the multivariate Poisson distribution; that is $\mathbf{y} \sim \operatorname{MP}_{m}\left(\lambda_{0}, \boldsymbol{\lambda}\right)$.
(4) If $\phi_{i}=0(i=0,1, \ldots, m+1)$ and $\lambda_{0}=0$, then $Y_{i} \stackrel{\text { ind }}{\sim} \operatorname{Poisson}\left(\lambda_{i}\right)$ for $i=1, \ldots, m$.

2.1 Joint probability mass function and mixed moments

In Appendix A.1, we show that the joint pmf of $\mathbf{y} \sim \operatorname{ZOIP}_{m}\left(\phi_{0}, \boldsymbol{\phi}, \phi_{m+1} ; \lambda_{0}, \boldsymbol{\lambda}\right)$ is given by

$$
\begin{align*}
& f\left(\boldsymbol{y} \mid \phi_{0}, \boldsymbol{\phi}, \phi_{m+1}, \lambda_{0}, \boldsymbol{\lambda}\right)=\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{m}=y_{m}\right) \\
= & a_{0} I\left(\boldsymbol{y}=\mathbf{0}_{m}\right)+\sum_{i=1}^{m} a_{i} I\left(\boldsymbol{y}=\boldsymbol{e}_{m}^{(i)}\right)+a_{m+1} I\left(\boldsymbol{y}=\mathbf{1}_{m}\right) \\
& +\left[\phi_{m+2} \mathrm{e}^{-\lambda_{0}-\lambda_{+}} \sum_{k=0}^{\min (\boldsymbol{y})} \frac{\lambda_{0}^{k}}{k!} \prod_{i=1}^{m} \frac{\lambda_{i}^{y_{i}-k}}{\left(y_{i}-k\right)!}\right] I\left(\boldsymbol{y} \notin \mathcal{Y}_{01}\right) \tag{2.3}\\
= & \phi_{0} \operatorname{Pr}\left(\boldsymbol{\xi}_{0}=\boldsymbol{y}\right)+\sum_{i=1}^{m} \phi_{i} \operatorname{Pr}\left(\boldsymbol{\xi}^{(i)}=\boldsymbol{y}\right)+\phi_{m+1} \operatorname{Pr}\left(\boldsymbol{\xi}_{1}=\boldsymbol{y}\right)+\phi_{m+2} \operatorname{Pr}(\mathbf{x}=\boldsymbol{y}),
\end{align*}
$$

where

$$
\begin{align*}
& a_{0}=\phi_{0}+\phi_{m+2} \mathrm{e}^{-\lambda_{0}-\lambda_{+}}, \quad a_{i}=\phi_{i}+\phi_{m+2} \lambda_{i} \mathrm{e}^{-\lambda_{0}-\lambda_{+}}, \quad 1 \leqslant i \leqslant m, \tag{2.4}\\
& a_{m+1}=\phi_{m+1}+\phi_{m+2}\left(\lambda_{0}+\prod_{i=1}^{m} \lambda_{i}\right) \mathrm{e}^{-\lambda_{0}-\lambda_{+}},
\end{align*}
$$

and $\mathcal{Y}_{01} \hat{=}\left\{\mathbf{0}_{m}, \boldsymbol{e}_{m}^{(1)}, \ldots, \boldsymbol{e}_{m}^{(m)}, \mathbf{1}_{m}\right\}, \boldsymbol{\xi}_{0},\left\{\boldsymbol{\xi}^{(i)}\right\}_{i=1}^{m}, \boldsymbol{\xi}_{1}$ are defined in Definition 1.
If $\mathbf{y} \sim \operatorname{ZOIP}_{m}\left(\phi_{0}, \boldsymbol{\phi}, \phi_{m+1} ; \lambda_{0}, \boldsymbol{\lambda}\right)$, according to (2.2), we have the i-th component

$$
\begin{equation*}
Y_{i}=Z_{i}+Z_{m+1}+Z_{m+2} X_{i} \sim \operatorname{ZOIP}\left(\phi_{0}+\sum_{k=1, k \neq i}^{m} \phi_{k}, \phi_{i}+\phi_{m+1} ; \lambda_{0}+\lambda_{i}\right) \tag{2.5}
\end{equation*}
$$

From (2.5), we can see that the marginal distributions are not necessarily identical with each other; i.e., each Y_{i} follows a ZOIP distribution with different zero inflation, one inflation and Poisson mean parameters.

Moreover, we have

$$
\left\{\begin{aligned}
E(\mathbf{y})= & \boldsymbol{\phi}+\phi_{m+1} \cdot \mathbf{1}+\phi_{m+2}\left(\lambda_{0} \cdot \mathbf{1}+\boldsymbol{\lambda}\right) \hat{=} \boldsymbol{\mu} \\
E\left(\mathbf{y y}^{\top}\right)= & \operatorname{diag}(\boldsymbol{\phi})+\phi_{m+1} \cdot \mathbf{1 1}^{\top} \\
& +\phi_{m+2}\left[\left(\lambda_{0} \cdot \mathbf{1}+\boldsymbol{\lambda}\right)\left(\lambda_{0} \cdot \mathbf{1}+\boldsymbol{\lambda}\right)^{\top}+\lambda_{0} \cdot \mathbf{1 1}^{\top}+\operatorname{diag}(\boldsymbol{\lambda})\right] \\
\operatorname{Var}(\mathbf{y})= & \operatorname{diag}(\boldsymbol{\phi})+\phi_{m+1} \cdot \mathbf{1 1}^{\top} \\
& +\phi_{m+2}\left[\left(\lambda_{0} \cdot \mathbf{1}+\boldsymbol{\lambda}\right)\left(\lambda_{0} \cdot \mathbf{1}+\boldsymbol{\lambda}\right)^{\top}+\lambda_{0} \cdot \mathbf{1 1}^{\top}+\operatorname{diag}(\boldsymbol{\lambda})\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{\top}
\end{aligned}\right.
$$

where $\mathbf{1}=\mathbf{1}_{m}$. The correlation coefficient between Y_{i} and Y_{j} for $i \neq j$ is

$$
\begin{equation*}
\operatorname{Corr}\left(Y_{i}, Y_{j}\right)=\frac{\phi_{m+1}+\phi_{m+2}\left[\left(\lambda_{0}+\lambda_{i}\right)\left(\lambda_{0}+\lambda_{j}\right)+\lambda_{0}\right]-\mu_{i} \mu_{j}}{\sqrt{\left[\mu_{i}-\mu_{i}^{2}+\frac{\left(\mu_{i}-\phi_{i}-\phi_{m+1}\right)^{2}}{\phi_{m+2}}\right]\left[\mu_{j}-\mu_{j}^{2}+\frac{\left(\mu_{j}-\phi_{j}-\phi_{m+1}\right)^{2}}{\phi_{m+2}}\right]}}, \tag{2.6}
\end{equation*}
$$

where $\mu_{i}=\phi_{i}+\phi_{m+1}+\phi_{m+2}\left(\lambda_{0}+\lambda_{i}\right)$. From (2.6), the correlation coefficient between Y_{i} and Y_{j} could be either positive or negative depending on the values of those parameters.

3. Likelihood-based methods for the general multivariate ZOIP distribution/regression model

Suppose that $\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right\}$ is a random sample of size n from the $\operatorname{ZOIP}_{m}\left(\phi_{0}, \boldsymbol{\phi}, \phi_{m+1} ; \lambda_{0}, \boldsymbol{\lambda}\right)$ distribution, where $\mathbf{y}_{j}=\left(Y_{1 j}, \ldots, Y_{m j}\right)^{\top}$ for $j=1, \ldots, n$. Let $\boldsymbol{y}_{j}=\left(\boldsymbol{y}_{1 j}, \ldots, \boldsymbol{y}_{m j}\right)^{\top}$ denote the realization of the random vector \mathbf{y}_{j} and $Y_{\mathrm{obs}}=\left\{\boldsymbol{y}_{j}\right\}_{j=1}^{n}$ be the observed data. Furthermore, we define

$$
\begin{aligned}
& \mathbb{J}_{0}=\left\{j \mid \boldsymbol{y}_{j}=\mathbf{0}_{m}, j=1, \ldots, n\right\}, \quad n_{0} \hat{=} \#\left\{\mathbb{J}_{0}\right\}=\sum_{j=1}^{n} I\left(\boldsymbol{y}_{j}=\mathbf{0}_{m}\right), \\
& \mathbb{J}_{i}=\left\{j \mid \boldsymbol{y}_{j}=\boldsymbol{e}_{m}^{(i)}, j=1, \ldots, n\right\}, \quad n_{i} \hat{=} \#\left\{\mathbb{J}_{i}\right\}=\sum_{j=1}^{n} I\left(\boldsymbol{y}_{j}=\boldsymbol{e}_{m}^{(i)}\right), \quad 1 \leqslant i \leqslant m, \\
& \mathbb{J}_{m+1}=\left\{j \mid \boldsymbol{y}_{j}=\mathbf{1}_{m}, j=1, \ldots, n\right\}, \quad n_{m+1} \hat{=} \#\left\{\mathbb{J}_{m+1}\right\}=\sum_{j=1}^{n} I\left(\boldsymbol{y}_{j}=\mathbf{1}_{m}\right), \\
& \mathbb{J}_{m+2}=\left\{j \mid \boldsymbol{y}_{j} \notin \mathcal{Y}_{01}, j=1, \ldots, n\right\}, \quad n_{m+2} \hat{=} \#\left\{\mathbb{J}_{m+2}\right\}=n-\sum_{k=0}^{m+1} n_{k} .
\end{aligned}
$$

The observed-data likelihood function of $\boldsymbol{\theta}=\left(\phi_{0}, \boldsymbol{\phi}^{\top}, \phi_{m+1}, \lambda_{0}, \boldsymbol{\lambda}^{\top}\right)^{\top}$ is given by

$$
L\left(\boldsymbol{\theta} \mid Y_{\text {obs }}\right)=\left(\prod_{k=0}^{m+1} a_{k}^{n_{k}}\right)\left(\phi_{m+2} \mathrm{e}^{-\lambda_{0}-\lambda_{+}}\right)^{n_{m+2}} \prod_{j \in \mathbb{J}_{m+2}} \sum_{k_{j}=0}^{\min \left(\boldsymbol{y}_{j}\right)} \frac{\lambda_{0}^{k_{j}}}{k_{j}!} \prod_{i=1}^{m} \frac{\lambda_{i}^{y_{i j}-k_{j}}}{\left(y_{i j}-k_{j}\right)!},
$$

so that the log-likelihood function is

$$
\begin{align*}
\ell\left(\boldsymbol{\theta} \mid Y_{\text {obs }}\right)= & \sum_{k=0}^{m+1} n_{k} \log a_{k}+n_{m+2}\left(\log \phi_{m+2}-\lambda_{0}-\lambda_{+}\right) \\
& +\sum_{j \in \mathbb{J}_{m+2}} \log \left[\sum_{k_{j}=0}^{\min \left(\boldsymbol{y}_{j}\right)} \frac{\lambda_{0}^{k_{j}}}{k_{j}!} \prod_{i=1}^{m} \frac{\lambda_{i}^{y_{i j}-k_{j}}}{\left(y_{i j}-k_{j}\right)!}\right], \tag{3.1}
\end{align*}
$$

where $\left\{a_{k}\right\}_{k=0}^{m+1}$ are defined in (2.4).

3.1 Maximum likelihood estimation

3.1.1 MLEs via the EM algorithm

To obtain the maximum likelihood estimates (MLEs) of parameters, we employ the EM algorithm. We first augment $Y_{\text {obs }}$ with latent variables $\left\{U_{k}\right\}_{k=0}^{m}$ that split n_{k} into $\left(U_{k}, n_{k}-U_{k}\right)$, and $\left(W_{1}, W_{2}, W_{3}\right)$ that split n_{m+1} into $\left(W_{1}, W_{2}, W_{3}\right)$ where $W_{3} \hat{=} n_{m+1}-W_{1}-W_{2}$, and for each $\boldsymbol{y}_{j}=\left(y_{1 j}, \ldots, y_{m j}\right)^{\top}$ where $j \in \mathbb{J}_{m+2}$, we introduce latent variables $X_{0 j}^{*} \stackrel{\text { ind }}{\sim} \operatorname{Poisson}\left(\lambda_{0}\right)$, $X_{i j}^{*} \stackrel{\text { ind }}{\sim} \operatorname{Poisson}\left(\lambda_{i}\right)$ for $1 \leqslant i \leqslant m$ and $X_{0 j}^{*} \Perp X_{i j}^{*}$, such that

$$
\left(x_{0 j}^{*}+x_{1 j}^{*}, \ldots, x_{0 j}^{*}+x_{m j}^{*}\right)^{\top}=\boldsymbol{y}_{j}, \quad j \in \mathbb{J}_{m+2},
$$

where $x_{i j}^{*}$ denotes the realization of $X_{i j}^{*}$. The complete data is composed of

$$
\begin{aligned}
Y_{\mathrm{com}} & =\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}, u_{0}, u_{1}, \ldots, u_{m}, w_{1}, w_{2}, w_{3},\left\{x_{0 j}^{*}, x_{1 j}^{*}, \ldots, x_{m j}^{*}\right\}_{j \in \mathbb{J}_{m+2}}\right\} \\
& =\left\{\left\{\boldsymbol{y}_{j}\right\}_{j=1}^{n},\left\{u_{k}\right\}_{k=0}^{m}, w_{1}, w_{2}, w_{3},\left\{x_{0 j}^{*}\right\}_{j \in \mathbb{J}_{m+2}}\right\}
\end{aligned}
$$

since $x_{i j}^{*}=y_{i j}-x_{0 j}^{*}$ when $j \in \mathbb{J}_{m+2}$ for $1 \leqslant i \leqslant m$. Therefore, the resultant conditional predictive distributions of $\left\{U_{k}\right\}_{k=0}^{m}$ and $\left\{W_{k}\right\}_{k=1}^{3}$ given $\left(Y_{\text {obs }}, \boldsymbol{\theta}\right)$ are obtained as

$$
\begin{align*}
U_{k} \mid\left(Y_{\text {obs }}, \boldsymbol{\theta}\right) & \sim \operatorname{Binomial}\left(n_{k}, \frac{\phi_{k}}{a_{k}}\right), \quad 0 \leqslant k \leqslant m \tag{3.2}\\
\left(W_{1}, W_{2}, W_{3}\right)^{\top} \mid\left(Y_{\text {obs }}, \boldsymbol{\theta}\right) & \sim \text { Multinomial }\left(n_{m+1} ; \frac{a_{m+1,1}}{a_{m+1}}, \frac{a_{m+1,2}}{a_{m+1}}, \frac{a_{m+1,3}}{a_{m+1}}\right), \tag{3.3}
\end{align*}
$$

where

$$
a_{m+1,1}=\phi_{m+1}, \quad a_{m+1,2}=\phi_{m+2} \lambda_{0} \mathrm{e}^{-\lambda_{0}-\lambda_{+}}, \quad a_{m+1,3}=\phi_{m+2}\left(\prod_{i=1}^{m} \lambda_{i}\right) \mathrm{e}^{-\lambda_{0}-\lambda_{+}} .
$$

Thus, the complete-data likelihood function is proportional to

$$
\begin{aligned}
& L\left(\boldsymbol{\theta} \mid Y_{\text {com }}\right) \\
\propto & \phi_{0}^{u_{0}}\left(\phi_{m+2} \mathrm{e}^{-\lambda_{0}-\lambda_{+}}\right)^{n_{0}-u_{0}}\left[\prod_{i=1}^{m} \phi_{i}^{u_{i}}\left(\phi_{m+2} \lambda_{i} \mathrm{e}^{-\lambda_{0}-\lambda_{+}}\right)^{n_{i}-u_{i}}\right] \phi_{m+1}^{w_{1}}\left(\phi_{m+2} \lambda_{0} \mathrm{e}^{-\lambda_{0}-\lambda_{+}}\right)^{w_{2}} \\
& \times\left[\phi_{m+2}\left(\prod_{i=1}^{m} \lambda_{i}\right) \mathrm{e}^{-\lambda_{0}-\lambda_{+}}\right]^{w_{3}}\left(\phi_{m+2} \mathrm{e}^{-\lambda_{0}-\lambda_{+}}\right)^{n_{m+2}} \prod_{j \in \mathbb{J}_{m+2}} \lambda_{0}^{x_{0 j}^{*}} \prod_{i=1}^{m} \lambda_{i}^{y_{i j}-x_{0 j}^{*}} \\
= & \left(\prod_{k=0}^{m} \phi_{k}^{u_{k}}\right) \phi_{m+1}^{w_{1}} \phi_{m+2}^{n-\sum_{k=0}^{m} u_{k}-w_{1}} \exp \left[-\left(n-\sum_{k=0}^{m} u_{k}-w_{1}\right)\left(\lambda_{0}+\lambda_{+}\right)\right] \\
& \times \lambda_{0}^{w_{2}+N_{0}} \prod_{i=1}^{m} \lambda_{i}^{w_{3}+n_{i}-u_{i}+N_{i}-N_{0}},
\end{aligned}
$$

where $N_{0}=\sum_{j \in \mathbb{J}_{m+2}} x_{0 j}^{*}, N_{i}=\sum_{j \in \mathbb{J}_{m+2}} y_{i j}=\sum_{j=1}^{n} y_{i j}-n_{i}-n_{m+1}$ for $i=1, \ldots, m$. Thus, the M-step is to find the complete-data MLEs

$$
\left\{\begin{array}{l}
\hat{\phi}_{k}=\frac{u_{k}}{n}, \quad 0 \leqslant k \leqslant m, \quad \hat{\phi}_{m+1}=\frac{w_{1}}{n} \tag{3.4}\\
\hat{\lambda}_{0}=\frac{w_{2}+N_{0}}{n-\sum_{k=0}^{m} u_{k}-w_{1}}, \quad \hat{\lambda}_{i}=\frac{w_{3}+n_{i}-u_{i}+N_{i}-N_{0}}{n-\sum_{k=0}^{m} u_{k}-w_{1}}, \quad 1 \leqslant i \leqslant m
\end{array}\right.
$$

The E-step is to replace $\left\{u_{k}\right\}_{k=0}^{m},\left\{w_{k}\right\}_{k=1}^{3}$ and $\left\{x_{0 j}^{*}\right\}_{j \in \mathbb{J}_{m+2}}$ in (3.4) by their conditional expectations, which are given by

$$
\left\{\begin{array}{lll}
E\left(U_{k} \mid Y_{\mathrm{obs}}, \boldsymbol{\theta}\right) & \stackrel{(3.2)}{=} & \frac{n_{k} \phi_{k}}{a_{k}}, \quad 0 \leqslant k \leqslant m \tag{3.5}\\
E\left(W_{k} \mid Y_{\mathrm{obs}}, \boldsymbol{\theta}\right) & \stackrel{(3.3)}{=} & \frac{n_{m+1} a_{m+1, k}}{a_{m+1}}, \quad k=1,2,3 \\
E\left(X_{0 j}^{*} \mid Y_{\mathrm{obs}}, \boldsymbol{\theta}\right) & \stackrel{(A .5)}{=} & \frac{\sum_{k_{j}=1}^{\min \left(\boldsymbol{y}_{j}\right)} \frac{\lambda_{0}^{k_{j}}}{\left(k_{j}-1\right)!} \prod_{i=1}^{m} \frac{\lambda_{i}^{y_{i j}-k_{j}}}{\left(y_{i j}-k_{j}\right)!}}{\sum_{l_{j}=0}^{\min \left(\boldsymbol{y}_{j}\right)} \frac{\lambda_{0}^{l_{j}}}{l_{j}!} \prod_{i=1}^{m} \frac{\lambda_{i}^{y_{i j}-l_{j}}}{\left(y_{i j}-l_{j}\right)!}}, \quad j \in \mathbb{J}_{m+2}
\end{array}\right.
$$

The detail for deriving (3.5) is given in Appendix A.2.

3.1.2 MLEs via the Fisher scoring algorithm

For the special case of $\lambda_{0}=0$, all $\left\{\lambda_{i}\right\}_{i=1}^{m}$ in the last term of (3.1) are multiplicatively separable which makes the calculations of the Hessian matrix (so as the Fisher information matrix) feasible, thus the Fisher scoring algorithm can also be applied to obtain the MLEs of the parameter vector $\boldsymbol{\theta}=\left(\phi_{0}, \boldsymbol{\phi}^{\top}, \phi_{m+1}, \lambda_{0}, \boldsymbol{\lambda}^{\top}\right)^{\top}$ except for λ_{0}, denoted by $\boldsymbol{\theta}_{-\lambda_{0}}$. Specifically, the \log-likelihood function now becomes $\ell\left(\boldsymbol{\theta}_{-\lambda_{0}} \mid Y_{\text {obs }}\right)$ obtained by replacing λ_{0} with zero value in (3.1). Then the score vector and the Hessian matrix are given by

$$
\nabla \ell\left(\boldsymbol{\theta}_{-\lambda_{0}} \mid Y_{\text {obs }}\right)=\frac{\partial \ell\left(\boldsymbol{\theta}_{-\lambda_{0}} \mid Y_{\text {obs }}\right)}{\partial \boldsymbol{\theta}_{-\lambda_{0}}} \quad \text { and } \quad \nabla^{2} \ell\left(\boldsymbol{\theta}_{-\lambda_{0}} \mid Y_{\text {obs }}\right)=\frac{\partial^{2} \ell\left(\boldsymbol{\theta}_{-\lambda_{0}} \mid Y_{\text {obs }}\right)}{\partial \boldsymbol{\theta}_{-\lambda_{0}} \partial \boldsymbol{\theta}_{-\lambda_{0}}^{\top}},
$$

respectively. Thus, the $(2 m+2) \times(2 m+2)$ Fisher information matrix is

$$
\begin{equation*}
\mathbf{J}\left(\boldsymbol{\theta}_{-\lambda_{0}}\right)=E\left[-\nabla^{2} \ell\left(\boldsymbol{\theta}_{-\lambda_{0}} \mid Y_{\text {obs }}\right)\right] . \tag{3.6}
\end{equation*}
$$

Let $\boldsymbol{\theta}_{-\lambda_{0}}^{(0)}$ be the initial value and $\boldsymbol{\theta}_{-\lambda_{0}}^{(t)}$ denote the t-th approximation of $\hat{\boldsymbol{\theta}}_{-\lambda_{0}}$, then the $(t+1)$-th approximation can be obtained by

$$
\begin{equation*}
\boldsymbol{\theta}_{-\lambda_{0}}^{(t+1)}=\boldsymbol{\theta}_{-\lambda_{0}}^{(t)}+\mathbf{J}^{-1}\left(\boldsymbol{\theta}_{-\lambda_{0}}^{(t)}\right) \nabla \ell\left(\boldsymbol{\theta}_{-\lambda_{0}}^{(t)} \mid Y_{\mathrm{obs}}\right) \tag{3.7}
\end{equation*}
$$

As a by-product, the standard errors of the MLEs $\hat{\boldsymbol{\theta}}_{-\lambda_{0}}$ are the square roots of the diagonal elements $J^{k k}$ of the inverse Fisher information matrix $\mathbf{J}^{-1}\left(\hat{\boldsymbol{\theta}}_{-\lambda_{0}}\right)$. Thus, the $100(1-\alpha) \%$ asymptotic Wald confidence intervals (CIs) of each component in $\boldsymbol{\theta}_{-\lambda_{0}}$ are given by

$$
\begin{align*}
& {\left[\hat{\phi}_{k-1}-z_{\alpha / 2} \sqrt{J^{k k}}, \quad \hat{\phi}_{k-1}+z_{\alpha / 2} \sqrt{J^{k k}}\right], \quad 1 \leqslant k \leqslant m+2, \quad \text { and }} \tag{3.8}\\
& {\left[\hat{\lambda}_{i}-z_{\alpha / 2} \sqrt{J^{m+2+i, m+2+i}}, \quad \hat{\lambda}_{i}+z_{\alpha / 2} \sqrt{J^{m+2+i, m+2+i}}\right], \quad 1 \leqslant i \leqslant m,}
\end{align*}
$$

respectively, where z_{α} denotes the α-th upper quantile of the standard normal distribution.

3.2 Bootstrap confidence intervals

First, for the general log-likelihood function (3.1) associated with the proposed distribution (2.3), the calculation of the Hessian matrix or the Fisher information matrix seems to be too complicated, thus the standard errors of the estimators cannot be easily obtained. Second, even when they are obtainable, the resulting asymptotic CIs for parameters ϕ_{k} 's or λ_{i} 's
are reliable only for large sample size and may become useless if either boundary for ϕ_{k} is beyond $[0,1]$ or the lower bound for λ_{i} is less than 0 . Thus, under the current situation, the bootstrap method is a useful tool to find a bootstrap CI for an arbitrary function of $\boldsymbol{\theta}=\left(\phi_{0}, \boldsymbol{\phi}^{\top}, \phi_{m+1}, \lambda_{0}, \boldsymbol{\lambda}^{\top}\right)^{\top}$, say, $\vartheta=h(\boldsymbol{\theta})$. Let $\hat{\vartheta}=h(\hat{\boldsymbol{\theta}})$ denote the MLE of ϑ, where $\hat{\boldsymbol{\theta}}$ represent the MLEs of $\boldsymbol{\theta}$ calculated by the EM algorithm (3.4)-(3.5). Based on the obtained MLEs $\hat{\boldsymbol{\theta}}$, by using (2.2) we can generate $\mathbf{y}_{1}^{*}, \ldots, \mathbf{y}_{n}^{*} \stackrel{\text { iid }}{\sim} \operatorname{ZOIP}_{m}\left(\hat{\phi}_{0}, \hat{\boldsymbol{\phi}}, \hat{\phi}_{m+1} ; \hat{\lambda}_{0}, \hat{\boldsymbol{\lambda}}\right)$. Having obtained $Y_{\text {obs }}^{*}=\left\{\boldsymbol{y}_{1}^{*}, \ldots, \boldsymbol{y}_{n}^{*}\right\}$, we can calculate the bootstrap replications $\hat{\boldsymbol{\theta}}^{*}$ and get $\hat{\vartheta}^{*}=h\left(\hat{\boldsymbol{\theta}}^{*}\right)$. Independently repeat this process G times, we obtain G bootstrap replications $\left\{\hat{\vartheta}_{g}^{*}\right\}_{g=1}^{G}$. Consequently, the standard error, $\operatorname{se}(\hat{\vartheta})$, of $\hat{\vartheta}$ can be estimated by the sample standard deviation of the G replications, i.e.,

$$
\begin{equation*}
\widehat{\operatorname{se}}(\hat{\vartheta})=\left\{\frac{1}{G-1} \sum_{g=1}^{G}\left[\hat{\vartheta}_{g}^{*}-\left(\hat{\vartheta}_{1}^{*}+\cdots+\hat{\vartheta}_{G}^{*}\right) / G\right]^{2}\right\}^{1 / 2} . \tag{3.9}
\end{equation*}
$$

The $100(1-\alpha) \%$ bootstrap CI for ϑ is given by

$$
\begin{equation*}
\left[\hat{\vartheta}_{\mathrm{L}}, \hat{\vartheta}_{\mathrm{U}}\right], \tag{3.10}
\end{equation*}
$$

where $\hat{\vartheta}_{\mathrm{L}}$ and $\hat{\vartheta}_{\mathrm{U}}$ are the $100(\alpha / 2)$ and $100(1-\alpha / 2)$ percentiles of $\left\{\hat{\vartheta}_{g}^{*}\right\}_{g=1}^{G}$, respectively.

3.3 Testing hypotheses for large sample sizes

Since fitting the multivariate count data with the full model specified by (2.3) strictly depends on the proportions of the data category, we first consider some reduced models. For example, we could test whether ϕ_{m+1} or λ_{0} is equal to 0 .

3.3.1 Likelihood ratio test for testing $\phi_{m+1}=0$

Suppose that we want to test

$$
\begin{equation*}
H_{0}: \phi_{m+1}=0 \quad \text { against } \quad H_{1}: \phi_{m+1}>0 . \tag{3.11}
\end{equation*}
$$

Under H_{0}, the likelihood ratio test (LRT) statistic

$$
\begin{equation*}
T_{1}=-2\left\{\ell\left(\hat{\phi}_{0, H_{0}}, \hat{\boldsymbol{\phi}}_{H_{0}}, 0, \hat{\lambda}_{0, H_{0}}, \hat{\boldsymbol{\lambda}}_{H_{0}} \mid Y_{\text {obs }}\right)-\ell\left(\hat{\phi}_{0}, \hat{\boldsymbol{\phi}}, \hat{\phi}_{m+1}, \hat{\lambda}_{0}, \hat{\boldsymbol{\lambda}} \mid Y_{\text {obs }}\right)\right\} \tag{3.12}
\end{equation*}
$$

where $\left(\hat{\phi}_{0, H_{0}}, \hat{\boldsymbol{\phi}}_{H_{0}}, 0, \hat{\lambda}_{0, H_{0}}, \hat{\boldsymbol{\lambda}}_{H_{0}}\right)$ denote the constrained MLEs of ($\phi_{0}, \boldsymbol{\phi}, \phi_{m+1}, \lambda_{0}, \boldsymbol{\lambda}$) under H_{0} and $\left(\hat{\phi}_{0}, \hat{\boldsymbol{\phi}}, \hat{\phi}_{m+1}, \hat{\lambda}_{0}, \hat{\boldsymbol{\lambda}}\right)$ denote the unconstrained MLEs of $\left(\phi_{0}, \boldsymbol{\phi}, \phi_{m+1}, \lambda_{0}, \boldsymbol{\lambda}\right)$. Since the null hypothesis in (3.11) corresponds to ϕ_{m+1} being on the boundary of the parameter space and the appropriate null distribution is a mixture of $\chi^{2}(0)$ (i.e., Degenerate (0)) and $\chi^{2}(1)$ with equal weights (Self \& Liang, 1987). Thus the corresponding p-value is

$$
p_{\mathrm{v} 1}=\operatorname{Pr}\left(T_{1}>t_{1} \mid H_{0}\right)=\frac{1}{2} \operatorname{Pr}\left(\chi^{2}(1)>t_{1}\right),
$$

where t_{1} is the observed value of T_{1}.

3.3.2 Likelihood ratio test for testing $\lambda_{0}=0$

Suppose that we want to test

$$
\begin{equation*}
H_{0}: \lambda_{0}=0 \quad \text { against } \quad H_{1}: \lambda_{0}>0 . \tag{3.13}
\end{equation*}
$$

Under H_{0}, the LRT statistic

$$
\begin{equation*}
T_{2}=-2\left\{\ell\left(\hat{\phi}_{0, H_{0}}, \hat{\boldsymbol{\phi}}_{H_{0}}, \hat{\phi}_{m+1, H_{0}}, 0, \hat{\boldsymbol{\lambda}}_{H_{0}} \mid Y_{\mathrm{obs}}\right)-\ell\left(\hat{\phi}_{0}, \hat{\boldsymbol{\phi}}, \hat{\phi}_{m+1}, \hat{\lambda}_{0}, \hat{\boldsymbol{\lambda}} \mid Y_{\mathrm{obs}}\right)\right\}, \tag{3.14}
\end{equation*}
$$

where $\left(\hat{\phi}_{0, H_{0}}, \hat{\boldsymbol{\phi}}_{H_{0}}, \hat{\phi}_{m+1, H_{0}}, 0, \hat{\boldsymbol{\lambda}}_{H_{0}}\right)$ denote the constrained MLEs of ($\phi_{0}, \boldsymbol{\phi}, \phi_{m+1}, \lambda_{0}, \boldsymbol{\lambda}$) under H_{0} and $\left(\hat{\phi}_{0}, \hat{\boldsymbol{\phi}}, \hat{\phi}_{m+1}, \hat{\lambda}_{0}, \hat{\boldsymbol{\lambda}}\right)$ denote the unconstrained MLEs of $\left(\phi_{0}, \boldsymbol{\phi}, \phi_{m+1}, \lambda_{0}, \boldsymbol{\lambda}\right)$. The corresponding p-value is given by

$$
p_{\mathrm{v} 2}=\operatorname{Pr}\left(T_{2}>t_{2} \mid H_{0}\right)=\frac{1}{2} \operatorname{Pr}\left(\chi^{2}(1)>t_{2}\right),
$$

where t_{2} is the observed value of T_{2}.

3.4 Multivariate ZOIP regression model

In this subsection, we extend the proposed distribution by incorporating covariates into the data analysis. Considering that the full model is rarely satisfied and for simplicity of model formulation, we focus on the case with $\lambda_{0}=0$. We use the multinomial logistic regression to link $\left(\phi_{0}, \phi_{1}, \ldots, \phi_{m+2}\right)$ with the covariates via the logit transformation. Moreover, the Poisson
parameters $\boldsymbol{\lambda}$ can be modeled by the ordinary log-linear regression. Thus, we consider the following multivariate ZOIP regression model:

$$
\left\{\begin{aligned}
\mathbf{y}_{j} & \stackrel{\text { ind }}{\sim} \operatorname{ZOIP}_{m}\left(\phi_{0 j}, \boldsymbol{\phi}_{j}, \phi_{m+1, j} ; 0, \boldsymbol{\lambda}_{j}\right), \quad 1 \leqslant j \leqslant n \\
\phi_{k j} & =\frac{\exp \left(\boldsymbol{w}_{j}^{\top} \boldsymbol{\gamma}_{k}\right)}{1+\sum_{i=0}^{m+1} \exp \left(\boldsymbol{w}_{j}^{\top} \boldsymbol{\gamma}_{i}\right)}, \quad 0 \leqslant k \leqslant m+1, \\
\phi_{m+2, j} & =\frac{1}{1+\sum_{i=0}^{m+1} \exp \left(\boldsymbol{w}_{j}^{\top} \boldsymbol{\gamma}_{i}\right)}, \\
\lambda_{i j} & =\exp \left(\boldsymbol{x}_{j}^{\top} \boldsymbol{\beta}_{i}\right), \quad 1 \leqslant i \leqslant m,
\end{aligned}\right.
$$

where $\mathbf{y}_{j}=\left(Y_{1 j}, \ldots, Y_{m j}\right)^{\top}$ is the response vector of the subject $j, \phi_{j}=\left(\phi_{1 j}, \ldots, \phi_{m j}\right)^{\top}$, $\boldsymbol{\lambda}_{j}=\left(\lambda_{1 j}, \ldots, \lambda_{m j}\right)^{\top}, \boldsymbol{w}_{j}=\left(1, w_{1 j}, \ldots, w_{p j}\right)^{\top}$ and $\boldsymbol{x}_{j}=\left(1, x_{1 j}, \ldots, x_{q j}\right)^{\top}$ are not necessarily identical covariate vectors associated with the subject $j, \boldsymbol{\gamma}_{k}=\left(\gamma_{k 0}, \gamma_{k 1}, \ldots, \gamma_{k p}\right)^{\top}$ and $\boldsymbol{\beta}_{i}=$ $\left(\beta_{i 0}, \beta_{i 1}, \ldots, \beta_{i q}\right)^{\top}$ are vectors of regression coefficients, respectively. Note that the component $\phi_{m+2, j}$ is taken as the baseline for the multinomial logit model. Thus, the logarithm for other components relative to $\phi_{m+2, j}$ is

$$
\log \left(\frac{\phi_{k j}}{\phi_{m+2, j}}\right)=\boldsymbol{w}_{j}^{\top} \gamma_{k}, \quad 0 \leqslant k \leqslant m+1 .
$$

First, we define $I_{0 j} \hat{=} I\left(\boldsymbol{y}_{j}=\mathbf{0}_{m}\right), I_{i j} \hat{=} I\left(\boldsymbol{y}_{j}=\boldsymbol{e}_{m}^{(i)}\right)$ for $1 \leqslant i \leqslant m, I_{m+1, j} \hat{=} I\left(\boldsymbol{y}_{j}=\right.$ $\left.\mathbf{1}_{m}\right)$ and $I_{m+2, j} \hat{=} I\left(\boldsymbol{y}_{j} \notin \mathcal{Y}_{01}\right)$. Let $\boldsymbol{\gamma}=\left(\boldsymbol{\gamma}_{0}^{\top}, \boldsymbol{\gamma}_{1}^{\top}, \ldots, \boldsymbol{\gamma}_{m+1}^{\top}\right)^{\top}, \boldsymbol{\beta}=\left(\boldsymbol{\beta}_{1}^{\top}, \ldots, \boldsymbol{\beta}_{m}^{\top}\right)^{\top}, Y_{\text {obs }}=$ $\left\{\boldsymbol{y}_{j}, \boldsymbol{w}_{j}, \boldsymbol{x}_{j}\right\}_{j=1}^{n}$. Then, the observed-data likelihood function is

$$
L_{1}^{\prime}\left(\boldsymbol{\gamma}, \boldsymbol{\beta} \mid Y_{\mathrm{obs}}\right)=\prod_{j=1}^{n}\left[\left(\prod_{i=0}^{m+1} b_{i j}^{I_{i j}}\right)\left(\phi_{m+2, j} \mathrm{e}^{-\lambda_{+j}} \prod_{i=1}^{m} \frac{\lambda_{i j}^{y_{i j}}}{y_{i j}!}\right)^{I_{m+2, j}}\right]
$$

where

$$
\begin{aligned}
b_{0 j} & =\phi_{0 j}+\phi_{m+2, j} \mathrm{e}^{-\lambda_{+j}}, \quad b_{i j}=\phi_{i j}+\phi_{m+2, j} \lambda_{i j} \mathrm{e}^{-\lambda_{+j}}, \quad 1 \leqslant i \leqslant m, \\
b_{m+1, j} & =\phi_{m+1, j}+\phi_{m+2, j} \mathrm{e}^{-\lambda_{+j}} \prod_{i=1}^{m} \lambda_{i j},
\end{aligned}
$$

and $\lambda_{+j}=\sum_{i=1}^{m} \lambda_{i j}$. Similarly, we augment $Y_{\text {obs }}$ with $(m+2) \times n$ latent variables $U_{k j}$'s for $k=0,1, \ldots, m+1$ and $j=1, \ldots, n$. The conditional predictive distributions of $\left\{U_{k j}\right\}$ given
$\left(Y_{\text {obs }}, \boldsymbol{\gamma}, \boldsymbol{\beta}\right)$ are

$$
U_{k j} \left\lvert\,\left(Y_{\text {obs }}, \boldsymbol{\gamma}, \boldsymbol{\beta}\right) \sim \operatorname{Bernoulli}\left(\frac{\phi_{k j}}{b_{k j}}\right)\right., \quad 0 \leqslant k \leqslant m+1,
$$

Denote the missing data by $Y_{\text {mis }}=\left\{\left\{u_{k j}\right\}_{k=0}^{m+1}\right\}_{j=1}^{n}, Y_{\text {com }}=\left\{Y_{\text {obs }}, Y_{\text {mis }}\right\}$, then the completedata likelihood function is

$$
\begin{aligned}
L_{1}^{\prime}\left(\boldsymbol{\gamma}, \boldsymbol{\beta} \mid Y_{\text {com }}\right) \propto & \prod_{j=1}^{n}\left[\phi_{0 j}^{u_{0 j} I_{0 j}}\left(\phi_{m+2, j} \mathrm{e}^{-\lambda_{+j}}\right)^{\left(1-u_{0 j}\right) I_{0 j}} \prod_{i=1}^{m} \phi_{i j}^{u_{i j} I_{i j}}\left(\phi_{m+2, j} \lambda_{i j} \mathrm{e}^{-\lambda_{+j}}\right)^{\left(1-u_{i j}\right) I_{i j}}\right. \\
& \times \phi_{m+1, j}^{u_{m+1, j} I_{m+1, j}}\left(\phi_{m+2, j} \mathrm{e}^{-\lambda_{+j}} \prod_{i=1}^{m} \lambda_{i j}\right)^{\left(1-u_{m+1, j} I_{m+1, j}\right.} \\
& \left.\times\left(\phi_{m+2, \mathrm{j}} \mathrm{e}^{-\lambda_{+j}} \prod_{i=1}^{m} \lambda_{i j}^{y_{i j}}\right)^{I_{m+2, j}}\right],
\end{aligned}
$$

and the complete-data log-likelihood is

$$
\begin{aligned}
\ell_{1}^{\prime}\left(\boldsymbol{\gamma}, \boldsymbol{\beta} \mid Y_{\mathrm{com}}\right)= & \sum_{j=1}^{n}\left[\sum_{k=0}^{m+1} u_{k j} I_{k j} \log \phi_{k j}+\sum_{k=0}^{m+1}\left(1-u_{k j}\right) I_{k j} \log \phi_{m+2, j}+I_{m+2, j} \log \phi_{m+2, j}\right. \\
& -\sum_{k=0}^{m+1}\left(1-u_{k j}\right) I_{k j} \lambda_{+j}-I_{m+2, j} \lambda_{+j}+\sum_{i=1}^{m}\left(1-u_{i j}\right) I_{i j} \log \lambda_{i j} \\
& \left.+\sum_{i=1}^{m}\left(1-u_{m+1, j}\right) I_{m+1, j} \log \lambda_{i j}+\sum_{i=1}^{m} I_{m+2, j} y_{i j} \log \lambda_{i j}\right] \\
\hat{=} & \ell_{11}\left(\gamma \mid Y_{\text {com }}\right)+\ell_{12}\left(\boldsymbol{\beta} \mid Y_{\text {com }}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\ell_{11}= & \ell_{11}\left(\gamma \mid Y_{\mathrm{com}}\right) \\
= & \sum_{j=1}^{n}\left[\sum_{k=0}^{m+1} u_{k j} I_{k j} \log \phi_{k j}+\sum_{k=0}^{m+1}\left(1-u_{k j}\right) I_{k j} \log \phi_{m+2, j}+I_{m+2, j} \log \phi_{m+2, j}\right], \\
\ell_{12}= & \ell_{12}\left(\boldsymbol{\beta} \mid Y_{\mathrm{com}}\right)=-\sum_{j=1}^{n}\left[\sum_{k=0}^{m+1}\left(1-u_{k j}\right) I_{k j} \lambda_{+j}+I_{m+2, j} \lambda_{+j}-\sum_{i=1}^{m}\left(1-u_{i j}\right) I_{i j} \log \lambda_{i j}\right. \\
& \left.-\sum_{i=1}^{m}\left(1-u_{m+1, j}\right) I_{m+1, j} \log \lambda_{i j}-\sum_{i=1}^{m} y_{i j} I_{m+2, j} \log \lambda_{i j}\right],
\end{aligned}
$$

which only involves $\phi_{i j}$'s and $\lambda_{i j}$'s, respectively. For convenience, we define a new operator "o" by $\boldsymbol{u} \circ \boldsymbol{y}_{i}=\left(u_{1} y_{i 1}, \ldots, u_{n} y_{i n}\right)^{\top}$. Then we have

$$
\begin{aligned}
\frac{\partial \ell_{11}}{\partial \boldsymbol{\gamma}_{k}}= & \sum_{j=1}^{n}\left(u_{k j} I_{k j} \boldsymbol{w}_{j}-\phi_{k j} \boldsymbol{w}_{j}\right)=\mathbf{W}^{\top}\left(\boldsymbol{u}_{(k)} \circ \boldsymbol{i}_{(k)}-\boldsymbol{\phi}_{(k)}\right), \quad 0 \leqslant k \leqslant m+1, \\
\frac{\partial \ell_{12}}{\partial \boldsymbol{\beta}_{i}}= & -\sum_{j=1}^{n}\left[\lambda_{i j} \boldsymbol{x}_{j}-\sum_{k=0}^{m+1} u_{k j} I_{k j} \lambda_{i j} \boldsymbol{x}_{j}-\left(1-u_{i j}\right) I_{i j} \boldsymbol{x}_{j}\right. \\
& \left.-\left(1-u_{m+1, j}\right) I_{m+1, j} \boldsymbol{x}_{j}-I_{m+2, j} y_{i j} \boldsymbol{x}_{j}\right] \\
= & -\mathbf{X}^{\top}\left[\boldsymbol{\lambda}_{(i)}-\sum_{k=0}^{m+1}\left(\boldsymbol{u}_{(k)} \circ \boldsymbol{i}_{(k)}\right) \circ \boldsymbol{\lambda}_{(i)}-\left(\mathbf{1}-\boldsymbol{u}_{(i)}\right) \circ \boldsymbol{i}_{(i)}\right. \\
& \left.-\left(\mathbf{1}-\boldsymbol{u}_{(m+1)}\right) \circ \boldsymbol{i}_{(m+1)}-\boldsymbol{y}_{(i)} \circ \boldsymbol{i}_{(m+2)}\right], \quad 1 \leqslant i \leqslant m, \\
\frac{\partial^{2} \ell_{11}}{\partial \boldsymbol{\gamma}_{k} \partial \boldsymbol{\gamma}_{k}^{\top}}= & -\sum_{j=1}^{n} \phi_{k j}\left(1-\phi_{k j}\right) \boldsymbol{w}_{j} \boldsymbol{w}_{j}^{\top}=-\mathbf{W}^{\top} \operatorname{diag}\left[\boldsymbol{\phi}_{(k)} \circ\left(\mathbf{1}-\boldsymbol{\phi}_{(k)}\right)\right] \mathbf{W}, \\
\frac{\partial^{2} \ell_{11}}{\partial \boldsymbol{\gamma}_{k} \partial \boldsymbol{\gamma}_{k^{\prime}}^{\top}}= & \sum_{j=1}^{n} \phi_{k j} \phi_{k^{\prime} j} \boldsymbol{w}_{j} \boldsymbol{w}_{j}^{\top}=\mathbf{W}^{\top} \operatorname{diag}\left(\boldsymbol{\phi}_{(k)} \circ \boldsymbol{\phi}_{\left(k^{\prime}\right)}\right) \mathbf{W}, \quad k \neq k^{\prime}, \\
\frac{\partial^{2} \ell_{12}}{\partial \boldsymbol{\beta}_{i} \partial \boldsymbol{\beta}_{i}^{\top}}= & -\sum_{j=1}^{n}\left(\lambda_{i j} \boldsymbol{x}_{j} \boldsymbol{x}_{j}^{\top}-\sum_{k=0}^{m+1} u_{k j} I_{k j} \lambda_{i j} \boldsymbol{x}_{j} \boldsymbol{x}_{j}^{\top}\right) \\
= & -\mathbf{X}^{\top} \operatorname{diag}\left[\boldsymbol{\lambda}_{(i)}-\sum_{k=0}^{m+1}\left(\boldsymbol{u}_{(k)} \circ \boldsymbol{i}_{(k)}\right) \circ \boldsymbol{\lambda}_{(i)}\right] \mathbf{X}, \\
\frac{\partial^{2} \ell_{12}}{\partial \boldsymbol{\beta}_{i} \partial \boldsymbol{\beta}_{i^{\prime}}^{\top}}= & \mathbf{0}, i \neq i^{\prime},
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbf{W} & =\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}\right)^{\top}, \quad \boldsymbol{u}_{(k)}=\left(u_{k 1}, \ldots, u_{k n}\right)^{\top}, \\
\boldsymbol{i}_{(l)} & =\left(I_{l 1}, \ldots, I_{l n}\right)^{\top}, \quad \boldsymbol{\phi}_{(k)}=\left(\phi_{k 1}, \ldots, \phi_{k n}\right)^{\top}, \\
\mathbf{X} & =\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)^{\top}, \quad \boldsymbol{\lambda}_{(i)}=\left(\lambda_{i 1}, \ldots, \lambda_{i n}\right)^{\top}, \\
\boldsymbol{y}_{(i)} & =\left(y_{i 1}, \ldots, y_{i n}\right)^{\top},
\end{aligned}
$$

and $l=0,1, \ldots, m+2$. The M-step is to embed the Newton-Raphson algorithm to update each iteration and E-step is to replace all $u_{k j}$'s by their conditional expectations.

After we obtained the MLEs of $\left(\boldsymbol{\gamma}_{k}, \boldsymbol{\beta}_{i}\right)$, denoted by $\left(\hat{\boldsymbol{\gamma}}_{k}, \hat{\boldsymbol{\beta}}_{i}\right)$, we are interested in finding
the standard errors of $\left(\hat{\boldsymbol{\gamma}}_{k}, \hat{\boldsymbol{\beta}}_{i}\right)$. Therefore, we need to derive the observed information matrix. Let $\boldsymbol{\theta}$ be the parameters of interest. According to Louis (1982), the observed information matrix can be calculated as

$$
\begin{equation*}
\mathbf{I}\left(\hat{\boldsymbol{\theta}} \mid Y_{\mathrm{obs}}\right)=\left.\left\{E\left[-\nabla \ell^{2}\left(\boldsymbol{\theta} \mid Y_{\mathrm{com}}\right) \mid Y_{\mathrm{obs}}, \boldsymbol{\theta}\right]-E\left\{\left[\nabla \ell\left(\boldsymbol{\theta} \mid Y_{\text {com }}\right)\right]^{\otimes 2} \mid Y_{\mathrm{obs}}, \boldsymbol{\theta}\right\}\right\}\right|_{\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}}, \tag{3.15}
\end{equation*}
$$

where $\boldsymbol{a}^{\otimes 2}=\boldsymbol{a} \boldsymbol{a}^{\top}, \nabla \ell^{2}\left(\boldsymbol{\theta} \mid Y_{\text {com }}\right)$ and $\nabla \ell\left(\boldsymbol{\theta} \mid Y_{\text {com }}\right)$ are the Hessian matrix and the gradient vector of the complete-data log-likelihood function. Note that the key point in (3.15) is the computation of the expectations of the terms involving the latent variables $U_{k j}$'s. Since $U_{k j}$ for $j=1, \ldots, n$ independently follows the Bernoulli distribution, thus we have

$$
E\left(U_{k j}^{2}\right)=E\left(U_{k j}\right) \quad \text { and } \quad E\left(U_{k j} U_{k^{\prime} j^{\prime}}\right)=E\left(U_{k j}\right) E\left(U_{k^{\prime} j^{\prime}}\right)
$$

for $j \neq j^{\prime}$ and $k, k^{\prime}=0,1, \ldots, m+1$. The estimated standard errors are the square roots of the diagonal elements of the inverse observed information matrix $\mathbf{I}^{-1}\left(\hat{\boldsymbol{\theta}} \mid Y_{\text {obs }}\right)$.

Alternatively, we use the square roots of the diagonal elements of the inversed complete information matrix, i.e., $\mathbf{I}^{-1}\left(\hat{\boldsymbol{\theta}} \mid Y_{\text {com }}\right)$, to approximate the estimated errors which is

$$
\begin{equation*}
\mathbf{I}\left(\hat{\boldsymbol{\theta}} \mid Y_{\text {com }}\right)=\left.E\left[-\nabla \ell^{2}\left(\boldsymbol{\theta} \mid Y_{\text {com }}\right) \mid Y_{\text {obs }}, \boldsymbol{\theta}\right]\right|_{\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}} . \tag{3.16}
\end{equation*}
$$

4. Bayesian methods

For the reduced model with $\lambda_{0}=0$, we could consider Bayesian methods to compute the posterior modes and generate posterior samples from which we see that all results have explicit expressions.

4.1 Posterior modes via the EM algorithm

To derive the posterior modes of $\boldsymbol{\theta}_{-\lambda_{0}}=\left(\phi_{0}, \boldsymbol{\phi}^{\top}, \phi_{m+1}, \boldsymbol{\lambda}^{\top}\right)^{\top}$, we employ the EM algorithm again. Similar to the way of introducing latent variables in Section 3.1.1, in the current case we introduce $\left\{U_{k}\right\}_{k=0}^{m+1}$ to split n_{k} into U_{k} and $n_{k}-U_{k}$, respectively. The conditional predictive distributions of $\left\{U_{k}\right\}_{k=0}^{m+1}$ are given by

$$
\begin{equation*}
U_{k} \left\lvert\,\left(Y_{\text {obs }}, \boldsymbol{\theta}_{-\lambda_{0}}\right) \sim \operatorname{Binomial}\left(n_{k}, \frac{\phi_{k}}{b_{k}}\right)\right., \quad 0 \leqslant k \leqslant m+1 . \tag{4.1}
\end{equation*}
$$

To assign priors for the parameters, a $\operatorname{Dirichlet}\left(\delta_{0}, \delta_{1}, \ldots, \delta_{m+2}\right)$ is adopted as the prior distribution of $\left(\phi_{0}, \phi_{1}, \ldots, \phi_{m+2}\right)^{\top}$, a $\operatorname{Gamma}\left(\alpha_{i}, \beta_{i}\right)$ is adopted as the prior distribution of λ_{i} for $1 \leqslant i \leqslant m$, and they are mutually independent. Then, the complete-data posterior distributions are given by

$$
\begin{align*}
\left(\phi_{0}, \ldots, \phi_{m+2}\right)^{\top} \mid Y_{\mathrm{com}} & \sim \operatorname{Dirichlet}\left(u_{0}+\delta_{0}, u_{1}+\delta_{1}, \ldots, u_{m+1}+\delta_{m+1}, n^{\prime}+\delta_{m+2}\right), \\
\lambda_{i} \mid Y_{\mathrm{com}} & \sim \operatorname{Gamma}\left(n_{i}-u_{i}+n_{m+1}-u_{m+1}+N_{i}+\alpha_{i}, n^{\prime}+\beta_{i}\right), \tag{4.2}
\end{align*}
$$

for $i=1, \ldots, m$, where $n^{\prime}=n-\sum_{k=0}^{m+1} u_{k}$. The M-step is to calculate the complete-data posterior modes of $\left(\phi_{0}, \phi_{1}, \ldots, \phi_{m+2}\right)$ and $\boldsymbol{\lambda}$, which are given by

$$
\left\{\begin{align*}
\phi_{k} & =\frac{u_{k}+\delta_{k}-1}{n+\delta_{+}-m-3}, \quad 0 \leqslant k \leqslant m+1, \tag{4.3}\\
\phi_{m+2} & =\frac{n^{\prime}+\delta_{m+2}-1}{n+\delta_{+}-m-3}, \\
\lambda_{i} & =\frac{N_{i}+n_{m+1}-u_{m+1}+n_{i}-u_{i}+\alpha_{i}-1}{n^{\prime}+\beta_{i}}, \quad 1 \leqslant i \leqslant m,
\end{align*}\right.
$$

where $\delta_{+}=\sum_{k=0}^{m+2} \delta_{k}$, and the E-step is to replace $\left\{u_{k}\right\}_{k=0}^{m+1}$ by their conditional expectations, i.e., $n_{k} \phi_{k} / b_{k}$, directly derived from (4.1).

4.2 Generation of posterior samples via the DA algorithm

To make a full Bayesian inference on the parameters $\boldsymbol{\theta}_{-\lambda_{0}}$, we need to generate posterior samples from the observed posterior distribution $f\left(\boldsymbol{\theta}_{-\lambda_{0}} \mid Y_{\text {obs }}\right)$ by using the data augmentation (DA) algorithm (Tanner \& Wong, 1987). The I-step of the DA algorithm is to draw the missing values of $\left\{U_{k}=u_{k}\right\}_{k=0}^{m+1}$ for given $\left(Y_{\text {obs }}, \boldsymbol{\theta}_{-\lambda_{0}}\right)$ from (4.1), and the P-step is to draw $\boldsymbol{\theta}_{-\lambda_{0}}$ from (4.2) for given $\left(Y_{\text {obs }}, u_{0}, u_{1} \ldots, u_{m+1}\right)$.

5. Simulations studies

To assess the performance of the proposed methods in Section 3 for the multivariate ZOIP distribution, we first concern the accuracy of the point estimators and the interval estimators, and then investigate the performance of the proposed LRTs in Section 3.3 by calculating their levels and powers via simulations.

5.1 Accuracy of the point and interval estimators

To evaluate the accuracy of the point and interval estimators of parameters, we consider two cases for the dimension: $m=2$ and $m=3$. Four combinations of parameter configurations are set as follows:
(1) Case I: When $m=2, \phi_{0}=0.3,\left(\phi_{1}, \phi_{2}\right)=(0.2,0.2), \phi_{3}=0.1, \lambda_{0}=2,\left(\lambda_{1}, \lambda_{2}\right)=(2,3)$;
(2) Case II: When $m=2, \phi_{0}=0.65,\left(\phi_{1}, \phi_{2}\right)=(0.05,0.08), \phi_{3}=0.07, \lambda_{0}=6,\left(\lambda_{1}, \lambda_{2}\right)=$ $(2,3)$;
(3) Case III: When $m=3, \phi_{0}=0.3,\left(\phi_{1}, \phi_{2}, \phi_{3}\right)=(0.2,0.1,0.1), \phi_{4}=0.1, \lambda_{0}=1$, $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=(2,1,3) ;$
(4) Case IV: When $m=3, \phi_{0}=0.5,\left(\phi_{1}, \phi_{2}, \phi_{3}\right)=(0.08,0.06,0.05), \phi_{4}=0.06, \lambda_{0}=6$, $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=(4,2,3)$.

The sample size n is set to be 200 and 800 . For each scenario and a given sample size n, we first generate $\left\{\mathbf{y}_{j}\right\}_{j=1}^{n} \stackrel{\mathrm{iid}}{\sim} \operatorname{ZOIP}_{m}\left(\phi_{0}, \boldsymbol{\phi}, \phi_{m+1} ; \lambda_{0}, \boldsymbol{\lambda}\right)$ and then use the EM algorithm specified by (3.4)-(3.5) to calculate the MLEs of the parameters. With the MLEs, by generating $G=500$ bootstrap samples we obtain the 95% bootstrap CI specified by (3.10) for each parameter based on these bootstrap replications. Independently repeat this process 500 times. Finally, based on 500 repetitions, the resultant mean of the MLEs (denoted by MLE), the mean squared error (denoted by MSE, equals to the sum of the variance and the squared bias of the estimator) of the estimators, the coverage probability (denoted by CP) and the average width (denoted by Width) of bootstrap CIs under each parameter configuration are reported in Tables 1-4, respectively.

The results reveal that under different parameter configurations, all MLEs of parameters are close to their true values and the corresponding coverage probabilities of the interval estimators are quite satisfactory for both small and large sample size situations. More specifically, as the sample size increases, the MLEs are more accurate since the differences between estimated values and their true values become smaller and the corresponding MSEs
also drop significantly. The interval estimators are more precise as the average widths become more narrow when the sample size is increased.

Table 1: Simulation results on accuracy of MLEs and interval estimators for Case I

		$n=200$					$n=800$				
Parameter	True	MLE	MSE	CP	Width		MLE		MSE	CP	Width
ϕ_{0}	0.3	0.299473	0.001182	0.932	0.126431		0.300089	0.000249	0.946	0.063291	
ϕ_{1}	0.2	0.200015	0.000867	0.934	0.110085		0.199680	0.000209	0.938	0.055277	
ϕ_{2}	0.2	0.200885	0.000864	0.936	0.110769		0.199475	0.000200	0.946	0.055263	
ϕ_{3}	0.1	0.100587	0.000459	0.936	0.083341		0.098490	0.000108	0.942	0.041514	
λ_{0}	2	2.077578	0.291295	0.946	2.005189		2.013730	0.082810	0.938	1.085131	
λ_{1}	2	1.906087	0.286596	0.928	1.999224		1.972283	0.081504	0.934	1.103672	
λ_{2}	3	2.908938	0.326888	0.944	2.116052		2.988352	0.090192	0.944	1.153983	

Table 2: Simulation results on accuracy of MLEs and interval estimators for Case II

Parameter	True	$n=200$				$n=800$			
		MLE	MSE	CP	Width	MLE	MSE	CP	Width
ϕ_{0}	0.65	0.648977	0.001066	0.942	0.131677	0.649747	0.000298	0.930	0.066018
ϕ_{1}	0.05	0.051314	0.000235	0.930	0.059572	0.050105	0.000063	0.946	0.030122
ϕ_{2}	0.08	0.080211	0.000339	0.940	0.074213	0.079644	0.000084	0.940	0.037331
ϕ_{3}	0.07	0.069743	0.000345	0.926	0.069246	0.069702	0.000078	0.948	0.035186
λ_{0}	6	6.033782	0.709480	0.940	3.016558	6.008797	0.135546	0.952	1.496788
λ_{1}	2	1.982282	0.505431	0.912	2.554871	1.984519	0.096169	0.954	1.301682
λ_{2}	3	3.000144	0.554380	0.934	2.669882	2.970556	0.103760	0.954	1.350646

5.2 Performance of the LRT

In Section 3.3, the LRT is developed for testing $H_{0}: \phi_{m+1}=0$ in (3.11) and $H_{0}: \lambda_{0}=0$ in (3.13). To evaluate the performance of the proposed LRT, we calculate the levels and powers for different sample sizes via simulations. We only consider $m=2$ with sample sizes set to be $n=100(50) 500$.

Table 3: Simulation results on accuracy of MLEs and interval estimators or Case III

Parameter	True	$n=200$				$n=800$			
		MLE	MSE	CP	Width	MLE	MSE	CP	Width
ϕ_{0}	0.3	0.298799	0.001074	0.942	0.126305	0.300315	0.000247	0.962	0.063417
ϕ_{1}	0.2	0.201679	0.000868	0.938	0.110736	0.200352	0.000190	0.960	0.055456
ϕ_{2}	0.1	0.099344	0.000444	0.942	0.081668	0.099730	0.000108	0.950	0.041447
ϕ_{3}	0.1	0.100098	0.000502	0.932	0.082638	0.099765	0.000113	0.946	0.041415
ϕ_{4}	0.1	0.100359	0.000465	0.944	0.082945	0.100536	0.000118	0.932	0.041820
λ_{0}	1	1.028665	0.087442	0.918	1.066990	1.008615	0.018221	0.946	0.536210
λ_{1}	2	1.976059	0.109587	0.940	1.255372	2.009634	0.023395	0.956	0.631360
λ_{2}	1	0.978098	0.084634	0.910	1.060033	0.993418	0.019133	0.938	0.539105
λ_{3}	3	2.932917	0.145493	0.934	1.413747	2.992506	0.034368	0.952	0.711005

Table 4: Simulation results on accuracy of MLEs and interval estimators for Case IV

Parameter	True	$n=200$				$n=800$			
		MLE	MSE	CP	Width	MLE	MSE	CP	Width
ϕ_{0}	0.5	0.502220	0.001212	0.960	0.137620	0.501070	0.000307	0.940	0.069106
ϕ_{1}	0.08	0.079400	0.000387	0.912	0.073645	0.079600	0.000097	0.932	0.037270
ϕ_{2}	0.06	0.060160	0.000295	0.940	0.064190	0.060487	0.000071	0.938	0.032821
ϕ_{3}	0.05	0.048940	0.000225	0.932	0.058270	0.049827	0.000054	0.944	0.029955
ϕ_{4}	0.06	0.060277	0.000278	0.930	0.064636	0.059833	0.000072	0.948	0.032663
λ_{0}	6	6.033335	0.268890	0.954	1.992526	6.012531	0.069173	0.948	0.985235
λ_{1}	4	3.964745	0.211920	0.934	1.804585	3.974121	0.052280	0.946	0.901372
λ_{2}	2	1.965569	0.175774	0.928	1.615118	1.985290	0.041220	0.958	0.810607
λ_{3}	3	2.958785	0.199463	0.940	1.712874	2.987533	0.047092	0.944	0.858310

First, we investigate the type I error rates (with $H_{0}: \phi_{m+1}=0$) and powers (with $H_{1}: \phi_{m+1}>0$), where the values of ϕ_{m+1} in H_{1} are chosen to be $0.01,0.05,0.1$. For a given combination of $\left(n, \phi_{0}=0.3, \boldsymbol{\phi}^{\top}=(0.2,0.2), \phi_{m+1}, \lambda_{0}=2, \boldsymbol{\lambda}^{\top}=(2,3)\right)$, we first generate $\mathbf{y}_{1}^{(l)}, \ldots, \mathbf{y}_{n}^{(l)} \stackrel{\text { iid }}{\sim} \operatorname{ZOIP}_{m}\left(\phi_{0}, \boldsymbol{\phi}, \phi_{m+1} ; \lambda_{0}, \boldsymbol{\lambda}\right)$ for $l=1, \ldots, L(L=500)$. For each group of samples $\left\{\mathbf{y}_{j}^{(l)}\right\}_{j=1}^{n}$, we conduct the testing hypothesis. Let r_{1} denote the number of rejecting the null hypothesis $H_{0}: \phi_{m+1}=0$ by the test statistic T_{1} given by (3.12). Then the empirical
level can be estimated by r_{1} / L with $\phi_{m+1}=0$ and the power of the test statistic T_{1} can be estimated by r_{1} / L with $\phi_{m+1}>0$.

Next, we investigate the type I error rates (with $H_{0}: \lambda_{0}=0$) and powers (with $H_{1}: \lambda_{0}>$ 0), where the values of λ_{0} in H_{1} are chosen to be $1,3,5$. For a given combination of $\left(n, \phi_{0}=0.3, \boldsymbol{\phi}^{\top}=(0.2,0.2), \phi_{m+1}=0.1, \lambda_{0}, \boldsymbol{\lambda}^{\top}=(2,3)\right)$, we first generate $\mathbf{y}_{1}^{(l)}, \ldots, \mathbf{y}_{n}^{(l)} \stackrel{\text { iid }}{\sim}$ $\operatorname{ZOIP}_{m}\left(\phi_{0}, \boldsymbol{\phi}, \phi_{m+1} ; \lambda_{0}, \boldsymbol{\lambda}\right)$ for $l=1, \ldots, L(L=500)$. For each group of samples $\left\{\mathbf{y}_{j}^{(l)}\right\}_{j=1}^{n}$, we conduct the testing hypothesis. Let r_{2} denote the number of rejecting the null hypothesis $H_{0}: \lambda_{0}=0$ by the test statistic T_{2} given by (3.14). Then the empirical level can be estimated by r_{2} / L with $\lambda_{0}=0$ and the power of the test statistic T_{2} can be estimated by r_{2} / L with $\lambda_{0}>0$.

The empirical levels/powers of the LRT statistics T_{1} and T_{2} are summarized in Table 5. Figure 1 displays the type I error rates and powers of the LRT in testing $H_{0}: \phi_{m+1}=0$ against $H_{1}: \phi_{m+1}>0$ with three different values of $\phi_{m+1}>0$ for various sample sizes. Figure 2 displays the type I error rates and the powers of the LRT in testing $H_{0}: \lambda_{0}=0$ against $H_{1}: \lambda_{0}>0$ with three different values of $\lambda_{0}>0$ for various sample sizes. From both of the two figures, we can see that the lines for levels of LRT in two tests fluctuate near the line of $\alpha=0.05$, indicating that they perform well in controlling the type I error rates around the pre-chosen nominal level. Besides, the LRT in all of six scenarios tend to be more powerful as the sample size n turns larger.
[Insert Figures 1 and 2 here]

6. Applications

6.1 Health care utilization data

Cameron \& Trivedi (2013) reported data concerning the demand for Health Care in Australia which refers to the Australian Health survey for 1977-1978. Let Y_{1} denote the number of consultations with a doctor or a specialist and Y_{2} denote the total number of prescribed medications used in past two days. The data are given in Table 6.

Table 5: Empirical levels/powers of the LRT statistics T_{1} and T_{2} based on 500 replications

Sample size	Empirical	Empirical power ϕ_{3}			Empirical	Empirical power λ_{0}		
(n)	level	0.01	0.05	0.10	level	1	3	5
100	0.038	0.326	0.970	1.000	0.061	0.396	0.840	0.962
150	0.040	0.512	0.988	1.000	0.050	0.504	0.946	0.994
200	0.048	0.532	0.996	1.000	0.048	0.570	0.982	1.000
250	0.056	0.660	1.000	1.000	0.054	0.600	0.994	1.000
300	0.036	0.694	1.000	1.000	0.050	0.674	1.000	1.000
350	0.030	0.742	1.000	1.000	0.052	0.712	1.000	1.000
400	0.048	0.812	1.000	1.000	0.046	0.828	1.000	1.000
450	0.060	0.842	1.000	1.000	0.050	0.844	1.000	1.000
500	0.036	0.892	1.000	1.000	0.048	0.892	1.000	1.000

Table 6: Cross tabulation of the health care utilization data in the Australian Health Survey for 1977-1978 (Cameron \& Trivedi, 2013)

$Y_{1} \backslash Y_{2}$	0	1	2	3	4	5	6	7	8	Total
0	2789	726	307	171	76	32	16	15	9	4141
1	224	212	149	85	50	35	13	5	9	782
2	49	34	38	11	23	7	5	3	4	174
3	8	10	6	2	1	1	2	0	0	30
4	8	8	2	2	3	1	0	0	0	24
5	3	3	2	0	1	0	0	0	0	9
6	2	0	1	3	1	2	2	0	1	12
7	1	0	3	2	1	2	1	0	2	12
8	1	1	1	0	1	0	1	0	0	5
9	0	0	0	0	0	0	0	0	1	1
Total	3085	994	509	276	157	80	40	23	26	5190

6.1.1 Likelihood-based inferences without covariates

Through some endeavor of trying the models proposed in Section 2, the model ZOIP ${ }_{m}\left(\phi_{0}, \phi\right.$, $\phi_{m+1} ; 0, \boldsymbol{\lambda}$) works well in fitting this data. The procedure of model selection is listed in Table
9. To find the MLEs of $\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}, \lambda_{1}, \lambda_{2}\right)$, we choose $\left(\phi_{0}^{(0)}, \phi_{1}^{(0)}, \phi_{2}^{(0)}, \phi_{3}^{(0)}, \lambda_{1}^{(0)}, \lambda_{2}^{(0)}\right)=$ $(0.2,0.1,0.1,0.1,2,2)$ as their initial values. The MLEs converged to the values shown in the second column of Table 7 in 31 iterations for the Fisher scoring algorithm (3.7) and in 72 iterations for the EM algorithm (3.4)-(3.5), while the Newton-Raphson method is not available because the observed information matrix is nearly singular. The standard errors of the estimators are given in the third column and 95% asymptotic Wald CIs (specified by (3.8)) of the six parameters are listed in the fourth column of Table 7. With $G=6,000$ bootstrap replications, the corresponding standard deviations and 95% bootstrap CIs are presented in last two columns of Table 7.

Table 7: MLEs and CIs of parameters for the Australian health survey data without covariates

Parameter	MLE	std $^{\mathrm{F}}$	95% Wald CI	std $^{\mathrm{B}}$	95% bootstrap CI
ϕ_{0}	0.5214	0.0081	$[0.5056,0.5372]$	0.0072	$[0.5073,0.5354]$
ϕ_{1}	0.0307	0.0030	$[0.0249,0.0366]$	0.0030	$[0.0250,0.0365]$
ϕ_{2}	0.1039	0.0061	$[0.0921,0.1158]$	0.0055	$[0.0931,0.1145]$
ϕ_{3}	0.0128	0.0031	$[0.0067,0.0189]$	0.0031	$[0.0067,0.0188]$
λ_{1}	0.7798	0.0236	$[0.7336,0.8260]$	0.0237	$[0.7341,0.8258]$
λ_{2}	2.2526	0.0494	$[2.1558,2.3493]$	0.0499	$[2.1539,2.3498]$

$\operatorname{std}^{\mathrm{F}}$: Square roots of the diagonal elements of the inverse Fisher information matrix, c.f. (3.6); $\operatorname{std}^{\mathrm{B}}$: The sample standard deviation of the bootstrap samples, c.f. (3.9); bootstrap CI: c.f. (3.10).

6.1.2 Bayesian methods

In the setting of Bayesian analysis, we adopt Dirichlet $(1,1,1,1,1)$ as the prior distribution of $\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right)^{\top}$ and independent Gamma $(1,1)$ as the prior distributions of both λ_{1} and λ_{2}. Using $\left(\phi_{0}^{(0)}, \phi_{1}^{(0)}, \phi_{2}^{(0)}, \phi_{3}^{(0)}\right)=(0.2,0.1,0.1,0.1)$ and $\left(\lambda_{1}^{(0)}, \lambda_{2}^{(0)}\right)=(2,2)$ as the initial values, the EM algorithm specified by (4.3) converged to the posterior modes in 68 iterations which are presented in the second column of Table 8.

To calculate the Bayesian credible intervals of ($\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}, \lambda_{1}, \lambda_{2}$), we use the DA algorithm to generate $L=60,000$ posterior samples for each of these parameters based on
(4.1) and (4.2). By discarding the first half of the samples, we can calculate the posterior means, the posterior standard deviations and the 95% Bayesian credible intervals of them, which are given in Table 8.

Table 8: Posterior estimates of parameters for the Australian health survey data

Parameter	Posterior mode	Posterior mean	Posterior std	95% Bayesian credible interval
ϕ_{0}	0.5213	0.5193	0.0073	$[0.5049,0.5336]$
ϕ_{1}	0.0307	0.0296	0.0030	$[0.0239,0.0356]$
ϕ_{2}	0.1038	0.1004	0.0055	$[0.0898,0.1111]$
ϕ_{3}	0.0128	0.0106	0.0029	$[0.0051,0.0166]$
ϕ_{4}	0.3314	0.3401	0.0094	$[0.3220,0.3590]$
λ_{1}	0.7790	0.7698	0.0234	$[0.7252,0.8164]$
λ_{2}	2.2498	2.2092	0.0478	$[2.1164,2.3037]$

6.1.3 Model selection and comparison

In model selection, we begin with the full model $\operatorname{ZOIP}_{m}\left(\phi_{0}, \boldsymbol{\phi}, \phi_{m+1} ; \lambda_{0}, \boldsymbol{\lambda}\right)$, but it does not converge. To remove insignificant parameters step by step in the model, we start with models of $\lambda_{0}=0$ and $\phi_{3}=0$, respectively. Based on the LRT results in Table 9, the null hypothesis $H_{0}: \lambda_{0}=0$ cannot be rejected, the null hypothesis $H_{0}: \phi_{3}=0$ should be rejected at 5% significance level, and no parameter can be removed any more, so we select the ZOIP ($\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3} ; 0, \lambda_{1}, \lambda_{2}$) model.

Table 9: Likelihood ratio test in model selection

Null hypothesis	Alternative model	LRT statistic	p-value
$H_{0}: \lambda_{0}=0$	$\operatorname{ZOIP}\left(\phi_{0}, \phi_{1}, \phi_{2}, 0 ; \lambda_{0}, \lambda_{1}, \lambda_{2}\right)$	1.1298	0.1439
$H_{0}: \phi_{3}=0$	$\operatorname{ZOIP}\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3} ; 0, \lambda_{1}, \lambda_{2}\right)$	18.7925	<0.001
$H_{0}: \phi_{1}=0$	ZOIP $\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3} ; 0, \lambda_{1}, \lambda_{2}\right)$	152.2099	<0.001
$H_{0}: \phi_{1}=\phi_{2}=0$	$\operatorname{ZOIP}\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3} ; 0, \lambda_{1}, \lambda_{2}\right)$	506.6042	<0.001
$H_{0}: \phi_{1}=\phi_{2}=\phi_{3}=0$	$\operatorname{ZOIP}\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3} ; 0, \lambda_{1}, \lambda_{2}\right)$	398.2568	<0.001

We choose the Akaike information criterion (AIC; Akaike, 1974) and Bayesian information criterion (BIC; Schwarz, 1978) to compare models. Karlis \& Ntzoufras (2005) used the bivariate Poisson (BP) and diagonal inflated bivariate Poisson (DIBP) models with covariates to fit the data set. To illustrate the fit of models, we just concentrate on the original models without covariates. Liu \& Tian (2015) proposed a new Type I multivariate ZIP distribution to fit the data. The MLEs of parameters in BP model are estimated by $\hat{\lambda}_{0}=0.1256, \hat{\lambda}_{1}=0.1761, \hat{\lambda}_{2}=0.7370$. The fitted DIBP model led to zero-inflated model with only (0,0) inflated and the MLEs of parameters are estimated by $\hat{\phi}_{0}=0.4763, \hat{\lambda}_{1}=0.5017, \hat{\lambda}_{2}=1.5727, \hat{\lambda}_{0}=0.0745$. The MLEs of parameters in Type I ZIP model are $\hat{\phi}=0.4830, \hat{\lambda}_{1}=0.5836, \hat{\lambda}_{2}=1.6685$. The values of AIC and BIC for the BP model, DIBP model, Type I ZIP model and bivariate ZOIP model are summarized in Table 10. The bivariate ZOIP model is selected by both AIC and BIC.

Table 10: Comparison by AIC and BIC of the four models

	Criterion	
Model	AIC	BIC
BP model	22542.71	22562.38
DIBP model	20529.92	20556.14
Type I bivariate ZIP model	20565.82	20585.48
Bivariate ZOIP model	$\mathbf{2 0 1 7 3 . 5 6}$	$\mathbf{2 0 2 1 2 . 8 9}$

BP: see Karlis \& Ntzoufras (2005); DIBP: see Karlis \& Ntzoufras (2005); Type I bivariate ZIP: see Liu \& Tian (2015).

6.1.4 Marginal analysis

The sample correlation coefficient in the health survey data is $r=0.307779$. By performing the correlation test on the correlation coefficient between Y_{1} and Y_{2}, the corresponding p-value is far less than 0.05 , indicating a positive correlation between Y_{1} and Y_{2}. Therefore, it is not appropriate to fit the data by two independent ZOIP distributions. The bivariate ZOIP distribution gives an estimated value $\hat{\rho}=0.388162$.

To evaluate the performance of the proposed model from the view of marginal fitting, we compare the theoretical marginal distribution with univariate ZOIP distribution. From

Table 7, we know that $\left(Y_{1}, Y_{2}\right)^{\top}$ follows the bivariate ZOIP distribution with $\hat{\phi}_{0}=0.5214$, $\left(\hat{\phi}_{1}, \hat{\phi}_{2}\right)=(0.0307,0.1039), \hat{\phi}_{3}=0.0128$ and $\left(\hat{\lambda}_{1}, \hat{\lambda}_{2}\right)=(0.7798,2.2526)$. According to (2.5), we have the marginal distribution for each component of the multivariate ZOIP is $Y_{i} \sim$ ZOIP $\left(\phi_{0}+\sum_{k=1, k \neq i}^{m} \phi_{k}, \phi_{i}+\phi_{m+1} ; \lambda_{0}+\lambda_{i}\right)$, then the corresponding marginal distribution of Y_{1} and Y_{2} are estimated to be $\operatorname{ZOIP}\left(\hat{\phi}_{0}=0.6253, \hat{\phi}_{1}=0.0435 ; \hat{\lambda}_{1}=0.7798\right)$ and $\operatorname{ZOIP}\left(\hat{\phi}_{0}=\right.$ $0.5521, \hat{\phi}_{1}=0.1167 ; \hat{\lambda}_{2}=2.2526$), respectively. If we fit Y_{1} and Y_{2} with univariate ZOIP distributions, the estimates are given as ZOIP $\left(\hat{\phi}_{0}^{\mathrm{M}}=0.7869, \hat{\phi}_{1}^{\mathrm{M}}=0.1282 ; \hat{\lambda}_{1}^{\mathrm{M}}=2.0425\right)$ and $\operatorname{ZOIP}\left(\hat{\phi}_{0}^{\mathrm{M}}=0.5651, \hat{\phi}_{1}^{\mathrm{M}}=0.1221, \hat{\lambda}_{2}^{\mathrm{M}}=2.3676\right)$. Both results show that Y_{1} and Y_{2} follow the ZOIP distributions with different zero inflation, one inflation and Poisson mean parameters.

6.1.5 Likelihood-based inferences with covariates

We choose the following covariates. Let V_{1} denote the gender, where $V_{1}=1$ if female and $V_{1}=0$ if male. Let V_{2} denote the age in years divided by 100 . let V_{3} denote the annual income in Australian dollars divided by 1000, which measured as midpoint of coded ranges: 2001000, 1001-2000, 2001-3000, 3001-4000, 4001-5000, 5001-6000, 6001-7000, 70018000, 8001-10000, 10001-12000, 12001-14000, with $14001+$ treated as 15000 . Let $\mathbf{w}=$ $\left(1, V_{1}\right)^{\top}$ and $\mathbf{x}=\left(1, V_{1}, V_{2}, V_{3}\right)^{\top}$. By adopting the model of special case 1 that incorporated with covariates to fit the data, the MLEs and corresponding confidence intervals of the regression coefficients for parameters are listed in Table 11.

6.2 Automobile third party liability insurance data

The data are claims of a large automobile portfolio in France which including 181038 liability policies in 1989 provided by Vernic (1997). The corresponding claim frequencies were divided into material damage only (type I) denoted by Y_{1} and bodily injury (type II) claims denoted by Y_{2}, as shown in Table 12. Note that the three categories $(0,0),(1,0)$ and $(0,1)$ have comparative frequencies than the other cells, our model should be considered in the first place.

Table 11: MLEs and estimated errors of parameters for the Australian health survey data with covariates

Parameter	Coefficients	MLE	$\operatorname{std}_{1}^{\mathrm{F}}$	$\operatorname{std}_{2}^{\mathrm{F}}$
$\log \left(\phi_{0} / \phi_{4}\right)$	Constant	0.819103	0.090515	0.045131
	Sex (Female)	-1.482019	0.108103	0.062272
$\log \left(\phi_{1} / \phi_{4}\right)$	Constant	-2.702688	0.303373	0.150015
	Sex (Female)	-1.661920	0.545856	0.268987
$\log \left(\phi_{2} / \phi_{4}\right)$	Constant	-1.786845	0.209480	0.099266
	Sex (Female)	-0.033092	0.238233	0.119766
$\log \left(\phi_{3} / \phi_{4}\right)$	Constant	-4.261099	1.092479	0.318782
	Sex (Female)	-2.154864	4.824744	0.696513
	Constant	-0.249535	0.123691	0.096908
	Sex (Female)	-0.308786	0.071620	0.056172
λ_{1}	Age	0.365522	0.150968	0.130522
	Income	-0.294971	0.090352	0.082081
	Constant	-0.680362	0.096899	0.072440
	Sex (Female)	0.088192	0.055689	0.037419
	Age	2.427721	0.107850	0.090117
λ_{2}	Income	-0.099109	0.060352	0.053422

$\operatorname{std}_{1}^{\mathrm{F}}$: Square roots of the diagonal elements of $\mathbf{I}^{-1}\left(\hat{\boldsymbol{\theta}} \mid Y_{\text {obs }}\right)$, c.f. (3.15); $\operatorname{std}_{2}^{\mathrm{F}}$: Square roots of the diagonal elements of $\mathbf{I}^{-1}\left(\hat{\boldsymbol{\theta}} \mid Y_{\text {com }}\right)$, c.f. (3.16).

Table 12: Cross tabulation of the automobile third party liability insurance data (Vernic, 1997)

$Y_{1} \backslash Y_{2}$	0	1	2 and above	Total
0	171345	918	2	172265
1	8273	73	0	8346
2	389	5	0	394
3	31	1	0	32
4 and above	1	0	0	1

6.2.1 Likelihood-based inferences

As the data are characterized by the first three highest frequencies locating at categories $(0,0)$, $(1,0)$ and $(0,1)$, the model $\mathrm{ZOIP}_{m}\left(\phi_{0}, \boldsymbol{\phi}, 0 ; 0, \boldsymbol{\lambda}\right)$ is the most appropriate after some calcula-
tions and comparisons which are shown in Section 6.2.2. We choose $\left(\phi_{0}^{(0)}, \phi_{1}^{(0)}, \phi_{2}^{(0)}, \lambda_{1}^{(0)}, \lambda_{2}^{(0)}\right)=$ $(0.2,0.1,0.1,1,1)$ as their initial values and the MLEs converged to the results shown in the second column of Table 13 in 9 iterations for the Fisher scoring algorithm (3.7), while the EM algorithm (3.4)-(3.5) does not work well for the really slow speed of convergence and the Newton-Raphson method is not available either due to the singularity of the observed information matrix. The standard errors of the estimators and 95% asymptotic Wald CIs (specified by (3.8)) are given in the third and fourth columns of Table 13. With $G=6,000$ bootstrap replications, the corresponding standard deviations and 95% bootstrap CIs are reported in last two columns of Table 13. Since the EM algorithm does not work well in parameters convergence, we do not consider the Bayesian methods in parameters estimation for this data set.

The sample correlation coefficient in the insurance data is $r=0.011191$ and the correlation test suggests to reject the independency between Y_{1} and Y_{2}. Thus, Y_{1} and Y_{2} has a positive and low correlation. While the estimated value given by the above model is $\hat{\rho}=0.011022$, which is very close to that from the samples.

Table 13: MLEs and CIs of parameters $\left(\phi_{0}, \phi_{1}, \phi_{2}, \lambda_{1}, \lambda_{2}\right)$ for the automobile third party liability insurance data

Parameter	MLE	std $^{\mathrm{F}}$	95% Wald CI	$\operatorname{std}^{\mathrm{B}}$	95% bootstrap CI
ϕ_{0}	0.8496	0.0316	$[0.7877,0.9115]$	0.0386	$[0.7476,0.8927]$
ϕ_{1}	0.0251	0.0036	$[0.0181,0.0322]$	0.0039	$[0.0158,0.0308]$
ϕ_{2}	0.0033	0.0004	$[0.0025,0.0041]$	0.0004	$[0.0023,0.0040]$
λ_{1}	0.2118	0.0329	$[0.1473,0.2763]$	0.0331	$[0.1498,0.2792]$
λ_{2}	0.0183	0.0034	$[0.0116,0.0250]$	0.0034	$[0.0122,0.0255]$

$\operatorname{std}^{\mathrm{F}}$: Square roots of the diagonal elements of the inverse Fisher information matrix; std ${ }^{\mathrm{B}}$: The sample standard deviation of the bootstrap samples, c.f. (3.9); bootstrap CI: c.f. (3.10).

6.2.2 Model selection and comparison

In model selection, we begin with the full model $\operatorname{ZOIP}_{m}\left(\phi_{0}, \boldsymbol{\phi}, \phi_{m+1} ; \lambda_{0}, \boldsymbol{\lambda}\right)$, but it does not converge. We first restrict λ_{0} to be zero. Based on the LRT results in Table 14, the null hypothesis $H_{0}: \phi_{3}=0$ cannot be rejected at 5% significance level and no parameter can be
removed any more, so we select the $\operatorname{ZOIP}\left(\phi_{0}, \phi_{1}, \phi_{2}, 0 ; 0, \lambda_{1}, \lambda_{2}\right)$ model.
Table 14: Likelihood ratio test in model selection

Null hypothesis	Null model	Alternative model	LRT statistic p-value	
$H_{0}: \phi_{3}=0$	$\operatorname{ZOIP}\left(\phi_{0}, \phi_{1}, \phi_{2} ; \lambda_{1}, \lambda_{2}\right)$	$\operatorname{ZOIP}\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3} ; \lambda_{1}, \lambda_{2}\right)$	1.8555	0.0866
$H_{0}: \phi_{1}=0$	$\operatorname{ZOIP}\left(\phi_{0}, \phi_{2} ; \lambda_{1}, \lambda_{2}\right)$	$\operatorname{ZOIP}\left(\phi_{0}, \phi_{1}, \phi_{2} ; \lambda_{1}, \lambda_{2}\right)$	17.6799	<0.001
$H_{0}: \phi_{1}=\phi_{2}=0$	$\operatorname{ZOIP}\left(\phi_{0} ; \lambda_{1}, \lambda_{2}\right)$	ZOIP $\left(\phi_{0}, \phi_{1}, \phi_{2} ; \lambda_{1}, \lambda_{2}\right)$	23.2810	<0.001

We evaluate models by AIC and BIC. For purpose of comparison, from Vernic (1997), bivariate generalized Poisson distribution (BGPD) was adopted to fit the data. The MLEs of parameters in BGPD model are estimated by $\hat{\lambda}_{1}=0.0495, \hat{\lambda}_{2}=0.0054, \hat{\lambda}_{3}=0.0002$ and $\hat{\theta}_{1}=0.0270, \hat{\theta}_{2}=-0.0027, \hat{\theta}_{3}=0.0498$. The values of AIC and BIC are summarized in Table 15. As suggested from AIC and BIC, the bivariate ZOIP model gives a better fit.

Table 15: Comparison by AIC and BIC of the two models

	Criterion	
Model	AIC	BIC
BGPD model	86309.19	86369.83
Bivariate ZOIP	$\mathbf{8 6 2 8 6 . 6 3}$	$\mathbf{8 6 3 3 7 . 1 6}$

BGPD: see Vernic (1997).

7. Discussion

This paper extends the univariate zero-and-one inflated Poisson distribution to a multivariate version by considering inflation at several categories simultaneously. This new multivariate ZOIP distribution has a flexible dependency structure; i.e., the correlation coefficient between any two random components could be either positive or negative depending on the values of the parameters, as shown in (2.6). The marginal distributions are not necessarily identical with each other; i.e., each random component follows a ZOIP distribution with different zero inflation, one inflation and Poisson mean parameters as shown in (2.5). The distributional theories are explored profoundly and statistical inference methods are provided explicitly.

The multivariate regression model with covariates is also investigated in Section 3.4 and the estimates of those regression coefficients are obtained through an EM algorithm embedded with the Newton-Raphson algorithm. However, in our real examples, the bootstrap method is not available for calculating the standard errors of the coefficient estimates due to the singularity of the observed information matrix. Instead, we calculate the observed information matrix using the method of Louis (1982) by subtracting the missing information from the complete information. Because of the complexity of Louis's method, sometimes we may calculate the complete information and use it to approximate the observed information.

Appendix A: Some technical derivations

A. 1 Derivation of the joint probability mass function (2.3)

If $\boldsymbol{y}=\mathbf{0}_{m}$, we have

$$
\begin{align*}
\operatorname{Pr}\left(\mathbf{y}=\mathbf{0}_{m}\right) & =\operatorname{Pr}\left(Z_{0}=1\right)+\operatorname{Pr}\left(Z_{m+2}=1, X_{1}=0, \ldots, X_{m}=0\right) \\
& \stackrel{(2.1)}{=} \phi_{0}+\phi_{m+2} \mathrm{e}^{-\lambda_{0}-\lambda_{+}} . \tag{A.1}
\end{align*}
$$

If $\boldsymbol{y}=\boldsymbol{e}_{m}^{(i)}$, we obtain

$$
\begin{gather*}
\operatorname{Pr}\left(\mathbf{y}=\boldsymbol{e}_{m}^{(i)}\right) \quad=\operatorname{Pr}\left(Z_{i}=1\right)+\operatorname{Pr}\left(Z_{m+2}=1, X_{1}=0, \ldots, X_{i}=1, \ldots, X_{m}=0\right) \\
\stackrel{\left(\stackrel{(2.1)}{=} \phi_{i}+\phi_{m+2} \lambda_{i} \mathrm{e}^{-\lambda_{0}-\lambda_{+}}, \quad i=1, \ldots, m .\right.}{ } . \tag{A.2}
\end{gather*}
$$

If $\boldsymbol{y}=\mathbf{1}_{m}$, we have

$$
\begin{align*}
\operatorname{Pr}\left(\mathbf{y}=\mathbf{1}_{m}\right) & =\operatorname{Pr}\left(Z_{m+1}=1\right)+\operatorname{Pr}\left(Z_{m+2}=1, X_{1}=1, \ldots, X_{m}=1\right) \\
& \stackrel{(2.1)}{=} \phi_{m+1}+\phi_{m+2}\left(\lambda_{0}+\prod_{i=1}^{m} \lambda_{i}\right) \mathrm{e}^{-\lambda_{0}-\lambda_{+}} . \tag{A.3}
\end{align*}
$$

If $\boldsymbol{y} \notin\left\{\mathbf{0}_{m}, \boldsymbol{e}_{m}^{(1)}, \ldots, \boldsymbol{e}_{m}^{(m)}, \mathbf{1}_{m}\right\}$, then we have

$$
\begin{align*}
\operatorname{Pr}(\mathbf{y}=\boldsymbol{y}) & =\operatorname{Pr}\left(Z_{m+2}=1, X_{1}=y_{1}, \ldots, X_{m}=y_{m}\right) \\
& =\phi_{m+2} \mathrm{e}^{-\lambda_{0}-\lambda_{+}} \sum_{k=0}^{\min (\boldsymbol{y})} \frac{\lambda_{0}^{k}}{k!} \prod_{i=1}^{m} \frac{\lambda_{i}^{y_{i}-k}}{\left(y_{i}-k\right)!} . \tag{A.4}
\end{align*}
$$

By combining (A.1)-(A.4), we obtain (2.3).

A. 2 Derivation of the conditional expectation (3.5)

To derive the fourth formula in (3.5), we have if $\boldsymbol{y} \notin \mathcal{Y}_{01}$, then

$$
\begin{align*}
& \operatorname{Pr}\left(X_{0}^{*}=l \mid \mathbf{y}=\boldsymbol{y} \notin \mathcal{Y}_{01}\right)=\frac{\operatorname{Pr}\left(X_{0}^{*}=l, \mathbf{y}=\boldsymbol{y}\right)}{\operatorname{Pr}(\mathbf{y}=\boldsymbol{y})} \\
= & \frac{\operatorname{Pr}\left(Z_{m+2}=1, X_{0}^{*}=l, X_{1}^{*}=y_{1}-l, \ldots, X_{m}^{*}=y_{m}-l\right)}{\operatorname{Pr}\left(Z_{m+2}=1, \mathbf{x}=\boldsymbol{y}\right)} \\
= & \frac{\frac{\lambda_{0}^{l}}{l!} \prod_{i=1}^{m} \frac{\lambda_{i}^{y_{i}-l}}{\left(y_{i}-l\right)!}}{\sum_{k=0}^{\min (\boldsymbol{y})} \frac{\lambda_{0}^{k}}{k!} \prod_{i=1}^{m} \frac{\lambda_{i}^{y_{i}-k}}{\left(y_{i}-k\right)!}}=q_{l}\left(\boldsymbol{y}, \lambda_{0}, \boldsymbol{\lambda}\right), \tag{A.5}
\end{align*}
$$

for $l=0,1, \ldots, \min (\boldsymbol{y})$, which implying ${ }^{1}$

$$
X_{0}^{*} \mid\left(\mathbf{y}=\boldsymbol{y} \notin \mathcal{Y}_{01}\right) \sim \operatorname{Finite}\left(l, q_{l}\left(\boldsymbol{y}, \lambda_{0}, \boldsymbol{\lambda}\right) ; \quad l=0,1, \ldots, \min (\boldsymbol{y})\right)
$$

Appendix B: Definition of Type I multivariate ZIP distribution

Definition 2 An m-dimensional discrete random vector $\mathbf{y}=\left(Y_{1}, \ldots, Y_{m}\right)^{\top}$ is said to have a Type I multivariate zero-inflated Poisson distribution (Liu \& Tian, 2015) with parameters $\phi \in[0,1)$ and $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{\top} \in \mathbb{R}_{+}^{m}$ if

$$
\mathbf{y} \stackrel{\mathrm{d}}{=} Z \mathbf{x}= \begin{cases}\mathbf{0}, & \text { with probability } \phi, \\ \mathbf{x}, & \text { with probability } 1-\phi\end{cases}
$$

where $Z \sim \operatorname{Bernoulli}(1-\phi), \mathbf{x}=\left(X_{1}, \ldots, X_{m}\right)^{\top}, X_{i} \sim \operatorname{Poisson}\left(\lambda_{i}\right)$ for $i=1, \ldots, m$, and $\left(Z, X_{1}, \ldots, X_{m}\right)$ are mutually independent. We will write $\mathbf{y} \sim \operatorname{ZIP}_{m}^{(\mathrm{I})}(\phi ; \boldsymbol{\lambda})$.

Appendix C: Definition of Type II multivariate ZIP distribution

Definition 3 An m-dimensional discrete random vector $\mathbf{y}=\left(Y_{1}, \ldots, Y_{m}\right)^{\top}$ is said to have a Type II multivariate zero-inflated Poisson distribution with parameters $\phi \in[0,1), \lambda_{0} \geqslant 0$

[^0]and $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{\top} \in \mathbb{R}_{+}^{m}$ if
\[

\mathbf{y} \stackrel{\mathrm{d}}{=} Z \mathbf{x}= $$
\begin{cases}\mathbf{0}, & \text { with probability } \phi \\ \mathbf{x}, & \text { with probability } 1-\phi\end{cases}
$$
\]

where $Z \sim \operatorname{Bernoulli}(1-\phi), \mathbf{x}=\left(X_{1}, \ldots, X_{m}\right)^{\top} \sim \operatorname{MP}\left(\lambda_{0}, \boldsymbol{\lambda}\right), X_{i}=X_{0}^{*}+X_{i}^{*}$ for $i=$ $1, \ldots, m,\left\{X_{i}^{*}\right\}_{i=0}^{m} \sim \operatorname{Poisson}\left(\lambda_{i}\right)$ and $Z \Perp \mathbf{x}$. We will write $\mathbf{y} \sim \operatorname{ZIP}_{m}^{(I \mathbb{I})}\left(\phi ; \lambda_{0}, \boldsymbol{\lambda}\right)$.

Acknowledgments

Chi ZHANG's research was supported by National Natural Science Foundation of China (Grant no. 11801380) and Natural Science Foundation of SZU (Grant no. 2019069). GuoLiang TIAN's research was fully supported by National Natural Science Foundation of China (Grant no. 11771199). Kam Chuen YUEN's research was supported by a Seed Fund for Basic Research of the University of Hong Kong. Qin WU's research was fully supported by National Natural Science Foundation of China (Grant no. 11401226).

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716-723.

Cameron, A. and Trivedi, P. (2013). Regression Analysis of Count Data (2nd Edition). Cambridge University Press, New York.

Carrivick, P.J.W., Lee, A.H. and Yau, K.K.W. (2003). Zero-inflated Poisson modeling to evaluate occupational safety interventions. Safety Science 41(1), 53-63.

Deshmukh, S.R. and Kasture, M.S. (2002). Bivariate distribution with truncated Poisson marginal distributions. Communications in Statistics-Theory and Methods 31(4), 527-534.

Diallo, A.O., Diop, A. and Dupuy, J.F. (2018). Analysis of multinomial counts with joint zero-inflation, with an application to health economics. Journal of Statistical Planning and Inference 194, 85-105.

Johnson, N.L., Kotz, S. and Balakrishnan, N. (1997). Discrete Multivariate Distributions. Wiley, New York.

Karlis, D. and Ntzoufras, I (2005). Bivariate Poisson and diagonal inflated bivariate Poisson regression models in R. Journal of Statistical Software 14(10), 1-36.

Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34, 1-14.

Lee, A.H., Stevenson, M.R., Wang, K. and Yau, K.K.W. (2002). Modeling young driver motor vehicle crashes: data with extra zeros. Accident Analysis and Prevention 34, 515-521.

Li, C.S., Lu, J.C., Park, J., Kim, K., Brinkley, P.A. and Peterson, J.P. (1999). Multivariate zero-inflated Poisson models and their applications. Technometrics 41(1), 29-38.

Liu, W., Tang, Y. and Xu, A. (2018). A zero-and-one inflated Poisson model and its application. Statistics and Its Interface 11(2), 339-351.
Liu, Y. and Tian, G.L. (2015). Type I multivariate zero-inflated Poisson distribution with applications. Computational Statistics \mathcal{J} Data Analysis 83, 200-222.

Liu, Y., Tian, G.L., Tang, M.L. and Yuen, K.C. (2018). A new multivariate zero-adjusted Poisson model with applications to biomedicine. Biometrical Journal. Epub ahead of print 25 May 2018. DOI: 10.1002/bimj. 201700144.

Louis, T.A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 226-233.
Melkersson, M. and Olsson, C. (1999). Is visiting the dentist a good habit? Analyzing count data with excess zeros and excess ones. Umeå Economic Studies, No. 492, Umeå University, Umeå, Sweden.

Saito, M.Y. and Rodrigues, J. (2005). A Bayesian analysis of zero and one inflated distributions. Rev. Mat. Estat. 23(1), 47-57.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6(2), 461-464.

Self, S.G. and Liang, K.Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American

Statistical Association 82(398), 605-610.
Tang, Y., Liu, W. and Xu, A. (2017). Statistical inference for zero-and-one-inflated Poisson models. Statistical Theory and Related Fields 1(2), 216-226.

Tanner, M.A. and Wong, W.H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association 82(398), 528-540.

Tian, G.L., Liu, Y., Tang, M.L. and Jiang, X.J. (2018). Type I multivariate zero-truncated/adjusted Poisson distributions with applications. Journal of Computational and Applied Mathematics 344, 132-153.

Vernic, R. (1997). On the bivariate generalized Poisson distribution. Astin Bulletin 27(1), 23-32.

Walhin, J.F. (2001). Bivariate ZIP models. Biometrical Journal 43(2), 147-160.
Wang, K., Lee, A.H., Yau, K.K.W. and Carrivick, P.J.W. (2003). A bivariate zero-inflated Poisson regression model to analyze occupational injuries. Accident Analysis \& Prevention 35(4), 625-629.

Zhang, C., Tian, G.L. and Ng, K.W. (2016). Properties of the zero-and-one inflated Poisson distribution and likelihood-based inference methods. Statistics and Its Interface 9(1), 11-32.

Figure 1 (a) The type I error rates for testing $H_{0}: \phi_{m+1}=0$ against $H_{1}: \phi_{m+1}>0$ in the multivariate ZOIP model and the dashed line is set as the predetermined significance level of $\alpha=0.05 ;(\mathrm{b})$ the powers when $\phi_{m+1}=0.01$ in $H_{1} ;(\mathrm{c})$ the powers when $\phi_{m+1}=0.05$ in H_{1}; (d) the powers when $\phi_{m+1}=0.10$ in H_{1}.

Figure 2 (a) The type I error rates for testing $H_{0}: \lambda_{0}=0$ against $H_{1}: \lambda_{0}>0$ in the multivariate ZOIP model and the dashed line is set as the predetermined significance level of $\alpha=0.05$; (b) the powers when $\lambda_{0}=1$ in $H_{1} ;(\mathrm{c})$ the powers when $\lambda_{0}=3$ in $H_{1} ;(\mathrm{d})$ the powers when $\lambda_{0}=5$ in H_{1}.

[^0]: ${ }^{1} \mathrm{~A}$ discrete random variable X is said to have the general finite distribution, denoted by $X \sim$ Finite $\left(x_{k}, p_{k} ; k=0,1, \ldots, K\right)$, if $\operatorname{Pr}\left(X=x_{k}\right)=p_{k} \in[0,1]$ and $\sum_{k=1}^{K} p_{k}=1$.

