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Abstract

Background: Skewed X chromosome inactivation (XCI), which is a non-random process, is frequently observed in
both healthy and affected females. Furthermore, skewed XCI has been reported to be related to many X-linked
diseases. However, no statistical method is available in the literature to measure the degree of the skewness of XCI for
case-control design. Therefore, it is necessary to develop methods for such a task.

Results: In this article, we first proposed a statistical measure for the degree of XCI skewing by using a case-control
design, which is a ratio of two logistic regression coefficients after a simple reparameterization. Based on the point
estimate of the ratio, we further developed three types of confidence intervals (the likelihood ratio, Fieller’s and delta
methods) to evaluate its variation. Simulation results demonstrated that the likelihood ratio method and the Fieller’s
method have more accurate coverage probability and more balanced tail errors than the delta method. We also
applied these proposed methods to analyze the Graves’ disease data for their practical use and found that rs3827440
probably undergoes a skewed XCI pattern with 68.7% of cells in heterozygous females having the risk allele T active,
while the other 31.3% of cells keeping the normal allele C active.

Conclusions: For practical application, we suggest using the Fieller’s method in large samples due to the
non-iterative computation procedure and using the LR method otherwise for its robustness despite its slightly heavy
computational burden.
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Background
X chromosome inactivation (XCI) is an epigenetic phe-
nomenon. Under XCI, one of two X chromosomes in
females is silenced during early embryonic development
to achieve dosage compensation between two sexes [1].
As such, the genetic effect of two risk alleles in females is
expected to be equivalent to that of one risk allele inmales.
Most of X-linked genes undergo XCI and only about 15%
of genes on X chromosome escape from XCI (XCI-E)
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[2]. Both alleles in the genes under XCI-E will be active,
which are similar to autosomal genes. Generally, XCI has
been treated as random (XCI-R) where both maternal and
paternal X chromosomes have equal chance to be inac-
tivated, i.e. for an X-linked gene, nearly 50% of the cells
have one allele active while the remaining cells have the
other allele active. However, recent studies have revealed
that the skewed XCI (XCI-S) is a biological plausibility
and even a common feature in both healthy and affected
females [3–5]. XCI-S is a non-random process, which has
been defined as a significant deviation from XCI-R, for
instance, the inactivation of one of the alleles in more than
75% of cells [6–8].
Themechanism of XCI-S remainsmysterious andXCI-S

in human may be likely caused by secondary selection
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[6, 9, 10]. Specifically, the initial choice of active X chro-
mosome is considered as random. However, during body
growth, when an X-linked mutation affects cells prolif-
eration or survival, there will be a larger or smaller pro-
portion of cells with an active mutant allele. Due to the
selection pressure, this type of secondary skewing varies
in different tissues and is also associated with age. For
heterozygous females, positive selection cells with mutant
allele will lead to more severe expression of the disease,
whereas negative selection cells with mutant allele can
provide protection from deleterious effects [11, 12]. For
example, in heterozygous females with a mutant FoxP3
allele, the XCI-S against the mutant allele in specific tis-
sues can prevent autoimmune disease, whereas the XCI-S
towards the mutant allele in breast epithelial cells can
result in breast cancer [13]. On the other hand, some dis-
eases, such as ovarian cancer, Rett syndrome, Klinefelter
syndrome, and recurrent miscarriages, are reported to be
related to XCI-S [14–17]. Therefore, it is necessary to
develop methods for measuring such XCI skewing.
Recently, there has been an increasing interest to

incorporate the information on XCI into X-chromosome
genetic association studies [18–23]. Clayton’s method first
takes XCI-R into account and treats males as homozy-
gous females [18]. In this regard, two genotypes of males
are coded as 0 or 2, while three genotypes of females are
coded as 0, 1 or 2, respectively. This coding strategy also
implies that the genetic effect of heterozygous genotype in
females lies midway between two homozygous genotypes,
which seems reasonable as in heterozygous females about
half of cells express the mutant allele while the rest of cells
express the normal allele. However, this method does not
consider the XCI-E and XCI-S patterns. So, a resampling-
basedmethod was proposed bymaximizing the likelihood
ratio (LR) over all the three biological patterns (XCI-E,
XCI-R and XCI-S), where the three genotypes of females

are coded as 0, γ or 2 under XCI-S [21]. Note that γ

is an unknown parameter which is used to measure the
degree of XCI skewing. For instance, γ = 1 represents
XCI-R; γ = 1.5 indicates XCI-S where 75% of the cells
have the mutant allele active, whereas the other 25% of
the cells have the normal allele active. On the other hand,
the detection of XCI-S is either by measuring the level
of methylation or by integrative analysis of whole exome
and RNA sequencing data [24, 25]. Although Xu et al. has
recently developed a statistical measure for the skewness
of XCI based on family trios [26], there is still no statistical
method available in the literature tomeasure the skewness
of XCI for case-control design.
Therefore, in this article, we first showed that γ can

be represented as a ratio of two logistic regression coef-
ficients after a simple reparameterization, based on case-
control data. We then obtained the point estimate of γ

by the maximum likelihood estimates (MLEs) of these
two regression coefficients. Further, we derived the confi-
dence interval (CI) of γ by the delta method, the Fieller’s
method and the LR method. We also applied all the pro-
posed approaches to analyze the Graves’ disease data for
their practical use.

Results
Statistical properties of confidence interval
Tables 1 and 2 list the estimated coverage probability
(CP), left tail error (ML), right tail error (MR) (missing the
true value of γ ), ML/(ML+MR) and proportion of the dis-
continuous CIs (DP) of the LR, Fieller’s and delta methods
under various simulation settings with N = 500, ρ = 0,
and λ2 = 1.5 and 2, respectively. From the tables, the LR
and Fieller’s methods control the CP well when p = 0.3.
However, when p = 0.1, both the LR and Fieller’s methods
appear to overestimate the CP except for γ = 0. Note that
the CPs of the LR method are closer to the pre-set level

Table 1 Estimated CP (%), ML (%), MR (%), ML/(ML+MR) and DP (%) of the two-sided 95% CI when N = 500, ρ = 0 and λ2 = 1.5 for
the LR, Fieller’s and delta methods

LR Fieller Delta

p γ CP (ML, MR) ML
ML+MR DP CP (ML, MR) ML

ML+MR DP CP (ML, MR) ML
ML+MR DP

0.1 0 94.75 (4.78, 0.47) 0.91 1.96 94.93 (4.89, 0.18) 0.96 2.28 100 (0, 0) — 0

0.5 95.78 (1.49, 1.65) 0.47 1.44 96.81 (1.58, 0.62) 0.72 1.49 95.72 (0, 4.28) 0 0

1 96.13 (0.90, 2.33) 0.28 1.82 98.18 (0.73, 0.60) 0.55 1.82 79.38 (0, 20.62) 0 0

1.5 96.39 (0.64, 2.84) 0.18 1.69 98.72 (0.37, 0.75) 0.33 1.85 70.83 (0, 29.17) 0 0

2 96.68 (0, 3.32) 0 2.35 98.99 (0, 1.01) 0 2.49 67.71 (0, 32.29) 0 0

0.3 0 94.72 (3.88, 1.40) 0.73 1.27 94.75 (3.87, 1.38) 0.74 1.31 99.22 (0.78, 0) 1 0

0.5 95.21 (2.45, 1.96) 0.56 0.73 95.25 (2.44, 1.93) 0.56 0.73 99.75 (0.02, 0.23) 0.08 0

1 94.77 (1.99, 2.85) 0.41 0.69 94.88 (1.98, 2.78) 0.42 0.65 96.70 (0, 3.30) 0 0

1.5 95.22 (1.26, 3.33) 0.27 0.88 95.39 (1.25, 3.14) 0.28 0.91 92.29 (0, 7.71) 0 0

2 94.72 (0.37, 4.91) 0.07 1.29 95.16 (0.34, 4.50) 0.07 1.36 88.11 (0, 11.89) 0 0
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Table 2 Estimated CP (%), ML (%), MR (%), ML/(ML+MR) and DP (%) of the two-sided 95% CI when N = 500, ρ = 0 and λ2 = 2 for the
LR, Fieller’s and delta methods

LR Fieller Delta

p γ CP (ML, MR) ML
ML+MR DP CP (ML, MR) ML

ML+MR DP CP (ML, MR) ML
ML+MR DP

0.1 0 94.59 (4.59, 0.82) 0.85 1.97 94.78 (4.71, 0.51) 0.90 2.72 100 (0, 0) — 0

0.5 95.24 (2.12, 1.96) 0.52 1.10 96.20 (2.17, 0.86) 0.72 1.28 94.44 (0, 5.56) 0 0

1 96.07 (1.39, 2.38) 0.37 1.14 97.78 (1.27, 0.73) 0.64 1.23 84.05 (0, 15.95) 0 0

1.5 96.56 (0.99, 2.39) 0.29 0.90 98.37 (0.85, 0.72) 0.54 0.98 81.08 (0, 18.92) 0 0

2 96.49 (0.01, 3.50) 0 0.43 98.37 (0.01, 1.62) 0.01 0.43 79.71 (0, 20.29) 0 0

0.3 0 94.88 (2.80, 2.32) 0.55 0.60 94.93 (2.79, 2.28) 0.55 0.61 98.10 (1.89, 0.01) 0.99 0

0.5 95.01 (2.40, 2.54) 0.49 0.14 95.01 (2.40, 2.53) 0.49 0.15 99.13 (0.20, 0.67) 0.23 0

1 95.15 (2.10, 2.71) 0.44 0.08 95.28 (2.09, 2.60) 0.45 0.09 96.37 (0, 3.63) 0 0

1.5 94.81 (2.03, 3.14) 0.39 0.21 95.03 (2.05, 2.90) 0.41 0.22 92.51 (0, 7.49) 0 0

2 94.88 (1.80, 3.32) 0.35 0.08 95.18 (1.78, 3.04) 0.37 0.08 91.80 (0, 8.20) 0 0

than the Fieller’s method, which indicates the robustness
property of the LR method for relatively small samples.
Besides, the delta method generally has the worst CP
under all the situations. When p = 0.1, the delta method
overestimates the CP for γ = 0, while underestimates
the CP for γ = 1, 1.5 and 2, irrespective of λ2 being 1.5
or 2. When p increases from 0.1 to 0.3, the delta method
overestimates the CP for γ = 0, 0.5 and 1, while underes-
timates the CP for γ = 1.5 and 2, regardless of λ2 = 1.5
or 2. From the estimated ML, MR and ML/(ML+MR) val-
ues, we find that ML and MR of the delta-type CIs are not
balanced since nearly all the values of ML/(ML+MR) are
far away from 0.5, while the LR and Fieller’s methods have
more balanced ML and MR than the delta method, espe-
cially when p = 0.3. On the other hand, we see that the
values of the DP for both the LR and Fieller’s methods are
not over 3% under our simulation settings. Further, when
p increases from 0.1 to 0.3 or λ2 changes from 1.5 to 2, DP
will generally become smaller.

Tables 3 and 4 give the estimated CP, ML, MR,
ML/(ML+MR) and DP of the LR, Fieller’s and delta meth-
ods when N = 2000, ρ = 0, and λ2 = 1.5 and 2,
respectively. When N increases from 500 to 2000, the LR
method has similar performance with the Fieller’s method.
It can be seen from the tables that the CPs of all the meth-
ods are more accurate. Both the LR and Fieller’s methods
control the CP well, while the delta method still gener-
ally has the poor CP, especially when p = 0.1. Note that
when p = 0.3, all the values of ML/(ML+MR) for the LR
method and the Fieller’s method are around 0.5 regard-
less of λ2 being 1.5 or 2. But when p = 0.1, the values of
ML/(ML+MR) for the LRmethod and the Fieller’s method
are deviated from 0.5, especially when γ0 are 0 and 2. Fur-
ther, the Fieller’s method has slightly more balanced tail
errors than the LR method when p = 0.1. In addition, the
delta method has the most unbalanced tail errors. We also
find that the values of the DP generally decrease to be less
than 2% when N increases to be 2000. In general, the LR

Table 3 Estimated CP (%), ML (%), MR (%), ML/(ML+MR) and DP (%) of the two-sided 95% CI when N = 2000, ρ = 0 and λ2 = 1.5 for
the LR, Fieller’s and delta methods

LR Fieller Delta

p γ CP (ML, MR) ML
ML+MR DP CP (ML, MR) ML

ML+MR DP CP (ML, MR) ML
ML+MR DP

0.1 0 94.89 (4.31, 0.80) 0.84 2.04 94.91 (4.36, 0.73) 0.86 2.04 99.98 (0.01, 0.01) 0.50 0

0.5 94.38 (2.10, 2.84) 0.43 1.03 94.78 (2.13, 2.43) 0.47 0.96 93.29 (0, 6.71) 0 0

1 95.09 (1.53, 3.19) 0.32 0.73 95.88 (1.52, 2.43) 0.38 0.71 84.16 (0, 15.84) 0 0

1.5 94.49 (1.24, 4.21) 0.23 0.56 95.59 (1.25, 3.13) 0.29 0.56 81.18 (0, 18.82) 0 0

2 94.68 (0.01, 5.31) 0 0.22 95.81 (0.01, 4.18) 0 0.22 81.01 (0, 18.99) 0 0

0.3 0 95.23 (2.59, 2.18) 0.54 0.35 95.23 (2.59, 2.18) 0.54 0.33 97.89 (2.07, 0.04) 0.98 0

0.5 95.00 (2.66, 2.31) 0.54 0.07 95.01 (2.66, 2.30) 0.54 0.07 99.08 (0.12, 0.80) 0.13 0

1 94.80 (2.60, 2.56) 0.50 0.07 94.86 (2.60, 2.51) 0.51 0.07 95.91 (0, 4.09) 0 0

1.5 95.05 (2.16, 2.79) 0.44 0.03 95.10 (2.16, 2.74) 0.44 0.03 93.58 (0, 6.42) 0 0

2 94.58 (2.34, 3.08) 0.43 0.01 94.68 (2.34, 2.98) 0.44 0.01 91.86 (0, 8.14) 0 0
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Table 4 Estimated CP (%), ML (%), MR (%), ML/(ML+MR) and DP (%) of the two-sided 95% CI when N = 2000, ρ = 0 and λ2 = 2 for the
LR, Fieller’s and delta methods

LR Fieller Delta

p γ CP (ML, MR) ML
ML+MR DP CP (ML, MR) ML

ML+MR DP CP (ML, MR) ML
ML+MR DP

0.1 0 95.45 (2.89, 1.66) 0.64 1.57 95.48 (2.89, 1.63) 0.64 1.66 99.81 (0.14, 0.05) 0.74 0

0.5 94.92 (2.24, 2.75) 0.45 0.18 95.27 (2.28, 2.34) 0.49 0.23 92.63 (0, 7.37) 0 0

1 94.39 (2.38, 3.21) 0.43 0.12 95.31 (2.39, 2.28) 0.51 0.11 88.87 (0, 11.13) 0 0

1.5 94.77 (1.56, 3.67) 0.30 0 95.77 (1.61, 2.62) 0.38 0 87.92 (0, 12.08) 0 0

2 94.45 (0.42, 5.13) 0.08 0 95.57 (0.42, 4.01) 0.09 0 87.32 (0, 12.68) 0 0

0.3 0 95.02 (2.68, 2.30) 0.54 0.01 95.03 (2.67, 2.30) 0.54 0.01 96.64 (3.08, 0.28) 0.92 0

0.5 94.97 (2.37, 2.66) 0.47 0 94.97 (2.37, 2.66) 0.47 0 96.94 (1.04, 2.02) 0.34 0

1 95.13 (2.40, 2.47) 0.49 0 95.17 (2.40, 2.43) 0.50 0 96.05 (0.16, 3.79) 0.04 0

1.5 94.68 (2.78, 2.54) 0.52 0 94.76 (2.79, 2.45) 0.53 0 94.65 (0, 5.35) 0 0

2 94.86 (2.53, 2.61) 0.49 0 94.89 (2.56, 2.55) 0.50 0 93.81 (0, 6.19) 0 0

method and the Fieller’s method control the CP well with
the relatively balanced tail errors on the left and on the
right. All the other results of CP, ML, MR, ML/(ML+MR)
and DP with ρ = 0.05 are given in Tables S1-S4 [see Addi-
tional file 1], which are similar to those in Tables 1, 2, 3
and 4 except for N = 500 and p = 0.1, indicating that
Hardy-Weinberg disequilibrium has limited effect on the
results. Notice that under the scenario of N = 500 and
p = 0.1, we observe that the CPs of all the methods in
Additional file 1: Tables S1 and S2 are better than those in
Tables 1 and 2, respectively. One possible explanation of
this phenomenon is that the genotype frequency of AA in
the control sample increases from 0.01 to 0.0145 when ρ

changes from 0 to 0.05.

Sizes and powers
We also simulated the corresponding size and power for
testing γ = γ0 [see Appendix B of Additional file 1]. The
size results are given in Additional file 1: Tables S5–S8
and the power results are displayed in Figures S1-S12
[see Additional file 1]. It can be seen that the LR method
and the Fieller’s method control the size well except for
N = 500 and p = 0.1, while the size of the delta method
is either conservative or inflated. On the other hand, the
power of the LRmethod and the Fieller’s method are close
to each other, but the LRmethod is generally slightly more
powerful than the Fieller’s method. However, the power of
the delta method can be quite different from those of the
LR and Fieller’s methods.

Application to Graves’ disease data
The GPR174 gene is located on X chromosome, which
is associated with autoimmune thyroid disease, includ-
ing Graves’ disease [27]. An X chromosome genome-wide
association study (GWAS) was conducted by Chu et al.
to study the association between the GPR174 gene and

Graves’ disease among Han population [27]. In this study,
14,141 single nucleotide polymorphisms on X chromo-
some were genotyped. Among them, rs3827440 is a non-
synonymous single nucleotide polymorphism within the
GPR174 gene, with the minor allele frequency being 0.45
in this population, and thus is a functional variant of inter-
est. Further, statistical analysis of both the GWAS data
and the replication data showed that rs3827440 is sta-
tistically significantly associated with Graves’ disease. At
rs3827440, there are two alleles T and C, where T is the
susceptible allele which is associated with a higher expres-
sion level of the GPR174 gene. Several studies [7, 15]
showed that XCI-S is associated with autoimmune thyroid
disease. So, we applied the LR, Fieller’s and delta methods
to explore if rs3827440 undergoes an XCI-S pattern. We
only selected the females to estimate the degree of XCI
skewing as well as its 95% CI. In the GWAS stage, 2242
females were sampled (1115 cases and 1127 controls). In
the case group, the numbers of females with genotypes
CC, TC, and TT are 163, 508, and 444, respectively. Those
in the control group are 219, 541, and 367, respectively.
In the replication stage, 6260 females were sampled with
genotype counts 471, 1606, and 1298 in the case group,
and 584, 1344, and 957 in the control group for CC, TC,
and TT, respectively. The estimated allele frequency of T
in females is 0.57 and 0.56 for the GWAS stage and the
replication stage, respectively. We applied each of the pro-
posed methods to the data in the GWAS stage and those
in the replication stage. After that, we used our proposed
methods to deal with the pooled data, by incorporating
the stage as a covariate.
Table 5 gives the point estimate γ̂ and its 95% CIs, based

on the LR, Fieller’s and delta methods. From the table,
we observe that the LR-type CIs and the Fieller’s CIs are
almost the same. The delta-type CIs are nested within the
LR-type and Fieller’s CIs for the replication stage and the
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Table 5 Statistical inference for γ at rs3827440 in females based
on the LR, Fieller’s and delta methods

95% CI

Stage γ̂ LR Fieller Delta

GWAS 0.957 [0, 1.657] [0, 1.658] [0.241, 1.672]

Replication 1.513 [1.123, 1.930] [1.122, 1.930] [1.126, 1.900]

Pooled 1.373 [1.028, 1.719] [1.028, 1.719] [1.037, 1.708]

pooled data, whichmay be caused by the fact that the delta
method underestimates the CP. We also find that the LR-
type CI and the Fieller’s CI are asymmetrical around its
point estimate in the GWAS stage but are nearly symmet-
rical around the point estimate in the replication stage and
the pooled analysis, which is probably due to the larger
sample size in the replication stage and the pooled dataset.
In the GWAS stage, the point estimate γ̂ is 0.957. All of
the three types of CIs contain 1 (XCI-R). In the replication
stage, the point estimate γ̂ is 1.513 and all the CIs do not
contain 1. The results in the replication stage suggest the
XCI-S pattern at rs3827440 with 75.7% (1.513/2) of cells
having the risk allele T active and the other 24.3% of cells
having the normal allele C active. Note that the statisti-
cal results for both two stage data suggest different XCI
patterns. One possible reason is that the variance of γ̂ is
larger in the GWAS data and there may exist study het-
erogeneity between those two stages. The results for the
pooled data give the point estimate γ̂ = 1.373 by adjusting
the stage and all of the three types of CIs do not contain
1. This demonstrates that rs3827440 probably undergoes
the XCI-S pattern with 68.7% (1.373/2) of cells keeping
the risk allele T active, while the other 31.3% of cells keep-
ing the normal allele C active. However, this observation
needs to be further confirmed by functional analysis of
this variant.

Discussion
In this article, we proposed a statistical measure to esti-
mate the degree of the skewness of XCI (i.e. γ ). We first
showed that γ can be expressed as a ratio of two logistic
regression coefficients. Then, we constructed a ratio esti-
mate γ̂ for γ and also derived three types of CIs (the LR,
Fieller’s and delta methods) to evaluate its variation. The
delta method is a simple and non-iterative procedure but
generally has poor statistical properties, which is proba-
bly caused by the skewness of γ̂ . On the other hand, the
LR method and the Fieller’s method are based on a simple
reparameterization procedure and thus does not require
the normality assumption of γ̂ . The simulation results
demonstrate that the LR method and the Fieller’s method
have better performance than the delta method. On the
other hand, note that the LR-type CI will be close to the
Fieller’s CI when N is large. In this regard, the Fieller’s

CI is preferential since it is a non-iterative procedure.
However, whenN is relatively small, the LR-type CI is rec-
ommended for its robustness. In addition, our software
SkewXCI is freely available at http://www.echobelt.org/
web/UploadFiles/SkewXCI.html, which is implemented in
R (http://www.r-project.org/, version 3.5.1).
Our proposed methods have several limitations. First,

our methods assume that the genetic effect of the mutant
allele among all the cells is additive on the disease. On the
other hand, notice that Model (1) under XCI is different
from genetic models (dominant, additive, and recessive)
on autosomes or on X chromosome under XCI-E. Specif-
ically, genetic model defines the relationship between two
alleles at a locus and usually varies from locus to locus
[28–30]. However, when XCI occurs, only one allele is
active at each locus in each cell and most of the loci share
the same XCI pattern. As such, the magnitude of γ /2
is a measure of the proportion of cells with the mutant
allele active among all the cells in heterozygous females.
For instance, adrenoleukodystrophy has been previously
viewed as an X-linked recessive disorder where the female
carriers are commonly thought to be normal or only
mildly affected [31]. However, a recent study showed
that the heterozygous females with adrenoleukodystrophy
have a wide spectrum of clinical manifestations, ranging
from mild to severe phenotypes, which is probably due
to the various degree of XCI-S towards the mutant allele.
Second, we simply cut the estimated CI within the interval
[0, 2] and this may lead to potential loss of information.
However, if we incorporate this interval constraint into
statistical inference, then the LR, Fieller’s and delta meth-
ods no longer follow a simple chi-square distribution or a
standard normal distribution due to the boundary prob-
lem [32]. An alternative method is the Bayesian inference,
where such constraint can be regarded as prior informa-
tion. For instance, when no other information is available,
we can choose an uniform prior distribution within the
interval [0, 2] for γ . Once the posterior distribution is
derived, its percentiles or variance can be used to con-
struct the corresponding CI. Third, note that the validity
of our proposed measure is based on the assumption
that there exists association between disease and allele A.
Therefore, in GWAS, we can first screen the associated
single nucleotide polymorphisms as candidate loci before
making any inference about γ . If such association is not
statistically significant, our proposed methods may not be
reliable. In this situation, according to Fieller’s theorem,
the Fieller’s CI and the LR-type CI can be discontinuous
as shown in Tables 1, 2, 3, and 4, which is difficult to
interpret.
Generally, the LR method and the Fieller’s method

have accurate CP and control the ML and MR well,
and hence are recommended in practical application. In
future work, we will incorporate the information on the

http://www.echobelt.org/web/UploadFiles/SkewXCI.html
http://www.echobelt.org/web/UploadFiles/SkewXCI.html
http://www.r-project.org/
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interval constraint into analysis so as to further improve
the efficiency of the proposed methods. Moreover, we will
generalize our methods to quantitative traits.

Conclusions
When the sample size is greater than 2000, the Fieller’s
method has similar performance to the LR method and
thus is preferential due to the non-iterative computa-
tion procedure. However, the LRmethod is recommended
otherwise because it has better statistical properties, espe-
cially in small samples.

Methods
Point estimation for γ

Consider an X-linked diallelic locus with normal allele a
and mutant allele A. We only select the females because
XCI is unrelated to males. For females, suppose that aa,
Aa and AA are three genotypes and let X = {0, γ , 2}
be the corresponding genotypic value, respectively, with
γ ∈ [0, 2]. For a case-control design, let Y = 1 (0) denote
that the female is affected (unaffected). Then, the associ-
ation between Y and X can be expressed using a logistic
regression model

Logit(Pr(Y = 1|X, z)) = β0 + βX + bTz, (1)

where β0 is the intercept, β is the regression coefficient for
X, z is a vector of covariates that need to be adjusted (e.g.
age), and bT is a vector of regression coefficients for z.
To estimate γ , we decompose the genotypic value X

as X = γX1 + (2 − γ )X2, where X1 = I{G=Aa or AA},
X2 = I{G=AA}, G denotes the genotype of the female and
I{.} is the indicator function. It can be seen that X1 indi-
cates if the genotype contains the mutant allele A and X2
represents if the genotype is the homozygote AA. As such,
Model (1) becomes

Logit(Pr(Y = 1|X1,X2, z))
= β0 + βγX1 + β(2 − γ )X2 + bTz.

Let β1 = βγ and β2 = β(2−γ ). Then, the above model
can be rewritten as

Logit(Pr(Y = 1|X1,X2, z))
= β0 + β1X1 + β2X2 + bTz. (2)

Further, due to this reparameterization, γ can be repre-
sented as

γ = 2β1
β1 + β2

, (3)

when β = (β1 + β2)/2 �= 0. γ can only be well defined
in presence of the association between the disease and
the allele A. Note that γ ∈ [0, 2] means that β1 and
β2 have the same sign. That is, the genetic effect of het-
erozygous genotype in females lies between those of two

homozygotes, which is generally satisfied in real applica-
tions. From Eq. (3), we have γ = 0 (2) if and only if β1 = 0
and β2 �= 0 (β1 �= 0 and β2 = 0), representing XCI-S fully
towards the normal (mutant) allele a (A), while γ = 1 if
and only if β1 = β2 �= 0, which means XCI-R. So, if we get
the MLEs β̂1 and β̂2 of β1 and β2, then γ̂ = 2β̂1/(β̂1 + β̂2)
is the MLE of γ by the invariance property of MLE.
Note that β̂1 and β̂2 can be easily calculated through

the standard logistic regression procedure. Specifically,
suppose that we collectN unrelated females from a homo-
geneous population. Then, the log-likelihood function of
the sample can be written as

l1
(
β0,β1,β2, bT

)

=
N∑
i=1

[
yi

(
β0 + β1xi1 + β2xi2 + bTzi

)

− log
(
1 + exp

(
β0 + β1xi1 + β2xi2 + bTzi

))]
,

where yi, xi1, xi2 and zi respectively are the values of Y,
X1, X2 and z of female i. Then, β̂1 and β̂2 are obtained by
maximizing the above log-likelihood function, i.e.

l1
(
β̂0, β̂1, β̂2, b̂

T)
= argmax

β0,β1,β2,bT
l1

(
β0,β1,β2, bT

)
,

where β̂0 and b̂
T
are the MLEs of β0 and bT , respectively.

Confidence interval of γ based on delta method
Once the point estimate of γ is derived, we need to cal-
culate the standard error or CI to evaluate its precision.
Since γ̂ is also a ratio estimate, a natural idea is to use the
first order Taylor series expansion of γ̂ and then obtain
its asymptotic variance. Specifically, by the consistency of
MLE, β̂1 and β̂2 are close to β1 and β2, respectively, when
N is large. Note that β = (β1 + β2)/2 and thus γ can
be rewritten as β1/β . Making a first order Taylor expan-
sion of γ̂ around the point (β1, β) and evaluating this at(
β̂1, β̂

)
, we have

γ̂ ≈ β1
β

+
(
β̂1 − β1

) 1
β

−
(
β̂ − β

) β1
β2 ,

where β̂ =
(
β̂1 + β̂2

)
/2. Taking variance from both sides,

the above equation becomes

Var(γ̂ ) ≈ 1
β2 Var

(
β̂1

)

+ β2
1

β4 Var
(
β̂
)

− 2β1
β3 Cov

(
β̂1, β̂

)
. (4)

Notice that

Var
(
β̂
)

= 1
4

(
Var

(
β̂1

)
+ Var

(
β̂2

)
+ 2Cov

(
β̂1, β̂2

))

and
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Cov
(
β̂1, β̂

)
= 1

2

(
Var

(
β̂1

)
+ Cov

(
β̂1, β̂2

))
,

where Var
(
β̂1

)
, Var

(
β̂2

)
and Cov

(
β̂1, β̂2

)
are the ele-

ments of the variance-covariance matrix V of β̂1 and β̂2.
Generally, V has no simple form when covariates are
included in the model, but can be derived from the empir-
ical Fisher’s information matrix Î for

(
β0, β1, β2, bT

)T

[33]. For Model (2),

Î = UTŴU ,

where U = (1, X1, X2, z) is the design matrix,
X1 = (x11, x21, ..., xN1)

T , X2 = (x12, x22, ..., xN2)
T , z =

(z1, z2, ..., zN )T , Ŵ = diag
(
ŵ1, ŵ2, ..., ŵN

)
is a diagonal

matrix with diagonal elements

ŵi = f̂i
(
1 − f̂i

)
(i = 1, 2, ...,N),

and

f̂i =
exp

(
β̂0 + β̂1xi1 + β̂2xi2 + b̂

T
zi

)

1 + exp
(
β̂0 + β̂1xi1 + β̂2xi2 + b̂

T
zi

)

represents the estimated penetrances for female i. Once Î
is estimated, the partial information matrix Î1 for β1 and
β2 given β0 and bT can be computed and thus V = Î

−1
1 .

If there is no covariate in the model, then V has the
following form [see Appendix A of Additional file 1]

⎛
⎜⎝

1
naaŵaa

+ 1
nAaŵAa

− 1
nAaŵAa

− 1
nAaŵAa

1
nAaŵAa

+ 1
nAAŵAA

⎞
⎟⎠ ,

where naa, nAa and nAA are the numbers of the females
with aa,Aa andAA, respectively, andN = naa+nAa+nAA;
ŵaa, ŵAa and ŵAA are the weighted elements for aa, Aa
and AA, respectively, with

ŵG = f̂G
(
1 − f̂G

)
(G = aa,Aa, orAA),

and

f̂aa =
exp

(
β̂0

)

1 + exp
(
β̂0

) ,

f̂Aa =
exp

(
β̂0 + β̂1

)

1 + exp
(
β̂0 + β̂1

)

and

f̂AA =
exp

(
β̂0 + β̂1 + β̂2

)

1 + exp
(
β̂0 + β̂1 + β̂2

)

representing the estimated penetrances for aa, Aa and
AA, respectively.

Replacing β and β1 by β̂ and β̂1 in Eq. (4), we estimate
the delta-type standard error [34]

V̂ar
(
γ̂
) ≈ 1

β̂2
Var

(
β̂1

)

+ β̂2
1

β̂4
Var

(
β̂
)

− 2β̂1

β̂3
Cov

(
β̂1, β̂

)
.

As such, the delta-type CI
(
γ d
L , γ d

U

)
at level (1 − α) can

be expressed as
(

γ̂ − Z1− α
2

√
V̂ar

(
γ̂
)
, γ̂ + Z1− α

2

√
V̂ar

(
γ̂
) )

,

where Z1−α/2 denotes the (1 − α/2)-quantile of the stan-
dard normal distribution. Note that the estimated CI may
be out of the range of [ 0, 2] when the variation is large,
which should be cut off. To test the null hypothesis H0 :
γ = γ0 against the alternative hypothesis H1 : γ �= γ0, we
have

γ̂ − γ0√
Var

(
γ̂
) ∼ N(0, 1)

underH0, where γ0 is an arbitrary constant between [0, 2],
such as 1 (XCI-R).
The delta method is a non-iterative procedure and thus

is easy to be implemented. However, the CI of a ratio
estimate is generally skewed, while the delta-type CI is
symmetrical [35, 36]. Therefore, it is necessary to propose
the Fieller’s and likelihood ratio methods to overcome this
shortcoming in the following sections.

Confidence interval of γ based on Fieller’s method
The Fieller’s method is another widely used non-iterative
approach for constructing CI for ratio estimate [37]. This
type of CI can be asymmetrical around γ̂ . To propose the
Fieller’s CI, we first need to build a Wald test for testing
γ = γ0. Specifically, under γ = γ0, we have β1 − γ0β =
0. Therefore, the Wald test for testing γ = γ0 can be
written as

β̂1 − γ0β̂√
Var

(
β̂1

)
+ γ 2

0 Var
(
β̂
)

− 2γ0 Cov
(
β̂1, β̂

) ,

which follows a standard normal distribution. Then, the
confidence limits γ

f
L and γ

f
U

(
γ
f
L < γ

f
U

)
for Fieller’s CI at

level (1−α) can be found by solving the following equation

β̂1 − γ0β̂√
Var

(
β̂1

)
+ γ 2

0 Var
(
β̂
)

− 2γ0 Cov
(
β̂1, β̂

) = Z1− α
2
.

Rearranging the above equation yields a quadratic
equation with respect to γ0

Dγ 2
0 + Eγ0 + F = 0,
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where

D = β̂2 − Z2
1− α

2
Var

(
β̂
)
,

E = 2
(
Z2
1− α

2
Cov

(
β̂1, β̂

)
− β̂1β̂

)

and

F = β̂2
1 − Z2

1− α
2
Var

(
β̂1

)
.

Suppose � = E2 − 4DF > 0, then this equation
must have two unequal roots with γ

f
L and γ

f
U being(

−E ± √
�

)
/2D. According to Fieller’s theorem, we

know that D > 0 implies � > 0. In this situation, the
Fieller’s CI is continuous and can be denoted by

(
γ
f
L , γ

f
U

)
.

Note that D > 0 is equivalent to
∣∣∣∣β̂/

√
Var

(
β̂
)∣∣∣∣ > Z1− α

2
.

That is, there exists statistically significant association
between the disease and the allele A at the significance
level α. However, if there is no such association (i.e. D <

0), the Fieller’s CI will be unbounded. For instance, if � <

0, the Fieller’s CI will be (−∞,∞). If� > 0, the Fieller’s CI
will be

(
−∞, γ f

L

) ⋃ (
γ
f
U ,∞

)
, which is the discontinuous

CI. In real applications, it generally makes little sense to
infer about γ if there is no association between the disease
and the allele A according to its definition. In addition, the
Fieller’s CI should also be restricted to the interval [ 0, 2]
when needed.
The Fieller’s method usually demonstrates better cov-

erage probability than the delta method. Notice that the
Fieller’s CI is based on the inversion of theWald test. Since
the LR test is expected to have more robust properties in
small samples, so it is desirable to propose the LR method
in the next section.

Confidence interval of γ based on likelihood ratio method
To obtain the LR-based CI, we first construct a likelihood
ratio test for testing γ = γ0. As mentioned above, we
have derived the MLEs β̂0, β̂1, β̂2 and b̂

T
of β0, β1, β2 and

bT under H1. To calculate the likelihood ratio test statis-
tic λ, we further evaluate the likelihood function under
H0 : γ = γ0. If H0 holds, the genotypic value X equals 0,
γ0 and 2 for aa, Aa and AA, respectively. In this regard,
Model (1) is reduced to be a standard logistic model and
the log-likelihood function under H0 can be written as

l0
(
β0,β , bT

)
=

N∑
i=1

[
yi

(
β0 + βxi + bTzi

)

− log
(
1 + exp

(
β0 + βxi + bTzi

))]
,

where xi is the genotypic value of X of female i. Let
β̃0, β̃ and b̃T be the MLEs of β0, β and bT under H0,

respectively. Then,

l0
(
β̃0, β̃ , b̃

T)
= argmax

β0,β ,bT
l0

(
β0,β , bT

)
,

and λ can be computed as

λ = 2
(
l1

(
β̂0, β̂1, β̂2, b̂

T)
− l0

(
β̃0, β̃ , b̃

T))
.

λ asymptotically follows a chi-square distribution with the
degree of freedom being one

(
i.e.χ2

1
)
.

Now, we introduce how to obtain the LR-type CI. For
each given γ0, we can calculate the corresponding value

of the log-likelihood function l0 and θ̃ =
(
β̃0, β̃ , b̃

T)T

under H0. So, l0 and θ̃ are single variable functions with
respect to γ0 and can be denoted by l0 = l0(γ0) and
θ̃ = θ̃(γ0), respectively. At the significance level α, the
confidence limits γ l

L and γ l
U

(
γ l
L < γ l

U

)
of the LR-type CI

is determined by the following equation with respect to γ0

l0(γ0) − l1
(
β̂0, β̂1, β̂2, b̂

T)
+ q1−α

2
= 0, (5)

where q1−α denotes the (1 − α)-quantile of the χ2
1 dis-

tribution. Obviously, Eq. (5) has no closed form solutions
and numerical method can be adopted. Note that θ =(
β0,β , bT

)T
are nuisance parameters in Eq. (5) which

depend on γ0. To solve this equation, it generally requires
several iterations with different values of γ0, and for each
γ0, the iterative maximization over the remaining param-
eters is also needed to determine θ̃ . This procedure is
relatively time-consuming. Therefore, to reduce the com-
putational burden, borrowing the idea of Venzon and
Moolgavkar [38], we can find the roots of Eq. (5) by solving
the following system of non-linear equations

l0(γ0, θ) − l1
(
β̂0, β̂1, β̂2, b̂

T)
+ q1−α

2
= 0

∂l0
∂θ

(γ0, θ) = 0,

which is easily implemented in the commonly used soft-
ware (e.g. nleqslv package in R). Note that the above
system differs only in the first equation from the system
(with the first equation being replaced by ∂l0

∂γ0
(γ0, θ) = 0)

that defines the MLEs γ̂ and θ̂ =
(
β̂0, β̂ , b̂

T)T
. Therefore,

finding a root of such system almost has the same diffi-
culty as that of finding the MLEs of Model (2) [38]. As
such, this algorithm is generally more efficient.
On the other hand, based on the fact that the Wald test

and the LR test are asymptotically equivalent in large sam-
ples, we know that the confidence limits of the Fieller’s CI
and the LR-type CI should be close to each other. There-
fore, we used the confidence limits of the Fieller’s CI as
the initial values for γ0. For example, when searching the
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lower limit, we chose the initial values for γ0 and θ as γ
f
L

and θ̃
(
γ
f
L

)
, respectively, where θ̃

(
γ
f
L

)
can be computed

from the standard logistic regression procedure. Similarly,
we used the same strategy to search the upper limit. The
algorithm based on this choice of the initial values works
well in most situations. However, in some scenarios, the
Fieller’s CI and the LR-type CI may be very different.
Thus, using the confidence limits of the Fieller’s CI as the
initial values may cause that the algorithm does not con-
verge. In this regard, we should directly solve the single
variable function of Eq. (5). For example, we can use the
bisection method to find the roots of Eq. (5) within the
interval [0, 2] (e.g. rootSolve package in R).
Like the Fieller’s CI, the LR-type CI can be unbounded

when there is no association between the disease and
the allele A. Specifically, when Equation (5) has no root,
then the LR-type CI will be (−∞,∞). Otherwise, there
will be two roots γ l

L and γ l
U . If γ l

L < γ̂ < γ l
U , then

the LR-type CI is continuous and can be represented
as

(
γ l
L, γ l

U

)
. If γ̂ �∈

(
γ l
L, γ l

U

)
, then the LR-type CI will

be
(
−∞, γ l

L

) ⋃ (
γ l
U ,∞

)
, which is the discontinuous CI.

Similar to the delta and Fieller’s methods, the LR-type CI
is also truncated by [0, 2] if necessary.
The LR-based CI and the Fieller’s CI can be asymmet-

rical which is an appealing choice, compared to the delta
method. This is because the distribution of a ratio esti-
mate is generally non-normal with a heavy tail, especially
when N is small. Additionally, it will be quite straightfor-
ward to incorporate covariates using the LR method.

Simulation settings
For simplicity, we assumed that there is no covariate
included in the model in our simulation study. We incor-
porated the covariate into the real data analysis later. For
a case-control design, we presumed that the genotype dis-
tribution in the case group and that in the control group
of females follow trinomial distributions with probabilities
(h0, h1, h2) and (g0, g1, g2), respectively, where h0 (g0),
h1 (g1) and h2 (g2) are the frequencies of aa, Aa and AA
in the case (control) group, respectively. Let h0/g0 = m,
h1/g1 = λ1(h0/g0) = λ1m and h2/g2 = λ2(h0/g0) = λ2m,
where λ1 and λ2 are the odds ratios for Aa and AA com-
pared to aa in females, respectively. By h0+h1+h2 = 1, we
havem = 1/(g0+λ1g1+λ2g2), h0 = g0/(g0+λ1g1+λ2g2),
h1 = λ1g1/(g0 + λ1g1 + λ2g2) and h2 = λ2g2/(g0 + λ1g1 +
λ2g2). Thus, (h0, h1, h2) is calculated by (g0, g1, g2), λ1
and λ2. The value of (g0, g1, g2) is determined by the allele
frequency of A (denoted by p = 1 − q) and the inbreed-
ing coefficient ρ, i.e. g0 = q2 + ρpq, g1 = 2(1 − ρ)pq
and g2 = p2 + ρpq. Specifically, ρ = 0 implies that
Hardy-Weinberg equilibrium holds in the control group
and ρ �= 0 indicates Hardy-Weinberg disequilibrium.

Furthermore, from Model (2), β0 = log(m), β1 = log(λ1)
and β1 + β2 = log(λ2). Then, γ = 2 log(λ1)/ log(λ2), i.e.
λ1 = λ

γ/2
2 . As such, we defined the simulation settings as

follows: p is fixed at 0.1 and 0.3, and ρ is set to be 0 and
0.05. The true value of γ is fixed at 0, 0.5, 1, 1.5 and 2. λ2
is assigned to be 1.5 and 2. We selected N as 500 (2000)
where both the case and control groups have 250 (1000)
females. The confidence level is fixed at (1 − α) = 95%
and the number of replications k is 10,000.
We compared the performance of three types of CIs

based on CP, ML, MR, ML/(ML+MR) and DP. CP is
defined to be the proportion that the CI contains the true
value of γ among k replications, regardless of whether
the CI is continuous or not. ML and MR are calculated
by ML = #

[
(γ0 < γL) ∩ (

γL ≤ γ̂ ≤ γU
)]

/k, and MR =
#

[
(γ0 > γU) ∩ (

γL ≤ γ̂ ≤ γU
)]

/k, respectively, where #
denotes the counting measure, and γL and γU are the con-
fidence limits of the estimated CI. Note that γL ≤ γ̂ ≤ γU
means that the CI is continuous. As such, we only con-
sider the continuous CIs when estimating ML and MR,
since it is impossible to distinguish between the left side
and the right side if the CI is discontinuous. Further, DP
is computed as 1 − #(γL ≤ γ̂ ≤ γU)/k. We believed that
a good CI should control the CP well as well as have the
balanced ML and MR. ML and MR are used together to
measure the location of CI. If a balance between ML and
MR is achieved, thenML/(ML+MR) is close to 0.5. On the
other hand, note that the delta-type CI is always bounded.
Therefore, the DP for the delta method will stay at 0. How-
ever, for the Fieller’s CI and the LR-type CI, small DP is
desirable.
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