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—— Abstract

We introduce an (e, §)-jointly differentially private algorithm for packing problems. Our algorithm
not only achieves the optimal trade-off between the privacy parameter ¢ and the minimum supply
requirement (up to logarithmic factors), but is also scalable in the sense that the running time is
linear in the number of agents n. Previous algorithms either run in cubic time in n, or require a
minimum supply per resource that is y/n times larger than the best possible.
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1 Introduction

Suppose a trusted principal has b copies of some privacy-sensitive good, and there are n
agents interested in getting a copy of it. Each agent has some value for receiving a copy of
the good. The principal would like to choose a subset of up to b agents to receive the good so
that sum of their values is maximized.! However, one of the agents, Alice, gets paranoid that
the others may be able to learn a lot of information about her value for the sensitive good.
In particular, here is a hypothetical scenario that Alice worries about. Suppose the principal
simply allocate to the k agents with the largest values, with Alice being one of them. Then,
all the other n — 1 agents may exchange information and figure out that only b — 1 of them
get a copy and, hence, Alice must also get one. Further suppose that the b-th highest value
among them is, say, $1,000; they would also learn that Alice’s value for the sensitive good
is at least $1,000. Is there an allocation algorithm that addresses Alice’s concerns without
losing too much in the objective?

This problem has been studied in a series of works in the last few years [14, 15, 17]. More
broadly, let us consider a general packing problem with m resources and n agents. Each
agent demands a bundle consists of a certain amount of each resource, and has a certain
value for getting it. The goal is to pick a subset of the agents such that granting them the
corresponding bundles approximately maximizes to sum of the values, subject to the supply
constraints of the resources, while protecting the privacy of any individual agent. This line
of works focus on a specific notation of privacy called joint differential privacy. In a nutshell,

1 This is also known as social welfare maximization in the literature of mechanism design.
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it requires that for any individual agent, say, Alice in our example, an adversary shall not
be able to learn more than a negligible amount of information about the agent’s private
information, i.e., her value and demands, from the allocations and prices of the other agents.

How can packing algorithms guarantee joint differential privacy? At a high level, such
algorithms leave some amount of supply of each resource unallocated in some meticulous
and randomized way, so that even if someone knows the allocations and prices of all other
agents as in Alice’s hypothetical scenario, he will not be able to learn with certainty whether
Alice gets a copy of the item, or her value for it. Further, to ensure that the objective is
approximately optimal even with the unallocated supplies, all jointly private algorithms
require the supply of each resource to be sufficiently large. Hence, the literature measures
how good a jointly private algorithm is by the trade-off between the privacy level, quantified
by a parameter € > 0, and the minimum supply requirement, subject to getting an additive
an approximation. To this end, Huang and Zhu [17] show that a supply of g per resource,
up to logarithmic factors, is both sufficient and necessary.

Another important consideration is the running time of the algorithms. This is particularly
relevant for (jointly) differentially private algorithms, since they generally require the size of
the dataset, i.e., n, to be sufficiently large to achieve good approximation in the objective.
We argue that practical (jointly) differentially private algorithms must be scalable in the
sense by Teng [26], i.e., the running time shall be quasi-linear in n or better. However,
the aforementioned algorithm by Huang and Zhu [17], which achieves the optimal é(g)
supply requirement, is not scalable, as its running time depends cubically in n. Neither are
the earlier algorithms by Hsu et al. [14, 15]. Although Huang and Zhu [17] also propose
an alternative algorithm that is scalable, it requires a much larger supply of O(@) per
resource. The following question is explicitly left open [17]:

Are there jointly differentially private algorithm that are scalable and at the same time

only require a minimum supply of O(L) per resource?

m
Ex

1.1 OQur Contributions

We introduce a jointly differentially private packing algorithm that answers the above open
question affirmatively. The main theorem of this paper is the following:

» Theorem 1. There is an (€,0)-jointly differentially private algorithm such that:
1. it returns with high probability a feasible packing solution that is optimal up to an an
. . . X Vmy .
additive factor, provided that the supply per resource is at least O(TZL)’
2. it stops in O(n) time, omitting dependence in other parameters, with high probability.

The algorithm follows the same high-level framework as the previous ones, which we
summarize below. It maintains for each resource a price (per unit of the resource), which
can be viewed as a dual variable that Lagrangianizes the corresponding resource constraint
of the packing problem. We shall imagine that the prices are posted on a public billboard
for everyone to see, including the agents and the adversary. Given the current prices, each
agent gets the bundle if and only if her value is higher than the total price of the bundle.
The agents’ decisions induce a total demand on each resource, which can be viewed as a
subgradient for the dual prices w.r.t. some dual objective. The algorithm then increases the
prices of the overdemanded resources and decreases those of the underdemended ones. This
process repeats for a certain number of rounds; the final allocation is obtained by averaging
over all the rounds. Since the agents’ allocation is coordinated only through the prices, it
suffices to ensure that the sequence of prices is privacy-preserving. This is formulated as the
billboard lemma by Hsu et al. [14].
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What are the main differences between our algorithm and the existing ones? The previous
non-scalable algorithms are essentially noisy versions of some existing optimization algorithms,
including gradient descent [15] and multiplicative weight update [17], run on the dual space
with a fiz step size. They are not scalable because (1) the number of rounds needed by such
algorithm generally depends on how large each coordinate of the subgradient could be (a.k.a.,
the width of the problem), which is roughly n in our problem, and (2) the time needed to
compute the subgradient in each round is linear in n.

The scalable algorithm by Huang and Zhu [17], on the other hand, is a noisy version
of the online multiplicative weight update algorithm (e.g., [2]), which use the demand of
a single agent as an estimator of the overall demand in each round, iterating through all
agents once in a random order. However, it does not seem plausible to avoid having an extra
/n factor in the minimum supply requirement using this approach, as it is not only jointly
differentially private, but also locally private,? in the sense that it can be implemented in a
way such that the agents add noises themselves so that even the algorithm never accesses
any non-private version of the data. The extra /n factor is ubiquitous in the literature of
locally private algorithms [3, 9].

In contrast, our algorithm is a noisy version of the multiplicative weight update algorithm
run on the dual space with different step sizes, which are optimized according on the scale of
the subgradient in each round. Intuitively, it chooses a small step size when the scale of the
subgradient is large, to avoid dramatic changes in prices, and a large step size when the scale
of the subgradient is small, to ensure a good enough progress. The idea of using different
step sizes is widely used in non-private packing algorithms to get width-independent running
time (e.g., [20]). Despite being standard in non-private packing, a direct combination of it
and how the existing approaches add noises to the subgradients lead to suboptimal minimum
supply requirement and/or super-linear running time in n. Instead, we need to further use
different noise scales in different rounds that are tailored to the scales of the subgradients
and, by induction, the corresponding step sizes. In a round where the scale of the subgradient
is large (respectively, small) and the step size is small (respectively, large), the algorithm
adds noises at a larger (respectively, smaller) scale to the subgradient and, in some sense,
uses up less (respectively, more) of the privacy budget. Setting noise scales adaptively over
time introduces several technical difficulties which we will address in details in the technical
sections. To get the results in Theorem 1, the noise scale is inversely proportional to the
square root of the step size. Hence, our algorithm is more precisely characterized as a noisy
version of the multiplicative weight update algorithm run on the dual space with different step
sizes and noise scales, both of which are optimized according on the scale of the subgradient
in each round. Table 1 provides a brief comparison of our algorithm and the existing ones.

1.2 Related Work

The notion of differential privacy is introduced by Dwork et al. [10]. It has evolved through a
long line of works to become a standard notion of privacy in theoretical computer science. See
Dwork and Roth [12] for a textbook introduction. A particularly related line of works study
differentially private algorithms for combinatorial optimization problems and mathematical
programs. McSherry and Talwar [22] introduce a generic (yet computationally inefficient)
method called the exponential mechanism for privately solving optimization problems whose

2 This is not explicitly stated in Huang and Zhu [17]. Nonetheless, it follows straightforwardly from the
definition of the algorithm.
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Table 1 A comparison of the algorithm in this paper and those in previous works. n and m
denote the number of agents and number of resources respectively. € and « quantify the privacy and
approximation guarantees respectively.

Reference Algorithm Min Supply | Running Time (in n)
Hsu et al. [15] Dual GD O(%) O(n?)
Dual MWU (fixed step size) O( f) O(n?)
Huang and Zhu [17] -
Dual Online MWU o(¥z) O(n)
This paper Dual MWU (different step sizes) O( f) O(n)

feasible set of output is independent on the dataset (e.g., k-means clustering). It is not
applicable to the packing problem considered in this paper, since the set of feasible allocations
crucially rely on the dataset. Hsu et al. [16] study what linear programs can be solved in
a differentially private manner. Unfortunately, packing linear programs are not among the
solvable ones [14].

Subsequently, Kearns et al. [19] introduce a relaxed notion called joint differential privacy.
It is still strong enough to provide provable privacy guarantees, but is also flexible enough
to allow positive results for problems that cannot be solved under the original notion of
differential privacy. This relaxed notion is widely used not only in resource allocation
problems [14, 15, 17] such as the packing problem considered in this paper, but also in
coordinating large games [24, 6, 23, 19, 7], privacy-presering learning [5, 25|, privacy-preserving
surveys [13], privacy-preserving prediction markets [8], etc.

Recently, jointly differentially private resource allocation algorithms find further applica-
tions in regularizing strategic behaviors in the problem of learning reserve prices online in
strategic environments [21].

2 Model

For any positive integer ¢, let [¢] denote the set of integers between 1 and ¢, i.e., {1,2,...,¢}.

Packing

Consider a packing problem with n agents and m resources. Each agent i € [n] demands
a bundle of resources; let a;; denote her demand for each resource j € [m]. Further, agent
i has value v; for getting the bundle, and 0 for not getting it. We assume that a;;’s
and v;’s are bounded between 0 and 1, which is standard in the literature of differential
privacy. For any agent ¢ € [n], the demands a;;’s and the value v; are her private data. Let
U={(v,a1,az,...,amn) € [0,1]™!} denote the data universe. Let D € U™ denote a dataset
of n agents. For any resource j € [m], let b; denote its supply. The goal is then to choose a
subset of the agents who get their demanded bundles, such that the sum of the values of
the chosen agents is maximized, subject to that the total demand on each resource does not
exceed the corresponding supply.

We remark that we can make two simplifying assumptions because the focal point of
the jointly differentially private packing problem lies in whether the minimum supply is
sufficiently large. First, we may assume without loss of generality (wlog) that the supplies of
all resources are equal; otherwise, we may rescale the larger ones down to be equal to the
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minimum one. Second, we may focus on fractional solutions wlog; any fractional solution

can be converted into an integral one using independent rounding with essentially the same

objective and total demands on the resources, since we are in the large supply regime.
Therefore, the problem can be formulated as the following packing linear program:

maximize Zie[n] V; T
subject to 3, aijzi < b Vj € [m)]
0<a; <1 Vi € [n]

Differential Privacy and Joint Differential Privacy

Next, we formally define differential privacy and joint differential privacy with respect to the
packing problem. Two datasets D, D’ € U™ are i-neighbors if they differ only in the data of
the i-th agent, that is, if D; = D;» for all j # i. We simply say that they are neighbors if they
are i-neighbors for some i € [n]. Further, let X; = [0,1] denote the set of feasible decision to
each agent i € [n]. Let X = X; x X5 X --- X X, denote the set of feasible outcomes, ignoring
the supply constraints. The notion of differential privacy by Dwork et al. [10] requires that
the allocation of all agents is chosen from similar distributions for any neighboring datasets
in the following sense:

» Definition 2 (Differential Privacy). A mechanism M : U™ — X is (e, 0)-differentially
private if for any neighbors D, D’ € U™, and any subset of feasible allocations S C X :

Pr[M(D) € 5] < exp(e) - Pr[M(D') € S] +6 .

The notion of joint differential privacy by Kearns et al. [19], on the other hand, allows
the allocation to each agent to depend non-privately on her own data, so long the allocation
to the other agents does not. More precisely, the notion is defined as follows:

» Definition 3 (Joint Differential Privacy). A mechanism M : U™ — X is (e,d)-jointly
differentially private if for any i € [n], any i-neighbors D, D’ € U™, and any subset of feasible
allocations to agents other than i, S_; C X_;:

Pr [M(D),i € Sfl] < exp(e) -Pr [M(D,),l S S,Z] +46.

The technical connections between the two notions are best explained by the following
billboard lemma by Hsu et al. [14].

» Lemma 4 (Billboard Lemma). Suppose M : U™ — Y is (e, 0)-differentially private. Then,
for any collection of functions f; : U x Y — X;, i € [n], the mechanism M’ that allocates to
each agent i with f; (Di7M(D)) is (€, 0)-jointly differentially private.

3 Technical Preliminaries

3.1 Lagrangian
The Lagrangian of the packing linear program is:
max,e x MiNpe[o,o0)m Zie[n] Vily — Zje[m] by ( Zie[n] AijTq — bj) .
Let L(x,p) denote the partial Lagrangian objective, that is:
L(z,p) = Yicm Viti = X jepm) ( Xicp @ijri — b)p;
=2 jetm) W3+ Piepn) (Vi — 2 jeim) @isPs) i -
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Let D(p) = max,¢[x] L(x, p) denote the dual objective. We shall interpret p; as the unit
price of resource j for any j € [m]. Given any prices p, an optimal solution z*(p) of the
optimization problem max,¢cpx] L(z,p) is defined as, for any i € [n]:

Jj*(p) _ 1, if Vi — Zje[m] aijpj Z 0;
’ 0, otherwise.

We have the following envelope theorem (see, e.g., Afriat [1]).

» Lemma 5 (Envolope Theorem). Given any prices p, the derivatives of the Lagrangian
objective w.r.t. the prices, i.e., V,L(z,p), is a sub-gradient of D(p) when x = z*(p).

3.2 Truncated Laplacian Distributions

The Laplacian distribution, given mean p € R and scale parameter b > 0, is a continuous
distribution defined on (—o0, 4+00) such that the probability density of any x € R. is:

Lo (- |z — p

20 b '
Let Lap(u, b) denote this distribution. It has mean p and variance 2b2.

Further, we will consider the truncated Laplacian distribution with support [p — 1 +
a, i+ 1 — a], denoted as Lap;_, (¢, b). The probability density of any z in the interval is

proportional to that of Lap(u,b); the density is 0 if it is outside the interval. Lap,_, (1, b)
also has mean p, and variance O(b?). (See below for a formal statement.)

Given any mean p € [—a,a] and target standard deviation (up to a constant factor)
0 <o <a,let N(p,o) =Lap,_,(,0). We use this notation to emphasize that the family
of noise distributions, N'(u, c)’s, can be replaced by distributions other than the truncated
Laplacian distributions, as long as they satisfy the following properties.The proofs are deferred
to the full version.

» Lemma 6. The noise distributions N'(u,c)’s satisfy that:
1. the mean of N'(u, o) is yi;
2. the variance of N'(u,0) is at most 20>

» Lemma 7. Suppose —a < py, e < @, and 0 < 01,02 < « satisfy that for some 0 < n < q,

o = max{oy,09}, and § > 0: (1) |% - %| < L (2) |u1 f,u2| <mn; and 0 < M.

Then, for any S C R, we have: ' ’

4n1n(2/90)
o

Pr. n(u,o0) [z € S] < exp ( “Pr.onN(us.o0) [z € S] +4.

4  Our Algorithm

The algorithm follows a primal dual approach, running best response on the primal (i.e.,
allocation z) and a noisy version of the multiplicative weight update (MWU) method on
the dual (i.e., the prices p). Similar approaches are also used in the previous works that
study jointly differentially private packing problem (e.g., [15, 17]). The new ingredients of
our algorithm are the use of nonuniform step sizes as well as nonuniform noise scales, both
of which are meticulously optimized to achieve both scalable running time and the optimal
trade-off between privacy and the minimum supply requirement. In contrast, all previous
algorithms use a fix step size and a fix noise scale across different rounds.
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Algorithm 1 Private Dual MWU with Optimized Step Sizes and Noise Scales.
Input:
Dataset D € U™, represented by a;;’s and v;’s;
Supply (per resource) b.

Assumptions:
b>O(%2):
We also assume n > b as the problem is trivial otherwise.
Parameters:
Upper bound on dual prices ppax = 27";
Initial dual prices p' such that p; = 22 for any j € [m + 1;
Upper bound on the sum of step sizes nsym = %
I: for t =1,2,..., until }°, n* > neum (via a private counter) do

2:  Let ot = z*(p!), i.e., the best response to p' from the primal viewpoint.
3 Let V;D(p') =b— >, aijz; for all j € [m]; let Vyy1D(p) = 0.
4:  Let the step size and the noise scale be:

sum?’ In(T' d
Tlt:min{a a a a } , Ut:\/mn nt In(Tm/d)

€

b’ ViD(pt) VoD(pt)' "V, D(p)

Draw 6! ~ N (uf, 0%) where pf = n*V;D(p") for all j € [m]; let &f,,, = 0.
Let ﬁ;“ = p’ - exp(—0%) for all j € [m + 1].

Let p'*! be such that p§-+1 o ;5;“ and 32 cpn ] p§_+1 = Prmax.

8: end for
9: Let T be the number of iterations in the for loop.
L Zthl ntxt, where agent i observes ;.

TMsum

Output: z =

See Algorithm 1 for an exposition by pseudocode.

We now describe the algorithm in more details. Let us first explain the basic dynamic of
the dual MWU algorithm. For technical reasons, we add a dummy resource with 0 supply,
and 0 demands from all agents, and assume that the dual prices sum to a fix and sufficiently
large number ppax. Starting from some initial guess p' of the prices, say, with pnax uniformly
distributed among the m + 1 coordinates, the MWU algorithm repeatedly calculates:

et =a*(p') 3 piT ecpyexp (<0'VD(p')) L Vi€ [m+1]

where 7t > 0 is the step size of round ¢. That is, the allocation x? is the best response to
pt, which induces a subgradient of the dual objective at p* by Lemma 5. Then, from p? to
p'TL, each coordinate j € [m + 1] decreases exponentially by an amount proportional to
corresponding subgradient, before they are rescaled to sum to ppax. With appropriate step
sizes, standard analysis shows that the weighted average allocation across different rounds,
where the weight of each round is its step size, converges to an optimal allocation.?

To obtain the desired privacy guarantee, our algorithm updates the prices with zero-mean
noises added to the subgradients. Below we discuss the choice of step sizes and noise scales.

Step Sizes. Some standard choices of step sizes include uniform step sizes, i.e., n =, which

is used in previous works on jointly private packing algorithms [15, 17], decreasing step sizes,
e.g.,nt = 7, and step sizes inversely proportional to the magnitude of the subgradient, which

3 The prices also converge, although this is not relevant for our analysis.
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are what our algorithm uses (see, e.g., Koufogiannakis and Young [20], for an application in
the non-private packing problem). Intuitively, our choice of step sizes ensure that at least
one coordinate will be updated by an n amount, which in turns lower bounds the amount of
progress made in each round. Our algorithm has one caveat, however, as it further caps the
step size by an upper bound, which is set to ¢ for technical reasons, so that the noise added
in any single round does not affect the result by too much.

Noise Scales. Not surprisingly, our first attempt is to add a uniform amount of noise to
every round like the previous jointly private algorithms in the literature [14, 15, 17]. This,
however, either requires the minimum supply to be much larger than the best possible, or is
not scalable. To see why, let us first consider an overly-simplified argument of why uniform
noise scales work in the previous algorithms. Suppose the algorithm takes T rounds in total.
By a standard composition theorem of differential privacy (see, e.g., Dwork and Roth [12]),
adding noises at a uniform scale O(@) is sufficient for achieving (e, d)-joint differential
privacy. Then, if the algorithm uses a uniform step size 7, by the standard concentration
bound, the cumulative noise summing over 7' rounds is roughly O(%) After averaging, this
is essentially a fixed amount of noise O(%) independent of T" and 7!

With non-uniform step sizes, however, this is no longer true. As a thought experiment,
suppose there are T' < T rounds that have large step sizes, say, all equal to n; the rest of
the rounds can be omitted due to negligible step sizes. Note that the uniform noise scale, i.e.,
O(@), is still determined by the total number of rounds, repeating the above calculation

gives that the amount of noise after averaging is O(E\\/FTT;,) > 0(1).

The lesson we learned from this though experiment is that the algorithm must choose
non-uniform noise scales: smaller noise scales for more important rounds that have larger
step sizes; and larger noise scales for less important rounds that have smaller step sizes.
More precisely, we optimize the noise scale in each round ¢ to be inversely proportional to
the square root of the step size, i.e, \/7? ; this is derived form a Cauchy-Schwarz inequality
to balance different aspects of the analysis. (Note that 5;’5 in Algorithm 1 denote the noises
added to the subgradients multiplied by the corresponding step size and, hence, its scale is

proportional to /nt, rather than inversely proportional to it.)

Privacy-preserving Stopping Criteria. Finally, note that the stopping criteria of >, n* >
Nsum Must be implemented approximately in a privacy-preserving manner as well. This
can be done by maintaining ., n* using a standard technique called private counter (e.g.,
Chan et al. [4], Dwork et al. [11]). For simplicity of exposition, we will omit this standard
component and analyze the algorithm assuming the stopping criteria is implemented exactly.

5 Utility and Time Complexity

This section sketches the analysis of utility guarantees provided by Algorithm 1 and its time
complexity, under the assumption that the supply is sufficiently large, i.e., b > O(‘(/TT)

5.1 No-regret Lemma

We first introduce a technical lemma that will serve as the overarching tool in the analysis of
the algorithm’s approximation guarantees in terms of the objective and constraint violations,
and its running time. It states that if we compare the Lagrangian objective achieved by the
sequence of x’s and pt’s computed in the algorithm, and what could have be achieved by
replacing p'’s with an arbitrary but fix p, the difference can be bounded. In other words, the
dual price sequence has no regret in the terminology of online learning.
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» Lemma 8. For any p such that ||p|l1 = Pmaz, with high probability, we have:
Yy 1t (L=t pt) = L(z*,p)) < Dxw(pllp*) + newm - Ofan) .

Proof Sketch of Lemma 8. We present a proof sketch of a weaker claim that the inequality
holds in expectation, which captures the bottleneck of the analysis. Further showing the
stronger claim in the lemma takes a (slightly nonstandard) concentration inequality for
martingales. See the full version for a complete proof of the lemma.

Readers familiar with this kind of analysis will find it standard and may directly jump to
the end to verify that the contribution from the variance term can be bounded given the
noise scales chosen in the algorithm. Fix any step ¢, we have the followings:

E[n' (L(z",p") - L(z",p))| = E[(n'VD®"),p" —p)]
=E[(s",p" - p)]
& [(n (505
= E[ Dk (pllp") — Dxu (pllp") + Dxcw (p'[15"F) ]
< E[Dxw(plp") — Dxr (pllp™") + Diw (p'15"+) — Dice (0" 15"4) |
< E[Dxw(plp") - Dxu(pllp"™*") + Dxce (p'16°)] -

) denote a vector whose j-th coordinate is In (

p
)

for any j € [m + 1], in the 4th line of the above equation. The last two inequalities follow by

the generalized Pythagorean theorem and the non-negativity of divergences, respectively.

. St41
We abuse notation and let In (ppt

Summing over ¢ € [T], the first two terms form a telescopic sum; it is bounded by the
first term on the right-hand-side of the inequality stated in the lemma. For the last term, we
have:

B[Dicw (015*)] = BLSTS (0 1n (o) — 2} + 54
B[ p5() — 1+ exp (= 3)))]
E

S (00)%] = B[S ot (B[51)* + Var[at])]

IA

Note that the step sizes ensure E [5;} < «. The first part on the right-hand-side sums to:

B[S/ Sl o B0 <oB [t S B[]
<oE Sl (250 - S B[]
)~ o [Sr g S B[]
< Tsum - O(an) — aE {ZTT P nthD(pt)}
) — aB [ o (LGt p') — Sl viad) |
)

- OéE Z;n:-"il n L(mtapt):| S MNsum * O(an) .
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Finally, the contribution from the variance part sums to:

ZmH Zt e Var[ét” <E [ZmH Zt L D5 4(o" )2} (Lemma 7)
< O( thl W) (Definition of ¢'’s)

< O ( pmaxmngum )

€

= Nsum O(aesz) < Ngum - O(an) . (Assumption on b)
Putting them together proves the lemma. <

By the choice of p!, pmax, Msum, the fact that L(x?, pt) > OPT since z'’s are best responses,
and the definition of Z, we further have it in a simpler form as a corollary.

» Lemma 9. For any p such that ||p||1 = Pmaz, with high probability, we have:

OPT — L(a_c,p) < O(om) .

5.2 Approximate Optimality

We now argue that the algorithm gets an objective that is optimal up to an O(an) additive
factor, with the understanding that further improving it to an an factor does not affect
any of the asymptotic bound. To do so, simply let p be such that the first m coordinates
are all equal to 0, and the last dummy coordinate equals pp.x. Then, we have that
L(z,p) = Y., vi¥; = ALG. The claim then follows from Lemma 9.

5.3 Feasibility

Next, we argue that the algorithm provides an allocation x that is approximately feasible in
the sense that the total demand for each resource is at most (14 O(a))b. To convert it into
an exactly feasible solution as stated in Theorem 1, we can simply scale the allocation down
by a 1+ O(«) factor, at the cost of further reducing the objective by at most O(an).

Suppose resource j* has the largest demand. Let s = Y7 | a;;+Z; — b the gap between
this demand and the supply b. Let p be such that all but the j*-th coordinate are equal to 0,
and the j*-th coordinate is equal to ppax. Then, we have:

L(i‘,p) = ALG — pmaxs < (1 + g) OPT — prmaxs -
By Lemma 9, we get that:
(pmax - OPT) s < O(cm) .

Putting together with our choice of ppax = 27”, and that OPT < n, we get s < O(ab).

5.4 Time Complexity

We next show that the number of iterations of the for loop is upper bounded by a polynomial

of the parameters other than n. More precisely, we show that T' < O(%)

To do so, we classify the iterations into m + 1 types, according to how the step size is

chosen. If the step size is i’ , we call it type 0. Otherwise, if the step size is 1’ VTP)
for some j € [m], we call it type j-
First, the number of type 0 iterations is at most 111(7;172-4-1)7 before the sum of the step sizes

In(m+1)

exceeds Msym = o
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Next, consider the iterations of type j, for each resource j € [m]. In each iteration ¢ of
type j, we have that n'V,;D(p') = a. We argue that there cannot be too many such iterations,
because Zil n'V;D(p") is upper bounded as a result of the approximate feasibility of z,
which follows from Lemma 9 as argued in the Section 5.3.

On the one hand, we have:

S n'VD(p) = S 0t (X0 aiiZi — b) < fjeum - O(ab) = O(1) .

On the other hand, suppose there are T} such iterations, we have:

T
211V D(p') = ZteTJ a+ Zthj n'V;D(p')
In(m
> er 0 Yigr, 1 (—0) > alTj| — 2bipaum = a|T;| — 220D

Putting together gives |Tj| < %

6 Privacy: Proof Sketch

This section sketches the proof that Algorithm 1 is (e, §)-jointly differentially private. See
the full version for a complete argument.
First, consider any fix step t. Suppose D and D are two neighboring datasets. Further

suppose the random realizations of the first t — 1 iterations are such that z!,22,...,2*"!

and p',p?,...,p'~ 1 are identical on D and D. Let us consider the privacy of step ¢ alone.
In fact, let us focus on a resource j € [m]. How does the distribution from which 6; is
drawn differ on the two datasets? Suppose the step sizes are 1 and 7 respectively. Then, by

the choice of step sizes in the algorithm and that V;D(p') differs by at most 1, we have:

Suppose the standard deviations are o and &, and the means are p and fi, respectively
on the two datasets. They satisfy that:

_|§

3=
S
Q=

E2

’ 7’l _ l’ < - I
o2 G2 MmNsum In(T/6) I n 7l = amnsum In(T'm/$) ac?

|M—ﬂ Sn’%—@!ﬂln\l—%\ <n+ana~t=2n,

n n

where ‘% — %‘ < 1 because it measures the difference in V;D(p").
Also it’s easy to verify that n* < a. Therefore, by Lemma 7, we have that the update
from price p§- to ]3§-+1 posted in round ¢ for resource j is (e, %)—diﬁ’erentially private for:

t ey/nt In(Tm/§)
¢ = 0(1) = VTl

QN ‘d

Then, intuitively by the composition theorem (see, e.g., Dwork and Roth [12]), the price
sequence is (e, §)-differentially private because:

m

T
2 2nt In?(Tm €
ZZ ()" = O(W) = O(ln(22/§)) .

t=1 j=1

However, note that the standard statement of the composition theorem does not directly
apply here since the privacy budget € in each step is chosen adaptively. Fortunately, the
underlying argument still goes through. Again, see the full version for details.

Finally, the privacy guarantee of Algorithm 1 follows by the billboard lemma (Lemma 4).
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