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ABSTRACT Air quality monitoring plays an increasingly important role in providing accurate air pollution
data for assessing the impacts of air pollution on public health. Development of proper sensor networks,
by deploying the right air pollution sensors at the right place, in order to meet the needs of different
groups in the city and provide the much needed public services, deserves careful attention, especially when
smart city development is being considered. However, air quality monitoring can be a costly measure.
To tackle such a challenge, air pollution sensor placement can be carefully designed to achieve certain
optimal citizen-centric objectives in the absence of field information, which can be formulated as an optimal
sensor placement problem. In this paper, we propose three citizen-centric objectives for the optimal sensor
placement problem, which does not require the prior deployment of pollution sensors for obtaining any field
information. By citizen-centric, we mean that sensor placement puts the citizens’ welfare at the center of
attention and be able to fulfill the following objectives: 1) better assessing the vulnerable people’s exposure
to air pollution; 2) maximizing overall satisfaction of obtaining public information on existing air quality;
and 3) better monitoring traffic emissions. We formulate the optimization problem for each scenario and
propose an effective method to solve the problem accordingly. Last but not least, we conduct a case study in
the city of Cambridge to evaluate the feasibility and effectiveness of our proposed methods. Our case study
has shown that in order to optimize our citizen-centric objectives, there is a need to re-orient the current
sensor placement strategies in the city of Cambridge, U.K.

INDEX TERMS Air pollution, citizen-centric, optimization, sensor placement, design methodology, human
factors.

I. INTRODUCTION
According to the World Health Organization (WHO), ambi-
ent air pollution presents a major environmental risk to public
health, causing around 4.2 million premature deaths world-
wide in 2016 [1]. Development of proper sensor networks,
by deploying the right air pollution sensors at the right place,
in order to meet the needs of different groups in the city, and
provide the much needed public information and services,
thereby deserves careful attention [2]–[4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Saqib Saeed.

Generally, the measurements can be obtained either
through low-cost mobile wireless sensors or fixed-location
sensors with sophisticated measurement equipment. In this
study, we focus on deployment strategies for fixed-location
sensors as measurements of such are more accurate and
reliable [5]. However, deployment of static sensors can be
a costly measure, incurring not only site construction costs
but also operational costs. Hence only a limited number of
sensors can be deployed given a budget constraint.

There has been much work covering sensor placement in
relation to general environmental monitoring. For example,
[6] studied the problem of selecting a most informative subset
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of correlated random variables under size constraints. Refer-
ence [7] proposed a near optimal sensor placement strategy
for temperature monitoring by maximizing mutual informa-
tion under size constraint. Reference [8] studied optimal
sensor placement for field soil moisture estimation. Refer-
ence [9] studied the wind monitoring problem. However, all
the studies mentioned above aim to place sensors or stations
at the most informative locations defined either in terms of
entropy or mutual information. By modeling each location
as a random variable, the proposed approach would require
the covariance between any two random variables, usually
through a strong Gaussian Process assumption on the under-
lying field and more importantly requires a pilot study to
obtain the field information, which is impractical due to
complex procedures and high costs.

Some studies focused on the optimal design of air quality
monitoring networks using air quality estimation models,
such as physical models [10], [11] and learning-based mod-
els [12]. Reference [10] studied the optimal redistribution of
air quality monitoring network using the commonly adopted
atmospheric dispersion model and genetic algorithm. Ref-
erence [11] studied the optimization of air quality network
design using the chemical transport model and searching
algorithm. Reference [12] proposed an entropy minimization
model for recommending new station locations based on
their proposed semi-supervised air quality inference model.
However, the placement quality of these approaches will
depend on the accuracy of the air quality model and [10], [12]
required existing air quality measurements in the region as
inputs to the air quality estimation model.

In this paper, we put forward the following questions
regarding for air quality monitoring. Firstly, what should be
the key citizen-centric objectives when deploying an air qual-
ity monitoring network throughout a city, in the absence of
any prior knowledge of the field? By citizen-centric, wemean
sensor placement that puts our citizens’ welfare at the cen-
ter of attention. Secondly, given a fixed budget constraint,
what is the optimal sensor placement strategy to achieve the
objectives? Thirdly, when there are multiple objectives to be
considered simultaneously, how should we derive a suitable
sensor placement strategy to achieve an integrated goal given
the budget constraints?

In our previous study [13], we proposed a citizen-centric
objective which aimed to place the sensors to maximize
overall citizen satisfaction. They showed that when the
individual satisfaction is an exponential decay function of
his/her distance to the nearest sensor, the objective func-
tion has the nice monotone and submodular property that
allows greedy algorithms to solve the problem efficiently
with provable approximation guarantee. We generalize the
formulation to include many other functions. Furthermore,
we formulate two other citizen-centric objectives which
aim at: 1. Better protecting the vulnerable people 2. Better
monitoring traffic emissions to assess if ambient air quality
standards have been met. Our work carries the following
significance:

• We formulate three important citizen-centric objectives
for our optimal sensor placement problem without the
need of obtaining any prior field information.We aim at:
1) Better assessing the vulnerable people’s exposure to
air pollution 2) Maximizing overall satisfaction in air
quality information available to the public 3) Better
monitoring traffic emissions in order to assess if air
quality objectives or ambient regulatory standards have
been met.

• We show that the exact solutions to the first two formula-
tions are NP-hard and propose greedy based approaches
to solve the problem efficiently with provable approxi-
mation guarantee.

• We propose a simple yet effective approach to solve the
multi-objective case by decomposing it into independent
single-objective optimizations.

• We conduct a case study in City of Cambridge,
the United Kingdom, to assess the feasibility of the
formulation and evaluate the effectiveness of the pro-
posed approach. We also compare three optimal sen-
sor placement results with the result of an existing air
quality monitoring network (consisting of 20 low-cost
pollution sensors) in Cambridge to discuss the individ-
ual differences followed by policy suggestions for local
environmental decision-makers and urban planners, and
sensor placement consultants etc.

The rest of this paper is structured as follows: Section II
overviews the related work on sensor placement. Section III
describes three placement objectives with a solution method
proposed for each formulation. Section IV conducts a case
study on City of Cambridge to evaluate the feasibility
of three citizen-centric objectives and the effectiveness of
our proposed approaches. Finally Section V concludes our
study.

II. BACKGROUND
A. MONOTONICITY
Let � be a finite set. A set function f : 2� → R defined on
subset V is monotone if for any A ⊆ V and s ∈ V , we have

f (A ∪ {s})− f (A) ≥ 0. (1)

B. SUBMODULARITY
A set function f : 2�→ R defined on subset V is submodular
if for all A ⊆ B ⊆ V and any element s ∈ V \ B, we have:

f (A ∪ {s})− f (A) ≥ f (B ∪ {s})− f (B). (2)

Intuitively, it describes the diminishing return property.
Equivalently, a set function f : 2�→ R defined on subset V
is submodular if for every A,B ⊆ V we have:

f (A)+ f (B) ≥ f (A ∪ B)+ f (A ∩ B). (3)

Reference [6] showed thatmonotone submodular functions
can be optimized with a greedy algorithmwith an approxima-
tion guarantee of 1−1/e. Reference [14] further showed that
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for general case, monotone submodular functions can be opti-
mized with a hybrid greedy approach with an approximation
guarantee of 1

2 (1− 1/e).

III. CITIZEN-CENTRIC PLACEMENT OBJECTIVES
A. MAXIMIZING OVERALL CITIZEN SATISFACTION
In this formulation, we focus on the utility gain of sensor
placement based on citizen satisfaction. Noticing that people
naturally rely on observations from the nearest station to
obtain environmental information when a number of stations
can be found within the city, we follow the assumption in
[13] that an individual’s satisfaction of a sensor placement
scheme g(d) is a function of his/her distance to the nearest
sensor d . Intuitively, the closer the nearest station is, the more
people are satisfied with the resolution of the information.
Hence we require the satisfaction function g(d) to satisfy the
following:
• g(d) be amonotonically decreasing function, i.e., for any
d1 ≤ d2, g(d1) ≥ g(d2).

• for any d ≥ 0, g(d) ≥ 0.
• g(0) = 1.

The first requirement matches the intuition while the rest of
the requirements ensure that the satisfaction function be a
non-negative value between [0, 1]. It is not hard to see that
the exponential decay function proposed in [13] satisfies the
requirements above. The exponential decay function g(d) is
defined as follows:

g(d) = exp
(
−
d
θ

)
(4)

where θ is an exponential decay parameter controlling the
decay speed. By default we can set θ = 1. A smaller θ will
cause the satisfaction function to decrease more rapidly as the
distance increases.

Following the common practice in environmental moni-
toring [7], [12], we divide the city into discrete equal-sized
square grids, in which sensors are placed, with at most one
sensor in each grid. Let V = {vi : i = 1, 2 . . . , n} denote the
set of grids in the region of interest, where n = |V | is the total
number of grids. Let pi denote the percentage of population
living in the i-th grid vi and (xi, yi) denote its location.

We further define theminimum distance between grid i and
a set of grids A as follows:

d(i,A) = min
j∈A

d(i, j). (5)

When A = ∅, we set d(i,A) = ∞. We summarize the
notations in Table 1.

Then we can define the average satisfaction ratio f (A) of
choosing a set of grids A for placing sensors as

f (A) =
∑
i∈V

pi · g(d(i,A)). (6)

Let c(·) be the cost associated with subset A. Then our
objective is to select a subset of locations A ⊆ V that can
maximize the average satisfaction ratio under the total cost

TABLE 1. Notation.

constraint c(A) ≤ C . Formally, our optimal citizen-centric
sensor placement problem is as follows:

max f (A)

s.t. c(A) ≤ C, A ⊆ V (7)

In the simplest case, the cost is uniform for all locations and
the cost constraint is reduced to the cardinality constraint:

max f (A)

s.t. |A| = k,A ⊆ V (8)

where k is the total number of sensors that can be placed
subject to the total cost constraint C .
Theorem 1: Finding the optimal solution for the simplest

case is NP-hard.
Proof: We sketch the proof by a reduction from the

p-median on network problem, which is known to be
NP-hard [15]. The k-median (of a network) problem is
defined as follows. A network G = (V ,E) has a nonnegative
number w(v) associated with each of its |V | = n vertices and
a positive number l(e) associated with each of its |E| edges.
Let Xk = {x1, x2, . . . , xk} be a set of k points on G. The
objective is to find X∗k such that the distance sum of the set
H (Xk ) =

∑
v∈V w(v) min1≤i≤k{d(v, xi)} is minimized.

The corresponding relationship between these two set sys-
tems is as follows: the weight w(v) of v ∈ V corresponds
to the population pi of grid i ∈ V and the distance d(v, xi)
between v and xi ∈ Xk corresponds to the non-negative
satisfaction loss 1− g(d(i, j)) of location i by placing sensor
at location j. Then selection of a set of points Xk ⊆ V on
G corresponds to selecting a set of locations A ⊆ V with
size |A| = k .

Fortunately, we prove that the objective function f is non-
decreasing and submodular.
Lemma 1 (Non-Decreasing): For any A ⊆ V and a sensor

s ∈ V , we have

f (A ∪ {s})− f (A) ≥ 0. (9)

Proof: By definition we have f (∅) = 0. For all i ∈ V ,
we have d(i,A) = minj∈A d(i, j) ≥ minj∈A∪{s} d(i, j) =
d(i,A ∪ {s}), ∀A ⊆ V , s ∈ V . Hence we have f (A ∪ {s}) =∑

i∈V pi · g(d(i,A ∪ {s})) ≥
∑

i∈V pi · g(d(i,A)) = f (A) for
any A ⊆ V , s ∈ V .
Lemma 2 (Submodularity): For all placements A ⊆ B ⊆

V and any sensor s ∈ V \ B, we have

f (A ∪ {s})− f (A) ≥ f (B ∪ {s})− f (B). (10)
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Proof:By definition of f we need to prove that
∑

i∈V pi ·
g(d(i,A∪{s}))−

∑
i∈V pi ·g(d(i,A)) ≥

∑
i∈V pi ·g(d(i,B∪

{s}))−
∑

i∈V pi ·g(d(i,B)). Suppose that d(i,A) = d(i, a) and
d(i,B) = d(i, b). Since A ⊆ B, a ∈ A, and b ∈ B, we have
d(i, b) ≤ d(i, a).
Here we have three scenarios for i.
1) d(i, s) ≥ d(i, a).

Then d(i,A∪{s}) = d(i,A) and d(i,B∪{s}) = d(i,B).
Hence g(d(i,A∪{s}))− g(d(i,A)) = g(d(i,B∪{s}))−
g(d(i,B)) = 0.

2) d(i, b) ≤ d(i, s) < d(i, a).
Then d(i,A ∪ {s}) = d(i, s) < d(i,A), d(i,B ∪
{s}) = d(i,B) and hence g(d(i,A∪ {s}))− g(d(i,A)) >
g(d(i,B))− g(d(i,B ∪ {s})) = 0.

3) d(i, s) < d(i, b).
Then d(i,A ∪ {s}) = d(i,B ∪ {s}) = d(i, s) and
hence g(d(i,A ∪ {s}) − g(d(i,A)) = g(d(i, s)) −
g(d(i,A)) ≥ g(d(i, s))− g(d(i,B)) = g(d(i,B∪ {s}))−
g(d(i,B)).

Therefore, for each i ∈ V , we have g(d(i,A ∪ {s})) −
g(d(i,A)) ≥ g(d(i,B ∪ {s})) − g(d(i,B)). Since pi ≥ 0 for
all i, the proof is complete.
Hence the problem can be approached via the greedy

approach with good approximation guarantee. Specifically,
at the i-th iteration, the algorithm will select the location s∗

with the maximum information gain, i.e.,

s∗ = arg max
s∈V\Ai−1

f (Ai−1 ∪ {s})− f (Ai−1) (11)

where Ai−1 denotes the selected subset before the
i-th iteration.

The sensor placement algorithm given a unit cost constraint
is summarized in Algorithm 1.

Algorithm 1 Station Deployment Algorithm Given a Unit
Cost Constraint
Input: Sensor number constraint k , a set of grids V with

associated percentage of population {pi}ni=1, distance func-
tion d , exponential decay parameter θ

Output: A subset of locations A ⊆ V
A = ∅
while |A| ≤ k do
select the location s∗ with the largest human satisfaction
gain

∑
i∈V pi(g(d(i,A ∪ {s}))− g(d(i,A)))

add s∗ to location set A
return A

Theorem 2: Algorithm 1 finds a set A∗ such that

f (A∗) ≥ (1− 1/e) max
A

f (A).

Proof: Since f is submodular and non-decreasing, it fol-
lows directly from [6].
When the cost is non-uniform across all locations, the sim-

ple greedy algorithm fails to provide a satisfactory result
when placing station at a location is much more expensive
but only provides a marginally better utility gain. A modified

greedy selection rule that takes cost into account will select
the location s∗ with the maximum information gain per unit
cost at the i-th iteration, i.e.,

s∗ = arg max
s∈V\Ai−1

f (Ai−1 ∪ {s})− f (Ai−1)
c(s)

(12)

where Ai−1 denote the subset before the i-th iteration. How-
ever the result for this condition can also be arbitrarily bad.
Let AG denote the greedy selection result using criteria (11)
and ACEG denote the greedy selection result using crite-
ria (12). Fortunately, the following theorem shows that at least
one of the solutions can provide 1

2 (1 − 1/e) approximation
guarantee.
Theorem 3:

max{f (AG), f (ACEG)} ≥
1
2
(1− 1/e) max

A,c(A)≤C
f (A).

Proof: Since f is a non-decreasing submodular set func-
tion, it follows directly from [14].

The station deployment algorithm given a general cost
constraint is summarized in Algorithm 2.

Algorithm 2 Station Deployment AlgorithmGiven a General
Cost Constraint
Input: Cost constraint C , a set of grids V with associ-

ated percentage of population {pi}ni=1, distance function d ,
exponential decay parameter θ , a cost function c

Output: A subset of locations A ⊆ V
A1 = A2 = ∅,V1 = V2 = V , C1 = C2 = 0
while V1 6= ∅ do
for all s ∈ V1 doa

s =
∑

i∈V1 pi(g(d(i,A1 ∪ {s}))− g(d(i,A1)))
s∗ = argmaxs∈V1

a
s

if c(s∗)+ C1 ≤ C then
C1 = C1 + c(s∗),A1 = A1 ∪ {s∗}

V1 = V1 \ {s∗}
while V2 6= ∅ do
for all s ∈ V2 doa

s =
∑

i∈V2 pi(g(d(i,A2 ∪ {s}))− g(d(i,A2)))

s∗ = argmaxs∈V2
a
s

c(s∗)
if c(s∗)+ C2 ≤ C then
C2 = C2 + c(s∗),A2 = A2 ∪ {s∗}

V2 = V2 \ {s∗}
A = argmaxA∈{A1,A2} f (A)
return A

B. BETTER PROTECTING THE VULNERABLE PEOPLE
Air pollution has long been proven to have adverse conse-
quences on human health, especially to the asthma and COPD
patients. In addition, the young children, and the elderly
are more susceptible to the harmful effects of air pollution
[16], [17]. Hence, a proper placement objective is to place
the sensors at locations that provide accurate ambient air
quality information to the vulnerable people and collect air
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quality data for longitudinal studies of the health effects of
air pollution.

Here we assume that the vulnerable people mainly stay at
certain locations. Specifically, the young children may stay in
the nursery and primary school in most parts of the day while
the elderly and patients mainly stay in the elderly care homes
and hospitals, respectively. In this context, V denotes the set
of locations of interest and n denotes the number of total loca-
tions of interest. Let A denote the set of locations for placing
sensors and k denote the total number of sensors available.
Suppose that the sensors are insufficient to cover all locations,
i.e., k < n. Let d(i, j) denote the distance between the point
of interest i ∈ V and the location of the sensor j ∈ A. The
objective is to minimize the total distance between the points
of interest and their nearest sensors

∑
i∈V minj∈A d(i, j). The

notations are summarized in Table 2.

TABLE 2. Notation.

Depending on the assumptions on the search space of
sensor locations A, there are three possible settings:

1) A ⊆ R2: In this case, there is no restriction on the
location of the sensors.

2) A ⊆ V ′: In this case, a sensor can be placed at one of
the locations in a finite location set V ′.

3) A ⊆ V : In this case, a sensor is restricted to be placed
in a location that belonged to the set of locations of
interest V .

For the first setting, if we consider the Euclidean distance
in a 2-dimensional space, it aims to solve the following
k-means clustering problem:∑

i∈V

min
j∈A
‖i− j‖2 (13)

s.t. |A| = k (14)

However, it is not realistic in general given the actual site
requirement for installing sensors. For example, a sensor can
not be installed at the center of the road.

The second setting restricts the search space to a finite can-
didate set and aims to solve the k-median problem. A moti-
vating example is the set of traffic signal pole locations. The
Array of Things project [18], for instance, plans to mount
the modular sensor nodes on some of the streetlight traffic
signal poles to provide real-time measurement on the city’s
environment, infrastructure, and activity, for research and
public use.

The third formulation further restricts the discrete search
space to the set of locations of interest. It corresponds to the
community-led air quality monitoring scenario when the sen-
sors are operated locally by the communities/organizations.
In fact, it is a special case of the second formulation with
V ′ = V and hence in the following we focus on solving
the second formulation.

Let xij be the binary indicator variable denoting whether
location i ∈ V ′ is the nearest to point of interest j ∈ V and
yi be the binary indicator variable denoting whether location
i ∈ V ′ is selected for placing sensors. Let d(i, j) denote the
distance between point of interest i ∈ V and the location of
the sensor j ∈ V . Then the problem can be formulated as the
following linear integer program:

min
∑
i∈V ′

∑
j∈V

d(i, j) · xij (15)

s.t.
∑
i∈V ′

yi = k (16)

yi ∈ {0, 1}, ∀i = 1, 2, . . . ,m (17)

xij ∈ {0, 1}, ∀i = 1, 2, . . . ,m, j = 1, 2, . . . , n (18)

yi − xij ≥ 0, ∀i = 1, 2, . . . , n, j = 1, 2, . . . , n (19)

The first constraint ensures that at most k locations are
selected for placing sensors and the last constraint ensures
that each location of interest is covered by at least one sensor.
It can be seen that the problem is a variant of the uncapacitated
facility location problem with facility cost set to zero and the
number of facilities restricted to k .
Despite the NP-hardness of the problem, it can be solved

by the existing state-of-the-art commercial integer linear pro-
gramming solvers (e.g. Gurobi [19], CPLEX [20]) exactly
or to a near-optimal solution efficiently. Gurobi used Linear
Programming (LP) based branch and bound algorithm which
consists of a systemic enumeration of candidate solutions
by means of state space search: the set of candidate solu-
tions is considered as a rooted tree with the full set at the
root. The algorithm explores branches of this tree, which
represent subsets of the solution set. Before enumerating
the candidate solutions of a branch, the branch is checked
against the upper and the lower estimated bounds on the
optimal solution, and is discarded if it cannot produce a better
solution than the best one obtained so far by the algorithm.
The best bound and gap are also provided in the calculation
result.

C. BETTER MONITORING TRAFFIC EMISSIONS
One important consideration for air quality monitoring is
to obtain as many measurements as possible at locations of
heavy emissions. Generally, the primary sources of air pollu-
tion in the urban areas are traffic and power plant emissions.
Since there are usually very few power plants in each city
and power plant emissions are closely monitored in close
proximities [21], we focus on sensor placement strategies for
better monitoring traffic emissions. There are many impor-
tant factors influencing traffic-related air pollution, including
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road type, car type, driving pattern, traffic congestion level
(traffic flow pattern) etc. A higher level of congestion is
strongly correlated with a higher level of emission inten-
sity as vehicles spend more time idling, accelerating and
decelerating during congestion [22], [23]. Studies have found
that traffic congestion degrades ambient air quality [24] and
accounts for a significant share of vehicle emissions and air
quality impacts as compared to free flow conditions [22].

We assume that the hourly traffic congestion levels of all
road segments within City of Cambridge are given and follow
a weekly pattern as such data can be easily obtained from
Google Map. Let V denote the set of all road segments and
C denote the set of all types of traffic conditions. Let t ji denote
the fraction of time in a week that the traffic condition in road
segment i is of type j. Let λj denote the weight parameter for
the j-th type of traffic condition which can be set according
to the relationship between traffic emissions and traffic con-
dition. The notations are summarized in Table 3.

TABLE 3. Notation.

We define the importance Ii of road segment i ∈ V as the
weighted sum of the fraction of time under individual traffic
conditions:

Ii =
C∑
j=1

λjt
j
i (20)

where the weight is determined by the relationship between
traffic emissions and traffic condition. This definition allows
us to find the k most important road segments to place the
sensors.

When the number of road segments is much larger than the
number of sensors available, i.e., k << n, (the number of
road intersections is larger than k ,) it is better to find the k
most important road intersections for placing the sensors. Let
U denote the set of road intersections. For road intersection
u ∈ U , let N (u) ⊂ V denote the set of its neighbor road
segments. Then the importance Iu of road intersection u can
be defined as:

Iu =
∑
i∈N (u)

Ii. (21)

D. MULTIPLE-OBJECTIVE OPTIMIZATION
Depending on the situations, one or all of the objectives can be
taken into account when designing a proper sensor placement
scheme. When all objectives are taken into account for plac-
ing k sensors, we aim to solve a multi-objective optimization.

A common practice to solve the multi-objective optimiza-
tion is convert it into a single objective optimization via
scalarization, where the new objective is the weighted sum of
each objective. However, this approach is not suitable for our
case due to the different characterization of each objective.
Furthermore this approach may pick locations that are not
optimal for any single objective (but optimal for the weighted
sum), which is not very helpful in practice due to a lack
of clear goal. Notice that our multi-objective optimization
problem has the structure of independent optimization cou-
pled with a general knapsack constraint. Hence we propose to
solve it by first allocating a certain number of sensors for each
objective and then solve the single objective optimization
individually. By default the numbers of sensors for each
objective are set to be equal. If the location sa suggested by
objective a and the location sb by objective b are fairly close
to each other, i.e., d(sa, sb) < ε where ε is a predefined
threshold, we can randomly pick one location from sa, sb,
say sa and select another location s′b further suggested by
the objective b. This allows the sensor placement for one
objective to benefit another objective, thereby expands the
coverage across the city.

IV. CASE STUDY: CITY OF CAMBRIDGE,
THE UNITED KINGDOM
In this section, we conduct a case study in City of Cambridge1

to evaluate our three proposed placement strategies and
compare the placement results with the existing placements
of 20 sensors in Cambridge.

A. EXPERIMENTAL SETUP
1) DATASETS
We collect the population data, the points of interest data, and
the traffic patterns for City of Cambridge.

1) Population data is obtained from ORNL’s
LandScanTM,2 one of the most fine grained global pop-
ulation distribution data at approximately 1km (30′′ ×
30′′)3 spatial resolution.

2) Points of Interest data is collected fromGoogleMap.4

Here we consider three types of points of interest
where the vulnerable people spend most of their time
in, including: the primary school, the nursery and the
hospital.

3) Traffic pattern data is obtained from Google Map.
Google Map displays real time and typical traffic infor-
mation represented by the color of the road shown on
the Map. There are four colors.

• Green represents no traffic delays.
• Orange represents medium road-based traffic
volume.

1The boundary of City of Cambridge can be found in
https://www.cambridge.gov.uk/ward-map

2https://https://landscan.ornl.gov/.
3Here " marks arcsecond.
4https://map.google.com.
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• Red represents traffic delays.
• Dark red represents high road-based traffic
volume.

The typical traffic patterns are updated every 15 or 20minutes
from 6am to 10pm each day of the week. Since there was
no traffic API available, we extracted the road level traffic
condition information from the Google Map snapshots via
image processing techniques.

FIGURE 1. Grid-level population density of City of Cambridge.

FIGURE 2. Points of interest within City of Cambridge.

Figure 1 shows the grid-level population density of City
of Cambridge. The redness indicates the population den-
sity of each grid. Figure 2 displays the points of interest

in City of Cambridge. The red dots represent the hospitals,
the green ones represent the nurseries and the blue ones
represents the primary schools. As depicted in Figure 2,
there are only three hospitals within the region. Further-
more, the primary schools and nurseries are scattered widely
across in the region. Figure 3 shows an example of the traf-
fic condition captured from Google Map. As seen, different
road segments exhibit different traffic patterns at a certain
time.

FIGURE 3. The traffic condition captured from google map.

Statistics of three datasets are shown in Table 4.

TABLE 4. Dataset statistics.

The codes are written in Python 2.7 and the plots are
generated with JavaScript.

B. PLACEMENT RESULTS
Figure 4 shows the placement result of 20 sensors for maxi-
mizing overall citizen satisfaction. The black polygon is the
administrative boundary. Here we assume that the cost is
uniform for all location and hence the unit cost constraint
is adopted. We further assume g(d) = exp (−d) since it
can capture the fast decay of the satisfaction as the distance
increases. As shown in the figure, the sensors are assigned to
the densely populated grids in order to provide information
for the people living within the region. However it should be
noted that the algorithm does not simply pick the top twenty
populated grids as people living near by the selected grids also
benefit from the sensor placement to some extents. Hence the
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FIGURE 4. Sensor placement for maximizing overall citizen satisfaction.

optimal placement design to maximize overall satisfaction
will also try to spread the sensors around when the number
of sensors are limited.

Here the resolution of each grid is 1km × 1km, imply-
ing that any two sensors will be a minimum of 1km apart.
If a finer resolution is desired, we can further divide the
population grid into equal-size sub-grids (e.g. 4 sub-grids)
with the assumption that the population is evenly distributed
across the sub-grids and the sensors will be allowed to be
placed at a closer distance. This step should be adopted
when the number of sensors is comparable to the number of
grids.

Figure 5 shows the placement result for better coverage
of the areas where the vulnerable people are located. Since
the problem size in this case is small, it is possible to obtain
the optimal placement result using Gurobi. As shown in the
figure, the sensors are widely distributed across City of Cam-
bridge.

Figure 6 further displays the 20 clusters of points of inter-
est (POIs) within City of Cambridge. From Figure 5 and
Figure 6 we can see that the centers of each cluster are
selected for deploying the sensors. Here we fix the cluster
number to be 20 due to the sensor number constraint, while
in practice the distribution of the POIs can also suggest a
proper number of sensors needed to guarantee the maximum
coverage of the vulnerable people based on a certain objec-
tive (e.g. the distance between the location of the people
covered to their nearest sensor should be no greater than a
threshold d).
Figure 7 shows the locations of 20 sensors for better mon-

itoring traffic related air pollution. The locations are selected
based on the importance of the road segments/intersections
in terms of the pollution related factors described above.

FIGURE 5. Sensor placement for better protecting the vulnerable people.

FIGURE 6. Points of interest divided into 20 clusters.

Compared to Figure 5, we note that some important roads
identified are quite close to the points of interest, indicating
that the placement results of different objectives may overlap
and ‘‘redundant’’ placement should be avoided when three
objectives are considered altogether.

The existing locations of 20 sensors deployed in City
of Cambridge are shown in Figure 8.5 It shows that the

5The sensor placement data is based on information provided by
Prof. Ian Leslie, the University of Cambridge.
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FIGURE 7. Sensor placement for better monitoring traffic emissions.

FIGURE 8. Original setting of 20 low-cost pollution sensors deployed in
City of Cambridge.

sensors are non-uniformly distributed. These sensors are
placed mainly near one major road, one hospital and one
construction site. However, the rest of the City is yet to be
covered by the sensors.

Lastly we show the placement result of 20 sensors that
considers all of the objectives above in Figure 9. In order to
highlight the difference, we use different colors to represent
different objectives: yellow circles for better protecting the
vulnerable, blue circles for better monitoring the emissions

FIGURE 9. Multiple-objective placement result of 20 low-cost pollution
sensors in City of Cambridge.

TABLE 5. Comparison of different objective values of citizen-centric
placement.

and red circle for maximizing overall citizen satisfaction.
As shown in the figure, one yellow circle and one red circle
are nearly at the same location, indicating that this location
will benefit two objectives and one extra location is allowed
to further expand the coverage.

The placement results are shown in Table 5, where the
better results are in bold. It can be observed that the multi-
objective placement result performs much better than the
original placement in terms of all three proposed objectives.
In addition, although no single optimal result is achieved by
the multi-objective approach, it maintains a good balance
between different objectives.

V. DISCUSSION
Our three proposed objectives in air quality monitoring can
be easily adopted and applied to other cities or regions of
any geographical scale for designing an effective sensor
placement scheme as long as urban dynamics data (such as
population data, points of interest data and traffic data) are
available.

For the first two objectives, it is not always possible
to achieve the optimal results due to complexity of the
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original problems. However, for the first objective, the pro-
posed solution still allows us to obtain a good result with
good confidence; for the second objective, the solution sets
the bounds for the optimal solution. For the third objective,
we have only developed a simple method for collecting the
traffic data of City of Cambridge. Since the traffic informa-
tion provided byGoogleMap is available onmost cities, it can
provide the basic traffic data for our optimization model.
In casemore types of traffic data, for instance, the car type and
the traffic speed data are available, it is possible to develop a
more refined definition regarding the level of importance of a
road intersection/segment, and incorporate such information
into our sensor placement optimization.

VI. CONCLUSION
In this paper, we have introduced three important citizen-
centric sensor placement objectives for air quality monitor-
ing. Next, we have formulated three optimal sensor placement
problems and proposed efficient methods to obtain the opti-
mal solutions. Finally, we have conducted a case study in City
of Cambridge to compare the placement results with the exist-
ing sensor placement scheme put forward by Cambridge to
verify its effectiveness. Our results have shown that, in order
to optimize the citizen-centric objectives, there is a need to
re-orient the current sensor placement strategy in Cambridge.
For instance, to maximize overall citizen satisfaction, there
is a need to spread more of the currently installed low-cost
air pollution sensors across the northeastern part of the City,
rather than concentrating most of them at the southeastern
part. Further, to better monitor traffic emissions, the sensors
should be more evenly distributed across the City, rather than
being concentrated in the city center and the southeastern
part. Hopefully, our results can benefit future government
decision-making. Given any budget constraint, we can still
maximize thewelfare of those citizens residing in Cambridge,
by distributing sensors more evenly across different parts of
the City.
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