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Abstract

Air pollution has become a serious issue over the past few decades, and the transport

sector is an important emission source. In this study, we model and simulate the dispersion

of vehicle exhaust in a hypothetical city with a single central business district (CBD) in a

complete day, deriving an average daily pollutant concentration, then use the distribution of

wind direction over a year, to compute the distribution of average pollutant concentration in the

city. All vehicles are assumed to be continuously distributed over the whole city, and the road

network is relatively dense and can be approximated as a continuum. The model of Huang et al

(2009, Transportation Research Part B, 43(1): 127-141) is used to describe the traffic flow that

satisfies the reactive dynamic user equilibrium principle, and the pollution dispersion model is

governed by the advection-diffusion equation. The complete model is composed of a coupled

system of a conservation law, an eikonal equation and an advection-diffusion equation. The

problem is solved by the efficient fifth-order weighted essentially non-oscillatory scheme for

the conservation equation and the advection-diffusion equation, and the fast sweeping method

for the eikonal equation with third order total variation diminishing (TVD) Runge-Kutta time
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discretization. The numerical results show a reasonable temporal and spatial distribution of

vehicle density and pollution concentration.

Key Words: Advection-diffusion equation; Atmospheric dispersion; Continuum model.

1 Introduction

An air pollution dispersion model is often used to describe the contaminant transport in the

atmosphere. The term dispersion describes the combination of diffusion (due to turbulent eddy

motion) and advection (due to the wind) that occurs within the air near the Earth’s surface. The

concentration of a contaminant released into the air can be described by the advection-diffusion

equation which is a second-order partial differential equation of the parabolic type.

Roberts (1923) and Sutton (1932) provided analytical and approximate solutions for the

atmospheric dispersion problem in their pioneering studies, although some of their assump-

tions were over simplified. Many different dispersion models have been derived to address

the various boundary conditions and parameter dependencies. The simplest of these models

is the so-called Gaussian plume dispersion model (Stockie, 2011), corresponding to a contin-

uous point source that emits contaminant into a uni-directional wind in an infinite domain.

The Gaussian plume model began to attract more attention when Pasquill (1961) published his

dispersion rates for plumes over open level terrain. The Gaussian plume model has achieved

popularity because it is easy to use, the plume dispersion data are readily available, and most

measured data fit the model reasonably well (Whaley, 1974).

Gaussian plume models have been applied extensively, and have numerous variants. They

have been used to study emissions from multiple sources (Lushi and Stockie, 2010), such as air

contaminant dispersion in a domain with an inversion layer (Wikipedia, 2010), and from line

sources (Nagendra and Khare, 2002), area sources, instantaneous sources and time-varying

sources (Arya, 1999). Ermak (1977) was the first to consider pollutant dispersion with both

deposition and settling.

In this study we model and simulate the dispersion of pollution emitted from vehicles in a
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hypothetical city with a single central business district (CBD) in a complete day, and consider

dispersion under different wind directions. We also derive a distribution of an average pollutant

concentration in a year within the city region. Our aim is to simulate the travel behavior of

commuters to the CBD and back home. We adopt the continuum modeling approach which

has been applied to the static analysis of air pollution pollutant in Yin et al. (2013, 2017).

For this paper, we extended continuum modeling approach to the dynamic analysis of air

pollution pollutant. We divide the problem into two parts. In the first, all vehicles leave their

homes and travel to the CBD, with all vehicles eventually entering the CBD. In the second

part, all vehicles leave the CBD and gradually go back to their homes, and eventually all

vehicles have left the CBD and arrived at their homes. We use the model in Huang et al.

(2009) to describe the traffic flow that satisfies the reactive dynamic user equilibrium principle

in which a vehicle chooses a route to minimize the instantaneous travel cost to the destination.

The dispersion emission model of Ahn et al. (1999) is then combined with the traffic model.

The numerical results give the temporal and spatial distribution of the vehicle density and the

pollution concentration within the modeling region.

2 Model formulation

As Figure 1 shows, the modeled region is an urban city denoted by Ω. Let Γo be the

outer boundary of the city, Γc be the boundary of the compact CBD and Γi be the boundary of

an obstruction such as a lake, park or undeveloped area where traffic is not allowed to enter.

Thus, the boundary of Ω is Γ = Γo ∪ Γc ∪ Γi. The vehicles are continuously located within

(x, y) ∈ Ω, and they move back and forth to the CBD within the modeling region for a given

time-dependent demand in a complete day.

We consider the dispersion of vehicle exhaust in a complete day in the city. For simplic-

ity, we only consider the vehicles moving back and forth to the CBD from their homes, and

ignore other travel behaviors. We divide the problem into two parts. In the first, all vehicles

leave their homes and travel to the CBD, and there are no vehicles leaving the CBD, with the
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travel demand being a non-negative function representing the vehicles joining the traffic sys-

tem gradually. In the second part, all vehicles leave the CBD and travel back to their homes,

and there are no vehicles traveling to the CBD, with the travel demand being a non-positive

function representing the vehicles leaving the traffic system gradually.

Fig. 1: The modeling domain

The variables are denoted as follows.

• ρ(x, y, t) (in veh/km2) is the density of travelers at the location (x, y) and at time t.

• v = (u(x, y, t), v(x, y, t)) is the velocity vector at the location (x, y) and at time t.

• U(x, y, t) (in km/h) is the speed, which is the norm of the velocity vector, i.e., U = |v|,

and is determined by the density as

U(x, y, t) = U f e−βρ
2
, ∀(x, y) ∈ Ω, t ∈ T j. (1)

where U f (x, y) (in km/h) is the free-flow speed and β(x, y) (in km4/veh2) is a positive

scalar related to the road condition.

• F = ( f1(x, y, t), f2(x, y, t)) is the flow vector at the location (x, y) and at time t, which is

defined as

F = ρv, ∀(x, y) ∈ Ω, t ∈ T j. (2)

• |F | is the flow intensity, which is the norm of the flow vector F , and is defined as

|F | = ρU, ∀(x, y) ∈ Ω, t ∈ T j. (3)
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• q(x, y, t) (in veh/km2/h) is the travel demand at the location (x, y) and at time t, which is

a time-varying function.

• c(x, y, t) (in $/km) is the local travel cost per unit distance of travel at the location (x, y)

and at time t, and is defined as

c(x, y, t) = κ(
1
U

+ π(ρ)), ∀(x, y) ∈ Ω, t ∈ T j. (4)

where κ is the value of time, κ
U represents the cost associated with the travel time, and

κπ(ρ) represents other costs that are dependent on the density.

• φ(x, y, t) is the instantaneous travel cost potential of the traveler who departs from the

location (x, y) at time t to travel to the CBD using the constructed path-choice strategy.

• φ1(x, y, t) is the instantaneous travel cost potential of the traveler who departs from the

CBD travel to the location (x, y) at time t using the constructed path-choice strategy.

• C(x, y, z, t) (in kg/km3) is the concentration of the pollution at the location (x, y, z) and at

time t.

• u f (x, y, z, t) (in km/h) is the wind velocity vector at the location (x, y, z) and at time t.

• Kx,Ky,Kz (in km2/h) are the eddy diffusivities in the x, y and z directions, respectively.

• E (in kg/(veh h)) is the amount of pollutant generated per vehicle and per hour.

Finally, T = T 1 ∪ T 2, for j ∈ {1, 2}, T j = [t j
beginning, t

j
end] is the modeling period of the j-th

part of the traffic. T 1 refers to the traffic period going to the CBD, and T 2 refers to the traffic

period coming back home from the CBD.

2.1 The traffic model formulation of vehicles traveling to the CBD

In this part, all vehicles travel to the CBD. Similar to flow conservation in fluid dynamics,

the traffic density, flow vector, and demand are governed by the flow conservation equation:

ρt(x, y, t) + ∇ · F (x, y, t) = q(x, y, t), ∀(x, y) ∈ Ω, t ∈ T 1. (5)
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where ρt(x, y, t) =
∂ρ(x,y,t)

∂t , and ∇ · F (x, y, t) =
∂ f1(x,y,t)

∂x +
∂ f2(x,y,t)

∂y .

To ensure that vehicles from a given location (x, y) ∈ Ω will choose a path that minimizes

their individual traveling cost to the destination, based on the instantaneous travel cost infor-

mation that is available at the time of decision making (Huang et al., 2009), we require that

c(x, y, t)
F (x, y, t)
|F (x, y, t)|

+ ∇φ(x, y, t) = 0. (6)

From Eq. (6), we can observe the following property

F (x, y, t)// − ∇φ(x, y, t). (7)

where // indicates that the two vectors are parallel and point in the same direction. In other

words, the vector of the flux points in the opposite direction of the gradient to the cost potential.

In addition, we have

‖ ∇φ(x, y, t) ‖= c(x, y, t), ∀(x, y) ∈ Ω, t ∈ T 1. (8)

which is an eikonal equation.

The system is subject to the following initial and boundary conditions
F (x, y, t) · n(x, y) = 0, ∀(x, y) ∈ Γo ∪ Γi, t ∈ T 1,

ρ(x, y, t1
beginning) = ρ0(x, y), ∀(x, y) ∈ Ω,

φ(x, y, t) = φCBD, ∀(x, y) ∈ Γc, t ∈ T 1.

(9)

wheren(x, y) is the outward unit normal vector of the boundary, ρ0(x, y) is the density of traffic

at location (x, y) at the beginning of the modeling period, and φCBD is the cost to the traveler

of crossing the CBD.

2.2 The model formulation of vehicles returning from the CBD

In this subsection, we consider the vehicles returning to their homes from the CBD. The

traffic flow on the boundary Γc is unknown and the destinations of different vehicles leaving Γc

are different, so we cannot use the traffic model from the previous section of vehicles traveling

into the CBD directly. In this paper, when considering the vehicle returning from the CBD,
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we assume that this problem is just a reversed problem of the vehicle traveling to the CBD,

i.e. if there are m vehicles reaching their home at time t, in contrast, backward in time, there

are m vehicles leaving their home traveling to the CBD at time t. We should note that, because

we give the rule of the vehicle reaching their home in the second modeling period, in other

word, the travel demand function q is known, the inflow boundary condition of ρ at the CBD

of the second modeling period should be a fixed function such that each traveler can return

home at the time specified by the source term, and we can obtain it after the whole problem

is solved. The travel demand can ensure that all vehicles have left the CBD and reached their

home at the end of the modeling period. Next we establish the complete model formulation of

the problem.

The conservation law equation still holds, with the flux satisfying

F = ρv = ρU
∇φ1

|∇φ1|
. (10)

where the potential function φ1 in the reactive dynamic user equilibrium can still be solved by

eikonal equation.

For any used path p from the location (x, y) ∈ Ω to home (x0, y0) ∈ Ω, if we integrate the

local traveling cost along the path, then the total cost incurred by the vehicles can be obtained

as

Πp(x, y, t) =

∫
p

c(x, y, t)ds =

∫
p

c(x, y, t)
F (x, y, t)
‖ F (x, y, t) ‖

· ds,

=

∫
p
∇φ1(x, y, t) · ds = φ1(x0, y0, t) − φ1(x, y, t).

(11)

using the above equations and given that F (x,y,t)
‖F (x,y,t)‖ is a unit vector parallel to ds along the path.

Hence, the total instantaneous travel cost at time t ∈ T 2 is independent of the used paths.

In contrast, for any unused path p̃ between a location (x, y) ∈ Ω to home (x0, y0) ∈ Ω, the

total cost incurred by the vehicles is

Π p̃(x, y, t) =

∫
p̃

c(x, y, t)ds ≥
∫

p̃
c(x, y, t)

F (x, y, t)
‖ F (x, y, t) ‖

· ds,

=

∫
p̃
∇φ1(x, y, t) · ds = φ1(x0, y0, t) − φ1(x, y, t).

(12)
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The inequality in the above derivation occurs because for some segments along the path p̃, the

normal vector F (x,y,t)
‖F (x,y,t)‖ and ds may not be parallel, and thus ds ≥ F

‖F ‖
· ds for those segments.

Hence, for any unused paths, the total instantaneous cost is greater than or equal to that of the

used paths. The model thus guarantees that vehicles will choose their paths in a user-optimal

manner with respect to the instantaneous travel information.

The system is subject to the following initial and boundary conditions
F (x, y, t) · n(x, y) = 0, ∀(x, y) ∈ Γo ∪ Γi, t ∈ T 2,

ρ(x, y, t2
end) = 0, ∀(x, y) ∈ Ω,

φ1(x, y, t) = φCBD, ∀(x, y) ∈ Γc, t ∈ T 2.

(13)

Note that the “initial” condition is given at the ending time t = t2
end in the traffic model. When

shocks appear and the solution is not reversible, this “backward solving” of the conservation

law is not well defined. However, if we consider only continuous solutions without shocks (as

we do in this study), the solution is reversible, and if we define:

τ = t2
end − t + t2

beginning, ρ̃(x, y, τ) = ρ(x, y, t2
end − τ), q̃(x, y, τ) = −q(x, y, t2

end − τ),

F̃ (x, y, τ) = −F (x, y, t2
end − τ), φ̃(x, y, τ) = φ1(x, y, t2

end − τ), c̃(x, y, τ) = c(x, y, t2
end − τ).

(14)

then we can rewrite the time-dependent equation into the standard form:

ρ̃τ + ∇ · F̃ (x, y, τ) = q̃(x, y, τ), ∀(x, y) ∈ Ω, τ ∈ T̃ 2,

‖ ∇φ̃(x, y, τ) ‖= c̃(x, y, τ), ∀(x, y) ∈ Ω, τ ∈ T̃ 2,

F̃ = ρ̃υ = ρ̃U
−∇φ̃(x, y, τ)
‖ ∇φ̃(x, y, τ) ‖

, ∀(x, y) ∈ Ω, τ ∈ T̃ 2.

(15)

where T̃ 2 is the image of T 2 under the transformation from t to τ. Therefore, the problem of

vehicles returning from the CBD is simply a reversed problem of the vehicles traveling to the

CBD.

2.3 Advection-diffusion equation

In this subsection, we consider the dispersion of vehicle exhaust due to the turbulent dif-

fusion and advection of the wind. The concentration C(x, y, z, t) is governed by the following
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three-dimensional advection-diffusion equation

∂C
∂t

+ ∇ · (Cu f ) =
∂

∂x
(Kx

∂C
∂x

) +
∂

∂y
(Ky

∂C
∂y

) +
∂

∂z
(Kz

∂C
∂z

) + S . (16)

where S (x, y, z, t) [kg/(km3 h)] is a source term. We next make several simplifying assump-

tions:

• Variations in topography are negligible so the ground surface can be taken as the plane

z = 0.

• The contaminant is emitted at the rate Q = ρE [kg/(km2 h)] from a surface source at

z = 0, and E will be discussed in the next section. Then the source term can be written

as

S (x, y, z, t) = Qδ(z). (17)

where δ(·) is the Dirac delta function. Note that the unit of the delta function is km−1.

• The wind velocity is constant so that u f = (u f , v f ,w f ) for the constants u f , v f ,w f . For

simplicity and without loss of generality, we assume that the wind direction is along the

positive x direction, that is, u f > 0, v f = w f = 0.

• The diffusion is isotropic so the eddy diffusivities satisfy Kx = Ky = Kz = K.

• The wind velocity is sufficiently large, so the diffusion in the x-direction is much lower

than the advection, and thus the term Kx∂
2
xC can be neglected.

Under these assumptions, the equation (16) reduces to

∂C
∂t

+
∂(u f C)
∂x

=
∂

∂y
(K
∂C
∂y

) +
∂

∂z
(K
∂C
∂z

) + ρEδ(z). (18)

As the uni-directional wind and the assumption that there are no vehicles for x < 0, and as the

contaminant does not penetrate the ground, we have the boundary conditions

C(0, y, z, t) = 0, K
∂C
∂z

(x, y, 0, t) = 0. (19)
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2.4 The emission model

Several models can estimate transport-related pollutant emissions. Here, the acceleration

and speed-based model is used, in which the emission rate is defined as a function of vehi-

cle type, instantaneous speed, and acceleration. We apply the model proposed by Ahn et al.

(1999), in which the emission rate is defined as a function of the instantaneous acceleration

and speed as follows:

E = exp(
3∑

i=0

3∑
j=0

wi, jU ia j). (20)

where a is the instantaneous acceleration (km/h2), U is the instantaneous speed (km/h), wi, j is

the model regression coefficient for speed power i and acceleration power j, and the coefficient

may be different according to different kinds of emissions such as HC, CO, and NOx (mg/s).

There is no single representative measure of traffic related air pollution. However, as sug-

gested by Wardman and Bristow (2004), NOx levels can be usefully selected, as this pollutant

has clearly adverse health effects. Here, we consider only the NOx emissions. The parameters

(Ahn et al., 1999) involved are summarized in Table 1.

Under the route choice governed by user-optimal conditions, vehicles may accelerate or

decelerate along their trajectory, according to the spatial variation in traffic conditions in the

neighboring area. The acceleration in the direction of movement is determined by

a =
axφx + ayφy√

(φ2
x + φ2

y)
. (21)

where ax, ay represent accelerations in the x and y directions, respectively, and the following

equations should be satisfied:

ax = ut + uux + vuy, ay = vt + uvx + vvy. (22)
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Table 1: Parameters for estimating NOx emissions

i,j 0 1 2 3
0 -1.07E+00 6.44E-05 5.68E-10 -1.54E-14
1 4.23E-02 3.57E-06 1.68E-10 -4.73E-15
2 -1.41E-04 -2.73E-08 -3.14E-12 2.61E-17
3 4.31E-07 6.28E-11 1.16E-14 -1.60E-19

2.5 The complete model

After the previous discussion, we can write our model for the two parts.

The complete model of the vehicles traveling to the CBD:

ρt + ∇ · F (x, y, t) = q(x, y, t), ∀(x, y) ∈ Ω, t ∈ T 1,

‖ ∇φ(x, y, t) ‖= c(x, y, t), ∀(x, y) ∈ Ω, t ∈ T 1,

F = ρυ = ρU
(−∇φ(x, y, t))
‖ ∇φ(x, y, t) ‖

, ∀(x, y) ∈ Ω, t ∈ T 1,

∂C
∂t

+
∂(u f C)
∂x

=
∂

∂y
(K
∂C
∂y

) +
∂

∂z
(K
∂C
∂z

) + ρEδ(z), ∀(x, y, z) ∈ Ω̄, t ∈ T 1.

(23)

The system (23) is subject to the following initial and boundary conditions:

F (x, y, t) · n(x, y) = 0, ∀(x, y) ∈ Γ0 ∪ Γi, t ∈ T 1,

ρ(x, y, t1
beginning) = 0, ∀(x, y) ∈ Ω,

φ(x, y, t) = 0, ∀(x, y) ∈ Γc, t ∈ T 1,

C(0, y, z, t) = 0, K
∂C
∂z

(x, y, 0, t) = 0, (x, y, z) ∈ Ω̄, t ∈ T 1,

C(x, y, z, 0) = 0, ∀(x, y, z) ∈ Ω̄.

(24)

The complete model of the vehicles returning from the CBD:

ρt + ∇ · F (x, y, t) = q(x, y, t), ∀(x, y) ∈ Ω, t ∈ T 2,

‖ ∇φ1(x, y, t) ‖= c(x, y, t), ∀(x, y) ∈ Ω, t ∈ T 2,

F = ρυ = ρU
(∇φ1(x, y, t))
‖ ∇φ1(x, y, t) ‖

, ∀(x, y) ∈ Ω, t ∈ T 2,

∂C
∂t

+
∂(u f C)
∂x

=
∂

∂y
(K
∂C
∂y

) +
∂

∂z
(K
∂C
∂z

) + ρEδ(z), ∀(x, y, z) ∈ Ω̄, t ∈ T 2.

(25)
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The system (25) is subject to the following initial and boundary conditions:

F (x, y, t) · n(x, y) = 0, ∀(x, y) ∈ Γ0 ∪ Γi, t ∈ T 2,

ρ(x, y, t2
end) = 0, ∀(x, y) ∈ Ω,

φ1(x, y, t) = 0, ∀(x, y) ∈ Γc, t ∈ T 2,

C(0, y, z, t) = 0, Kz
∂C
∂z

(x, y, 0, t) = 0, (x, y, z) ∈ Ω̄, t ∈ T 2

C(x, y, z, t2
beginning) = C0(x, y, z), ∀(x, y, z) ∈ Ω̄.

(26)

Here, Ω̄ is the dispersion region, C0(x, y, z) is the concentration of pollution at location (x, y)

at the beginning of the second part, which equals to the value of concentration at the end of

the first part. ρ(x, y, t) is governed by the conservation law, φ(x, y, t), φ1(x, y, t) is computed by

using the eikonal equation, and C(x, y, z, t) is governed by the advection-diffusion equation.

Note that, when we solve the second model by using a transformation τ = t2
end − t + t2

beginning,

the initial time in the conservation law is set at τ = t2
beginning, and the solution of the advection-

diffusion equation is still solved in the original t variable with the initial condition at t =

t2
beginning.

3 The solution algorithm

In this section, we describe an efficient solution method for solving the whole model. The

fifth order weighted essentially non-oscillatory (WENO) scheme is used for the conservation

law equation. The fast sweeping method based on the third WENO scheme is used for the

eikonal equation. For solving the advection-diffusion equation, the first order spatial derivative

is approximated by the fifth order WENO method, and the second order spatial derivatives are

approximated by the fourth order central discretization. Finally, the third order total-variation-

diminishing (TVD) Runge-Kutta time discretization is used to solve the coupled system of

equations in time.
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3.1 The fifth-order WENO scheme for the conservation law

For the 2D mass conservation equation of the system, the semi-discrete scheme approxi-

mates the point values ρi, j ≈ ρ(xi, y j, t) through a conservative difference formula as follows

d
dt
ρi, j = −

1
∆x

(( f̂1)i+ 1
2 , j
− ( f̂1)i− 1

2 , j
) −

1
∆y

(( f̂2)i, j+ 1
2
− ( f̂2)i, j− 1

2
) + qi, j∆t. (27)

where qi, j = q(xi, y j, t) is the given demand at the location (xi, y j) and at time t, ∆x and ∆y are

the mesh sizes in x and y, respectively, which are assumed to be uniform ∆x = ∆y = h for

simplicity. ( f̂1)i+ 1
2 , j

and ( f̂2)i, j+ 1
2

are the numerical fluxes in the x and y directions, respectively.

We give details of the definition of the x-flux ( f̂1)i+ 1
2 , j

below. The definition for the y-flux

( f̂2)i, j+ 1
2

is analogous. When computing the x-flux ( f̂1)i+ 1
2 , j

, the y index j is fixed. Therefore,

for simplicity of notations, we drop the y index j below when there is no confusion.

We briefly summarize the high-order WENO schemes (Liu et al., 1994; Jiang and Shu,

1996; Shu, 1998) in this subsection. WENO schemes are popular for simulating problems

with discontinuous or sharp varying solutions, and are used widely in many applications, such

as in computational dynamics (CFD) and in traffic flow modeling. The basic idea of the WENO

scheme is a locally adaptive choice of the approximation stencil, so that high-order accuracy

is achieved in smooth regions and discontinuities are resolved in a sharp and non-oscillatory

fashion. We use the fifth order finite difference WENO scheme in Jiang and Shu (1996) to

approximate the numerical flux ( f̂1)i+ 1
2

in Eq. (27). We first assume f
′

1(ρ) ≥ 0, namely, a

positive wind direction, to simplify the description. We will comment on the general case

later. Here, the numerical flux ( f̂1)i+ 1
2 , j

is obtained through a one-point upwind-biased stencil

containing s` = f1(x`, y j, t) for ` = i− 2, i− 1, ..., i + 2. First, we form the following third-order

numerical fluxes based on three different sub-stencils given by

ŝ(1)
i+ 1

2
=

1
3

si−2 −
7
6

si−1 +
11
6

si,

ŝ(2)
i+ 1

2
= −

1
6

si−1 +
5
6

si +
1
3

si+1, (28)

ŝ(3)
i+ 1

2
=

1
3

si +
5
6

si+1 −
1
6

si+2.
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We then define the three nonlinear weights ωr for r = 1, 2, 3, by

ωr =
αr∑3

s=1 αs
, αr =

dr

(ε + βr)2 . (29)

where the linear weights dr are given by

d1 =
1

10
, d2 =

3
5
, d3 =

3
10
. (30)

and the smoothness indicators βr, which measure the smoothness of the approximation in the

r-th sub-stencil, are given by

β1 =
13
12

(si−2 − 2si−1 + si)2 +
1
4

(si−2 − 4si−1 + 3si)2,

β2 =
13
12

(si−1 − 2si + si+1)2 +
1
4

(si−1 − si+1)2, (31)

β3 =
13
12

(si − 2si+1 + si+2)2 +
1
4

(si − 4si+1 + 3si+2)2.

Here, ε is a parameter to prevent the denominator from becoming 0, and is taken as 10−6 in our

computation. Finally,the numerical flux ( f̂1)i+ 1
2 , j

is given by the following convex combination

of the three third-order fluxes as

( f̂1)i+ 1
2 , j

= ω1s(1)
i+ 1

2
+ ω2s(2)

i+ 1
2

+ ω3s(3)
i+ 1

2
. (32)

with the nonlinear weights given by (29).

For the general case where f
′

1(ρ) may change sign, first we form a flux splitting f1(ρ) =

f +
1 (ρ) + f −1 (ρ) so that d

dρ f +
1 (ρ) ≥ 0 and d

dρ f −1 (ρ) ≤ 0. We then perform the procedure above to

obtain the numerical flux corresponding to f +
1 (ρ), and use a mirror symmetric procedure, with

respect to the location xi+ 1
2
, to obtain the numerical flux corresponding to f −1 (ρ). These two

numerical fluxes are then combined to form the final numerical flux. Several flux splittings are

used in practice, the most common being the Lax-Friedrichs splitting, which is given by

f ±1 (ρ) =
1
2

( f1(ρ) ± αρ), where α = max | f
′

1(ρ)|. (33)

However, in our model, f1(ρ) is not an explicit function of ρ (see the definition of F in (10)).

If we assume the velocity U and the potential φ are independent on ρ, then we have f
′

1(ρ) =
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U φx
‖∇φ‖

, and

α = max
i
|(U

φx

‖ ∇φ ‖
)i|. (34)

3.2 The fast sweeping method for the eikonal equation

The eikonal equation is a special type of steady-state Hamilton-Jacobi equations. Solutions

to Hamilton-Jacobi equations are usually continuous but not differentiable everywhere and are

usually not unique. The viscosity solution Crandall and Lions (1983) is the physically relevant

solution and the numerical solution for approximating the viscosity solutions of the Hamilton-

Jacobi equations follows the lines similar to those for solving conservation laws. Thus the

WENO schemes for conservation laws are extended to those for Hamilton-Jacobi equations in

(Jiang and Peng, 2000; Shu, 2007). For the steady-state equation, if we use the time-dependent

WENO scheme of (Jiang and Peng, 2000; Shu, 2007), we would need to introduce a pseudo-

time and then march to a steady state. The fast sweeping method (Zhang et al., 2006) is much

faster in terms of computational time than pseudo-time marching. We use the fast sweeping

method to solve the eikonal equation (8) here. The first and third order fast sweeping methods

can be found in (Zhao, 2005; Zhang et al., 2006; Xiong et al., 2011).

The fast sweeping method starts with the following initialization. Based on the boundary

condition φ(x, y) = φCBD for (x, y) ∈ Γc, we assign the exact boundary values on Γc. For the

first order fast sweeping method, large values (for example 1012) are assigned as the initial

guess at all other grid points. For the third-order fast sweeping method, the solution from the

first-order fast sweeping method is used as the initial guess at all other grid points.

The following Gauss-Seidel iterations with four alternating direction sweepings are per-

formed after initialization

(1) i = 1 : Nx, j = 1 : Ny; (2) i = Nx : 1, j = 1 : Ny;

(3) i = Nx : 1, j = Ny : 1; (4) i = 1 : Nx, j = Ny : 1.
(35)

where (i, j) is the grid index pair in (x, y) and Nx and Ny are the number of grid points in x and

y, respectively. When we loop to a point (i, j), the solution is updated as follows, using the
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Godunov Hamiltonian

φnew
i, j =


min(φxmin

i, j , φ
ymin
i, j ) + ci, jh, if |φxmin

i, j − φ
ymin
i, j | ≤ ci, jh,

φxmin
i, j + φ

ymin
i, j + (2c2

i, jh
2 − (φxmin

i, j − φ
ymin
i, j )2)

1
2

2
, otherwise.

(36)

where ci, j = c(xi, y j, t).

For a first-order fast sweeping method, we define φxmin
i, j and φymin

i, j as
φxmin

i, j = min(φi−1, j, φi+1, j),

φ
ymin
i, j = min(φi, j−1, φi, j+1).

(37)

For a third-order fast sweeping method, we define φxmin
i, j and φymin

i, j as
φxmin

i, j = min(φold
i, j − h(φx)−i, j, φ

old
i, j + h(φx)+

i, j),

φ
ymin
i, j = min(φold

i, j − h(φy)−i, j, φ
old
i, j + h(φy)+

i, j).
(38)

with

(φx)−i, j = (1 − ω−)(
φi+1, j − φi−1, j

2h
) + ω−(

3φi, j − 4φi−1, j + φi−2

2h
). (39)

(φx)+
i, j = (1 − ω+)(

φi+1, j − φi−1, j

2h
) + ω+(

−3φi, j + 4φi+1, j − φi+2

2h
). (40)

ω− =
1

1 + 2r2
−

, r− =
ε + (φi, j − 2φi−1, j + φi−2, j)2

ε + (φi+1, j − 2φi, j + φi−1, j)2 . (41)

ω+ =
1

1 + 2r2
+

, r+ =
ε + (φi, j − 2φi+1, j + φi+2, j)2

ε + (φi+1, j − 2φi, j + φi−1, j)2 . (42)

where the nonlinear weights are the same as the third-order WENO schemes, and as the mean-

ing of ε, except they are written in a different form as in (Jiang and Peng, 2000).

Convergence is declared if

‖φnew − φold‖ ≤ δ. (43)

where δ is a given convergence threshold value. δ = 10−9 and L1 norm are used in our compu-

tation.
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For the third-order fast sweeping method, using the nonlinear weights may cause non-

convergence in some time steps for solving the system but the iteration does converge if linear

weights are used instead. In order to avoid oscillatory results, particularly around the boundary

where discontinuities exist, we use the strategy introduced in (Xiong et al., 2011). Firstly, we

use the nonlinear weights to iterate. After the iteration error stagnates for 50 consecutive steps

at the same error level, for example at 10−8, we switch to fixed values for the weights taken

as the average values of the nonlinear weights in those 50 iteration steps. These fixed weights

are then used in (39) and (40) instead of the nonlinear weights (41) and (42) afterwards, which

leads to very fast convergence according to (43).

3.3 Schemes for the advection-diffusion equation

In this subsection, we focus on the numerical method to solve the advection-diffusion e-

quation with the Dirac source term. For the first order derivative, we use the fifth-order finite

difference WENO scheme previously described, and the fourth-order standard central finite

difference to approximate the second derivatives.

The Dirac function is a singular term in the differential equation, which is difficult to ap-

proximate in numerical computation. Based on the finite difference method, the most common

and effective technique is to find a more regular function to approximate the Dirac function,

the detailed description of which can be found in Tornberg and Engquist (2004). Here we use

the following approximation to replace the Dirac function:

δε(z) =


1

4∆z
min(

z
∆z

+2, 2 −
z

∆z
), |z| ≤ 2∆z,

0, |z| > 2∆z.
(44)

3.4 The third-order TVD Runge-Kutta time discretization

Finally, the semi-discrete scheme must also be discretized in time. We use the third-order

TVD Runge-Kutta method (Shu and Osher, 1988; Shu, 1998), which can maintain the stabil-

ity of the spatial discretization. If we denote the right-hand side of the ordinary differential
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equation system by L(ρ)i, j, then the Runge-Kutta method is given by

ρ(1) = ρn + ∆tL(ρn),

ρ(2) =
3
4
ρn +

1
4

(ρ(1) + ∆tL(ρ(1)),

ρn+1 =
1
3
ρn +

1
4

(ρ(2) + ∆tL(ρ(2)).

(45)

Here, the time step ∆t needs to satisfy the Courant-Friedrichs-Lewy (CFL) condition.

3.5 Solution procedure

We now summarize the complete solution procedure.

Part 1

Starting from the density ρn and concentration Cn at time level t1,n, we obtain the density

ρn+1 and concentration Cn+1 through the following steps.

1. Obtain the cost function c by the formula (4).

2. Solve the eikonal equation (8) by using the fast sweeping method to obtain φ and ∇φ.

3. Obtain the flux F by using formulas (1), (2), and (7) and the acceleration by formulas

(21) and (22).

4. Use the fifth-order Lax-Friedrichs WENO scheme with the third-order TVD Runge-

Kutta time discretization to obtain ρn+1 by solving the conservation law.

5. Obtain the source term and solve the advection-diffusion equation to obtain Cn+1.

The procedure repeats until it marches to the end of the analysis period.

Part 2

The traffic model and the dispersion model are closely interconnected. When computing

the concentration C by solving the advection-diffusion equation, we need to know the density

ρ, but they have different initial times, so the solution procedure is different from that in Part

1.
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Define the vectors of time and the numerical solution at each grid point and each time level

as

~t = {t2,n, n = 1, ...,N2
t }. (46)

~s = {sn
i, j = ρn

i, jE
n
i, j, i = 1, ...,Nx, j = 1, ...,Ny, n = 1, ...,N2

t }. (47)

where Nx,Ny and Nt are the numbers of grid points in x, y and t, respectively. The solution

procedure is as follows

1. Compute ~t and ~s from t = t2
end to t = t2

beginning by solving the traffic model, using steps 1-3

in the procedure of Part 1.

2. Using the values of ~t and ~s to compute the concentration C from t = t2
beginning to t = t2

end

by solving the advection-diffusion equation.

4 Numerical experiments

In this section, we first provide a numerical example with a simplified setup to the whole

model which has an exact solution, to demonstrate the accuracy of the high-order scheme. We

then model and simulate the dispersion of pollution emitted from vehicles in a hypothetical city

with a single CBD in a complete day, and then consider the average pollutant concentration.

4.1 Example 1

We reformulated a numerical example as

ρt + ∇ · F (x, y, t) = S 1(x, y, t),

‖ ∇φ(x, y, t) ‖=
1

v(ρ)
,

F = −ρv2(ρ)∇φ(x, y, t),

∂C
∂t

+
∂(uC)
∂x

=
∂

∂y
(Ky

∂C
∂y

) +
∂

∂z
(Kz

∂C
∂z

) + S 2(ρ) + S 3.

(48)

where S 1, S 2 and S 3 are the source terms, chosen so that an explicit exact solution is available,

and v(ρ) = v0 exp(−αρ2).
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We solve the system on a domain of Ω̄ = Ω × [0, 2], where Ω = [−2, 0] × [−1, 1], subject

to the following initial and boundary conditions:

F (x, y, t) · n(x, y) = q(x, y, t), ∀(x, y) ∈ Γo,

ρ(x, y, 0) = ρ0(x, y), ∀(x, y) ∈ Ω,

φ(x, y, t) = 0, ∀(x, y) ∈ Γc.

with the inlet segment Γo = {−2} × [−1, 1], and the outlet segment Γc = {0} × [−1, 1].

We denote

b1 = 3e−r sin t,

b2 = 12 − 3y + y3,

b3 = 9x2(1 − y2)2,

vlog = log[
b1

c f v0

√
b3 + b2

2

].

where r, c f , v0, α are given parameters, to write the exact solution as

φe(x, y, t) = c f er sin tx(−4 + y −
y3

3
),

ρe(x, y, t) =

√
−

vlog

α
,

Ce(x, y, z, t) = exp−
(x − ut)2 + y2 + z2

10
,

f1e(x, y, t) =
b1b2ρe

c f (b3 + b2
2)
,

f2e(x, y, t) =
3b1x(−1 + y2)ρe

c f (b3 + b2
2)

.

with the source terms given by

S 1(x, y, t) =
r cos t
2αρe

,

S 2(ρ, x, y, z) = ρe exp (−
z2

10
),

S 3(x, y, z, t) = (Ky(2 − 4y2) + Kz(2 − 4z2)) exp (−
(x − ut)2 + y2 + z2

10
) − S 2(ρ).
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where

r1 =
9b1x(1 − y2)b2(1 + 4vlog)

2c fα(b3 + b2
2)2ρe

,

r21 = 3(1 − y2)2(b2 + 6x2y),

r22 = 4(36 + 9(−17 + x2)y − 6(−2 + 3x2)y3 + 12y4 + 9(−1 + x2)y5 + 2y7)vlog,

r2 =
3b1x(r21 + r22)

2c fα(b3 + b2
2)2ρe

.

and the initial and boundary conditions are

q(−2, y, t) = f1e(−2, y, t), ρ0(x, y) = ρe(x, y, 0), C0(x, y, z) = Ce(x, y, z, 0).

We take the parameters to be r = 0.01, c f = 80, v0 = 1.034, α = 0.01, and we use high

order extrapolation to obtain the values of ghost points at the numerical boundary. We set

the exact solution values on the physical boundary, such as Γo and Γc. The errors and orders

of accuracy are shown in Table 2. We can clearly see that the designed order of accuracy is

achieved.

Table 2: Errors and orders of accuracy for the density ρ, potential φ and concentration C

N L2 error of ρ order L2 error of φ order L2 error of C order
10 7.11E-06 – 1.67E-01 – 4.23E-07 –
20 1.68E-07 5.40 2.36E-02 2.83 1.09E-08 5.27
40 2.50E-09 6.07 3.27E-03 2.85 3.24E-10 5.11
80 3.17E-11 6.30 4.34E-04 2.91 8.96E-12 5.19
160 3.85E-13 6.36 4.85E-05 3.16 2.49E-13 5.18

4.2 Example 2
4.2.1 Problem description

As shown in Figure 2, we consider a rectangular domain 35 km long and 25 km wide in

the numerical simulation. The center of the compact CBD is located at (10 km, 10 km) with

a diameter of 2 km, and a lake is located at (25 km, 15 km) with a diameter of 2 km, and we

simulate the pollution dispersion in three dimensions 1 km above the rectangular domain (i.e.,

Ω = [0, 35] × [0, 25], Ω̄ = Ω × [0, 1]). We assume that there is no traffic at the beginning of
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the modeling period (i.e., ρ0(x, y) = 0, ∀(x, y) ∈ Ω), and that no cost is incurred by entering

and leaving the CBD (φCBD = 0, ∀(x, y) ∈ Γc, t ∈ T ). We consider the dispersion from 6:00

am to 6:00 am the following day in the city, so the modeling period is T = [0, 24h]. We set

T 1 = [0, 11h], T 2 = [11, 24h]. The traffic demand function q is defined as

q(x, y, t) = qmax[1 − γ1d(x, y)]g(t). (49)

where qmax = 240 veh/km2/h is the maximum demand, d(x, y) =
√

(x − 10)2 + (y − 10)2 is the

distance from the location (x, y) to the center of the CBD, and γ1 = 0.01 km−1. The factor

[1 − γ1d(x, y)] is used to express the higher traffic demand generated in the domain closer to

the CBD, where more of the population is located, and finally, g(t) is a time-varying function

defined by

g(t) =



t, t ∈ [0, 1h],

1, t ∈ [1, 2h],

−
4
5

(t − 2) + 1, t ∈ [2, 3h],

0.2 t ∈ [3, 5h],

0, t ∈ [5, 12h],

− t + 12, t ∈ [12, 13h],

− 1, t ∈ [13, 14h],

4
5

(t − 14) − 1, t ∈ [14, 15h],

− 0.2, t ∈ [15, 17h],

0, t ∈ [17, 24h].

(50)

The speed function is defined as U(x, y, t) = U f e−βρ
2
, in which β = 2 × 10−6 km4/veh2 and

U f (x, y) is the free-flow speed given by

U f (x, y) = Umax[1 + γ2d(x, y)]. (51)

where Umax = 56 km/h is the maximum speed and γ2 = 4×10−3 km−1. The factor [1+γ2d(x, y)]

is used to express the faster free-flow speed in the domain far from the CBD, where there are
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fewer junctions. The local travel cost per unit of distance is defined as c(x, y, t) = κ( 1
U + π(ρ)),

where κ = 90 $/h and π(ρ) = 10−8ρ2, We assume that the capacity of the CBD is large enough

to accommodate all of the travelers in the city, so |F | should maintain the maximum flow

intensity at the CBD boundary under the congested condition. We assume the wind velocity

is constant, and |u f | = 5 km/h, 10km/h is used for next consideration, and Kx = Ky = Kz =

0.01 km2/h.

Fig. 2: The modeling domain

In this study, we consider the dispersion of the vehicle exhaust in the city under these eight

different wind directions, they are west, south, east, north, southwest, southeast, northeast and

northwest directions respectively. Next, we introduce the boundary condition for the disper-

sion model under different wind directions. For the west wind: C(35, y, z, t) = 0, the term

Kx∂
2
xC is neglected; for the east wind: C(0, y, z, t) = 0, the term Kx∂

2
xC is neglected; for the

south wind: C(x, 25, z, t) = 0, the term Ky∂
2
yC is neglected; for the north wind: C(x, 0, z, t) = 0,

the term Ky∂
2
yC is neglected; for the northeast wind: C(0, y, z, t) = 0,C(x, 0, z, t) = 0, the terms

Kx∂
2
xC and Ky∂

2
yC are neglected; for the northwest wind: C(35, y, z, t) = 0,C(x, 0, z, t) = 0, the

terms Kx∂
2
xC and Ky∂

2
yC are neglected; for the southeast wind: C(0, y, z, t) = 0,C(x, 25, z, t) =

0, the terms Kx∂
2
xC and Ky∂

2
yC are neglected; for the southwest wind: C(35, y, z, t) = 0,

C(x, 25, z, t) = 0, the terms Kx∂
2
xC and Ky∂

2
yC are neglected.

We now use the algorithm described in the previous section to perform the numerical sim-

ulation. A mesh with a Nx × Ny × Nz grid is used. The numerical boundary conditions are

summarized as follows.
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1. On the solid wall boundary, i.e., the outer boundary of the city, Γo, and the boundary of

the obstruction, Γi, we let the normal numerical flux be 0. We set ρ = 0 at the ghost

points inside the wall. In the Eikonal equation, we set φ = 1012 at the ghost points.

2. On the boundary of the CBD, i.e., Γc, we set φ = 0 in the eikonal equation. The boundary

conditions for ρ inside the CBD are obtained by extrapolation from the grids outside the

CBD. To maintain the maximum flow intensity on the boundary of the CBD under the

congested condition, we set U(x, y, t) = U f inside the CBD.

4.2.2 Numerical results

We present the numerical results in this subsection. To verify the convergence of the

algorithm with grid refinements, we simulate using two meshes with 140 × 100 × 150 and

280 × 200 × 300 grid points, respectively. The density curves and concentration curves at

8:00 am along different cuts are plotted in Figure 3, and show good grid convergence for the

numerical solution. The grid 140 × 100 × 150 is selected for further discussion

Figure 4 shows the temporal and spatial distributions of the density ρ within the modeling

region. As shown in Figure 4(a), the density is low at the beginning and the traffic is in the

non-congested condition. As the traffic demand grows, more vehicles gradually join the traffic

system, the region near the CBD boundary becomes congested, and the density in the eastern

region is particularly high (see Figure 4(b)). Although the demand starts to decrease from

8:00 am, the areas around the CBD are still in the congested condition at 8:30 am due to

the limitation on the maximum flow intensity into the CBD (Figure 4(d)). As the demand

decreases further, all parts of the city return to the non-congested condition (Figure 4(e) and

(f)). Then, because the traffic demand becomes zero and all the travelers have entered the

CBD, there is no traffic in the city until the vehicles return from the CBD. As the vehicles

begin to return from the CBD the density increases (Figure 4(g) and (h)), and although the

traffic demand starts to decrease from 7:00 pm, the density keeps increasing due to the flow

intensity being greater than the traffic demand (Figure 4(i)). As the demand decreases further,

24



(a) x=12 (b) x=12

(c) x=16 (d) x=16

(e) y=3 (f) y=3

(g) y=12 (h) y=12

Fig. 3: Demonstration of grid convergence of the density(unit: veh/km2) (left column, panels
a, c, e, g) and of the concentration(unit: kg/km3) (right column, panels b, d, f, h) at 8:00 am
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the city returns to the non-congested condition (Figure 4(j), (k) and (l)). Finally, all vehicles

have reached their destinations, and there is no traffic in the city.

Figure 5 illustrates the contours of the total cost potential function φ at various times. At

the beginning of the modeling period, when the density is very low and traffic is in a free-flow

state, the cost potential contours are a series of concentric circles located around the CBD. As

the traffic demand grows, the total cost potential increases and the contours become denser.

As the spaces between the contours become smaller, the local cost of moving one distance

unit increases, as shown in Figure 5(b). In Figure 5(c) and (d), the density on the eastern

side of the CBD is very high and the travel cost increases rapidly, resulting in a denser set

of cost potential contours in this region. As the traffic demand decreases, the distributions of

the cost potential function return to their former conditions, as shown in Figure 5(e) and (f).

The density initially increases and the contours become denser again when the vehicles return

from CBD (Figure 5(h) and (i)). As the vehicles gradually reach their homes, the cost potential

contours return to being a series of concentric circles located around the CBD (Figure 5(l)).

Figure 6 shows the plot of the flow vector, which illustrates the results of the path choice.

We can see that the travelers pass around the lake if they come from the east. At the begin-

ning and end of the two modeling period, as the density is low, vehicles move toward the

CBD or leave CBD in almost straight lines. As the density of the eastern region around the

CBD becomes high, vehicles choose a curved trajectory to avoid this region. This demon-

strates the capability of the proposed RDUO-C model in modeling how travelers alter their

preferred routes in response to dynamic changes in the network conditions to minimize their

instantaneous cost potentials.

We consider the total flow to the CBD through Γc (consisting of the inflow when the vehi-

cles travel to the CBD and the outflow when the vehicles return from the CBD; if fCBD > 0, it

represents the inflow, otherwise, it represents the outflow) defined as

fCBD(t) =

∮
Γc

(F · n)(x, y, t)ds. (52)

where n is the unit normal vector pointing toward the CBD, and the total demand over the
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(a) 6:30 am (b) 7:30 am (c) 8:00 am

(d) 8:30 am (e) 9:00 am (f) 11:00 am

(g) 6:00 pm (h) 7:00 pm (i) 7:30 pm

(j) 8:00 pm (k) 9:00 pm (l) 10:30 pm

Fig. 4: Density plot(unit: veh/km2)
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(a) 6:30 am (b) 7:30 am (c) 8:00 am

(d) 8:30 am (e) 9:00 am (f) 11:00 am

(g) 6:00 pm (h) 7:00 pm (i) 7:30 pm

(j) 8:00 pm (k) 9:00 pm (l) 10:30 pm

Fig. 5: Cost potential plot
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(a) 6:30 am (b) 7:00 am (c) 8:00 am

(d) 8:30 am (e) 9:00 am (f) 11:00 am

(g) 6:00 pm (h) 7:00 pm (i) 7:30 pm

(j) 8:00 pm (k) 9:00 pm (l) 10:30 pm

Fig. 6: Flow vector plot
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whole domain is defined as

qΩ(t) =

"
Ω

q(x, y, t)dxdy. (53)

Figure 7 shows the relationship between fCBD(t) and qΩ(t). The numerical datas show that

the areas under these two curves are the same, which demonstrates that all the vehicles have

entered the CBD by 11:00 am, and have left the CBD and reached their homes by 11:00 pm.

The curve for the total inflow fCBD(t) always lags behind the curve for the total demand qΩ(t).

In contrast, the curve for the total demand qΩ(t) always lags behind the curve for the total

outflow fCBD(t). The number of vehicles in the city increases when qΩ(t) is larger than fCBD(t),

and it decreases when fCBD(t) is larger than qΩ(t).

Fig. 7: The total demand and total inflow plot

Figure 8 shows the temporal and spatial distribution of the pollutant concentration C for

NOx at ground level in a complete day, given the wind direction aligned with the positive x-

axis and |u f | = 10 km/h. This figure clearly shows that the upwind locations are much less

polluted than the downwind locations, due to the dispersion effect. In addition, comparing

the figures reveals a positive relationship between the traffic flow intensity and the pollutant

concentration, but the most polluted time always lags behind the most congested time.

Consider the pollutant average concentration at the ground level in a complete day, defined

as

C̄(x, y) =
1

24

∫ 24

0
C(x, y, 0, t)dt. (54)

30



(a) 7:00 am (b) 8:00 am (c) 8:30 am

(d) 9:00 am (e) 11:00 am (f) 1:00 pm

(g) 6:00 pm (h) 7:00 pm (i) 8:00 pm

(j) 9:00 pm (k) 10:00 pm (l) 12:00 am

Fig. 8: Concentration plot (unit: kg/km3)
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(a) west (b) south

(c) east (d) north

(e) southwest (f) southeast

(g) northeast (h) northwest

Fig. 9: An average concentration plot for a day under different wind directions, and u f =

10 km/h (unit: kg/km3)
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Figure 9 shows the distribution of the pollutant average concentration C̄ under different wind

directions over the city region. The sub-figures in Figure 9 show the results with the wind

direction aligned with west, south, east, north, southwest, southeast, northeast and northwest

directions respectively. As shown in the figure, the high-pollution areas are mainly located at

the downwind location around the CBD, and the northeast region is always highly polluted

due to the high density of vehicles.

Same as the daily average concentration C̄, we can also define the pollutant average con-

centration in a year according to the type of wind. Typically, the wind direction is the same at

the same time in a year for a fixed city. We assume that the distribution of wind is the same

every year, including the velocity, direction, and the period for each type of wind. We can then

define

C̃(x, y) =

N∑
i=1

kiC̄i(x, y). (55)

where N is the amounts of the type of wind, and C̄i is the pollutant average concentration of

a day with the wind introduced as above, and ki is the corresponding weight, and satisfying
N∑

i=1
ki = 1.

Figure 10 shows the wind rose plot of the different distributions of wind in a year. The

wind velocity is 5 km/h and 10 km/h, and the wind direction is one of the eight directions as

mentioned, so N = 16, for simplicity to describe, we numbered all winds that consideration in

the study as in Table 3

Table 3: The number of each type wind

number north northeast east southeast south southwest west northwest
5km/h 1 3 5 7 9 11 13 15
10km/h 2 4 6 8 10 12 14 16

Figure 11 show the distribution of C̃ within the modeling region according to the distribu-

tion of wind in the Figure 10. These figures show that the highly polluted region is located

around the CBD and particularly in the northeast region, and different weights have an obvious
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(a) (b)

(c) (d)

(e) (f)

Fig. 10: Wind rose plot of the distribution of wind (the weights under each type wind in
the sub-figures are: (a) k1=0.125, k5 = k6 = k11 = k12 = k15=0.175, (b) k1=0.16, k2=0.04,
k5 = k15 = k12=0.1, k6=0.2, k11=0.3, (c) k1=0.09, k2=0.16, k5=0.13, k6=0.12, k9=0.05, k10=0.2,
k13=0.14, k14=0.11, (d) k3 = k16=0.15, k4 = k15=0.10, k7=0.05, k8=0.20, k11=0.14, k12=0.11,
(e) k5=1/3, k11 = k12 = k15 = k16=1/6, (f) k5 = k16=0.1, k6=0.2, k11 = k12=0.15, k15=0.3, where
i = 1, 2, ..., 16 is the number of the wind in Table 3)
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(a) (b)

(c) (d)

(e) (f)

Fig. 11: Average concentration plots for 1 year (the weights under each type wind in the sub-
figures are: (a) k1=0.125, k5 = k6 = k11 = k12 = k15=0.175, (b) k1=0.16, k2=0.04, k5 =

k15 = k12=0.1, k6=0.2, k11=0.3, (c) k1=0.09, k2=0.16, k5=0.13, k6=0.12, k9=0.05, k10=0.2,
k13=0.14, k14=0.11, (d) k3 = k16=0.15, k4 = k15=0.10, k7=0.05, k8=0.20, k11=0.14, k12=0.11,
(e) k5=1/3, k11 = k12 = k15 = k16=1/6, (f) k5 = k16=0.1, k6=0.2, k11 = k12=0.15, k15=0.3, where
i = 1, 2, ..., 16 is the number of the wind in Table 3)(unit: kg/km3)
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influence on the distribution of C̃, so it is important to take into account the wind distribution

when selecting the location of the CBD.

5 Conclusion

In this study, the continuum modeling approach is taken to study the dispersion of vehicle

exhaust in a city. We first used the model in Huang et al. (2009) to describe the traffic flow that

satisfies the reactive dynamic user equilibrium principle in which a vehicle chooses a route to

minimize the instantaneous travel cost to the destination. We have demonstrated that the prob-

lem of vehicles returning from the CBD is simply a reversal of the problem of vehicles travel-

ing to the CBD. We then consider the dispersion of vehicle exhaust due to the turbulent eddy

motion and wind. The concentration of the pollutant is governed by an advection-diffusion

equation with a Dirac source term. We have described an efficient solution algorithm for the

complete model, including the weighted essentially non-oscillatory (WENO) finite difference

scheme for the conservation equation, the fast sweeping method with WENO approximation

for the eikonal equation, a regularized function is used to approximate the Dirac function,

and fifth-order WENO approximation to the advection term in the advection-diffusion equa-

tion. The numerical results show a reasonable temporal and spatial distribution of the vehicle

density and the pollution concentration.

The formulation in this paper only applies to a region with a single CBD. We can extend

our model to the case of multiple CBDs, for which the flows would interact in the city, and thus

the model would become more complicated. This would make for an interesting future study.

We can also consider how the air quality affects the choice of residential locations, which in

turn changes travel behavior and hence the pollution patterns. An optimal housing distribution

could then be achieved.
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