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Abstract
Objectives  To develop algorithms mapping the Kidney Disease Quality of Life 36-Item Short Form Survey (KDQOL-36) 
onto the 3-level EQ-5D questionnaire (EQ-5D-3L) and the 5-level EQ-5D questionnaire (EQ-5D-5L) for patients with end-
stage renal disease requiring dialysis.
Methods  We used data from a cross-sectional study in Europe (France, n = 299; Germany, n = 413; Italy, n = 278; Spain, 
n = 225) to map onto EQ-5D-3L and data from a cross-sectional study in Singapore (n = 163) to map onto EQ-5D-5L. 
Direct mapping using linear regression, mixture beta regression and adjusted limited dependent variable mixture models 
(ALDVMMs) and response mapping using seemingly unrelated ordered probit models were performed. The KDQOL-36 
subscale scores, i.e., physical component summary (PCS), mental component summary (MCS), three disease-specific sub-
scales or their average, i.e., kidney disease component summary (KDCS), and age and sex were included as the explanatory 
variables. Predictive performance was assessed by mean absolute error (MAE) and root mean square error (RMSE) using 
10-fold cross-validation.
Results  Mixture models outperformed linear regression and response mapping. When mapping to EQ-5D-3L, the ALDVMM 
model was the best-performing one for France, Germany and Spain while beta regression was best for Italy. When mapping 
to EQ-5D-5L, the ALDVMM model also demonstrated the best predictive performance. Generally, models using KDQOL-
36 subscale scores showed better fit than using the KDCS.
Conclusions  This study adds to the growing literature suggesting the better performance of the mixture models in model-
ling EQ-5D and produces algorithms to map the KDQOL-36 onto EQ-5D-3L (for France, Germany, Italy, and Spain) and 
EQ-5D-5L (for Singapore).
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Introduction

The number of patients with end-stage renal disease (ESRD) 
is projected to increase substantially, driven by the ageing 
population and the rising number of people with diabetes, 
hypertension, and obesity [1, 2]. Due to the limited organ 
donors, the majority of ESRD patients have to receive main-
tenance dialysis and, therefore, the care for these patients 
has focused on improving their health-related quality of 
life (HRQoL) [3]. Currently, there are numerous HRQoL 
measures being used in patients with dialysis. In particu-
lar, the disease-specific instrument, Kidney Disease Quality 
of Life 36-Item Short Form Survey (KDQOL-36), is the 
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most frequently used one in these patients and its validity 
and reliability has been demonstrated previously [4–6]. The 
KDQOL-36 has also been recommended by the United 
States Centers for Medicare and Medicaid to periodically 
collect HRQoL data for dialysis patients [7] so that the 
results could be used to inform and support clinicians in 
their decision-making and furthermore contribute to the 
development of clinical interventions to provide better care 
for dialysis patients.

KDQOL-36 consists of the Short Form 12-Item (SF-12) 
instrument to capture the general physical and mental well-
being of the patient plus 24 items on kidney disease- and 
dialysis-related symptoms, effects, and burden [8]. Never-
theless, KDQOL-36 instrument is not preference-based and, 
therefore, does not allow the calculation of health utilities for 
quality-adjusted life years (QALYs) estimates. The QALYs 
could provide a generic health outcome comparable across 
disease areas and are recommended by decision makers 
such as the National Institute of Health and Care Excellence 
(NICE) [9] in their assessment of the cost-effectiveness 
of health care interventions. The EQ-5D is the preferred 
preference-based instrument to provide health utility esti-
mates to enable QALYs calculations in the context of NICE 
appraisals [9]. But EQ-5D has not been a routine measure for 
dialysis patients and EQ-5D data of these patients is limited 
in literature [10]. Given the widespread use of KDQOL-36 
among dialysis patients and the recommendation of using 
KDQOL-36 in the clinical setting, it is expected that HRQoL 
data measured using KDQOL-36 is accumulating. In such 
circumstance, the availability of a valid mapping algorithm 
from KDQOL-36 onto EQ-5D would make it possible to use 
the KDQOL-36 data in estimating health utilities for cost-
effectiveness analysis (CEA). According to the Health Eco-
nomics Research Centre Database of Mapping Studies [11], 
there is no mapping algorithm yet to map from KDQOL-36 
to EQ-5D. One alternative approach is to use the currently 
available mapping algorithms from SF-12 onto EQ-5D 
[12–15], but these algorithms do not show the complete 
picture of KDQOL-36 (only includes 12 items of KDQOL-
36) and may not produce the reliable estimates. This concern 
has been supported by one recently published study which 
reported that the EQ-5D scores mapped from SF-12 would 
underestimate the QALYs gained in cost-utility analysis 
compared to the observed EQ-5D [16], and thus there is a 
necessity for developing new methods to enable better health 
utility estimates from KDQOL-36 data for future economic 
evaluations in dialysis patients when EQ-5D data are not 
available.

Therefore, this study aimed to produce mapping algo-
rithms from KDQOL-36 to generic EQ-5D as well as to 
provide a user-friendly tool for implementation.

Methods

Outcome measures

KDQOL‑36

The KDQOL-36 is a 36-item self-reported question-
naire that combines the generic SF-12 instrument with 
disease-specific component for assessing the HRQoL of 
chronic kidney disease patients, adapted from the original 
134-item KDQOL and the 76-item KDQOL Short Form 
(KDQOL-SF), with a 4-week recall period [8]. The SF-12 
is the shorter version of the Short Form 36-Item (SF-36), 
one of the most popular generic worldwide instruments 
for evaluating HRQoL. It includes 12 items about gen-
eral health, activity limits, ability to accomplish desired 
tasks, depression and anxiety, energy level, and social 
activities; there are 2–6 response levels for items [13]. 
The disease-specific component has 24 items compris-
ing three subscales, burden of kidney disease (4 items), 
symptoms/problems of kidney disease (12 items), and 
effects of kidney disease (8 items), with 5 response levels 
for each item to measure how much the disease interferes 
with daily life and how bothered the respondent feels by 
symptoms/problems and the restrictions due to dialysis. 
The 12 items of SF-12 could be used to derive two sum-
mary measures, physical component summary (PCS) and 
mental component summary (MCS), ranging from 0 to 100 
[17]. Responses to the three disease-specific subscales are 
transformed linearly to scores ranging from 0 to 100 and 
can be summated into the kidney disease component sum-
mary (KDCS) score [18]. As there is no overall KDQOL-
36 score that incorporates all of its subscale scores, the 
following scores were calculated separately: PCS, MCS, 
burden of kidney disease (Burden), symptoms/problems of 
kidney disease (Symptoms), and effects of kidney disease 
(Effect), using the Excel file provided by the RAND Cor-
poration [19]; and then KDCS was calculated by averaging 
the three disease-specific subscale scores. For all scores, 
higher values indicating better self-reported quality of life.

EQ‑5D

The EQ-5D instrument has 5 items (mobility, self-care, 
usual activities, pain/discomfort, and anxiety/depression) 
[20] measuring the health on the day of survey with 3 or 
5 descriptive levels for each item. In the 3-level version 
of EQ-5D (EQ-5D-3L), respondents choose one of three 
levels, ranging from ‘no problems’, ‘some/moderate prob-
lems’ to ‘unable/extreme problems’ while in the 5-level 
version (EQ-5D-5L), respondents choose their responses 
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from five levels including no problems, slight problems, 
moderate problems, severe problems, and extreme prob-
lems. For both versions of EQ-5D, responses to the five 
items define a health state for which an index score can be 
generated to indicate its value to the general public. The 
index score is anchored by 0 (death) and 1 (full health), 
with higher scores corresponding to higher utility.

Data

Data from two cross-sectional studies were used to develop 
mapping algorithms from KDQOL-36 onto EQ-5D-3L and 
EQ-5D-5L, respectively.

EQ‑5D‑3L

The dataset from the Adelphi CKD Disease-Specific Pro-
gramme [21], a cross-sectional survey, was used to develop 
mapping algorithms from KDQOL-36 to EQ-5D-3L, includ-
ing dialysis patients across five countries: France (n = 299), 
Germany (n = 413), Italy (n = 278), Spain (n = 225) and the 
UK (n = 34) [22]. The data included complete information 
on patients’ HRQoL measured using KDQOL-36 and EQ-
5D-3L and patients’ demographic characteristics (e.g., age 
and sex). The country-specific EQ-5D-3L value sets [23–27] 
were used to calculate the EQ-5D-3L scores and then these 
scores were used for developing mapping algorithms for 
France, Germany, Italy and Spain, respectively, but not for 
the UK because of the small sample size (n = 34) [32].

EQ‑5D‑5L

Another dataset from a cross-sectional study in Singapore 
(n = 163) including patients undergoing dialysis for at least 
3 months with complete data on KDQOL-36 and EQ-5D-5L 
was used to develop mapping algorithms onto EQ-5D-5L 
[28]. Patients’ socio-demographic characteristics were also 
available. The EQ-5D-5L value set for Singapore (unpub-
lished data) was used to calculate the EQ-5D-5L scores. As 
there was no other dataset available with information on 
both KDQOL-36 and EQ-5D-5L, the mapping algorithms 
from KDQOL-36 to EQ-5D-5L were developed for Singa-
pore only.

Statistical analysis

Correlation

The estimation of a mapping algorithm relies on there being 
conceptual overlap between the source and the target meas-
ures [29], so the KDQOL-36 and EQ-5D are expected to be 
correlated. Spearman rank correlations were used to test the 
correlations between the KDQOL-36 subscale scores and 

EQ-5D index scores or item responses. The strength of cor-
relation was defined as low, moderate, high, and very high 
with coefficient value of 0.30–0.49, 0.50–0.69, 0.70–0.89, 
and 0.90-1, respectively [30]. The correlations between the 
KDQOL-36 subscale scores were also tested and two highly 
correlated scores were not included in the same regression 
model. The correlations between the EQ-5D items were also 
explored.

Model development

A range of statistical models have been used in the litera-
ture for the development of mapping algorithms [11], in 
attempts to account for the unique distribution of EQ-5D: it 
is commonly skewed, multimodal, and often has one peak 
at 1 (indicating full health), bounded top and bottom (indi-
cating best and worse health states) and a gap between 1 
and the next feasible value. Generally, there are two broad 
approaches to mapping, direct mapping, which models the 
EQ-5D index values themselves using regression models, 
and indirect mapping, also referred to as response mapping, 
which models responses to each item of EQ-5D and then 
calculates the predicted utilities as a separate second step.

Direct mapping  Ordinary least squares (OLS) regression 
is the most commonly used model in direct mapping by 
assuming the relationship between the dependent variable 
(EQ-5D index values) and the independent variables can be 
expressed as a linear function [31]. OLS models are able to 
predict mean values with reasonable accuracy, but are poor 
at predicting those in poor health and full health [32], and 
the predicted values may fall outside of the plausible range.

To allow for the bounded nature of EQ-5D, mixture beta 
regression model could be used, as suggested by Basu and 
Manca [33]. This is a two-part model consisting of a multi-
nomial logit model and a beta mixture model. It allows the 
estimation of dependent variables that are discrete at the 
bottom limit (i.e., the worst health state), at the truncation 
point (i.e., the second-best health state), and at the upper 
limit (i.e., full health), and continuous between the bottom 
limit and the upper limit. This method has been used in some 
mapping studies [34, 35] and has been shown to be more 
robust than OLS [36, 37].

Another mixture model which was specially developed 
to deal with the distributional features of EQ-5D is known 
as the adjusted limited dependent variable mixture model 
(ALDVMM) [38]. It has been shown to perform better than 
models used traditionally in this area [34]. It uses a mixture 
of adjusted normal distributions to account for the multimo-
dality of EQ-5D by assuming that EQ-5D can be modelled 
as a mixture of C-components, which represent the clusters 
of individuals with similar utility scores. It also accounts for 
the peak of observations at full health and the option of a 
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gap in the distribution below that peak, referred as truncation 
point as with mixture beta regression. The ALDVMM has 
been used with success in previous mapping studies [39–41].

Response mapping  In response mapping for EQ-5D, the 
five regression models, each for one item, together estimate 
the discrete distribution for all the health status in EQ-5D. 
The expected EQ-5D score is the average of all possible 
health states utilities weighted by the individual predicted 
probabilities. It should be noted that response mapping 
models require observations (preferably a sizeable number) 
at all levels of each item [34] and this can be a problem for 
EQ-5D-5L if the dataset is small and some of the item lev-
els may not be selected by respondents. Regression models 
used in response mapping include multinomial logit [15], 
ordered logistic [42], and ordered probit [41], but these 
models do not account for the correlations between EQ-5D 
items, which may lead to biased predictions. To take the 
correlations into account, a recently published study applied 
response mapping using seemingly unrelated ordered pro-
bit models for developing mapping algorithms, although its 
performance was not as good as mixture models [39].

Mapping algorithms were derived in this study using all 
the four of the aforementioned regression methods: OLS, 
mixture beta regression (BETAMIX), ALDVMM, and 
seemingly unrelated ordered probit models (SUROPM). 
ALDVMM with up to three components were tested in line 
with methods used by the developers of the approach [38]. 
All analyses were undertaken in Stata using the command 
“regress” for OLS, “betamix” [43] for mixture beta regres-
sion, “aldvmm” for ALDVMM and “cmp” for SUROPM. 
The index values for the bottom limit, truncation point and 
upper limit were obtained from the value set specific to the 
country and EQ-5D version (EQ-5D-3L/EQ-5D-5L). As the 
country-specific EQ-5D value sets were used to calculate the 
EQ-5D index values, the mapping algorithms were devel-
oped for each country separately, i.e., EQ-5D-3L for France, 
Germany, Spain and Italy, and EQ-5D-5L for Singapore. 
For response mapping to EQ-5D-3L, we pooled the data of 
patients from the four countries together to develop the algo-
rithms to the item responses first and then used the country-
specific value sets to estimate the EQ-5D-3L index values. 
In supplementary analysis, we applied one value set, i.e., the 
UK EQ-5D-3L value set [27], to the pooled data of patients 
from five countries and then performed the same analyses.

As described previously, the KDQOL-36 is made up of 
a set of subscales scores: PCS, MCS, symptoms, effects, 
burden and KDCS. We mapped from the KDQOL-36 to 
EQ-5D using two sets of explanatory variables. First, PCS, 
MCS and the disease-specific summary score (i.e., KDCS) 
were included. Second, PCS, MCS and the disease-specific 
subscales scores (i.e., Symptoms, Effects and Burden) were 

used. We also included squared terms and all possible two-
way interaction terms of KDQOL-36 subscale scores in 
regression models to address potential nonlinear associa-
tions. Age and sex of the patient were included in the regres-
sion models, but no other demographic or clinical covariates, 
to facilitate the use of the mapping algorithms to a wide 
range of dataset.

Model performance

To assess the model performance, we used the 10-fold cross-
validation procedure [44]. The full sample was randomly 
split into 10 equally sized groups. Each combination of nine 
groups formed a training dataset that was used to estimate 
the parameters of the regression model, while the remaining 
group was considered as a test dataset to generate the pre-
dicted EQ-5D values based on the model developed using 
the training dataset. Predicted scores and observed scores 
were compared and mean absolute error (MAE) and root 
mean square error (RMSE) were calculated. This procedure 
was repeated until all the 10 possible training datasets were 
tested.

Models were ranked based on MAE and RMSE and the 
two rankings were summated to generate an average ranking. 
The model with the lowest value in average ranking would 
be the best-performing one [45, 46]. In the event of there 
being no clear difference between models, we gave priority 
to the model with lowest RMSE value.

All models were estimated in Stata version 15.1 (Stata 
Corp, College Station, TX).

Results

Descriptive information

Patient characteristics and summary statistics for the out-
come measures are presented in Table 1. The mean age 
ranged from 60.5 to 66.6 years and there were more males 
(range 52.2%–62.5%) in all samples. The mean EQ-5D-3L 
score reported by patients from France, Germany, Italy 
and Spain was 0.622, 0.796, 0.864 and 0.746, respectively, 
with more than 30% patients reporting full health in Italy 
(37.77%) and Spain (35.11%) and about 20% in France 
(20.74%) and Germany (21.31%). The mean EQ-5D-5L 
score reported by patients from Singapore was 0.621, lower 
than the EQ-5D-3L scores, and 25.8% patients reported full 
health. Figures 1 and 2 show the distribution of EQ-5D-3L 
and EQ-5D-5L scores. For both EQ-5D-3L and EQ-5D-5L, 
the distribution is highly skewed, has a spike of observations 
at full health and displays the gap between full health and 
the next feasible state. It should be noted that the EQ-5D-3L 
scores had different distributions across countries (Fig. 1), 
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which may result from the country-specific value sets and 
patient samples differing in health status.  

The KDQOL-36 subscale scores were similar in all five 
samples, but patients from Italy had higher scores in PCS, 
KDCS, and three disease-specific subscale scores, indicat-
ing better physical health, fewer symptoms, fewer effects on 
daily life and less self-perceived burden to family, consistent 
with the highest EQ-5D scores and more patients with full 
health reported by them (Table 1).

Correlation

The Spearman rank correlation coefficients between the 
KDQOL-36 subscale scores and the EQ-5D index scores and 
items is presented in Table S1. Generally, the correlations 
between KDQOL-36 subscale scores and EQ-5D-3L index 
scores or item responses were moderate to high, although 
some low correlations were observed. The correlations 
between KDQOL-36 subscales and EQ-5D-5L index scores 
or item responses were low to moderate. These suggest that 
the two instruments overlap to some extent, which could 
support the attempt of mapping from one to the other.

Table S2 presents the correlations between KDQOL-36 
subscale scores (excluding correlations between KDCS and 
the three disease-specific subscale scores, as KDCS is the 

average of the three scores). There was no high correlation 
between any two scores, so they could be included in one 
regression model.

The correlations between EQ-5D items were low to mod-
erate (Table S3), supporting our approach of using seem-
ingly unrelated regression models in response mapping, 
which could account for the correlations between items.

Model

EQ‑5D‑3L

The results of the model performance mapping KDQOL-
36 to EQ-5D-3L are presented in Table 2 (for France) and 
Table S4-S6 (for Germany, Italy and Spain).

For France, of all the 30 models tested, RMSEs ranged 
from 0.2328 to 0.2825 and MAEs were between 0.1730 and 
0.2102. The results of some ALDVMMs were not included 
if there were problems with convergence. According to MAE 
and RMSE, the best-performing model was ALDVMM 
with 2-component, which included PCS, MCS, Symptoms, 
Effects, Burden, and their squared terms and interaction 
terms, as well as age and sex as explanatory variables. For 
Germany, a total of 30 models were tested, among which 
the ADVLMM with 2-component including PCS, MCS, 
disease-specific subscales, age and sex as explanatory 

Table 1   Health-related quality of life (HRQoL) in the samples

KDCS kidney disease component summary, MCS mental component summary, PCS physical component summary
1 Range 0–100, higher scores indicate that respondents are less bothered by dialysis-related symptoms (e.g., sore muscles, chest pain, cramps, 
etc.)
2 Range 0–100, higher scores indicate that respondents are less bothered by the effects of kidney disease on their daily life (e.g., fluid restriction, 
dietary restriction, etc.)
3 Range 0–100, higher scores indicate that to a lesser extent respondents feel kidney disease interferes with life, takes up time, causes frustration, 
or feels like a burden
4 Range 0–100, average of Symptoms, Effects and Burden subscale scores

EQ-5D-3L EQ-5D-5L

France (n = 299) Germany (n = 413) Italy (n = 278) Spain (n = 225) Singapore (n = 163)

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Age (years) 66.6 (14.1) 61.8 (14.4) 60.8 (13.4) 60.6 (16.4) 60.5 (11.5)
Male (%) 62.5 57.1 54.7 60.0 52.2
EQ-5D
 EQ-5D utility score 0.622 (0.383) 0.796 (0.224) 0.864 (0.185) 0.746 (0.292) 0.621 (0.447)
 Proportion of EQ-5D = 1 (%) 20.74 21.31 37.77 35.11 25.8

KDQOL-36
 PCS 39.90 (10.09) 39.76 (9.33) 43.80 (10.09) 39.72 (10.92) 39.34 (9.68)
 MCS 46.51 (9.61) 46.03 (10.11) 46.58 (8.06) 45.41 (10.15) 47.95 (10.83)
 Symptoms1 78.48 (20.18) 79.50 (16.96) 86.53 (12.77) 82.24 (14.9) 80.09 (14.89)
 Effects2 70.55 (24.45) 72.87 (18.16) 79.39 (20.25) 63.99 (22.45) 74.69 (19.43)
 Burden3 48.20 (28.82) 54.20 (26.33) 61.15 (23.54) 55.83 (26.54) 42.45 (31.48)
 KDCS4 65.74 (20.92) 68.86 (16.96) 75.69 (16.45) 67.36 (18.80) 65.74 (17.12)
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variables showed the lowest overall ranking based on MAE 
and RMSE. For Italy, 25 models were tested as some of 
the ALDVMM had problems with convergence. In contrast 
with the results for France and Germany, the best-perform-
ing model was the BETAMIX model including PCS, MCS, 
Symptoms, Effects, Burden, their squared terms, and age 

and sex as explanatory variables. For Spain, 28 models were 
tested and the best-performing one was the ALDVMM with 
one component including PCS, MCS, KDCS, age and sex 
as explanatory variables. Results of the model using the UK 
EQ-5D-3L value set are available in Table S7 and the best-
performing model was the same one as that for France.

Figure 3 plots mean predicted versus mean observed 
EQ-5D-3L values of the best-performing model for the four 
countries. The figures show that these mapping algorithms 
seem to predict well for patients at the high end of EQ-
5D-3L, but may not predict very well for patients scoring at 
the low end of the EQ-5D-3L.

EQ‑5D‑5L

The results of the model performance mapping KDQOL-36 
to EQ-5D-5L are presented in Table 3. In total, 34 models 
were tested and the best-performing one was ALDVMM 
with 1-component including PCS, MCS, Symptoms, Effects, 
Burden, age and sex as explanatory variables. Figure 4 plots 
mean predicted versus mean observed EQ-5D-5L values of 
this best-performing model, showing that this algorithm 

Fig. 1   Distribution of EQ-5D-3L scores

Fig. 2   Distribution of EQ-5D-5L scores (Singapore)
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could fit the observed data closely, but may over-predict the 
values when the EQ-5D observed scores were lower than 0. 

The best-performing algorithms estimated in this study 
can be easily implemented via Excel, which is provided in 
the Supplementary Materials.

Discussion

This study aimed to develop mapping algorithms to predict 
EQ-5D-3L and EQ-5D-5L utility scores from the widely 
used KDQOL-36 instrument in the absence of directly col-
lected EQ-5D data. By exploring different regression tech-
niques, the algorithms using mixture models showed better 
predictive ability than the commonly used linear regression 

and response mapping models. Given the lack of previous 
mapping studies in this disease area and the increasing use of 
KDQOL-36 in the clinical setting, the mapping algorithms 
would provide reliable estimates for the calculation of the 
EQ-5D-3L and EQ-5D-5L scores as a function of KDQOL-
36 and the user-friendly tool would enable researchers to 
implement the algorithms for EQ-5D utility values genera-
tion in applied CEA studies.

We found that the mixture models offer better model fit 
than linear regression and response mapping, consistent with 
the growing literature showing the superiority of mixture 
models in modelling EQ-5D [39–41]. But the target instru-
ment in these studies was EQ-5D-3L, and our results also 
demonstrated the better performance of ALDVMM model 
in modelling EQ-5D-5L. Therefore, these findings would 

Fig. 3   Mean predicted vs. mean observed EQ-5D-3L values using the best-performing model
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support the suggestion that the mixture models should be 
included when mapping EQ-5D from clinical measures [47], 
although the mapping guidelines do not recommend a spe-
cific mapping technique [48, 49].

It should be noted that the best-performing model is dif-
ferent in terms of regression techniques and explanatory 
variables for different countries and different EQ-5D ver-
sions. First, ALDVMM was the best-performing model in 
modelling EQ-5D-3L scores in France, Germany and Spain, 
but beta regression showed best fit for Italy. This may be 
explained by the characteristics of patients from Italy. As 
shown in Table 1, they reported the highest KDCS scores 
while the scores of patients from France, Germany and 
Spain were similar, and thus it is likely that they had better 
health than other patients did, so the mapping algorithms 
based on samples differing in health status were not expected 
to be the same. In addition, there was a strong ceiling effect 
of the EQ-5D-3L data for Italy (Fig. 1), which may limit the 
advantage of ALDVMM in addressing the multimodality 
of data. This may suggest the importance of considering the 
distribution when selecting the most appropriate model for 
modelling EQ-5D data, and thus future research is suggested 
to investigate it further. Second, the models including the 
KDQOL-36 disease-specific subscales scores as explanatory 
variables had a model fit superior to those including KDCS, 
but this was not the case for Spain. This may be because the 
three disease-specific subscale scores were highly skewed 
for Spain and the KDCS, which condenses them into one 
score, could better reflect the differences between patients, 
although it would discard important information. As the 

subscales of KDQOL-36 could be easily calculated using the 
Excel file provided by the instrument developer [19], the use 
of the KDCS is still practical to researchers populating cost-
effectiveness models. Furthermore, the mapping algorithms 
are different when mapping to EQ-5D-3L and to EQ-5D-5L 
in terms of the explanatory variables included. Undoubt-
edly, the country-specific value set used to generate index 
values would contribute to the differences, but these would 
also be driven by the differences between the two versions 
of EQ-5D. The differences in the utility estimates using EQ-
5D-3L and EQ-5D-5L have been reported in literature [50] 
and, therefore, they should not be used interchangeably. As 
the EQ-5D-5L is increasingly being used in practice and 
more EQ-5D-5L value sets are published, the results of this 
study suggesting the better model fit of the mixture model 
would help future researchers to select the appropriate model 
when modelling EQ-5D-5L.

This study has limitations. First, the mapping algorithms 
did not perform well at the low end of the EQ-5D, as illus-
trated in Figs. 3 and 4. This was an expected consequence 
of the shape of the EQ-5D distribution and the poor per-
formance at the tails of EQ-5D distribution is a limitation 
common to many mapping studies [32]. Although the mix-
ture models have been used, the impact of the distribution 
of EQ-5D data could not be fully addressed by the models. 
Second, the sample size used to derive mapping algorithms 
to EQ-5D-5L was small (n = 163). The sample size used to 
develop mapping algorithms should be taken into considera-
tion when carrying out mapping [32]. This would affect the 
response mapping more as the models require observations 
at all the five levels of the EQ-5D items and a very small 
number of patients choosing the ‘extreme problems’ level 
would bias the estimation of the parameters and further limit 
the model performance. A larger sample would be preferable 
to increase the statistical power and thus lead to improved 
precision in estimating parameters. Third, the validity of the 
mapping algorithms was assessed using 10-fold cross-vali-
dation procedure. It would be preferred to assess the gener-
alisability of the algorithms in another independent dataset; 
however, this was not available when conducting this study.

When such algorithms mapping the KDQOL-36 onto 
EQ-5D were not available, researchers who would like to 
generate EQ-5D values for CEAs using KDQOL-36 data 
have to rely on the SF-12-based functions, however, the 
use of these mapping functions have been found to greatly 
affect the QALYs estimates [16]. This study provides meth-
ods of using KDQOL-36 data to generate EQ-5D-3L and 
EQ-5D-5L scores. Given the requirement that the KDQOL-
36 should be used in US clinical setting to assess patients’ 
HRQoL annually [4], it is expected that the KDQOL-36 
would be more widely used in other countries to periodi-
cally collect data from patients. The algorithms developed 
here would provide an alternative to estimate EQ-5D from 

Fig. 4   Mean predicted vs. mean observed EQ-5D-5L values using the 
best-performing model
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a large sample and potentially contribute to modelling the 
HRQoL change in CEAs assessing interventions or treat-
ments for dialysis patients in the long-term time horizon. 
But it should be noted that although the mapping algorithms 
could provide reliable EQ-5D health utility estimates from 
KDQOL-36, mapping to obtain EQ-5D health utility values 
is still a ‘second-best’ solution [45].

Conclusion

To the best of our knowledge, this is the first study to develop 
mapping algorithms from the widely used KDQOL-36 to 
EQ-5D-3L and EQ-5D-5L utility scores. Mapping algo-
rithms using mixture models were found to be better than 
the linear regression and response mapping. A user-friendly 
freely accessible tool was provided to assist the implementa-
tion of these algorithms. Although it is preferred to use utili-
ties directly derived from the EQ-5D, the algorithms can be 
used to generate reliable utility estimates in future economic 
evaluations of health care interventions for ESRD patients 
undergoing dialysis.
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