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Multilevel Modeling of Cognitive Diagnostic Assessment: The Multilevel DINA Example 

Abstract 

Many multilevel linear and item response theory models have been developed to account for 

multilevel data structures. However, most existing cognitive diagnostic models (CDM) are 

unilevel in nature and become inapplicable when data have a multilevel structure. In this study, 

using the log-linear cognitive diagnosis model as the item-level model we develop multilevel 

CDMs based on the latent continuous variable approach and the multivariate Bernoulli 

distribution approach. In a series of simulations, the newly developed multilevel deterministic 

input, noisy, and gate (DINA) model was used as an example to evaluate the parameter recovery 

and consequences of ignoring the multilevel structures. The results indicated that all parameters 

in the new multilevel DINA were recovered fairly well by using the freeware Just Another Gibbs 

Sampler (JAGS) and that ignoring multilevel structures by fitting the standard unilevel DINA 

model resulted in poor estimates for the student-level covariates and underestimated standard 

errors, as well as led to poor recovery for the latent attribute profiles for individuals. An 

empirical example using the 2003 Trends in International Mathematics and Science Study 

eighth-grade mathematical test was provided. 

Keywords: cognitive diagnostic assessment, multilevel models, large-scale assessment, Bayesian 

methods 

In large-scale educational assessments, such as the Program for International Student 

Assessment (PISA), Trends in International Mathematics and Science Study (TIMSS), and the 

National Assessment of Educational Progress (NAEP), two-staged or multi-staged sampling is 

often used. A number of schools usually are sampled first, and a number of students then are 

selected from each sampled school. This two-staged sampling creates two levels of data: 

student-level and school-level data. Students sampled from the same school are likely to be more 

homogeneous in the outcome variables of interest than students sampled from different schools 

because school characteristics often are associated with student performance (Goldstein, 2010). 
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Multilevel models have been developed and widely used to fit multilevel continuous data 

(Goldstein, 2010) as well as categorical item responses (Fox & Glas, 2001; Wang & Qiu, 2013). 

The consequences of ignoring multilevel structures have been well documented (Fox & Glas, 

2001; Goldstein, 2010). Specifically, the fixed-effect estimates (e.g., item parameters), in general, 

are not biased. However, the variance of the ignored level (e.g., school level) is redistributed to 

the adjacent levels (e.g., student level), which results in inaccurate estimates of the variance–

covariance of the student level. More important, the estimated standard errors of predictors at the 

student level will be underestimated. The underestimation of standard errors may lead to serious 

consequences when an important decision or practice is overturned due to the size of a standard 

error (Goldstein, 2010).  

In the past decade, there has been a surge of interest in cognitive diagnostic assessment. 

Cognitive diagnosis models (CDM) have been given different names, including diagnostic 

classification models, latent response models, and restricted (constrained) latent class models 

(Rupp, Templin, & Henson, 2010). General cognitive diagnostic models include the log-linear 

cognitive diagnosis model (LCDM) (Henson, Templin, & Willse, 2009), the general diagnostic 

model (GDM) (von Davier, 2010), and the generalized deterministic input, noisy, and gate 

(G-DINA) model (de la Torre, 2011). A vast amount of literature about CDMs is available (e.g., 

Rupp et al., 2010).  

Most existing CDMs are unilevel. There have been some attempts at extending unilevel 

CDMs to multilevel ones. For example, von Davier (2010) introduced a hierarchical GDM to 

account for the property of clustered responses within a school, but the parameter recovery of the 

new multilevel GDM and the consequences of model misspecification were not evaluated with 

simulations, nor were the item or person covariates incorporated into the model, making the 

model somewhat restrictive. The expectation-maximization (EM) algorithms used in the study 

often suffer from the choices of initial values and inaccurate estimation for the asymptotic 

variance–covariance matrix of the maximum likelihood estimator (Karlis & Xekalaki, 2003). 
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Moreover, these algorithms become infeasible because of the complexity in the integration and 

computation of inverse matrices when the number of attributes is large. All of these limitations 

may hinder applications of the new model.  

Just as item or person covariates can be incorporated directly into item response theory (IRT) 

models, which calls for explanatory IRT models (De Boeck & Wilson, 2004), so does 

explanatory CDMs. A recent example is provided by Ayers, Rabe-Hesketh, and Nugent (2013), 

in which person-specific covariates are added to the deterministic input, noisy, and gate (DINA) 

model (Junker & Sijtsma, 2001). Specifically, each latent attribute k is assumed to follow a 

Bernoulli distribution with probability k and be independent of other latent attributes. A logit 

link function then is used to combine person-level covariates. The model can be estimated using 

Bayesian Markov chain Monte Carlo (MCMC) methods. The resulting model, though improving 

the recovery of latent attributes, does not go beyond the person (student) level and, thus, 

becomes inapplicable when students are nested in schools. 

 The main purpose of this study was to develop a new class of multilevel CDMs, which use 

the general LCDM as the item-level model. Covariates can be incorporated directly into the 

student (Level-1) and school (Level-2) levels, and their effects on attribute mastery can be 

conveniently estimated. In addition, it is expected that fitting unilevel CDMs to multilevel data 

will not affect item parameter estimates and their standard errors, but will underestimate the 

standard errors of the predictors at the student level and the profile classification’s accuracy. 

Using the new multilevel CDMs, the standard errors of the covariates can be estimated accurately, 

which will result in appropriate statistical testing for the covariates, and improve the accuracy of 

attribute and profile classification for individuals.   

The remainder of this paper is organized as follows. First, the item-, student-, and 

school-level components of the multilevel CDMs are introduced, where the LCDM (Henson et 

al., 2009) is used as the item-level model without loss of generality. Second, the Bayesian 

estimation with the MCMC methods is described briefly. Third, the results of simulation studies 
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that were conducted to assess parameter recovery and the consequences of ignoring multilevel 

structures are summarized. To facilitate the estimation, the popular and parsimonious DINA 

model, which is a special case of LCDM, is used for demonstration in this study. The resulting 

multilevel DINA (mDINA) model is evaluated and compared to the unilevel DINA (uDINA) 

model under various conditions. Fourth, the new models are applied to an empirical example 

retrieved from the TIMSS eighth-grade mathematical test to demonstrate the implication and 

applications of the newly developed multilevel CDMs. Finally, conclusions about the new 

models are drawn and the possibilities for future study are discussed.  

Item-Level Models 

There are D +1 components in a D-level CDM. For example, a two-level CDM has three 

components, including an item-level model of CDMs, a Level-1 model for persons (e.g., 

students), and a Level-2 model for groups (e.g., schools). We introduce item-level CDMs in this 

section and Level-1 and Level-2 models in the next section. 

Item-level models should be as flexible as possible. To meet the demand, the LCDM 

(Henson et al., 2009) is used as the item-level model because it can accommodate many CDMs. 

Other general CDMs, such as the GDM (von Davier, 2010) and G-DINA model (de la Torre, 

2011), can be used as well. Let Yni be the response to item i (i = 1, …, I) of person n (n = 1,…, N) 

and T

1(α ,...,α ,...,α )n n nk nKα be a vector of the binary variables for person n on K attributes, 

where nk = 1 (k = 1, …, K) indicates that person n has mastered attribute k and nk = 0 otherwise. 

In the LCDM, the probability of success on item i for person n is defined as: 
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where i,0 is the intercept and defines the log-odds of success for the examinees who have not 

mastered any of the attributes required by item i; T

iλ  is a vector of regression weights for item i, 

with a length of 2
K
 – 1; qi is a collection of qik, which is the entry for item i in the Q-matrix that 

indicates whether attribute k is required to answer item i correctly; attribute k is required by item 

i when qik = 1 and is not required when qik = 0; ( , )n ih α q  is a set of linear combinations of n 
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and qi; and T ( , )i n iλ h α q  can be expressed as:  

      T
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Setting appropriate constraints on Equation 2 creates a variety of CDMs (Henson et al., 

2009), including the DINA model, the (compensatory) reparameterized unified model (Hartz, 

2002), and the deterministic input, noisy, or gate (DINO) model (Templin & Henson, 2006).  

Two Approaches to Multilevel CDMs 

In multilevel linear models, Level-1 outcome variables (e.g., income) are continuous. In 

multilevel IRT models, the item-level model is an IRT model, and the Level-1 outcome variables 

are the corresponding latent trait(s), which are continuous, so that the formulation of multilevel 

IRT models becomes straightforward. In contrast, in multilevel CDMs, the item-level model is a 

CDM, which yields binary latent attributes rather than continuous latent traits. This dichotomy 

makes the formulation of multilevel CMDs less straightforward than that for their counterparts. 

In this study, we proposed two approaches for multilevel CDMs: the latent continuous variable 

(LCV) approach and the multivariate Bernoulli distribution (MBD) approach.  

The LCV Approach 

The LCV approach adopts Pearson’s (1900) concepts of tetrachoric correlation. Specifically, 

the latent continuous variable 
*αk  is assumed to underlie the binary variable ksuchthat the 

skill is mastered if variable 
*αk  is larger than or equal to the threshold parameter k and not 

mastered otherwise (Hartz, 2002): 

 
*

*

1,  

0,  <

k k

k

k k

   
  

 

.  (3) 

The vector 
* * * T

1(α ,...,α )Kα  is assumed to follow a multivariate normal distribution with mean 

vector 
T

1(μ ,...,μ )Kμ , where k denotes the mean level of the latent continuous variable for 

attribute k across schools. Note that k and k are perfectly correlated for dichotomous variables, 

and thus, either of the two following constraints is needed to identify the model (Asparouhov & 

Muthén, 2010): (a) set k = 0 while allowing k to vary, or (b) set k = 0 while allowing k to 

vary. In our study, the second constraint was adopted because different schools are likely to have 
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different mean levels (k) on the latent variables. That is, k are different across schools. In 

addition, the variance of latent continuous variable 
*αk  is set at 1 to fix the scale (Asparouhov & 

Muthén, 2010; Hartz, 2002). 

Typically, there are three types of assumptions about the probability distribution of 

attributes in previous studies. In a saturated model, each of the 2K  latent profiles has a 

parameter to describe its population proportion, which results in a total of 2 1K   parameters 

(the proportions sum to 1). This approach can be problematic because the number of parameters 

increases exponentially while the number of attributes increases linearly. To solve the problem, 

one may constrain independence among attributes, which results in a total of K – 1 parameters 

for K attributes. Often, the independence assumption is too stringent to fit real data because the 

attributes measured by a test are likely to be correlated. Another approach is to impose a 

higher-order structure on correlated attributes, in which a latent continuous variable(s) is 

assumed to underlie all the attributes; therefore, the attributes are conditionally independent 

given the latent variable(s) (de la Torre & Douglas, 2004). In doing so, a total of 2K parameters 

are estimated for K attributes, including one intercept and one slope parameter for each attribute. 

Unlike the higher-order CDMs, it is assumed in this study that each attribute has its own latent 

continuous variable, and these latent continuous variables can be correlated without any specific 

structure, making the model more flexible. 

For illustrative simplicity, let there be two levels, a student level and a school level, and let 

*αnck  be the latent continuous variable for student n in school c on attribute k. As in multilevel 

linear models, at the student level, 
*αnck  can be regressed on student-level covariate Xnckl (l = 

1, …, L; L is the number of student-level covariates) (e.g., gender and age): 
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nck ck lck nckl nck

l

X


        k = 1, …, K,  (4) 

where 0ck is the intercept, representing the average level of school c on attribute k; lck is the 

regression slope; nck is the error term; the vector (nc1, nc2, …, ncK) is assumed to follow a 

multivariate standard normal distribution with a mean vector of zero and a variance–covariance 
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matrix of ×. As mentioned above, the variance of 
*αk  is set at 1 to fix the scale, indicating 

that the main diagonal elements of  are set at 1, accordingly. 

At the school level, the coefficients in Equation 4 can be regressed on school-level 

covariate Wlckm (m = 1, …, M; M is the number of school-level covariates) (e.g., school type): 

 
0

1

β ,
M

lck l k lmk lckm lck

m

W e


      l = 0, …, L; k = 1, …, K, (5) 

where l0k is the intercept which is the grant mean across school on attribute k; lmk is the 

regression slope; elck is the error term; and the vector (elc1, elc2, …, elcK) is assumed to follow a 

multivariate normal distribution, with a mean vector of zero and a variance–covariance matrix of 

×. When appropriate, the coefficients in Equation 5 can be regressed further on Level-3 

covariates (e.g., school district), and so on for more levels.  

The intraclass correlation coefficient (ICC), which is defined as the ratio of the Level-2 

variance over the total variance (i.e., the sum of the Level-1 and Level-2 variances), often is 

reported in multilevel models. Attribute k’s ICC can be computed as: 

  ICC kk
k

kk kk



 

,  (6) 

where kk and kk denote the school-level and student-level variances of attribute k, respectively, 

assuming that there are no student-level and school-level covariates in Equations 4 and 5. 

Because the main diagonal elements of  are set at 1 for model identification, kk = 1 for every k. 

Equation 6 has been used to indicate the magnitude of ICC under multivariate multilevel models 

(e.g., Entink, Fox, & van der Linden, 2009). 

The MBD Approach 

In the MBD approach, let T

1(α ,...,α )nc nc ncKα  be a K-dimensional vector of correlated 

Bernoulli random variables for student n in school c on K attributes. The joint probability density 

and the marginal distribution density for  can be found in Dai, Ding, and Wahba (2013). Let 

nck be the probability of mastering attribute k for student n in school c, and logit(nck) ≡ 

log(nck / (1–nck)). Because the marginal distribution of k follows a univariate Bernoulli 

distribution, logit(nck) then can be treated as an outcome variable of the student level: 
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where 0ck, lck and Xnckl are defined by Equation 4. At the school level, the  coefficients in 

Equation 7 can be regressed on school-level predictors, as done in Equation 5.  

To derive the ICC in the MBD approach, one needs to compute the total variance and the 

within-school variance. Let ck be the mean probability of mastering attribute k in school c and k 

be the mean probability of mastering attribute k in the population. Thus, ck(1–ck) is the 

within-school variance for school c, and k(1–k) is the total variance. The variance ck(1–ck) is 

not homogenous across schools because it depends on ck. Thus, one can take a mean across 

schools to represent the within-school variance: E[ck(1–ck)]. Attribute k’s ICC then is defined 

as:  

 
(1 ) [ (1 )]

ICC
(1 )

k k ck ck
k

k k

E      


  
.       (8) 

Both the LCV and MBD approaches are viable. They should yield very similar estimates for 

the item parameters, attribute and profile classifications, and correlations among latent variables 

because both approaches use the same item-level model. However, they will yield rather 

different estimates for the intercepts and regression coefficients because they are not on the same 

metric. The two approaches have strengths and limitations. The LCV approach is easy to follow 

because it connects multilevel CDMs with multilevel linear models. It assumes a multivariate 

normality for the underlying latent variables, which can be specified with most computer 

programs. In addition, it often requires high-dimensional integration, especially when the number 

of attributes is large. In contrast, the MBD approach does not require assumptions on the latent 

continuous variables and high-dimensional integration. Therefore, the model is more robust and 

its estimation will be less time-consuming. Unfortunately, the multivariate Bernoulli distribution 

is not very intelligible to practitioners, and to the best of our knowledge, none of the existing 

computer programs can accommodate the multivariate Bernoulli distribution, making its 

implementation very challenging to most users. In practice, one may first apply the univariate 

Bernoulli distribution by assuming independence among the attributes and then calculate the 
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tetrachoric correlations of the estimated attributes. In this study, we focused on the LCV 

approach in the following simulations and adopted both approaches in the empirical example. 

Parameter Estimation of Multilevel CDMs 

Both the LCV and the MBD approaches can be estimated using the EM and MCMC 

methods. For the LCV approach, a marginal likelihood can be obtained by summing over the 

school-level distribution and integrating out the multivariate standard normal distribution of the 

latent continuous variable 
*αk , and the likelihood can be maximized using the EM algorithm. 

Unfortunately, no existing computer program with the EM algorithm is available for the LCV 

approach. For the MBD approach, the computer program mdltm (von Davier, 2010) that 

implements the EM algorithm can be used if the Bernoulli random variables T

1(α ,...,α )nc nc ncKα  

are assumed to be independent of each other. Similar to Ayers et al. (2013), this study adopted 

Bayesian estimation with MCMC methods for both approaches because MCMC algorithms are 

flexible and efficient, especially for high dimensional data. 

Let ( )nci ncP y α  denote the probability of success on item i for person n in school c with 

attribute pattern nc, which is assumed to follow the LCDM (Equation 1). The full posterior 

distribution of the parameters, given the data, is 

 
   

1 1 1

( , , , , , | ) | | , ,

                                               ( | , , ) ( | ) ( ) ( ) ( )

C N I

nci nc nc c c
c n i

c c

P P y P

P P P P P

  

 
    

 α

α λ β υ Σ Ω Y, X, W α α β Σ X

β υ Ω W υ Ω λ Σ Ω

,  (9) 

where  and  are vectors of the regression coefficients of Level-1 and Level-2 predictors, 

respectively; Y, X, and W are the item responses, Level-1 predictors, and Level-2 predictors, 

respectively; and ( , , )nc c cP α β Σ X  is the conditional probability of having attribute pattern nc 

for person n in school c. They sum to 1 across all 2
K
 attribute patterns for every person: 

( ) 1ncP 
α

α . ( , , )c cP β υ Ω W  and ( )P υ Ω  are the conditional probabilities of the Level-1 and 

Level-2 regression coefficients, respectively; ( )P λ , ( )P Σ , and ( )P Ω  are the priors for , , 

and, respectively. The full posterior distribution of the parameters under the MBD approach is 

given in the online supplement.  
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 The freeware JAGS (Plummer, 2003), which provides users with a simple tool for 

performing MCMC methods, was used in this study. The deviance information criterion (DIC), 

which can be obtained easily from JAGS, can be used to compare models (Spiegelhalter, Best, 

Carlin, & van der Linden, 2002). The smaller the DIC is, the better the model. A difference of 

less than 5 in the DIC between models does not provide sufficient evidence that one model is 

more favorable than the other (Spiegelhalter et al., 2002).  

For the LCV approach, the main diagonal elements of the Level-1 variance–covariance 

matrix  are set at unity for model identification, which essentially makes  a correlation matrix, 

whereas the Level-2 distributional parameters (mean and variance–covariance) can be freely 

estimated. For the MBD approach, the constraint of the student level variance at one is not 

needed. Unfortunately, there is no conjugate prior for a correlation matrix in popular Bayesian 

freeware, including WinBUGS, OpenBUGS, and JAGS. To resolve the problem, one may fix the 

main diagonal elements at one and then estimate the off-diagonal elements separately. According 

to our pilot simulations, this method is effective when the number of attributes is as small as 

three, but it often fails when the number of attributes is large because the separately sampled 

off-diagonal elements may lead to a correlation matrix that is not positive definite. In our 

experience, more than half of the replications encountered this problem when there were five 

attributes.  

In this study, we adopted Fisher’s z to transform the correlation coefficient into

0.5log((1 ) / (1 ))z    , which was approximately normally distributed. To avoid being 

non-positive definite, the prior normal distribution for z was truncated to cover the ranges of the 

correlations (Daniels & Kass, 1999). For example, for 12 = 0.6, the values of z were truncated to 

be between 0.55 and 0.87, which correspond to the correlations between 0.5 and 0.7. In the 

simulation study, the truncations of the z values were referred to as the generating correlation 

coefficients. In the empirical study, they were referred to as the correlation coefficients obtained 

from the unilevel CDM. This method has been proved effective to sample the correlation matrix 
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 in our study and that by Chang, Tsai, and Hsu (2014). In addition to the method used in this 

study, one can adopt the two-stage parameter expanded reparameterization algorithm (Liu & 

Daniels, 2006) to sample the correlation matrix, although it is much more complicated.   

Method 

For demonstration, the DINA model was used as the item-level model because of its 

popularity and parsimony. In the simulation, the mDINA model was used to generate item 

responses, and both the data-generating model and the uDINA model were fit to the data. It was 

expected that fitting the data-generating mDINA model would result in good parameter estimates. 

It also was expected that ignoring the multilevel data structures by fitting the uDINA would 

result in poor estimation of the covariates and underestimated standard errors, as well as lower 

recovery rates for attributes and latent profiles for individuals. In addition, fitting the mDINA 

model to the data without multilevel structures would yield good parameter estimates and good 

recovery rates, indicating it did little harm to fit an unnecessarily complicated model. 

Design 

Four independent variables were manipulated: (a) number of attributes (3 and 5), (b) 

number of schools (30 and 100), (c) test length (10 and 30 items), and (d) ICC (0, 0.09, and 0.33). 

In the linear multilevel literature, 30 groups are often regarded as a minimum requirement and 

100 groups as sufficient (Hox, 2010). The magnitude of ICC was manipulated to investigate the 

consequences of ignoring multilevel data structures on parameter estimation. In general, the 

necessity of multilevel analysis can be indicated by the design effect, which is defined as 

1 ( 1) ICCN   , where N  is the mean sample size across schools (Hox, 2010). A design 

effect larger than 2 indicates the necessity of a multilevel analysis, and a design effect around 2 

indicates the sufficiency of a single-level analysis. There were 2×2×2×3 = 24 conditions. 

The off-diagonal elements in the student-level variance–covariance matrix  was set 

between 0.6 and 0.8, suggesting a moderate to high correlation among the attributes; the 

school-level variance–covariance matrix  had three conditions: (a) the main diagonal elements 
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are 0.5 and off-diagonal elements are 0.3; (b) they are 0.1 and 0.03, respectively; and (c)  = 0. 

According to Equation 6, the ICCs for the three attributes were 0.33 (= 0.5 / (0.5 + 1)), 

0.09 (= 0.1 / (0.1 + 1)), and 0 in the three conditions, respectively, and the design effect was 

10.57, 3.64, and 1, respectively, representing a high (ICC-H), low (ICC-L), and zero (ICC-0) 

school effect condition, respectively. The ICC-0 condition was created to investigate the effect of 

fitting an unnecessarily complicated model (i.e., mDINA) to data without multilevel structures. 

For five attributes, the true values of  and  can be found in the online supplement. 

When there were three attributes, each attribute was measured by half of the items (i.e., 

each attribute was measured by 15 items when there were 30 items in the test). When there were 

five attributes, each attribute was measured by fewer items; for example, when there were 10 

items in the test, each attribute was measured by two or three items. Each item is designed to 

measure one to three attributes. These settings mimicked those in the CDM literature (e.g., 

Huang & Wang, 2014).  

The mDINA model was used to generate data in which the item-level model was the DINA 

model. The student-level model was Equation 4, and the school-level model was Equation 5. A 

two-staged sampling was adopted in the generation of multilevel data. A total of 30 or 100 

schools were first sampled, and 30 students then were sampled from each school, which resulted 

in a total of 900 and 3,000 students, respectively. The slip (s) and guessing (g) parameters of the 

DINA model were sampled from a uniform distribution between 0 and 0.3, which were similar to 

those used in the literature (Huang & Wang, 2014). The student-level covariate Xnck was a binary 

variable (e.g., gender: female = 0, male = 1) and was generated from a Bernoulli distribution 

with a parameter of 0.5. The intercept 00k was set at 0 for each attribute. The regression 

coefficients of covariate 10k were set at -0.5, 0, and 0.5 for the three attributes, respectively, 

indicating that females have a higher, equal, and lower probability than males of mastering the 

three attributes, respectively. No school-level covariate was used in the simulation. 

 A MATLAB program was written to generate item responses. The latent continuous variable 
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( *αnck
) was dichotomized using k = 0, indicating that each attribute was mastered by 50% of 

persons. After the data were generated, the mDINA and uDINA models were fit to the data using 

JAGS. The priors for the fixed-effect parameters were set as follows: si ~ U(0, 1), gi ~ U(0, 1), 

0ck ~ N(0, 1), lck ~ N(0,1), and l0k ~ N(0,1). For the correlation matrix , the priors for the 

Fisher’s z were specified as N(0,1) with truncation. The priors for the variance–covariance matrix 

 were similar to those in the multilevel IRT literature (Wang & Qiu, 2013). The MCMC 

procedure had a run length of 10,000 iterations with a burn-in length of the first 5,000 iterations. 

In addition to visual inspection of the chain of MCMC samples, the convergence was checked 

with several diagnostics implemented in the Convergence Diagnosis and Output Analysis 

(CODA) computer package (Plummer, Best, Cowles, & Vines, 2006). Thirty replications were 

carried out for each condition. The small number of replications was used mainly because of 

lengthy computation time (each replication took about 1–12 hours to converge). Fortunately, the 

estimation was fairly stable across replications such that 30 replications appeared feasible.   

Data Analysis 

The posterior mean and standard deviation were treated as the point estimate and the 

standard error, respectively. The bias and the root mean square error (RMSE) in the estimates 

across replications were computed to assess the parameter estimation. In addition, to evaluate the 

consequences of ignoring multilevel data structures, the estimates of the covariates and their 

standard errors obtained from the mDINA and uDINA models were compared. Moreover, the 

recovery rates of individual attributes and latent profiles from the models were compared as well.   

Results 

Visual inspections revealed that the chains for the estimated parameters converged to the 

stationary distribution. The following statistics also indicated the convergence of the chains. 

Monte Carlo error values for the posterior mean of the parameters were close to 0 and the 

estimated potential scale reduction factor ( R̂ ) in the Gelman-Rubin diagnostic in the CODA 

software was close to one for all parameters. Due to space constraints, detailed results in 
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parameter recovery are shown in the online supplement. 

Three Attributes under Conditions ICC-H and ICC-L  

Tables A1 and A2 in the online supplement show the generating values, bias, and RMSE for 

the regression coefficients, variances, and covariances across replications under the ICC-H and 

ICC-L conditions, respectively. When the data-generating mDINA model was fit to mDINA data, 

the parameter recovery for the g and s parameters was satisfactory, with the bias and RMSE in 

the third and second decimal places, respectively. For the intercept, slope, variance, and 

covariance parameters, the parameter recovery was also satisfactory. For example, as shown in 

Table A1, the bias was between -0.029 and 0.140 and the RMSE between 0.047 and 0.228 for 30 

schools, and the bias was between -0.026 and 0.035 and the RMSE between 0.016 and 0.129 for 

100 schools. As expected, the longer the test and the larger the number of schools, the better the 

parameter recovery. 

When the uDINA model was fit to mDINA data (with the multilevel structures ignored), the 

estimation for the student covariates 101 and 103 was quite poor. For example, under the ICC-H 

condition, the bias for 101 and 103 across test lengths and school sizes was between -0.139 and 

0.130, and the RMSE was between 0.100 and 0.175. The poor estimation for the regression 

coefficients of the student-level covariate was mainly due to the constraint on the main diagonal 

elements of . For example, when simulating mDINA data in the ICC-H condition, the diagonal 

elements of  were set at 1, and those of were set at 0.5. When the school level was ignored 

and the uDINA model was fit to the data, the school-level variances (i.e., 0.5) were redistributed 

into the student-level variances. Because the student-level variances were constrained at 1 for 

model identification, the resulting scale in the student-level model would be shrunken toward the 

zero mean, and the estimation of a negative regression coefficient (101 = -0.5) would be biased 

upward and that for a positive regression coefficient (103 = 0.5) would be biased downward. 

Because 102 = 0, its estimation was not affected by the scale shrinkage, as shown by its very 

small bias.  
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It appeared that the intercept parameters under the uDINA model (01, 02, and 03) were 

recovered slightly better than those under the mDINA model (001, 002, and 003). This 

phenomenon, also found in the literature of multilevel models (Steenbergen & Jones, 2002; 

Wang & Qiu, 2013), was because the uDINA model combined Level-1 responses across Level-2 

units to make use of all data and because it had fewer parameters than the mDINA model.  

To examine the accuracy of the standard errors for the regression coefficients of the 

covariates, we computed the ratio of the standard deviation of the posterior means across 

replications over the mean of the empirical (estimated) standard errors across replications. 

A value close to 1 indicated a good estimate for the standard errors. It was found that, when the 

generating mDINA model was fit, the ratios were between 0.88 and 1.15 in the ICC-H condition 

and between 0.89 and 1.04 in the ICC-L condition. Thus, the standard error estimates of the 

mDINA model were satisfactory. In contrast, when the uDINA model was fit, they were between 

2.65 and 4.87 in the ICC-H condition and between 1.91 and 4.76 in the ICC-L condition, 

suggesting the standard errors were underestimated. Take 102 as an example. Under the 

condition of 10 items, 30 schools, and ICC-H, the mean of the estimated standard errors were 

0.035 and 0.103 for the uDINA and mDINA models, respectively. Taking the standard error of 

the mDINA model as the gold standard, one found that the standard error of the uDINA model 

was underestimated by approximately 66%. Under the ICC-L condition, they were 0.064 and 

0.096, respectively, and the underestimation was approximately 33%.  

Figure 1 shows that the recovery rates of the latent profiles for the mDINA model were 

between 73.8% and 97.2% under the ICC-H condition and between 68.7% and 97.1% under the 

ICC-L condition. For the uDINA model, they were between 68.6% and 96.9% under the ICC-H 

condition and between 67.0% and 96.9% under the ICC-L condition. The recovery rates for the 

mDINA model were generally higher than those for the uDINA model by 0.3–5.2% with a 

median of 1.7% across the eight profiles under the ICC-H condition and by 0.1–3.3% with a 

median of 0.8% under the ICC-L condition. It appeared that ignoring multilevel data structures 
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had substantial consequences on examinee classification. The recovery for profiles “100” (5%), 

“010” (6%), “110” (3%), and “101” (6%) was poorer than profiles “000” (28.7%), “001” 

(10.2%), “011” (13.8%), and “111” (27.3%), where the numbers in parentheses are the posterior 

probabilities of the corresponding profiles in the sample for the mDINA model under the ICC-H 

condition. It seemed that the smaller the proportion, the poorer the recovery of the profile. The 

recovery rates for the three attributes under the two models were almost identical, which might 

be due to the ceiling effect. 

[Figure 1 about here] 

According to the DIC statistic, the data-generating mDINA model was preferred to the 

uDINA model in 19–27 of the 30 replications under the ICC-H condition of an average 30.22–

98.33 smaller number for the DIC. The mDINA model was preferred 17–22 times under the 

ICC-L condition of an average 10.91–49.97 smaller number for the DIC. In general, the longer 

the test and the larger the number for the schools, the higher the power of the DIC statistic in 

selecting the true model would be. 

Three Attributes under Condition ICC-0  

Under the ICC-0 condition, the uDINA model was the true model and the mDINA model 

was an unnecessarily complicated model. Both the mDINA and uDINA models recovered the 

parameters very well, with the bias and RMSE in the second or third decimal places in general. 

For the estimation of  (whose true values were all zero), the mDINA model yielded a bias 

between 0.007 and 0.098 and RMSE between 0.010 and 0.098. Because the bias and RMSE were 

very small, there was little difference between the mDINA and uDINA models. In addition, the 

recovery rates for the attributes and latent profiles under the mDINA model were almost identical 

to those under the uDINA model. According to the DIC statistic, the uDINA model was preferred 

in 15–20 of the 30 replications by an average of 12.85–61.14 smaller in the DIC. In short, it did 

little harm to fit an unnecessarily complicated model (i.e., the mDINA model) to data without 

multilevel structures. Detailed results are shown in Table A3 in the online supplement. 
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The Conditions under the Five Attributes  

The results for ICC-H, ICC-L and ICC-0 under the conditions of the five attributes are 

shown in Tables A4–A6 in the online supplement, respectively. The major findings were the 

same as those found in the conditions of the three attributes. However, when there were more 

attributes, the recovery for the individual attributes and attribute profiles became poorer.  

An Empirical Study 

Data and Analysis 

Responses from eighth graders in the United States to the 2003 TIMSS mathematics test 

were analyzed. The test was designed to measure knowledge on five content domains: algebra, 

data, geometry, measurement, and number. An example item in the number domain on the 

relationships among numbers is as follows: “Show that the sum of any two odd numbers is an 

even number.” For illustrative purposes, the five domains were treated as five binary attributes in 

this study. The structure of the Q-matrix was not complex because each item measured only one 

of the five domains. Although the TIMSS test was not designed specifically to diagnose binary 

attributes, it was used to demonstrate the utilities of CDMs in previous studies (Lee, Park, & 

Taylan, 2011; Tatsuoka, Corter, & Tatsuoka, 2004).  

The data consisted of 50 items and 100 schools (90% were public), which comprised 3,710 

students (52% were girls). The original dataset consisted of responses to 362 items from 8,912 

students and 232 schools; among them there were 88, 52, 57, 57, and 108 items measuring 

algebra, data, geometry, measurement, and number, respectively. The number of students in each 

school ranged from 4 to 63 (M = 37.1). There were 12, 4, 13, 6, and 15 items for the five 

domains, respectively. Each student completed 1–9 (M = 5.88) items, and each item was 

responded to by 294–922 (M = 437.02) students. The data consisted of many missing values that 

were caused mainly by the matrix-sampling design used in the TIMSS, where a student was 

administered a subset of items or booklet (Mullis, Martin, Gonzalez, & Chrostowski, 2004). 

Thus, the data were missing by design and treated as missing at random in this study (Mislevy & 
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Wu, 1996). We were particularly interested in the following three questions: 

1. What was the school effect as indicated by the ICC? 

2. What were the correlations among the five attributes? 

3. What were the gender (girl = 0, boy =1) and school type (private = 0, public = 1) 

differences in the five attributes? 

Five models were fit to the data: (a) the uDINA model (which served as the baseline model), 

(b) the mDINA model, (c) the mDINA model with gender as a student-level covariate (denoted 

as mDINA-G), (d) the mDINA model with school type as a school-level covariate (denoted as 

mDINA-S), and (e) the mDINA model with gender as a student-level covariate and school type 

as a school-level covariate (denoted as mDINA-GS). The priors were specified as those in the 

simulation study. The MCMC procedure had a run length of 20,000 iterations with a burn-in 

length of 5,000 iterations. It took approximately nine computer hours for the most complicated 

mDINA-GS model. The five models were compared according to the DIC values. 

 The posterior predictive model checking (PPMC; Gelman, Meng, & Stern, 1996) method 

was used to examine the fit of the models. This study focused on the person- and item-level fit 

statistics. For the person-level fit statistics, we used the raw score for each student, whose range 

was from 0 to 9. For the item-level fit, we computed the percentage of correct answers. The 

differences of the two statistics between the observed and replicated data were examined. 

Results 

The DIC values were 21,740 for mDINA-GS, 22,725 for mDINA-G, 22,745 for mDINA-S, 

22,853 for mDINA, and 24,152 for uDINA. The mDINA-GS model had the smallest DIC value 

(JAGS code is shown in the online supplement). For PPMC results, both statistics indicated a 

good fit for the mDINA-GS model. The results are available upon request. Since the mDINA 

model had a better fit than the uDINA model, a multilevel data structure was found. According to 

the mDINA model without any predictor, the ICC was 0.50, 0.39, 0.41, 0.38, and 0.42 for the 

five attributes, respectively, and the design effect was 18.92, 15.06, 15.89, 14.71, and 16.06, 
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respectively, indicating a strong school effect. The results were consistent with previous findings, 

which found substantial between-school variations (ICC = 0.48) among eighth graders in the 

United States for the 2003 TIMSS mathematics test (Wang, Osterlind, & Bergin, 2012). 

 Table 1 shows the parameter estimates and the standard errors for the regression 

coefficients, and the student-level and school-level variance–covariance matrices in the 

mDINA-GS model. The g- and s-parameter estimates, not listed due to space constraints, were 

between 0.01 and 0.42. The Wald test on the regression coefficients of gender for the five 

attributes suggested that boys had a statistically higher mastery level than girls in the 

measurement and number attributes, which was consistent with the findings in the TIMSS 2003 

mathematics report (Mullis et al., 2004). The Wald test on the regression coefficients of school 

type for the five attributes indicated that private schools had a statistically higher mastery than 

public schools on algebra and number attributes. The school-type difference was also consistent 

with previous studies (Rutkowski & Rutkowski, 2010). The five attributes were moderately 

correlated in a range of 0.46 (between attributes 1 and 4) and 0.63 (between attributes 1 and 3). 

[Table 1 about here] 

We took the classification of examinees from the best-fitting mDINA-GS model as a gold 

standard and computed Cohen’s Kappa coefficient to examine the agreement in the attribute and 

profile classifications between the mDINA-GS and the uDINA models. The coefficients were 

between 0.64 and 0.73 for the five attributes and was 0.38 for the profiles, indicating a moderate 

agreement (Landis & Koch, 1977). Thus, ignoring multilevel data structures would affect the 

classification of attributes and profiles seriously. 

For illustrative purposes, the MBD approach also was adopted (the JAGS code is shown in 

the online appendix). When fitting the model with student-level and school-level predictors, it 

took approximately six hours to converge in JAGS. The resulting DIC was 23,662, which was 

larger than that of the LCV approach (21,740). According to Equation 8, the MBD approach 

yielded an ICC of 0.25, 0.28, 0.25, 0.24, and 0.27 for the five attributes, respectively. Although 
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these values were not the same as those from the LCV approach, they all suggested large school 

effects on the attributes. As expected, the estimates for g- and s-parameter from the two 

approaches were almost identical, with correlations around 0.99. The two approaches yielded 

substantial agreement in classification, with Cohen’s Kappa coefficients between 0.73 and 0.83 

for the five individual attributes and 0.80 for the attribute profiles. The other parameter estimates 

are shown in Table 1. Note that, although they were not on the same metric, the estimation 

patterns were very similar. For example, both approaches found that boys had a statistically 

higher mastery level in the measurement and number attributes and that attribute 1 (algebra) and 

attribute 3 (geometry) had the highest positive correlation.  

An additional simulation study that mimicked the design of the empirical example was 

conducted to evaluate the parameter recovery for the LCV and MBD approaches. The item 

estimates, person estimates, and regression coefficients in Table 1 under each approach were 

used as generating values. The data-generating model was fit to the data using JAGS with priors 

and settings similar to those in the empirical example. Thirty replications were conducted. The 

bias and RMSE in the estimates were computed. The parameter recovery in both approaches was 

found to be satisfactory. The results are provided in the online supplement.  

Conclusion and Discussion 

Two-staged or multi-staged sampling has become popular, especially in large-scale 

assessments. Such a sampling creates multilevel data structures. The consequences of ignoring 

multilevel structures have been well documented in the literature, and a variety of multilevel 

linear models and IRT models have been developed. Most existing CDMs are unilevel and 

become infeasible for multilevel data. This study developed a new class of multilevel CDMs in 

which the general LCDM was used as the item-level model and the LCV and MBD approaches 

were proposed to formulate the Level-1 and Level-2 models. Covariates can be incorporated 

directly into each level, and their effects on attribute mastery can be conveniently estimated. The 

standard errors of the covariates can be estimated accurately, and the accuracy of attributes and 
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profiles classification for individuals can be improved.  

A series of simulations were conducted to evaluate the parameter recovery of the new 

multilevel CDMs and the consequences of ignoring multilevel structures on parameter estimation. 

Due to high dimensionality, Bayesian methods with MCMC algorithms were adopted. For 

simplicity, the mDINA and uDINA models were used for demonstration. It was found that, when 

the data-generating mDINA model was fit to mDINA data, all parameters were recovered fairly 

well. The longer the test was and the larger the number of schools were, the better the parameter 

recovery. When the mDINA model was fit to data generated from the uDINA model, there was 

little harm in parameter estimation, and the estimates for the school-level variance-covariance 

matrix were very close to zero. 

On the other hand, when the uDINA model was fitted to mDINA data (and the multilevel 

structures were ignored), the estimates for the item parameters and their standard errors were not 

affected, but the standard errors of the student-level covariates were underestimated, which is 

consistent with the findings in multilevel linear models or IRT models. The estimates for the 

student-level covariates were poor, especially when the ICC was high, because the variance of 

the student level was constrained to be 1 for model identification. These results were different 

from those in multilevel linear models or IRT models, where it was found that the variance of the 

ignored level (e.g., school level) is redistributed to the adjacent level (e.g., student level) and the 

variance of the student level is estimated inaccurately. Finally, ignoring multilevel structures also 

resulted in poorer recovery of the latent profiles of individuals. As a conclusion, when there is a 

doubt about multilevel effects, fitting both unilevel and multilevel CDMs and comparing their 

differences are recommended. 

The empirical example of the 2003 TIMSS mathematics test shows that boys and private 

schools had a higher percentage of mastering the attributes than girls and public schools, and the 

five attributes were moderately correlated. It will be valuable for future studies to apply the 

multilevel CDMs to real tests to investigate the effects of student-level and/or school-level 
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covariates on attribute mastery when data have multilevel structures. 

The LCV and MBD approaches yielded nearly identical estimates for item parameters, 

substantial agreement in attribute and profile classifications, and similar patterns for the 

regression coefficients of covariates and correlations among latent variables. The two approaches 

have strengths and limitations. The LCV approach is preferred because it is easier to implement 

with existing computer programs. 

This study is not without limitations. Although the new models were developed using the 

LCDM (Henson et al., 2009) as the item-level model, they can be applied to other general CDMs, 

such as the GDM (von Davier, 2010) and G-DINA model (de la Torre, 2011). For simplicity, we 

used the mDINA model as an example in this study; however, formulation of other multilevel 

CDMs (e.g., the multilevel DINO and multilevel fusion models) are straightforward and can be 

used for future studies. 

Item parameters in CDMs (e.g., the slip parameter and guessing parameter in the DINA 

model) often are treated as fixed effects, indicating that they are identical across persons. This 

assumption may be too strict in some situations. For example, the levels of slipping may depend 

on examinee motivation, and the levels of guessing may be related to examinee ability. If so, it 

would be more flexible to treat the item parameters as random effects. When appropriate, the 

random-effect approach proposed in Huang and Wang (2014) can be incorporated in multilevel 

CDMs. In addition, this study focused on the random-intercept multilevel CDMs. It is valuable 

for future studies to investigate random-slope multilevel CDMs where the cross-level 

interactions among predictors at different levels is possible (Hox, 2010).  
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Table 1. Parameter estimates under the mDINA-GS in the empirical example with the LCV and 

MBD approaches 

Par 
LCV 

 
MBD   

Par 
LCV 

 
MBD 

Est SE 
 

Est SE   Est SE 
 

Est SE 

001 0.548 0.248  0.472 0.558  24 0.469 0.029  0.444 0.032 
002 -0.477 0.225 

 
-0.688 0.524 

 25 0.559 0.028 
 

0.470 0.031 

003 0.353 0.195 
 

0.185 0.496 
 34 0.612 0.030 

 
0.430 0.029 

004 -0.820 0.210 
 

-0.216 0.658 
 

35 0.523 0.024 
 

0.470 0.028 

005 0.258 0.231 
 

-0.330 0.737 
 45 0.561 0.027 

 
0.475 0.043 

101 -0.328 0.117 
 

-0.628 0.180 
 11 0.986 0.140 

 
3.239 0.241 

102 0.078 0.131 
 

-0.027 0.337 
 12 0.661 0.158 

 
2.779 0.269 

103 -0.099 0.071 
 

-0.184 0.187 
 

13 0.707 0.171 
 

2.897 0.299 

104 0.428 0.129 
 

0.534 0.254 
 14 0.639 0.183 

 
2.752 0.261 

105 0.161 0.074 
 

0.351 0.200 
 15 0.726 0.206 

 
2.756 0.251 

011 -0.350 0.168 
 

-0.211 0.284 
 22 0.638 0.151 

 
2.862 0.269 

012 0.147 0.254 
 

0.775 0.328 
 

23 0.555 0.140 
 

2.711 0.243 

013 -0.169 0.137 
 

0.336 0.274 
 24 0.497 0.120 

 
2.627 0.234 

014 -0.016 0.199 
 

-0.235 0.322 
 25 0.572 0.132 

 
2.691 0.216 

015 -0.442 0.120 
 

-0.325 0.207 
 33 0.702 0.198 

 
3.017 0.270 

12 0.604 0.026 
 

0.480 0.033 
 

34 0.508 0.142 
 

2.680 0.256 

13 0.634 0.016 
 

0.506 0.025 
 35 0.606 0.141 

 
2.758 0.207 

14 0.456 0.027 
 

0.401 0.029 
 44 0.612 0.162 

 
2.797 0.235 

15 0.617 0.024 
 

0.459 0.022 
 45 0.552 0.130 

 
2.704 0.239 

23 0.613 0.028 
 

0.476 0.032   55 0.716 0.176 
 

3.002 0.271 

Note. LCV = latent continuous variable, MBD = multivariate Bernoulli distribution, Par = 

Parameters, Est = Estimates, SE = Standard error; 001 to 005 are the intercepts for the five 

attributes (algebra, data, geometry, measurement, and number); 101 to 105 are the regression 

coefficients of gender (boy = 1) for the five attributes; 011 to 015 are the regression coefficients 

of school type (public = 1) for the five attributes;is the student-level covariance;is the 

school-level covariance. The parameter estimates in the two approaches are not directly 

comparable because they are not on the same metric. 
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Figure 1. Correct classification rates of the attribute profiles and individual attributes under the 

ICC-H and ICC-L conditions in the simulation study 


