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Abstract

This work develops a numerical method for finding optimal ergodic (long-run average) div-
idend and reinsurance strategies in a regime-switching model. The surplus process is modelled
by a Markov switching process subject to liability constraints. Using dynamic programming
principle, the optimal long term average dividend payment is a solution of coupled system of
Hamilton-Jacobi-Bellman equations. Under suitable conditions, the optimal value of long-term
average dividend payment can be represented by using an invariant measure. However, due
to the regime-switching, approximating the invariant measure is very difficult. Our goal is to
design a numerical algorithm to approximate the optimal ergodic dividend payment strategy
directly. We use Markov chain approximation techniques to construct a discrete-time controlled
Markov chain for the approximation. Convergence of the approximation algorithms is proved.
Examples are presented to illustrate the applicability of the numerical methods.
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1 Introduction

Managing the surplus and designing dividend payment policies have long been an important issue
in finance and actuarial sciences. The dividend payment plan released in the financial report for
public companies represents an important signal about a firm’s future growth opportunities and
profitability. The decision of the dividend payment is so important for a public company’s financial
strength because the company’s share price is very sensitive to the information of dividend plans,
and dividend payment strategies also influence the investment and financing decisions of firms.
For insurance companies, because of the nature of their products, insurers tend to accumulate
relatively large amounts of cash, cash equivalents, and investments in order to pay future claims
and avoid insolvency. The payment of dividends to shareholders may reduce an insurer’s ability to
survive adverse investment and underwriting experience. However, due to the undergone pressure
of managing balance sheets and distributing the surplus for public insurance companies, one natural
objective for insurers is to optimize the management of surplus and sustained stream of dividend
payments. A practitioner will manage the reserve and dividend payment against various financial
risks so that the company can satisfy its minimum capital requirement in the long run.

Since the introduction of the optimal dividend payment model proposed by De Finetti (1957),
there have been increasing efforts on using advanced methods from the toolbox of stochastic control
theory to study the optimal dividend policy. The majority of research are conducted in finding op-
timal dividend payment policies to maximize the present value of the cumulative dividend payment
in targeted time horizon. Regular controls, singular controls, and impulse controls are involved in
various scenarios. Guo et al. (2004) studies the dividend and Risk control with a diffusion where
the drift is quadratic in the risk control variable. He and Liang (2008) studies the mixed control
of dividend, proportional reinsurance and financing for the model. Lgkka and Zervos (2008) solves
the optimal dividend and issuance of equity policies in the presence bankruptcy risk. Meng and
Siu (2011) and Wei et al. (2014) study the combined control of dividend, financing and risk for the
Brownian motion model. Alvarez and Lempa (2008) and Bai and Paulsen (2012) study the impulse
dividend control problem for a rather general linear diffusion model in which some growth and
smoothness conditions are imposed on. Avram et al. (2007) addresses the dividend and reinvest-
ment control in a spectrally negative Lévy process. Azcue and Muler (2010) analyzes the problem
of the maximization of total discounted dividend payment for an insurance company. Loeffen and
Renaud (2010) investigates the optimal dividend control with affine penalty at ruin for a spectrally
negative Lévy process using singular control. Jin et al. (2015) considers the credit risk and derives
the optimal debt ratio and dividend payment strategies for an insurance company.

In previous work that mainly follows the classical Cramér-Lundberg risk model with dividends
payments, when total discounted dividend payment is maximized, the company will almost surely
be financially ruined. In Jin et al. (2015), the authors propose an asset and liability model with
liability constraint. The insurance company manages the surplus and designs the dividend payment
strategies taking into account the liability capacity. Then, the insurance company will be in the
absence of insolvency. On the other hand, since insurance companies generally have assets and
liabilities with long maturity, in particular, for life insurance companies, it is very important for
insurance companies to consider long-term objectives and build the dividend payment strategies
with long time horizon in mind. Long-term objectives are widely studied in investment and risk
management in a variety of cases. Bielecki and Pliska (1999) analyzes the dynamic asset manage-
ment in an infinite time horizon. Fleming and Sheu (2000) studies the optimal investment strategies
with a long-term objective. Pham (2003) proposes a large deviation approach for optimal long term
investment. See also Bielecki and Pliska (2003) and Fleming and McEneaney (1995) for related



works. In this work, we extend the asset and liability model in Jin et al. (2015) and set a new
objective function to consider the long-term impact of the dividend payment strategies, which is
applicable when financial ruin is completely avoided. Instead of adopting the discounted present
value, we aim to maximize the average dividend payment in the long term.

Further, people have recently realized that stochastic hybrid surplus models have advantages to
capture discrete movements (such as random environment, market trends, interest rates, business
cycles, etc.). The hybrid system investigates the coexistence of continuous dynamics and discrete
events in the systems. To reflect the hybrid feature, one of the recent trends is to use a finite
state Markov process to describe the transitions among different regimes. The Markov-modulated
switching systems are therefore known as regime-switching systems. Thus the formulation of regime-
switching models is a more general and versatile framework to describe the complicated financial
markets and their inherent uncertainty and randomness. In Wei et al. (2010), the optimal dividend
and proportional reinsurance strategy under utility criteria are studied for the regime-switching
compound Poisson model. Sotomayor and Cadenillas (2011) studies the optimal dividend problem
in the regime-switching model when the dividend rates are bounded, unbounded, and when there
are fixed costs and taxes corresponding to the dividend payments. Zhu (2014a) studied the dividend
optimization for a regime-switching diffusion model with restricted dividend rates. See also Zhu
and Chen (2013), Zhu and Yang (2015), and Jin et al. (2011). A comprehensive study of switching
diffusions with “state-dependent” switching is in Yin and Zhu (2010).

To find the optimal strategies, one usually solves a so-called Hamilton-Jacobi-Bellman (HJB)
equation. However, because of the regime-switching jump diffusion, the HJB equation is in fact a
coupled system of nonlinear HJB equations. To represent the maximal average dividend payment
in the long term, the unique invariant measure is constructed. Due to the complexity of the Markov
switches, the explicit formula of the long-term average is virtually impossible to obtain. A viable
alternative is to employ numerical approximations. We adopt the Markov chain approximation
methodology developed in Kushner and Dupuis (2001) to solve for the optimal performance function
and the corresponding dividend payment strategies. A numerical algorithm for approximating
optimal investment and dividend payment policies with capital injections under regime-switching
diffusion models is developed in Jin et al. (2013). In this work, we carry out a convergence analysis
for our formulation using weak convergence methods and relaxed control formulation of numerical
schemes in the setting of regime switching, in which case one needs to deal with a system of
HJB equations with reflecting boundaries. Comparing with the work in Jin et al. (2013), we
choose a different performance function, which performs in an infinite time horizon and require the
ergodicity of the diffusion process. The long-run average objective function adds much difficulties
to design the numerical schemes and to conduct the the convergence analysis of the algorithm. The
numerical implementation can be done using either value iterations or policy iterations. It is worth
to mention that the Markov chain approximation method requires little regularity of the objective
function and/or analytic properties of the associated systems of HJB equations.

The rest of the paper is organized as follows. A general formulation of surplus process, per-
formance functions, and assumptions are presented in Section 2. The existence and uniqueness
of the invariant measure are presented. The dynamic programming equation is derived in Section
4. Section 5 deals with the numerical algorithm of Markov chain approximation method. Section
6 deals with the convergence of the approximation scheme. The technique of “rescaling time” is
introduced and the convergence theorems are proved. Numerical examples are presented in Section
7 to illustrate the performance of the approximation method together with some further remarks.



2 Formulation
For an insurance company, the surplus process X (¢) is described as the difference between the asset
value A(t) and liabilities L(t). That is,

X(t) = A(t) — L(t). (2.1)

To delineate the random environment and other random factors, we use a continuous-time irre-
ducible Markov chain «(t) taking values in the finite space M = {1,...,m}. The market states
are represented by the Markov chain a(t), and they undergo a Markov regime switching. Let the
continuous-time Markov chain «(t) be generated by Q = (¢;;) € R™*™. That is,

46 + 0(0), it j # 1,
1+ qi6 +0(5),  if j =4,

P{a(t+9) = jla(t) =1i,a(s),s <t} =

where ¢;; > 0 for i,j =1,2,...,m with j # ¢ and ¢;; = —Z#iqij <0foreachi=1,2,...,m. We
further assume that @ is irreducible.

When the insurer incurs a liability at time ¢, he receives a premium for the amount insured.
The collected premium will increase assets and surplus at time ¢. Denote by S(a(t)) the premium
rate, where for each i € M, (i) represents the cost of protection per dollar of insurance liabilities.
The asset value increases from the insurance sales during the time period [t,¢ + dt] is denoted as
Blalt)L(t)dt.

To protect insurance companies against the impact of claim volatilities, reinsurance is a standard
tool with the goal of reducing and eliminating risks. The primary insurance carrier pays the
reinsurance company a certain part of the premiums. In return, the reinsurance company is obliged
to share the risk of large claims. We assume that proportional reinsurance is adopted by the
primary insurance company in our model. Within this scheme, the reinsurance company covers a
fixed percentage of losses. Let A be an exogenous retention level for the reinsurance policy. Note
that A € [0,1]. Denote by h(\) be reinsurance charge rate (the cost of reinsurance protection
per dollar of reinsured liabilities) for hedging the adverse claims due to the downside risk of the
securities’ values. From a practical view of point, the cost of reinsurance protection per dollar of
reinsured liabilities should be nonnegative and less than 1. Thus, we assume that A(\) is bounded
and h(\) € [0, 1]. Hence, the reinsurance charge during the time period [¢, ¢t + dt] is h(\)L(t)dt, and
only AL(t)dt will be covered by the primary insurance company.

At this premium rate o and reinsurance retention level A, there is an elastic demand for insurance
contract and the insurer decides how much insurance L(t) to offer at that premium rate and
reinsurance retention level. Let m(t) = L(t)/X(t) be the debt ratio of the insurance company.
Then, the leverage, which is described as the ratio between asset values and surplus, can be written
as A(t)/X(t) =1+ x(t). To avoid the insurance liabilities being too large, the insurers will decide
the optimal liabilities to manage the sale of insurance policies.

We assume that the asset value A(t) in the financial market follows a geometric Brownian
motion process

. = Ha®)dt + ala®)du() 2:2)

where for each i € M, (i) is the return rate of the asset and (i) is the corresponding volatility
and w(t) is a standard Brownian motion. Hence, combining (2.1)—(2.2), the surplus process in the
absence of claims and dividend payment can be denoted by X (¢) such that

dX (1) = (B(a(t)) = RO L(t)dt + A(t)(p(e(t))dt + o(a(t))dw(t)). (2.3)



We further consider the claims, which are against insurer’s liabilities incurred earlier. Denoted
by R(t) the future claims up to time ¢. Then we assume that the claims are proportional to the
amount of insurance liabilities L(t). Hence, the accumulated claims up to time 7' is denoted as

T
R(T) = /0 c(t)L(t)dt, (2.4)

where ¢(t) can be considered as a claim rate against liabilities.

Practically, the claim rate c(t) is risky and is not predictable. The claim rates of different types
of insurance products are very different and volatile in different types of markets. For example,
the CDS, an insurance contract to protect against credit events, is affected by a series of economic
factors such as credit ratings of banks and insurance companies, government regulation, and demand
of CDOs in the market, etc. In addition, it is largely influenced by the randomness of economic
environment that are described as random shocks. In Jin et al. (2015), the claim rate ¢(t) is
formulated as a diffusion process to describe its randomness. However, one of the main drawbacks
of the diffusion process in the work is that the claim rate can be negative, which is difficult to
calibrate with market data. To guarantee the positivity of the claim, we assume that the claim
rate follows a continuous-time Markov process, taking values in a set of positive values. That is,
the claim rate depends on «(t), so c¢(a(t)) in lieu of ¢(t) is used. Hence, the accumulated claims
follows

T
R(T) = /0 c(a(t)L(t)dt (2.5)

A dividend strategy D(-) is an Fi-adapted process {D(t) : t > 0} corresponding to the accu-
mulated amount of dividends paid up to time ¢ such that D(t) is a nonnegative and nondecreasing
stochastic process that is right continuous and have left limits with D(0~) = 0. In this paper,
we consider the optimal dividend strategy where the dividend payments are proportional to the
surplus with a dividend payment rate u(t). Denote U = [0,1]. As a result, we write D(t) as

dD(t) = u(t) X (t)dt, (2.6)

where u(t) is an Fi-adapted process and 0 < u(t) < 1. Thus, taking into consider the impact of
reinsurance, the insurer’s surplus process in the presence of claims and dividend payments is given
by

dX(t) =dX(t) — AMdR(t) — dD(t). (2.7)

Together with the initial condition, (2.7) follows

dX (t) = [(B(a(t)) = h(A) = Ac(()) L(t) + p(e(t))At) — u(t) X (#)]dt + A(t)o (a(t))dw(?),

X(0)=2>0
(2.8)
for all t < 7 and we impose X (t) = 0 for all ¢ > 7, where 7 = inf{t > 0: X (¢) < 0} represents the
time of financial ruin. Suppose the optimal payout strategy is applied subsequently.
Recall that m(t) represents the debt ratio, (2.8) can be written as

d;(((tt)) = [r(®)(B(a(t)) = h(A) = Ac(a(t)) + pa(t))) + pla(t)) — u(t)]dt + (x(t) + 1o (a(t))dw(t),
X(0) ==.

(2.9)



For dividend payment rate, u(t) is non-negative and subject to an upper bound. A strategy
u(+) being progressively measurable with respect to {w(s), a(s) : 0 < s <t} is called an admissible
strategy. Denote the collection of all admissible strategies or admissible controls by ¢&/. Then the
admissible strategy set U can be defined as

uz{ueRzogugl}. (2.10)

A Borel measurable function u(x, «) is an admissible feedback strategy or feedback control if (2.9)
has a unique solution.

The objective of the representative financial institute is to maximize the average dividend
payment in the long term. For an arbitrary admissible feedback control wu(-,-), the performance
function is average dividend payment in the long term given by

1 T
Jau,i) = limsup | / u(X (1), a(t) X (1)) ¥i € M. (2.11)
T—o0 T 0
where E; ; denote the expectation conditioned on X (0) = z and «(0) = 4, and let P, ; denote the
conditional probability on X (0) = = and «(0) = 1.
Denote by v(u) = J(z,u,i). Define the optimal value as

7 :=sup y(u). (2.12)
uel

For an arbitrary u € U, i = a(t) € M, and V(-,i) € C*(R), define an operator £L* by

1
LYV (x,1) = Vx(:r,i)w(ﬂ(ﬂ(i)—h(>\)—/\C(i)+ﬂ(i))+M(i)—U)+§(U+1)202(i)x2%x(ﬂf7i)+QV($, (1)
(2.13)
where V. and V., denote the first and second derivatives with respect to x, and

QV (2, )(1) =Y _ qi;(V(w,5) — V(x,i)).
Ji

If 4 exists, by applying the dynamic programming principle (Fleming and Soner (2006)), there
exists a sufficiently smooth function V' that normally satisfies the following coupled system of HJB
equations:
5= mg&({ﬁ“V(x,i) +ux}, for each i€ M. (2.14)
u
In view of of (2.9), the surplus is always nonnegative in the infinite time horizon. The insurance
company will run the business with probability one in the long run. It is worthwhile to consider
the ergodic control of dividend payment when the operation period T — oco. On the other hand, in
reality, the surplus of an insurance company cannot reach infinity. Once the surplus is substantially
high, the decision maker will undergo pressure from the shareholders to pay dividend. Hence, we
need only choose B large enough and set the surplus in the finite interval G = [0, B]. To make
J(x,u,1) computationally feasible, we truncate x at some large value B.

3 Invariant Measure

To obtain the expected average dividend payment in the infinite time horizon, one approach is to
replace the instantaneous measures with invariant measures. Note that the state of the process



in our formulation has two component: one component is the diffusion process X (¢); the other
component is the Markov regime switching process a(t). We denote by Z(t) = (X(¢),a(t)) the
state of the process.

To proceed, we need the following assumption.

(A) Z(t) is positive recurrent with respect to some bounded domain F x {i}, where E C G C R,
i is fixed and i € M.

Lemma 3.1. Assume (A). Z(t) is positive recurrent with respect to G x M.

Proof. The result is immediately obtained by applying Theorem 3.12 in Yin and Zhu (2010). O

We proceed to define a sequence of stopping times {n;},k = 0,1,2,... Let ng = 0, nax+1 be the
first time after 7, when Z(t) reaches the boundary OF x {i}, and ngg1o be the first time after
Nak+1 when Z(t) reaches the boundary G x {i}. Then, the sample path of Z(¢) can be divided to
the cycles as

[7707772)’ [772>7]4)7---> [772ka772k+2)7' . (31)
By Lemma 3.1, Z(t) is positive recurrent with respect to G x M. Hence the stopping times
{mc},k=0,1,2,... are finite almost surely. Without loss of generality, we assume x = 0. It follows

that the sequence Z, = (Xp,i) = Z(n2n),n = 0,1,..., is a Markov chain on 0G x {i}. Denote by
B(0G) the collection of Borel measurable sets on dG. Starting from (z,i), Z(t) may jump many
times before it reaches the set (H,i) where H € B(0G). The one-step transition probability of the
Markov chain Z,, is defined as

PV (@, H) =P(Zy € (H x {i})| 2o = (2,9)). (3.2)

Analogously, the n—step transition probability of the Markov chain Z, is denoted by 5™ (x,H).
Now we will construct the stationary distribution of Z(t).

Theorem 3.2. The positive recurrent process Z(t) has a unique stationary distribution v(-,-). Let
0(-,-) be the stationary density associated with the stationary distribution. Then for any (z,i) €
G x M,
1 /7
P, ( lim — / w(X(8), a(t)) X (t)dt :a> _1, (3.3)
T—o0 0

where

= ;/Ru(:z,i)xH(x,i)dx. (3.4)

Proof. In view of Lemma 4.1 in Yin and Zhu (2010), Z,, has a unique stationary distribution ¢(-).
For any H € B(R), ¢(H) = lim, o p™ (2, H). Recall that the cycles are defined in (3.1). Denote
by 74} the time spent by the path of Z(t) in the set (H x {i}) during the first cycle. Set

D(H, i) = . p(da)Epr T, (3.5)

Using Theorem 4.3 in Yin and Zhu (2010), we have

;/Ru@,i)xﬁ(dx,i)

I / w(X(8), a(t) X (£)dt (3.6)
WQLG 0

_ z; /]R E, (X (8), a(t)) X (£)5(d, ).

7



Hence, the desired stationary distribution is defined by the normalized measure as
v(H,1i)
> PR, )

Now we will prove (3.3). Regarding the stationary distribution, we know that starting from an
arbitrary point (z,i) with arbitrary initial distribution is asymptotically equivalent to starting
with the initial distribution being the stationary distribution. Then we will only need verify the
case when the initial distribution is the stationary distribution of the Markov chain Z,,. That is,
for any H € B(0G),

v(H,i) = Vi e M. (3.7)

P{(X(0), x(0)) € (H x {i})} = ¢(H).

Consider the sequence of random variables

P / P X (), a() X (D)dt.

2n

From (3.5) and (3.6), we have
Ep, = Z/ u(z,i)zv(de, i), (3.8)
i=1 /R

foralln =0,1,2,... Let ¢(T") denote the number of cycles completed up to time 7T'. Then,
¢(T) :=max{n € N: Y (nok — nap—2 < T)}.
k=1
Hence, fOTu(X(t), a(t)) X (t)dt can be decomposed as
T #(T) T
| utx@.a@)x@d =3 po+ [ u(X@)al0) X
0 n=0 M26(T)

Note that u(-) and X (-) both are nonnegative, we have

o(T) T
ang/o u(X(0),a)XBA< S pu
n=0

Then,
o(T)

S pns e [Cux@ e x i s Ly
o(T) = Pn=9(T) J 7 —o(T) .

As T — o0, ¢(T) — oco. Combining with (3.8), we have

1

T m -
¢(T)/o w(X (1), at)) X (t)dt — ;/}Ru(x,z)xu(dx,z). (3.9)

On the other hand, the law of large numbers implies

1 n m
{nkzopk — ;/Ru(x,z)xy( x,1), as n — oo} (3.10)

8



Particulary, when u(z,7) = 1/, (3.10) implies

P{m"“ — Y i(dx,i), asn— oo} =1. (3.11)

n ;
=1

Since n2, < T < Mop+2, and N2, /N2n+2 — 1 almost surely as T' — oo, we have

{%Z (dz,1) asT—>oo}:1. (3.12)
=1

Now, using (3.9) and (3.12), we have as T' — oo.

[NV JT u(t)X (t)dt o(T)
/0 ()X (1)t =

T o(T) T
1
— u(z,i)xv(de,i) X =s———— )
Z/R )X ST ) (3.13)

1

3

3

Z u(z,i)zv(de,i) almost surely.
1=1

=

Hence,

o1 T R . . B
P (TI%OT/O u(X(t),a(t) X (t)dt = ;/Ru(m,z)xu(dx,z), as T — oo) = 1. (3.14)

Since (3.14) holds for any (z,i) € G x M, then

— 00

T m
P, (Thm ;/0 w(X(t),a(t) X (t)dt = ;/Ru(x,z’):ny(dx,i), as T — oo) = 1. (3.15)

Note that 6(-,-) is the stationary density associated with the stationary distribution v(-,-), (3.15)
can be written as

T m
P,. ( lim % /0 W(X (1), a(t) X (£)dt ; /R u(m,i)x@(m,i)dw) Y (3.16)

Thus, (3.3) and (3.4) hold. O

4 Dynamic Programming Equation

We have constructed the stationary distribution v(-,-). However, it is generally not easy to ap-
proximate the invariant measure. To obtain the optimal ergodic control of dividend payment, we
will refer to the dynamic programming equation in (2.14). To solve for (2.14), we will construct a
two-component Markov chain to approximate the state process. Then we will rewrite (2.14) by a
dynamic programming equation with a Markov chain with transition probabilities.

Before we write the dynamic programming equations, let us recall some results of Markov chains.
By using the ergodic theorem for Markov chains in Bertsekas (1987) and Kushner (1972), we can
find an auxiliary function W (z, i, u) such that the pair (W (z,,u),v(u)) satisfies

W(x,i,u) Zp (z,1), (y, D)|w)W (y,i,u) + u(x,i)x — y(u), (4.1)



for each feedback control u(-). p((x,7), (y,7)u) is the transition probability from a state (x,1) to
another state (y, j) under the control u(-).

Define 4 = max, y(u), where u(-) € U. Then there is an auxiliary function V' (z,4) such that
the pair (V(x,14),7) satisfies the dynamic programming equation

ueU

V(z, —maX{Zp z, 1), (y,7)|u)V(y, )—l—u(x,i):c—’y}. (4.2)
In order to keep V' (z,4) from blowing up, (4.2) can be written in a centered form as follows.

V(z, maX{Zp z,1), (y, ) |w)V (y ,i)—i—u(x,i)x}, (4.3)

ueU

where B
xg is determined such that ¥ = V (zg, 7).

Boundary Conditions. For the purpose of the numerical analysis, it is always necessary to
consider a compact state space. In our problem, the surplus could potentially grow to arbitrary
high level. Our control variable is the dividend payment strategies. When surplus is too high, it is
optimal to pay the dividend according to our objective function. Furthermore, the domain of the
surplus process is compactified for the computation purpose where a large enough right boundary
B was imposed. To be consistent with the reality, it is natural to set a reflecting boundary on the
right side. For the left side, the surplus follows a log normal distribution, and is always positive.
We will also choose a reflecting boundary on the left side for the computation purpose. Hence, for
the boundaries, V' (z,1) follows

Ve(z,4) = 0. (4.4)

5 Numerical Algorithm

Our goal is to design a numerical scheme to approximate 7 in (2.12). In what follows, Section 5.1
will construct an approximating Markov chain in the state space. The discretion of dynamic pro-
gramming equation is presented in Section 5.2 and the transition probability of the approximating
Markov chain is derived.

5.1 Approximating Markov Chain

We will construct a locally consistent Markov chain to approximate the controlled regime-switching
diffusion system. The discrete-time controlled Markov chain is so defined that it is locally consistent
with (2.9). Note that the state of the process has two components x and «. Hence, in order
to use the methodology in Kushner and Dupuis (2001), our approximating Markov chain must
have two components: one component delineates the diffusive behavior whereas the other keeps
track of the regimes. Let h > 0 be a discretization parameter representing the step size. Define

={z:x=kh,k=0,£1,£2,...} and S, = S}, N G}, where G}, = (0, B+ h) and B is an upper
bound introduced for numerical computation purpose. Moreover, assume without loss of generality
that the boundary point B is an integer multiple of h. Let {(52,04,};),12 < oo} be a controlled
discrete-time Markov chain on S x M and denote by p"((, ) (y,7)|u") the transition probability
from a state (x,7) to another state (y,7) under the control u". We need to define p” so that the

10



chain’s evolution well approximates the local behavior of the controlled regime-switching diffusion
process (2.9). We proceed as follows. At any discrete time n, we can either pay a dividend payment
as a regular control or a reflection on the boundary. That is, if we put Agh = ¢h 41— €' then

h _ h h h
Agn = Agnl{dividend payment at n}+A£nI{reﬂection step on the left at n}+A£nI{reﬂection step on the right at n}-

(5.1)
The chain and the control will be chosen so that there is exactly one term in (5.1) is nonzero.
Denote by {Iff :n=0,1,... } a sequence of control actions, where If{ =0, 1, or 2, if we exercise a

dividend payment, or reflection on the left or right boundaries at time n, respectively.

If I’ = 0, then we denote by u” C U the random variable that is the dividend payment action
for the chain at time n. Let Ath(-, -,+) > 0 be the interpolation interval on S, x M x U. Assume
infy ;. Ath(z,i,u) > 0 for each h > 0 and limy_,g SUDy ;4 Ath(z,i,u) = 0. f I" =1, or " = 0,
reflection step on the left boundary is exerted definitely. We require reflection takes the state from
0 to h. That is, if we denote by Az the random variable that is the left reflection action size for
the chain at time n, then A" = Azl = h. If I = 2, or £" = B + h, reflection step on the right
boundary is exerted definitely. We require reflection takes the state from B + h to B. That is, if
we denote by Ag/ the random variable that is the right reflection action size for the chain at time
n, then A&l = —Agh = —h.

Let E Zh;) , Vary’ Zh;) and P’ ?7? denote the conditional expectatmn variance, and marginal prob-

ability given {{k,ak,uk,Ik,k <n {n = x, a = 1, Ih =0, u = u}, respectively. The sequence
{(&h, M)} is said to be locally consistent, if it Satlsﬁes

i [AGY] = alr(B(1) — (V) = Aeli) + (i) + p(i) — wAt" (@, i, u) + o( At (2,4, ),

x,zm,

Var®" O (Aeh) = (7 4 1)20%(i)a? At" (z, i, u) + o( At (2,1, u)),

(l"L?’L

puh0 aZ—H =j}= qijAth(x,i,u) + O(Ath(:c,i,u)), for j # 1, (5.2)

T,i,n

uhO
aczn

{ozn+1 =i}=1+ qiiﬁth(m, i,u) + O(Ath(l‘, i,u)).

sup |AE" =0 as h—0.
n,we)

We require the reflections to be “impulsive” or “instantaneous” when I = 1 and I = 2. In
other words, the interpolation interval on S, x M x U x {0,1,2} is

At (z,i,u,1) = Ath(fn,i,u)l{;zo}, for any (x,4,u,i) € S, x M x U x {0,1,2}. (5.3)

The sequence u” is said to be admissible if u? is o {(58, al),..., (&r ol ul, ... ,uzfl}—adapted

and for any E € B(S), x M), we have
P{(&hralir) € Blof(&l af). -, (€5 al) u, . uh} | = p"((Eh al), Eluf),

P{(hr, algn) = (b )| (€ al) = (0,0),0{(€h o). .., (€ ol b} } =

and
P{(§Z+1,QZ+1) = (B7Z)‘<£Z7a7};) = (B + h7i)70{(€g70‘8)a' ] (527047’1)7“87' . auz}} =

11



Put
n—1

th.=o0, th .= ZAth(fﬁ,aZ,uz,Ig),Atz = At"(el ol ul I, and nf(t) = max{n th < t} .
k=0

Then the piecewise constant interpolations, denoted by (£7(-),a(+)), u”(-), 2"(-), and ¢"(-), are
naturally defined as

€(t) = € (1) = alh, (1) =l = (), ) = Y ATy o= S Agili
k<nh(t) k<nh(t)
(5.4)
for t € [th,th ). Let (€}, af) = (2,i) € S, x M and u” be an admissible control. The cost function
for the controlled Markov chain is defined as

Eoi S 0—1 ulep Ath

Jh (i, 1) = lim sup —= Zk‘i_fgk - k. (5.5)
n Ex,i Zk:l Atk

which is analogous to (2.11) regarding to the definition of interpolation intervals in (5.3). Since
J%(x,i,u) does not depend on the initial condition (z,4), we write it as 4"*(u). Likewise, we denote

Y= sup  A(u). (5.6)

uh admissible

Note that we are considering feedback controls u(-) here. Similarly to v in (3.7), let v"(u) =
vM(x,u),z € S), denote the associate invariant measure in the approximating space. Then ~"(u)
can be rewritten as

b . i Z;ll uler At >, u(w, D Ath(x, i, u(z,1),0)v"(z, u)
7"(u) = limsup A = — : - : (5.7)
n EI,’L' Zk::l Atk Zax,i At (CE,%,’LL(.%‘,’L),O).V (SC,’LL)
Since, the time interval of the approximating Markov chain At"(z,4, u(x,),0) depends on x and u,
the invariant measure for the approximating Markov chain needs consider the time spent on each
state of the interpolated process. Then, we define a new measure w”(u) = w"(z,4,u),z € S}, such
that
wh(x,i,u) _ Ath(ﬂf,i7u(l‘,i), ) h(‘%};al)

Y Ath(x, i, u(e, 1), 0)vh(x, i) (5.8)

Hence, v"(u) can be written in a simple form as

Y(u) = Zu(a:,i):cwh(ac,i,u). (5.9)

xT

Let E*,
wh (u)
can also be written as

be the expectation for the stationary process under control u(-). In view of (5.7), (5.9)

1
() = Bl [ (e ()" (s (5.10)

Remark 5.1. Practically, it is much harder to calculate the invariant measure w”(u) than to
calculate the summation > u(z,i)zw"(z,i,u). By using the iteration method, the convergence
speed for computing the value of 4" (u) is much faster than that for computing the invariant measure
w"(u). Hence, we focus on the converge of the state process and objective functions instead of the
invariant measure itself.

12



We shall show that V" (z, ) satisfies the dynamic programming equation:

Vh(aj‘,i) _ ph((% i)? (y,j)|u)vh(y,j) + (ux - ’Yh)Ath(xv ivu? 0)7 for z € Sh7 (5‘11)

ph((l‘ai)a (y7])|u)vh(y7])a for x S 8Sh

In the actual computing, we use iteration in value space or iteration in policy space together with
Gauss-Seidel iteration to solve V. The computations will be very involved. In contrast to the
usual state space Sj, in Kushner and Dupuis (2001), here we need to deal with an enlarged state
space Sp X M due to the presence of regime switching.

5.2 Discretization

Define the approximation to the first and the second derivatives of V (-, ) by finite difference method
in (2.14) using stepsize h > 0 as:

Vx,i) — Vh(a:,i)
VM@ 4 h,i) — V(i)

Ve(z,1) — - for x(mw(B(i) — h(X) — Ae(i) + u(2)) + p(i) —u) > 0,
) Vi(x, i) — V(2 — h,i) N B ) . N
Val(z, i) — . for x(m(B(7) — h(A) — Ac() + p(3)) + p(i) —u) <0,
h( g 1) — hg,i hz —h,i
Vm(x,z')—>v( + h,i) 2Vh(2,)+V( h,)‘
(5.12)
It leads to, Va € Sp,i € M,
Vi + h,i) — V(x,4) , , , , +
max i — V,}} - |2(R(B(3) = BN = Aci) + (i) + (i) — u)}
VD = 2D r(8(0) — ) — Aeli) + () + (i) — )]
T 1) — h(x, i g —h, i) (7 2
Vo -+ h) Wi+ Vi — i) (4 Do)z +;Vh<m7,)qij+w_v} o,
(5.13)

where [2(m(3(1)~ h(X) = Ae(D)+ (i) + (i) ~w)]  and [(x(B() ~h(N) ~Ae(@) + (i) + (i) —u)]
are the positive and negative parts of [:U(ﬂ(ﬁ(z) — h(X) — Ae(d) + p(i)) + p(i) — u)}, respectively.

For the reflecting boundaries, we choose

V(i) — Vi(x — h, z)

Ve(z,i) — .

(5.14)

Comparing (5.13) and (5.14) with (5.11), we achieve the transition probabilities of V*(x,) in the
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interior of domain as the following:

N
(7 +1)26%(0)2%/2 + [2(7(B(0) — h\) = Aeli) + (i) + p(3) - w)]

5 -
(7 +1)20%(0)2%/2 + h[2(m(B(i) — h\) = Ae(i) + (i) + p(i) — )]

D Y

ph((x,i), (.CC + hvl)’u) =

ph((m,i), (z — h,Z)”U,) =
. h2
(i), (o)) = B for i

p"(-) =0, otherwise,
) h?
Ath(x,z,u, 2) = o
(5.15)
with
D = (1 +1)%0%(i)2 + hlz(n(B(i) — h(X) = Ac(i) + p(0)) + u(i) — u)| — W g

being well defined. We also find the transition probability of V"(z,4) on the boundaries comparing
with (5.11) as follows
p"((x,1), (x + h,i)|u) = 1, for x =0, (5.16)

and
p"((x,1), (x — h,i)|u) = 1, for z = B. (5.17)

6 Convergence of Numerical Approximation

This section focuses on the asymptotic properties of the approximating Markov chain proposed
in the last section. The main techniques are methods of weak convergence. To begin with, the
technique of time rescaling and the interpolation of the approximation sequences are introduced
in Section 6.1. The definition of relax controls is presented in Section 6.2. Section 6.3 deals with
weak convergence of {?1(-),ah(-),mh(-),@h(-),zh(-),gh(-),Th(-)}, a sequence of rescaled process.
As a result, a sequence of controlled surplus processes converges to a limit surplus process. Finally
Section 6.4 establishes the convergence of the optimal value.

6.1 Interpolation and Rescaling

Based on the approximation Markov chain constructed above, the piecewise constant interpola-
tion is obtained and the appropriate interpolation interval level is chosen. Recalling (5.4), the
continuous-time interpolations (£"(-),a”(-)), u"(-), ¢"(-), and 2"(-) are definded. In addition, let
U" denote the collection of controls, which are determined by a sequence of measurable functions
FM(.) such that

ul = Fheh ol ke <njull k <n). (6.1)
Define D} as the smallest o-algebra generated by {£"(s), a”(s),u"(s), g"(s), 2"(s),s < t}. In addi-
tion, U" defined by (6.1) is equivalent to the collection of all piecewise constant admissible controls
with respect to D,

For simplicity, let

b, 1, u) = 2(m(8(5) — h(A) — Aci) + p(i)) + (i) — w),
o(z,i,u) = (m+ 1)o(i)x.
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Using the representations of regular control, reflection step and the interpolations defined above,
(5.1) yields

n—1
§h(t) =x+ ) [ERAL + (AL — ERALY)]
k=0

n—1 n—1
6.2
— o+ S bl ul) AL ol ul,0) + (A —Epa + ety (02
k=0 k=0
=z + B"(t) + M"(t) + £"(#),
where
n—1
M"(t) = (A —BRALY),
k=0
and £"(t) is a negligible error satisfying
lim sup E|e€h(t)|2 — 0 forany 0<T < oo. (6.3)

h—o0 0<t<T

Also, M"(t) is a martingale with respect to D?, and its discontinuity goes to zero as h — 0. We
attempt to represent M"(t) similar to the diffusion term in (2.9). Define w"(-) as

n—1

wh(t) =) (AL —ERALG) o (&, o, up),
k= (6.4)

o7 (EM(s), 0" (s), u"(5))dM" (s).

S

We can now rewrite (6.2) as
t t
(0 =+ [ W (s)a 6 ()ds + [ ol€(s).at )l ()l s) + 0. (65)
0 0
Now we introduce the rescaling process. The basic idea of rescaling time is to “stretch out” the
control and state processes so that they are smoother and the tightness of g”(-) and z"(-) can be
proved. Define At" by
A" for a diffusion on step n,
Ath = {|Azh| = h  for a left reflection on step n, (6.6)
|Agl| =h for a right reflection on step n,

Define 7"(-) by

n—1
j:h(t) = ZAth = tlrlu for ¢ e ﬁ\hnvalz—l—l}
1=0

Thus, fh() will increase with the slop of unity if an only if a regular control is exerted. In addition,
define the rescaled and interpolated process g‘(t) = ¢M(Th(t)), likewise define &"(t)), @(t), §"(t)
similarly. The time scale is stretched out by A at the reflection and singular control steps. We can
now write

) =2+ / b(E(s),a"(s),a"(s))ds + /O o(E"(s),a(s), @ (s))dw" (s) + e"(¢). (6.7)

0
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6.2 Relaxed Controls

Let B(U x [0,00)) be the o-algebra of Borel subsets of U x [0,00). An admissible relazed control (or
deterministic relaxed control) m(-) is a measure on B(U X [0,00)) such that m(U x [0,t]) = t for
each t > 0. Given a relaxed control m(-), there is an my(-) such that m(d¢dt) = m(d¢)dt. We can
define my(B) = limg_, M for B € B(U). With the given probability space, we say that
m(-) is an admissible relaxed (stochastic) control for (w(-),a(-)) or (m(:),w(-),a()) is admissible,
if m(-,w) is a deterministic relaxed control with probability one and if m(O x [0,¢]) is F-adapted
for all O € B(U). There is a derivative my(-) such that my(-) is Fi-adapted for all O € B(U).

Given a relaxed control m(-) of u”(-), we define the derivative m;(-) such that

m"(K) = / It pyekyma(do)dt (6.8)
U x[0,00)

for all K € B(U x [0,00)), and that for each ¢, m;(-) is a measure on B(U) satisfying m;(U) = 1.
For example, we can define my(-) in any convenient way for ¢ = 0 and as the left-hand derivative
for ¢ > 0,

Note that m(d¢dt) = my(dp)dt. Tt is natural to define the relaxed control representation m”(-) of
h
u''(-) by

, YO € B(U). (6.9)

m}(0) = Iy, YO € B(U). (6.10)
Let 7} be a filtration, which denotes the minimal o-algebra that measures
{fh(s)v ah(')v mg()a wh(s)a Zh(8)7 gh(s)a s < t}' (611)

Use I'* to denote the set of admissible relaxed controls m”(-) with respect to (a’*(-),w"(-)) such
that m/(+) is a fixed probability measure in the interval [t?,¢" ) given F'. Then I'" is a larger
control space Containing U". Referring to the stretched out time scale, we denote the rescaled relax
control as mz (dw) Define M;(O) and M} (di)) by

M;(0)dt = dw(t)L,eo, VO € B(U)
M (dy)dt = dw" (8) gy ey
Analogously, as an extension of time rescaling, we let
0y (@)L () = dD" (T () Ly 7 0y s

With the notation of relaxed control given above, we can write (6.5), (6.7), and (5.6) as

h(t) :x+/0 /b(gh(s),ah( " (dyp ds+/ / (&M(s),a(s), ) MI(dp)ds + " (t), (6.12)

)=+ b(E(s) ), )l (d)dT"
// )i, ) (d)dT"(s) o
/ / (€(s), @ (5), ) M ) (d)dT"(s) + €M (1),
and
’?h: inf 'y( h) (6.14)

mherh

Now we give the definition of existence and uniqueness of weak solution.
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Definition 6.1. By a weak solution of (6.12), we mean that there exists a probability space
(Q,F,P), a filtration F;-Wiener process, and process (z(-),a(:),m(:),w(-)) such that w(-) is a
standard F;-Wiener process, «(-) is a Markov chain with generator @ and state space M, m(-)
is admissible with respect to x(-) is Fi-adapted, and (6.12) is satisfied. For an initial condition
(z,1), by the weak sense uniqueness, we mean that the probability law of the admissible process
(a(-),m(-),w(-)) determines the probability law of solution (x(-),a(:),m(-),w(:)) to (6.12), irre-
spective of probability space.

To proceed, we need some assumptions.

(A1) Let u(-) be an admissible ordinary control with respect to w(-) and «(-), and suppose that
u(+) is piecewise constant and takes only a finite number of values. For each initial condition,
there exists a solution to (6.12) where m(-) is the relaxed control representation of wu(-). This
solution is unique in the weak sense.

6.3 Convergence of a Sequence of Surplus Processes

In this section, we will deal with the convergence of the approximation sequence to the regime-
switching process and the surplus process. We will derive one lemma and three theorems, whose
proof are provided in the Appendix.

Lemma 6.2. Using the transition probabilities {p"(-)} defined in (5.15), the interpolated process
of the constructed Markov chain {a"(-)} converges weakly to a(-), the Markov chain with generator

Q = (QZL)'

Theorem 6.3. Let the approrimating chain {fﬁ,az,n < oo} constructed with transition prob-
abilities defined in (5.15) be locally consistent with (2.9), m"(-) be the relazed control represen-
tatwn of {ul,n < oo}, (€"(),al(+)) be the continuous-time interpolation defined in (5.4), and
{f (-),a" (), ﬁlh(-),@h( ),Ah() G"(-), Th()} be the corresponding rescaled processes. Then {€"(-),

/\

P (), ml (), @ (), 2 (), " (), T (")} is tight.

Theorem 6 4. Let {z(-),a(-),m(-), 1’17(),3(),/9\() A( )} be the limit of weakly convergent subse-
quence of {f (-),ar (), h( S, @™ (), 2 (), g (), T ()} w( ) is a standard F;-Wiener process, and
m(-) is admissible. Let Fy be the o-algebra generated by {5 (), al (), m" (), w" (), Eh(),’g\h(),’fh()}
Then @(t) = w(T(t)) is an F;-martingale with quadratic variation T(t). The limit processes satisfy

)=z + / / a(s), )i, (dy) )dT (s / / ), )Mz, (d)dT (s). (6.15)

Theorem 6.5. Fort < oo, define the inverse
T(t) = inf{s: T(s) > t}.

Then T (t) is right continuous and T (t) — oo as t — oo w.p. 1. For any process §(-), define the
rescaled process ¢(-) by o(t) = P(T'(t)). Then, w(-) is a standard F;- Wiener process and (2.9)
holds.

6.4 Convergence of the Optimal Value

To prove the convergence of the optimal value of the objective function, we proceed to find a
comparison e-optimal control.
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Lemma 6.6. For each € > 0, there exists a continuous feedback control u®(-) that is e-optimal to
all admissible controls. The solution to (2.9) is unique in weak sense and has a unique invariant
measure under this e-optimal control.

Proof. The existence of a smooth e-optimal can be guaranteed by modifying the method in
Kushner (1978) for our formulation. O

Theorem 6.7. Assume the conditions of Theorem 6.4 and Theorem 6.5 are satisfied. Then as
h—0,

' (x, i) — 7. (6.16)
Proof. First, to prove

iz, i) < 7. (6.17)
Let 4(-) be the optimal control and 7" (-) be the relaxed control representation of @"(-). Then,

7' (x,4) = 4"(@"). Hence, in view of (5.10),

1
(i) = E™" / u(€"())€" (s)ds

01

— g / /u €h (sl (du)ds

~ 1 ~
L /0 /u 2 (8)ibring (dup)ds (6.18)

= lim %Em /0 ' /u Vi (di)ds
=7(m)
<7
where () is the optimal value of the performance function for the limit stationary process.
On the other hand, from Lemma 6.6, we have e-optimal control u¢ such that

(@, i) > A" (u, 1)
1

B [ e (o)
. 1

— E /0 u(z(s))x(s)ds

/ ., (6.19)
= li%n fJE 6/0 u®(x(s))x(s)ds
=(u,4)
> —e.
Combining (6.18) and (6.19) yields (6.16). O

7 Numerical Examples and Further Remarks

7.1 Numerical Examples

This section is devoted to several examples. For simplicity, we consider the case that the discrete
event has two states. That is, the continuous-time Markov chain has two states. By using value
iteration methods, we numerically solve the optimal control problems.
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Based on the algorithm constructed above, we carry out the computation by value iterations.
For n € Z* and i € M, define the vectors

V= {VI(h, 1), V20, 1),... VHB,1),...V(h,no), VI(2h,m),...,VB,m)}
Vh = {Vi(h,1),V,, (2R, 1), ..., V(B 1), ... Vi (h,m), Vi(2h,m), ..., Vi (B, m)}.

Using the method of value iteration, we obtain V,,(x, 7). The numerical experiments demonstrate
that V,,(zg,7) — 4 as n — oo. The procedure is as follows.

1. Set n=0.Vz € Sy and i € M, we set the initial value VJ*(x,i) = VJ(x) = 0.

2. Choose a zp. Find improved values V#H(:L‘,i) by iteration and record the corresponding
optimal control.

Vi (i) = max | 370" ((.3), (3.) ) Vi (. 3) + ]
(y:4)

Vit (1) = V' (2,4) = V' (20, 1)
3. If [V, — V| > tolerance, then n — n + 1 and go to step 2; else the iteration stops.

The continuous-time Markov chain «(t) representing the discrete event state has the generator

-10 10
Q= ;
800 —800

and takes values in M = {1,2}. The claim severity distribution follows exponential distribution
with density function f(y) = ae~® where a = 0.1. The premium rate depends on the discrete
state with (1) = 0.02 and 3(2) = 0.06. The dividend rate u(t) taking values in [0,1] is the
control. Corresponding to the different discrete states, the yield rate of the asset is u(1) = 0.1 and
1(2) = 0.02. The volatility of the financial market o(«(¢)) is valued as (1) = 0.05 and ¢(2) = 0.1.
The claim rates in different regimes are set as ¢(1) = 0.01 and ¢(2) = 0.1. Hence, we are considering
two insurance market modes to represent the insurance cycle. Market mode 1 represents a “soft”
market, where the investment return is high and the premium rate is low. While market mode
2 represents a “hard” market, where the investment return is low and the premium rate is high.
Obviously, it is much easier for insurance companies when the market is in mode 1. The insurance
company is more likely to expand its business and write more policies. Then the liability ratio
is higher. Hence, we set m(1)=0.8. For market mode 2, the insurance and financial market is
much harder. The insurance company will preserve sufficient surplus and write less policies to pay
for the future claims. Then the liability ratio is lower. Then, we set m(1)=0.2. To compute the
optimal average dividend payment, we choose the value iteration and impose the upper bound of
the computation interval of surplus as B = 50.

Furthermore, note that the xg is arbitrarily chosen to initiate the algorithm. Theoretically,
different z( is supposed to lead to the same 7. In practical computation, there is inevitable com-
putational errors in calculating the optimal value of «. The optimal values are the average of
convergent values of V,(xo) in all available xy’s. To show the stability of the convergence with
different x(’s, we plot the values V,,(xg) with respect to xg when the iteration stops in Figure 7.1.
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Optimal ~

Figure 7.1: Optimal v versus initial status

From Figure 7.1, it is shown that V,,(x¢) is fluctuating within the range [0,0.1]. After a small hike
when z is small, the convergence value of V,,(z¢) is flat and stable when x( is bigger. According to
the stationary of the process, the average of the convergence value of V;,(zg) is a good approximation
to the optimal long-term average dividend payment. The average of the values of blue dots is 0.06,
and average of the values of red dots is 0.03. The optimal ergodic control of dividend payment can
be approximated by the mean as 0.045.

7.2 Further Remarks

This work focused on finding the optimal ergodic dividend payment strategies of an insurance
company with a long-term goal, taking into account the reinsurance policies. The parameters in
the model including premium rate, return rate of the assets and claim rate, depend on the state
of economy, which is described by a finite state continuous-time Markov chain. Incorporating the
impact of reinsurance on the financial status of the insurance companies, we aimed to maximize
the long-run average dividend payment in an infinite time horizon. A generalized stationary diffu-
sion process of surplus is presented. The invariant measure is constructed and the optimal value
is obtained correspondingly. By using the dynamic programming approach, we derive the associ-
ated system of HJB equations. However, due to the regime-switching, approximating the invariant
measure is very difficult. Then we design a numerical scheme to approximate the optimal ergodic
dividend payment strategy directly. A two-component discrete-time controlled Markov chain is
constructed to approximate the controlled regime-switching diffusion process yielding approxima-
tion to the optimal value. Convergence of the approximation algorithms is provided. The economic
insights shown in the example provide guidance for decision makers in government or industries to
manage the leverage level and dividend policies.

In future studies, the techniques of constructing invariant measures and approximating Markov
chain can be to extended to a variety of optimization problems of risk-sensitive controls for ergodic
processes, where the objective is to maximize/minimize various performance functions over long
term. Although the specific aim in this paper was devoted to developing the optimal long-term
insurance policies, the methods can be readily adopted to treat other optimal control problems
with a long-run average aim and regime-switching diffusion formulation. Future effort may also be
devoted to other variant of related game problems with long-term goal objective functions.
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A Appendix

A.1 Proof of Lemma 6.2

Proof. It can be seen that a(-) is tight. The proof can be obtained similar to Theorem 3.1 in Yin
et al. (2003). Then so is @"(-) due to the rescaled time. O

A.2 Proof of Theorem 6.3

Proof. In view of Lemma 6.2, {a"(-)} is tight. The sequence {m/(-)} is tight since its range space
is compact. Let T' < oo, and let 7, be an Fi-stopping time which is not larger than T'. Then for
>0,

EY (w" (1, + 8) — w''(m))? = 8 + &, (A1)

where £, — 0 uniformly in 73,. Taking lim sup,,_,, followed by lims_. yield the tightness of {w”(-)}.
Similar to the argument of a”(-), the tightness of @"(-) is obtained. Furthermore, following the
definition of “stretched out” timescale,

2" (m + 6) — 2"(70)| < [6] + O(),
§"(th +6) — §" ()] < 16| + O(h).

Thus {2"( )%} is tlght These results and the boundedness of b(-) implies the tightness of
{€" ()} ThuS {&"( S (), @0 (), 2"(),§"(), T ()} is tight. O

Since {z"(.), h() Ah() Ah() Zh(.),g"(), Th(-)} is tight, we can extract a weakly conver-
gent subsequence denoted by {5() (),T?L(),zﬁ(),fz\(),fq\(),f()} Also, the paths of {Z(-),a(-),
(), d(-),2(-),3(-), T(-)} are continuous w.p. 1. O

A.3 Proof of Theorem 6.4

Proof. For § > 0, define the process I(-) by I"9(t) = I"(nd),t € [nd,(n + 1)5). Then, by the
tightness of {€"(-),a"(-)}, (6.13) can be rewritten as

&)=+ / (E (). 6" (5), W), . ()T (s)
0, Ju (A.2)
¢

‘ 3(s) G (s 5 “h b
[ ] @98 0). )N (@)dT" 5) + 700),

where

lim lim sup E|e™? ()| = 0. (A.3)
=0 h—0
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If we can verify @(-) is an Fy-martingale, then (6.15) could be obtained by taking limits in
(A.2). To characterize w(-), let t >0, § > 0, p, q, {tx : k < p} be given such that ¢, <t <t+s for
all k& < p, 1;(-), for j < g, is real-valued and continuous functions on U x [0,00) having compact
support for all j < q. Define

(65,7 = / / (0, 5)i | (deb)dT(s). (A4)

Let S(-) be a real-valued and continuous function of its arguments with compact support. By (6.4),
wh(+) is an Fy-martingale. In view of the definition of @(t), we have

ES(E" (tx), @" (1), @ (ty), (7, m") e, 2 (1), 9 (tk), 7 < @,k < p)[@"(t +s) — @"(£)] = 0. (A.5)

By using the Skorohod representation and the dominant convergence theorem, letting h — 0, we
obtain

ES(E" (t), 8" (t4), @ (tr), (105, m" ey, 2 (1), 5 (1), 5 < 4,k < p)[B(t+ ) —B(H)] =0.  (A6)

Since w(-) has continuous sample paths, (A.6) implies that @(-) is a continuous F;-martingale. On
the other hand, since

E[((@"(t +6))* — (@"(t))%] = E[(@"(t + 6) — @"(1))?] = T(t + s) — T(t), (A7)

by using the Skorohod representation and the dominant convergence theorem together with (A.7),
we have

ES(E" (tg), @ (1), @"(tx), (0, m") e 2 (81), G (1), 5 < s k < p)

” - (A.8)
[@2(t + 8) — @2(t) — (T(t + s) — T(t))] = 0.

The quadratic variation of the martingale w(t) is AT. Consequently, w(-) is an Fi-Wiener process.
Let h — 0, by using the Skorohod representation, we obtain

[ [ 6@ a1t T~ [ [ (a6, 606000l (@) (6] 0

(A.9)
uniformly in ¢ with probability one. On the other hand, {m”(-)} converges in the compact weak
topology, that is, for any bounded and continuous function () with compact support,

/ /w Y, s mg \(dv) )dT" (s —>/ /w Y, 5) dw)dT( ). (A.10)

Again, the Skorohod representation implies that as h — 0,

! ¢h ~h, ~h Th K =~ -~ ~ AS
| [ o@e.a sl @)af () [ [ bats).a0) 00z @)aTe) (A1)

uniformly in ¢ with probability one on any bounded interval.
In view of (A.2), since €/9(-) and o/9(-) are piecewise constant functions,

| [ @399 ) 3850 @)D" ) [ [ 00 (6),85). )M (@)aT(s) (A2
0o Ju 0 Ju
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as h — 0. Combining (A.4)-(A.12), we have

—ot / | ).y @)

e ) (A.13)
/ | (@61, ().0) Mg ()T (s) + (),

where lims_,o E|€®(¢)| = 0. Finally, taking limits in the above equation as § — 0, (6.15) is obtained.
(]

A.4 Proof of Theorem 6.5

Proof. Since T(t) — 0o w.p. 1 as t — oo, T (t) exists for all t and T(t) — 0o as t — oo w.p. 1.
Similar to (A.6) and (A.8),

ES(E"(t), o (t), w" (te), (85, m" ey, 2" (1), g™ (1), 5 < @,k < p) X [w(t + 5) —w(t)] = 0.

ES(fh(tk), Ozh(tk), wh(tk‘)7 (wjvmh)tlw Zh(tk)ﬂgh(tk)aj <gq, k< p)
x[w?(t+68) —w?(t) — (T(t+s) —T(t)] =0.

Thus, we can verify w(+) is an F-Wiener process. A rescaling of (6.15) yields

)=z + / | blats).ate).iymi(dvyas + / | atats) a0 )M @vyas. (A1

In other words, (2.9) holds. O

References

Alvarez, L. H. R. and Lempa, J. (2008). On the optimal stochastic impulse control of linear diffusions. STAM
Journal on Control and Optimization, 47(2):703-732.

Avram, F., Palmowski, Z., and Pistorius, M. R. (2007). On the optimal dividend problem for a spectrally
negative 1évy process. The Annals of Applied Probability, 17(1):156-180.

Azcue, P. and Muler, N. (2010). Optimal investment policy and dividend payment strategy in an insurance
company. The Annals of Applied Probability, 20(4): 1253-1302.

Bai, L. and Paulsen, J. (2012). On non-trivial barrier solutions of the dividend problem for a diffusion under

constant and proportional transaction costs. Stochastic Processes and their Applications, 122(12):4005 —
4027.

Bertsekas, D.P. (1987). Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, Engle-
wood Cliffs, NJ

Bielecki, T. R., and S. R. Pliska (1999). Risk Sensitive Dynamic Asset Management. Appl. Math. Optim.,
39:337-360.

Bielecki, T. R., and S. R. Pliska (2003). “Economic Properties of the Risk Sensitive Criterion for Portfolio
Management”. Review of Accounting and Finance, Vol. 2, 2:3-17.

De Finetti, B. (1957). Su unimpostazione alternativa della teoria collettiva del rischio, Transactions of the
XVth International Congress of Actuaries, 2 (1957): 433-443.

Fleming, W. H., and McEneaney, W. M. (1995). Risk-Sensitive Control on an Infinite Time Horizon. STAM
J. Control Optim., 33:1881-1915.

23



Fleming, W. H., and Sheu, S. J. (2000). Risk-Sensitive Control and an Optimal Investment Model. Mathe-
matical Finance, Vol. 10, 2:197-213

Fleming, W. and Soner, H. (2006). Controlled Markov Processes and Viscosity Solutions, volume 25 of
Stochastic Modelling and Applied Probability. Springer-Verlag, New York, NY, second edition.

Guo, X., Liu, J., and Zhou, X. Y. (2004). A constrained non-linear regular-singular stochastic control
problem, with applications. Stochastic Processes and their Applications, 109(2):167 — 187.

He, L. and Liang, Z. (2008). Optimal financing and dividend control of the insurance company with propor-
tional reinsurance policy. Insurance: Mathematics and Economics, 42(3):976 — 983.

Jin, Z., Yang, H., Yin, G. (2013). Numerical methods for optimal dividend payment and investment strategies
of regime-switching jump diffusion models with capital injections, Automatica, 49(8): 2317-2329.

Jin, Z., Yang, H., Yin, G. (2015). Optimal debt ratio and dividend payment strategies with reinsurance,
Insurance Mathematics and Economics, 64:351-363.

Jin, Z., Yin, G., and Yang, H. (2011). Numerical methods for dividend policy of regime-switching jump-
diffusion models. Mathematical Control and Related Fields, 1(1):21-40.

Kushner, H. J. (1972). Introduction to Stochastic Control Theory. Holt, Rinehart and Winston, New York

Kushner, H. J. (1978). Optimality conditions for the average cost per unit time problem with a diffusion
model, SIAM J. Control Optimization, 16:330-346

Kushner, H. and Dupuis, P. (2001). Numerical Methods for Stochstic Control Problems in Continuous Time,
volume 24 of Stochastic Modelling and Applied Probability. Springer, New York, second edition.

Loeffen, R. L. and Renaud, J.-F. (2010). De Finetti’s optimal dividends problem with an affine penalty
function at ruin. Insurance: Mathematics and Economics, 46(1):98 — 108. Gerber-Shiu Functions /
Longevity risk and capital markets.

Lokka, A. and Zervos, M. (2008). Optimal dividend and issuance of equity policies in the presence of
proportional costs. Insurance: Mathematics and Economics, 42:954-961.

Meng, H. and Siu, T. K. (2011). Impulse control of proportional reinsurance with constraints. International
Journal of Stochastic Analysis, 2011:Article ID 190603.

Pham, Huyén (2003). A large deviations approach to optimal long term investment. Finance Stochast.
7:169-195.

Sotomayor, L. and Cadenillas, A. (2011) Classical, singular, and impulse stochastic control for the optimal
dividend policy when there is regime switching. Insurance: Mathematics and Economics, 48(3), 344-354

Wei, F., Wu, L., and Zhou, D. (2014). Optimal control problem for an insurance surplus model with debt
liability. Mathematical Methods in the Applied Sciences, 37(11):1652-1667.

Wei, J., Yang, H. and Wang, R. (2010). Classical and impulse control for the optimization of dividend and
proportional reinsurance policies with regime switching. Journal of Optimization Theory and Applications,
147(2).

Yin, G., Zhang, Q., and Badowski, G. (2003). Discrete-time singularly perturbed Markov chains: Aggrega-
tion, occupation measures, and switching diffusion limit. Advances in Applied Probability, 35: 449-476.

Yin, G. and Zhu, C. (2010). Hybrid Switching Diffusions: Properties and Applications. Springer, New York

Zhu, J. (2014). Dividend optimization for a regime-switching diffusion model with restricted dividend rates.
ASTIN Bulletin, 44:459-494.

Zhu, J. and Chen, F. (2013). Dividend optimization for regime-switching general diffusions. Insurance:
Mathematics and Economics, 53(2):439 — 456.

Zhu, J. and Yang, H. (2015). Optimal financing and dividend distribution in a general diffusion model with
regime switching. Journal of Applied Probablility, In press.

24



