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Suppose that a confidence region is desired for a subvector θ of a mul-
tidimensional parameter ξ = (θ,ψ), based on an M-estimator ξ̂n = (θ̂n, ψ̂n)

calculated from a random sample of size n. Under nonstandard conditions
ξ̂n often converges at a nonregular rate rn, in which case consistent estima-
tion of the distribution of rn(θ̂n − θ), a pivot commonly chosen for confi-
dence region construction, is most conveniently effected by the m out of n
bootstrap. The above choice of pivot has three drawbacks: (i) the shape of
the region is either subjectively prescribed or controlled by a computation-
ally intensive depth function; (ii) the region is not transformation equivariant;
(iii) ξ̂n may not be uniquely defined. To resolve the above difficulties, we pro-
pose a one-dimensional pivot derived from the criterion function, and prove
that its distribution can be consistently estimated by the m out of n bootstrap,
or by a modified version of the perturbation bootstrap. This leads to a new
method for constructing confidence regions which are transformation equiv-
ariant and have shapes driven solely by the criterion function. A subsampling
procedure is proposed for selecting m in practice. Empirical performance of
the new method is illustrated with examples drawn from different nonstan-
dard M-estimation settings. Extension of our theory to row-wise independent
triangular arrays is also explored.

1. Introduction. Let Xn = (X1, . . . ,Xn) be a random sample of size n drawn from an
unknown distribution F . The parameter of interest ξF ∈ R

p is assumed to be the unique
value of ξ that maximises EF [bξ,ηF (X1)], for some real-valued function bξ,η indexed by
(ξ, η) ∈ R

p×R
q , where ηF denotes the true value of a nuisance parameter. Given a consistent

estimator η̂n of ηF , define an M-estimator ξ̂n of ξF by the value of ξ which maximises, at
least approximately, the criterion function B̂n(ξ)= n−1 ∑n

i=1 bξ,η̂n(Xi). We are interested in
constructing a level 1 − α confidence region for a d-dimensional subvector θF of ξF , for
d ≤ p, without assuming the usual regularity conditions on bξ,η. Without loss of generality,
we write ξF = (θF ,ψF ) and ξ̂n = (θ̂n, ψ̂n), for (p − d)-dimensional vectors ψF and ψ̂n.

Bootstrap confidence regions for θF have been studied mainly under regularity conditions
which guarantee asymptotic normality of the pivot n1/2(θ̂n − θF ) or its Studentized form.
Consistency of the conventional, n out of n, bootstrap in this context has been established
by [20] in the absence of nuisance parameters and by [9] in the presence of a Banach space-
valued nuisance parameter. Multidimensionality of the bootstrapped pivot calls for special
devices for fixing the final confidence region. One common approach is to impose on the
region an ellipsoidal shape by calibrating the norm of the pivot [13], or a rectangular shape
by referring to some properly chosen univariate quantiles along each of the d dimensions [3,
9]. Alternatively, the bootstrapped pivot can be calibrated by a data depth function to yield
a confidence region more adaptive to the observed data; see, for example, [39]. Wei and Lee
[38] investigate second-order properties of depth-based bootstrap regions under regularity
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conditions. In a similar spirit, [30] introduce the notion of generalized spatial quantiles to
handle multidimensionality of confidence region pivots. In the special case where θ̂n solves
a multivariate estimating function that depends possibly on an infinite-dimensional nuisance
parameter, [16] propose a bootstrap method for estimating the distribution of a univariate
pivot formed by the empirical likelihood. Resampling methods other than the bootstrap have
also been proposed; see, for example, [17] for a simulation procedure which estimates the
distribution of n1/2(ξ̂n − ξF ) by randomly perturbing the criterion function.

Without assuming regularity conditions on bξ,η, nonstandard convergence rates rn and
non-Gaussian weak limits of rn(ξ̂n−ξF ) have been established using empirical process meth-
ods; see, for example, [37], Section 3.2, for the case where η is absent and [18] for the case
where rn = n1/3 in the presence of η. Assuming convexity of bξ,η in ξ , asymptotic Gaussian-
ity of a special structure and absence of nuisance parameters, [5] prove that the distribution
of rn(ξ̂n − ξF ) can be consistently estimated by the m out of n bootstrap. Lee and Pun [23]
establish m out of n bootstrap consistency under weaker conditions on bξ,η and the assump-
tion that η̂n converges to ηF at a rate faster than rn. To our knowledge, there has not been
work done on m out of n bootstrap confidence regions constructed using pivots other than
rn(θ̂n − θF ) or its Studentized version under nonstandard conditions. The usual difficulties
inherent in multidimensional pivots remain unresolved in this context.

We propose in Section 2 a new m out of n bootstrap procedure for constructing confi-
dence regions for θF based on a univariate pivot expressed in terms of the criterion function
B̂n. Section 3 establishes consistency of our proposed confidence region under nonstandard
conditions on bξ,η, and shows that the same also holds for a modified perturbation bootstrap
procedure. Extension of our theory to row-wise independent triangular arrays is explored in
Section 4. Section 5 illustrates our results with a number of examples, and compares the
finite-sample performance of the proposed procedure with that based on the usual d-variate
pivot rn(θ̂n − θF ) in each of the examples. A subsampling procedure is introduced in Sec-
tion 6 for selecting m, supplemented with theoretical justification and empirical evidence.
The issue of unknown convergence rate is briefly discussed in Section 7. Section 8 concludes
our findings. All proofs of our theorems, corollaries and propositions are provided in the
Supplementary Material [22].

2. Method. Suppose that (ξF , ηF ) ∈�×H ⊂ R
p ×R

q . Let �1 ⊂ R
d be the projection

of � onto its first d dimensions and, for each θ ∈ �1, �2(θ) = {ψ ∈ R
p−d : (θ,ψ) ∈ �}.

Define �
†
F = {a(ξ − ξF ) : a ≥ 0, ξ ∈ �} and �

†
F,2 = {u ∈ R

p−d : (0, u) ∈ �
†
F }. Note that

�
†
F = R

p if ξF is an interior point in �, and often assumes the form of a convex cone if ξF
lies on the boundary of an order-restricted parameter space �.

For a given consistent estimator η̂n of ηF ∈ H, the M-estimator ξ̂n = (θ̂n, ψ̂n) of ξF
is defined to be any value of ξ ∈ � which maximises the criterion function B̂n(ξ) =
n−1 ∑n

i=1 bξ,η̂n(Xi) approximately in the sense that B̂n(ξ̂n) ≥ supξ∈� B̂n(ξ) − op(r
−ν
n ), for

some sequence rνn ↑ ∞ to be specified below in (G1) and (G2). Note that we do not require
that n−1 ∑n

i=1 bξ,η(Xi) be maximised at (ξ, η)= (ξ̂n, η̂n). In cases where B̂n(ξ) admits mul-
tiple global maximisers, ξ̂n may be defined to be an approximate value of any one of the
maximisers. Similarly, for any fixed θ ∈�1, a profile M-estimator ψ̃n(θ) of ψ is required to
satisfy ψ̃n(θ) ∈�2(θ) and B̂n(θ, ψ̃n(θ))≥ supψ∈�2(θ)

B̂n(θ,ψ)− op(r
−ν
n ).

Define, for s ∈ R
p and t ∈ R

q , gs,t = bξF+s,ηF+t − bξF ,ηF+t . We assume, for some fixed
ν > 0 and some sequence of positive constants rn ↑ ∞, the following conditions on the ran-
dom process s �→ gs,0(X1):

(G1) there exists a nonzero function 	 on �
†
F such that for every compact K ⊂�

†
F , 	 is

uniformly continuous on K and limε→0 ε
−ν

EF [gεs,0(X1)] =	(s), uniformly in s ∈K;
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(G2) for any s1, s2 ∈ �
†
F , �(s1, s2) = limn→∞ n−1r2ν

n EF [gs1/rn,0(X1)gs2/rn,0(X1)] ex-
ists, with sup

s1,s2∈�†
F

|�(s1, s2)|> 0.

The power ν in (G1) characterises the index of regular variation of ξ �→ EF [bξ,ηF ]
at its maximum when ξ = ξF [29]. This condition, together with (G2), identifies the
sharpest rate rn that balances the pointwise mean and standard deviation of the empir-
ical process s �→ n−1 ∑n

i=1 gs/rn,0(Xi). To see this, suppose that for some � ∈ (0,2ν),
EF [gεs1,0(X1)gεs2,0(X1)] has an order ε� as ε → 0. It then follows by (G1) and (G2) that
n−1 ∑n

i=1 gs/rn,0(Xi) has pointwise mean and standard deviation both of order n−ν/(2ν−�),
with rn ∝ n1/(2ν−�). It can be shown, under further conditions to be stated in Section 3, that
rn indeed gives the precise convergence rate of ξ̂n. The conditions (G1) and (G2) also ensure
that the mean and covariance functions of the scaled process s �→ n−1rνn

∑n
i=1 gs/rn,0(Xi)

both converge to nontrivial limits.
Standard regularity assumptions often impose quadratic structures on 	 and � such that

	(s) = s�	0s and �(s1, s2) = s�1 �0s2, for some nonsingular matrices 	0 and �0. This
amounts to the special case ν = � = 2, for which (G2) implies a standard convergence rate
rn ∝ n1/2. Our nonstandard setup removes the above strong assumptions, allows for greater
flexibility in the forms of 	 and �, and requires s, s1, s2 to range only over a problem-specific
region �†

F ⊂ R
p . Note that in some practical situations, rn may be analytically intractable and

needs to be estimated from the data Xn, a point which we shall return to in Section 7.
Define, for θ ∈�1, a univariate confidence region pivot by

n(θ)= rνn
{
B̂n(ξ̂n)− B̂n

(
θ, ψ̃n(θ)

)}
.

We describe below a bootstrap procedure for estimating the distribution of n(θF ) whereby
a confidence region for θF can be constructed. Let X ∗

m = (X∗
1, . . . ,X

∗
m) denote a random

sample drawn with replacement from Xn, with m = mn → ∞ as n → ∞. Given any nui-
sance parameter estimator η̂∗

n, possibly but not necessarily depending on X ∗
m, define B̂∗

n(ξ)=
m−1 ∑m

i=1 bξ,η̂∗
n
(X∗

i ), for any ξ ∈�. Analogous to ξ̂n and ψ̃n(θ), we define ξ̂∗
n = (θ̂∗

n , ψ̂
∗
n) and

ψ̃∗
n(θ) to be the M-estimator and profile M-estimator obtained by maximising approximately

B̂∗
n(ξ) and, for a fixed θ ∈ �1, B̂∗

n(θ,ψ), respectively. The m out of n bootstrap analogue
of n(θ) is given by ∗

n(θ) = rνm{B̂∗
n(ξ̂

∗
n ) − B̂∗

n(θ, ψ̃
∗
n(θ))}. Denote by Ĝn the conditional

distribution of ∗
n(θ̂n) given Xn. Our proposed m out of n bootstrap confidence region of

nominal level 1 − α is defined to be Rn,1−α = {θ ∈�1 :n(θ)≤ Ĝ−1
n (1 − α)}.

REMARK 2.1. Based on the d-dimensional pivot rn(θ̂n − θ), a more conventional
approach constructs an m out of n bootstrap confidence region to be R = {θ ∈ �1 :
pr(D̂(rm(θ̂∗

n − θ̂n)) ≤ D̂(rn(θ̂n − θ))|Xn) ≤ 1 − α}, where the real-valued function D̂ is
either chosen to endow R with a pre-determined, typically elliptical or rectangular, shape
or derived from a data-driven depth function or spatial quantile. Given any smooth in-
jection κ : �1 → R

d , the same procedure yields the confidence region {κ0 ∈ κ(�1) :
pr(D̂(rm(κ(θ̂∗

n )−κ(θ̂n)))≤ D̂(rn(κ(θ̂n)−κ0))|Xn)≤ 1−α} for the parameter κ(θ), which
is in general distinct from the κ-transformed region κ(R). Thus, the conventional m out of
n bootstrap confidence region is not transformation equivariant. Our proposed confidence re-
gion Rn,1−α , by contrast, has an entirely data-driven shape and is transformation equivariant.

REMARK 2.2. Under classical regularity conditions (e.g., [36], Section 5.6) and assum-
ing absence of ηF , it can be shown that

n1/2(θ̂n − θF )= −(Aθθ ,Aθψ)n
−1/2

n∑
i=1

ḃξF (Xi)+Op

(
n−1/2)

,
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where ḃξF = (∂/∂ξ)bξ |ξ=ξF , b̈ξF = (∂2/∂ξ∂ξ�)bξ |ξ=ξF and {EF [b̈ξF (X1)]}−1 is partitioned
as ((Aθθ ,Aθψ)

�, (Aψθ ,Aψψ)
�), with Aθθ having dimension d × d . Similar arguments can

be employed to establish that

n(θF )= −(n/2)(θ̂n − θF )
�A−1

θθ (θ̂n − θF )+Op

(
n−1/2)

.

It follows that if we restrict Cn,1−α to be an ellipsoid of the form {v ∈ R
d : −v�Â−1

θθ v ≤ 2k̂},
for some consistent estimator Âθθ of Aθθ and some k̂ calibrated to satisfy pr(m1/2(θ̂∗

n − θ̂n) ∈
Cn,1−α|Xn) = 1 − α, then the two regions Rn,1−α and {θ ∈ �1 : n1/2(θ̂n − θ) ∈ Cn,1−α} are
equivalent to first order. They are in general different from the conventional Wald-type region
built upon the squared norm of the Studentized M-estimator, unless EF [ḃξF (X1)ḃξF (X1)

�] =
−EF [b̈ξF (X1)], in which case Var(n1/2θ̂n) converges to −Aθθ and 2n(θF ) becomes asymp-
totically χ2

d .

3. Theory. Denote by | · | the Euclidean norm. For any δ, ε > 0, define function classes

Gδ = {
gs,t : ∣∣(s, t)∣∣ ≤ δ, (ξF + s, ηF + t) ∈�×H

}
,

Gδ(ε)= {
gs1,t1 − gs2,t2 : ∣∣(s1, t1)− (s2, t2)

∣∣ ≤ ε, gs1,t1, gs2,t2 ∈ Gδ
}
,

and Gδ to be an envelope function for Gδ . For any probability measure Q and any
square-integrable function f with respect to Q, define ‖f ‖Q,2 = (

∫ |f |2dQ)1/2. Denote by
N(ε,F,Q) the covering number of a function class F with respect to a ‖ · ‖Q,2-radius ε > 0.
For any arbitrary set T , define �∞(T ) to be the space of all bounded functions from T to
R, equipped with the sup-norm. Define, for (ξ, η) ∈ � × H, �(ξ, η) = EF [bξ,η(X1)]. To
establish the weak limit of n(θF ), we assume the following conditions:

(A1) η̂n = ηF + op(r
−1
n );

(A2) ξ̂n =Op(1) and ψ̃n(θF )=Op(1) satisfy

B̂n(ξ̂n)≥ sup
ξ∈�

B̂n(ξ)− op
(
r−ν
n

)
and

B̂n

(
θF , ψ̃n(θF )

) ≥ sup
ψ∈�2(θF )

B̂n(θF ,ψ)− op
(
r−ν
n

);
(A3) �(ξ, ηF ) is uniquely maximised at ξ = ξF , and for some C0 > 0, �(ξF + s, ηF )−

�(ξF , ηF )≤ −C0|s|ν as s → 0;
(A4) for every compact K ⊂ �, |�(ξ, ηF + t) − �(ξ, ηF )| → 0 as t → 0, uniformly in

ξ ∈ K, and there exist K0, ν1, ν2 > 0 with ν1 ≤ ν ≤ ν1 + ν2 such that∣∣�(ξF + s, ηF + t)−�(ξF , ηF + t)−�(ξF + s, ηF )+�(ξF , ηF )
∣∣ ≤K0|s|ν1 |t |ν2

as s, t → 0;
(A5) for any r > 0, {bξ,η : |(ξ, η)| ≤ r, (ξ, η) ∈�×H} is Glivenko–Cantelli;
(A6) there exist τ0 < 3/4 and α0 < ν such that for all c, ε > 0,

r2ν
n n−1

E
[
Gc/rn(X1)

2;Gc/rn(X1) > εnτ0r−ν
n

] → 0,

and that ϕ(δ)−2
EF [Gδ(X1)

2] is bounded as δ ↓ 0, for some nonnegative function ϕ satisfy-
ing, as δ ↓ 0, ϕ(aδ)≤ aα0ϕ(δ) for all a ≥ 1 and rνnn

−1/2ϕ(1/rn)=O(1);
(A7) there exists δ0 > 0 such that∫ 1

0
sup
δ<δ0

sup
Q

√
logN

(
ε‖Gδ‖Q,2,Gδ,Q

)
dε <∞,

where the second supremum is taken over all finitely discrete probability measures Q, and
for any c > 0 and any sequence δn ↓ 0,

r2ν
n n−1 sup

{
EF

[
f (X1)

2] : f ∈ Gc/rn(δn/rn)
} → 0;



278 S. M. S. LEE AND P. YANG

(A8) for any δ, ε > 0, the classes Gδ , Gδ(ε) and Gδ(ε)2 are measurable as defined in [37],
p. 110.

The condition (A1) requires that ηF be consistently estimated by η̂n at a rate faster than
rn. In a nonstandard setup one often encounters a convergence rate rn slower than n1/2, in
which case (A1) typically holds if η̂n can be obtained as solution to a system of q estimating
equations subject to regularity conditions that guarantee n1/2-consistency. Note that our setup
allows the maximiser ξF = (θF ,ψF ) to accommodate another nuisance parameter subvector
ψF , of which estimation is not required to be consistent at a rate faster than rn. The con-
dition (A2) requires that the M-estimator ξ̂n and profile M-estimator ψ̃n(θF ) maximise the
criterion function to order op(r−ν

n ). The shape of the function ξ �→ �(ξ, ηF ) near its max-
imum value is characterised by (A3). The condition (A4) requires that �(ξ, η) be smooth
near η = ηF in a certain sense, and is redundant if ηF is either known or absent. Conditions
(A5)–(A8) concern properties of classes of functions bξ,η and gs,t : (A5) typically holds un-
der an entropy condition on the function class and a finite mean of the envelope (e.g., [37],
Theorem 2.4.3); (A6) requires the distribution of r2ν

n n−1Gc/rn(X1)
2 to possess a bounded

mean and a sufficiently light tail; (A7) imposes a uniform entropy condition on Gδ and re-
quires the ‖ · ‖F,2 distance between g(s1,t1)/rn, g(s2,t2)/rn ∈ Gc/rn to shrink at a uniform rate of
order o(n1/2r−ν

n ) whenever |(s1, t1) − (s2, t2)| → 0; (A8) facilitates application of Fubini’s
theorem to symmetrized processes and is satisfied, for example, by image admissible Suslin
or pointwise measurable function classes. Note that (A5)–(A8) are essential to the proof of
weak convergences of n(θF ) and ∗

n(θ̂n). They are satisfied, in particular, by all VC-classes
and VC-subgraph classes. We refer to [37], Chapter 1.3, for an extended definition of weak
convergence to get around the problem of nonmeasurability.

Denote by dH (·, ·) the Hausdorff distance between sets in Euclidean spaces. For in-
probability weak convergence of ∗

n(θ̂n), we assume further:

(B1) m= o(n) and m→ ∞;
(B2) η̂∗

n = η̂n + op(r
−1
m );

(B3) ξ̂∗
n =Op(1) and ψ̃∗

n(θ̂n)=Op(1) satisfy

B̂∗
n

(
ξ̂∗
n

) ≥ sup
ξ∈�

B̂∗
n(ξ)− op

(
r−ν
m

)
and

B̂∗
n

(
θ̂n, ψ̃

∗
n(θ̂n)

) ≥ sup
ψ∈�2(θ̂n)

B̂∗
n(θ̂n,ψ)− op

(
r−ν
m

);
(B4) there exists CH > 0 such that dH (�2(θ),�2(θF ))≤ CH |θ − θF | for all θ ∈�1 suf-

ficiently close to θF .

Conditions (B2) and (B3) are m out of n bootstrap analogues of (A1) and (A2), respectively.
Note that (B2) holds trivially if we set, for example, η̂∗

n = η̂n. The condition (B4) requires Lip-
schitz continuity of �2(θ) at θ = θF . It holds if, for example, �= R

p or an order-restricted
subset of Rp , and is redundant if p = d so that θF = ξF .

Our conditions generalise those assumed by [23] in their study of m out of n bootstrap
consistency in a number of ways. The smoothness conditions (A3) and (A4) do not require
that �(ξ, η) be second-order continuously differentiable with respect to (ξ, η). Assuming
the latter, as has been required by [23], necessarily implies ν = 2 and ν1 = ν2 = 1. The
weaker conditions (A3) and (A4) extend our applications to cover, for example, L1 regression
problems under an error distribution with an infinite peak at the origin. Unlike [23], we do not
assume that the function � defined in (G2) satisfies �(s1, s1) +�(s2, s2) − 2�(s1, s2) �= 0
for any s1 �= s2, a condition which is needed if the weak limit of rn(ξ̂n− ξF ) is to be identified
with the unique maximiser of a Gaussian process.
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We state below our main theorem, the proof of which is given in the Supplementary Ma-
terial [22].

THEOREM 3.1. Assume that (G1), (G2) and (A1)–(A8) hold. Then, for any x ∈ R:

(i) limn→∞ prF (n(θF ) ≤ x) = pr(sup
s∈�†

F
inf

u∈�†
F,2

Z(s, u) ≤ x), for a Gaussian pro-

cess Z in �∞(�
†
F × �

†
F,2) which satisfies, for any s, s1, s2 ∈ �

†
F and u,u1, u2 ∈ �

†
F,2,

E[Z(s, u)] =	(s)−	(0, u) and

Cov
(
Z(s1, u1),Z(s2, u2)

)
=�(s1, s2)+�

(
(0, u1), (0, u2)

) −�
(
s1, (0, u2)

) −�
(
(0, u1), s2

);
(ii) with Z specified as in (i) and assuming further (B1)–(B4),

Ĝn(x)= pr
(
∗

n(θ̂n)≤ x|Xn

) → pr
(

sup
s∈�†

F

inf
u∈�†

F,2

Z(s, u)≤ x
)

in probability.

Theorem 3.1 shows that Ĝn provides a consistent estimator of the true distribution of
n(θF ), the weak limit of which may not be analytically tractable. The above results lead
immediately to the following corollary, which establishes asymptotic correctness of the con-
fidence region Rn,1−α .

COROLLARY 3.1. Under the conditions of Theorem 3.1, we have, for any α ∈ (0,1),

lim
n→∞ prF (θF ∈ Rn,1−α)= 1 − α.

REMARK 3.1. To show that the condition (B1) is indispensable in the nonstandard setup,
we establish below inconsistency of the standard, n out of n, bootstrap under the simple
scenario where θF = ξF ∈ � and the nuisance parameter ηF is absent. The proof is given in
the Supplementary Material [22].

THEOREM 3.2. Assume the conditions (G1), (G2), (A2), (A3), (A5)–(A8) and that d =
p and q = 0. Then, for any x ∈ R:

(i) limn→∞ prF (n(ξF ) ≤ x) = pr(sup
s∈�†

F
Z(s) ≤ x), for a Gaussian process Z in

�∞(�
†
F ) which satisfies, for any s, s1, s2 ∈ �

†
F , E[Z(s)] = 	(s) and Cov(Z(s1),Z(s2)) =

�(s1, s2);
(ii) with m= n and assuming further the condition (B3), pr(∗

n(ξ̂n)≤ x|Xn) converges in
probability to

pr
(

sup
s∈�†

F

W(s)−W

(
argmax
t∈�†

F

Z̃(t)
)

≤ x|Z̃
)
,

where W= Z+ Z̃−	 and Z, Z̃ denote two independent replicates of the process Z specified
in (i).

We see from Theorem 3.2 that the n out of n bootstrap distribution converges in proba-
bility to a random limit in general, thus failing to estimate the distribution of n(ξF ) con-
sistently. An exception is provided by the special case commonly obtained under regularity
conditions, where �

†
F = R

p and Z(s) = s��0Z − (1/2)s�	0s, for some positive-definite
symmetric matrices �0, 	0 and a standard normal p-variate vector Z. In this case, we have
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sups∈Rp Z(s) = (1/2)Z��0	
−1
0 �0Z and, writing (Z, Z̃) for two independent replicates of

Z, that

sup
s∈Rp

W(s)−W
(
argmax
t∈Rp

Z̃(t)
)

= (1/2)(Z + Z̃)��0	
−1
0 �0(Z + Z̃)

− {
Z̃��0	

−1
0 �0Z + (1/2)Z̃��0	

−1
0 �0Z̃

}
= (1/2)Z��0	

−1
0 �0Z = sup

s∈Rp

Z(s).

Thus the two weak limits derived in parts (i) and (ii) of Theorem 3.2 coincide, so that the n
out of n bootstrap is consistent.

REMARK 3.2. In the context of M-estimation, a resampling-based alternative to the
bootstrap has been proposed with B̂∗

n(ξ) defined to be (nE[ω∗
1])−1 × ∑n

i=1ω
∗
i bξ,η̂∗

n
(Xi),

where (ω∗
1, . . . ,ω

∗
n) denotes a random sample of weights independent of Xn and the coef-

ficient of variation φ =
√

Var(ω∗
1)/E[ω∗

1] is taken to be a fixed positive constant. The method
has been variously termed the perturbation bootstrap [17], the weighted bootstrap [27] or
the multiplier bootstrap [35]. Applying the perturbation bootstrap in our present setup, φ2

plays the same role as n/m in the m out of n bootstrap, so that the standard choice of a fixed
φ > 0 shares similar asymptotic properties with the n out of n bootstrap, which is inconsis-
tent. For consistency, we may consider generating the random weights from a triangular array
(ω∗

n1, . . . ,ω
∗
nn) satisfying the conditions:

(PB1) for each n, (ω∗
n1, . . . ,ω

∗
nn) are independent and identically distributed;

(PB2) φn =
√

Var(ω∗
n1)/E[ω∗

n1] → ∞ and φn = o(n1/2);

(PB3) for some constant c > 0, pr(|ω∗
n1 − E[ω∗

n1]| > x
√

Var(ω∗
n1)) = O(e−cx) as

n,x → ∞.

The conditions (PB1)–(PB3) are readily satisfied by weights generated from the distribution
of φn(W −E[W ])+ √

Var(W), for any random variable W following a fixed, exponentially-
tailed, distribution such as the normal, the gamma, the beta or the Bernoulli distributions. We
prove in the Supplementary Material [22] the following theorem, which asserts consistency
of the perturbation bootstrap based on weights satisfying (PB1)–(PB3).

THEOREM 3.3. Let (ω∗
n1, . . . ,ω

∗
nn) be independent of Xn and satisfy (PB1)–(PB3). Then

Theorem 3.1(ii) and Corollary 3.1 hold with B̂∗
n(ξ) = (nE[ω∗

n1])−1 × ∑n
i=1ω

∗
nibξ,η̂∗

n
(Xi),

ξ ∈� and m= nφ−2
n .

As with the choice of m in the m out of n bootstrap, the need for empirical tuning of φn
does not make the perturbation bootstrap computationally more convenient in practice.

REMARK 3.3. Under nonstandard conditions, the smoothed bootstrap has occasionally
been suggested to correct for inconsistency of the n out of n bootstrap. Compared to the m out
of n bootstrap, the smoothed bootstrap enjoys the convenience of retaining the conventional
bootstrap sample size n, but requires instead some problem-specific smoothing scheme and
careful tuning of the accompanying bandwidth. Typically, smoothing is effective only when
the distribution of the pivot depends on some local feature T (F ), such as density at a fixed
point, of F and when the smoothed empirical distribution F̃n, from which bootstrap samples
are to be drawn, is constructed in a way such that T (F̃n) is sufficiently close to T (F ). In cases
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where F is discrete or not everywhere differentiable, smoothing can hardly be expected to
bring much benefit to the bootstrap. We shall see that smoothing may be possible in two of
the examples studied in Section 5, examine its empirical performance and comment on its
limitations when applied to those specific contexts.

REMARK 3.4. The nonstandard nature of our present setup forbids us to establish sharp
bounds on the order of accuracy of Ĝ or the order of coverage error of Rn,1−α , though we
expect both orders to converge more slowly than the regular n1/2 rate. In cases where n(θF )

can be approximated by a measurable function of sample averages, Edgeworth expansion
techniques may typically be applied to derive more explicit error orders. We illustrate results
of this kind in Section 5.4 with the binomial example.

4. Extension to triangular arrays. Suppose now that Xn = (Xn1, . . . ,Xnn) constitutes
a row-wise independent triangular array such that the Xni’s are defined on a common mea-
sure space but are not necessarily identically distributed. Although certain multiplier boot-
strap procedures have been developed for empirical processes defined on triangular arrays
[6, 19], application of the bootstrap to nonstandard M-estimation under this setting remains
little studied. We shall show that our main results in Theorem 3.1 and Corollary 3.1 hold
for triangular arrays, if the parameter of interest ξn = (θn,ψn) is assumed to uniquely max-
imise

∑n
i=1 E[bξ,ηn(Xni)] over ξ ∈ � and ηn ∈ H denotes the true value of a nuisance pa-

rameter. Note that both ξn and ηn are allowed to depend on n. For ease of exposition, we
assume that each ξn is an interior point in �. Following the notation introduced in Section 3,
with (Xni, ξn, ηn) replacing (Xi, ξF , ηF ) and (Rp,Rp−d) replacing (�

†
F ,�

†
F,2), we define

�n(ξ, η) = n−1 ∑n
i=1 E[bξ,η(Xni)] for (ξ, η) ∈ � × H and modify below the conditions of

Theorem 3.1 to accommodate nonidentically distributed data. Note that the functions gs,t , Gδ

and the function classes Gδ , Gδ(ε) depend on n through (ξn, ηn), which we suppress in the
notation for clarity.

(G1′) (G1) holds with 	(s) = lim
n→∞ kνnn

−1 ∑n
i=1 E[gs/kn,0(Xni)] for any sequence {kn}

satisfying n≥ kn → ∞;
(G2′) (G2) holds with �(s1, s2) = limn→∞(nkn)

−1r2ν
kn

∑n
i=1 E[gs1/rkn ,0(Xni) ×

gs2/rkn ,0(Xni)] for any sequence {kn} satisfying n≥ kn → ∞;
(A3′) (A3) holds with � = �n for some C0 > 0 independent of n and for sufficiently

large n;
(A4′) (A4) holds with � = �n for some K0, ν1, ν2 > 0 independent of n, with ν1 ≤ ν ≤

ν1 + ν2, and for sufficiently large n;
(A5′) for any r > 0, the function class Br = {bξ,η : |(ξ, η)| ≤ r, (ξ, η) ∈�×H} has an en-

velope function B̄r and satisfies
∫ 1

0 supQ
√

logN(ε‖B̄r‖Q,2,Br ,Q)dε <∞, where the supre-

mum is taken over all finitely discrete probability measures Q and n−1 ∑n
i=1 E[B̄r (Xni)

2] =
O(1);

(A6′) (A6) holds with r2ν
n n−1

E[Gc/rn(X1)
2;Gc/rn(X1) > εnτ0r−ν

n ] and EF [Gδ(X1)
2]

replaced respectively by r2ν
kn
(nkn)

−1 ∑n
i=1 E[Gc/rkn

(Xni)
2;Gc/rkn

(Xni) > εk
τ0
n r

−ν
kn

] and

n−1 ∑n
i=1 E[Gδ(Xni)

2], for any sequence {kn} satisfying n≥ kn → ∞;
(A7′) (A7) holds with finiteness replaced by boundedness of the entropy integral and the

last condition replaced by

r2ν
kn
k−1
n sup

{
n−1

n∑
i=1

E
[
f (Xni)

2] : f ∈ Gc/rkn (δn/rkn)
}

→ 0,

for any sequence {kn} satisfying n≥ kn → ∞;
(B4′) (B4) holds for some CH > 0 independent of n.
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We prove in the Supplementary Material [22] the following theorem, which asserts consis-
tency of the m out of n bootstrap under a triangular array setting.

THEOREM 4.1. Let Xn = (Xn1, . . . ,Xnn) be a row-wise independent triangular array.
The conclusion of Theorem 3.1(i) holds for n(θn) under the conditions (G1′), (G2′), (A1),
(A2), (A8) and (A3′)–(A7′). If we assume further the conditions (B1)–(B3) and (B4′), then
the conclusion of Theorem 3.1(ii) holds for Ĝn.

Similar to Corollary 3.1, asymptotic correctness of the confidence region Rn,1−α for θn
also follows under the conditions of Theorem 4.1.

5. Examples. We illustrate the applications of our proposed bootstrap confidence pro-
cedure with four examples. The first three are set in the context of a linear regression model
Yi = Z�

i βF +Ui , i = 1, . . . , n, for an unknown parameter vector βF ∈R
k and n independent

and identically distributed observations Xi = (Yi,Zi). We assume that the random errors Ui

are independent of the covariates Zi , and denote by FU and FZ the distribution functions of
U1 and Z1, respectively. The nuisance parameter η is absent in the first two examples, and is
implicitly defined in the third example. The fourth example considers the problem of estimat-
ing an ordered pair of binomial probabilities, for which standard inference procedures may
fail when the two probabilities are equal. Each example is supplemented with a simulation
study. Proofs of the theoretical results are given in the Supplementary Material [22].

5.1. Maximum score estimation. Suppose that k ≥ 2, βF �= 0 and we are interested in es-
timating βF /|βF |, the normalised regression parameter vector. Introduced by [28], the max-
imum score estimator β̂n is defined to be a value of β ∈ Sk ≡ {x ∈ R

k : |x| = 1} which max-
imises n−1 ∑n

i=1mβ(Yi,Zi), where mβ(y, z)= sgn(y)111{z�β ≥ 0}, 111{·} denotes the indicator
function and sgn(y) = 111{y ≥ 0} − 111{y < 0}. Denote by β̂∗

n the bootstrap counterpart of β̂n
calculated from the m out of n bootstrap observations X∗

1, . . . ,X
∗
m. To apply Theorem 3.1 we

assume the following conditions:

(MS1) FU has a continuous density fU = F ′
U with fU(0) > 0, FU(0)= 1/2 and FU(u) ∈

(0,1) for all u ∈ R;
(MS2) FZ has a positive, continuously differentiable, density fZ on a compact support in

R
k .

Define a k× (k−1) matrix O = [e1, . . . , ek−1], where {e1, . . . , ek−1} constitutes an orthonor-
mal basis for the orthogonal complement of the space {cβF : c ∈ R}. We deduce from Theo-
rem 3.1 the following corollary.

COROLLARY 5.1. Assume (B1), (MS1) and (MS2). Then, for some Gaussian process
Z in �∞(Rk−1), n−1/3 ∑n

i=1{mβ̂n
(Xi)−mβF (Xi)} converges weakly to sups∈Rk−1 Z(s), and

m−1/3 ∑m
i=1{mβ̂∗

n
(X∗

i ) − m
β̂n
(X∗

i )} converges weakly in probability to the same limit. The

covariance and mean functions of Z are given, for s, s1, s2 ∈ R
k−1, by

�(s1, s2)= (1/2)
∫ {∣∣v�s1

∣∣ + ∣∣v�s2
∣∣ − ∣∣v�(s1 − s2)

∣∣}fZ(Ov) dv

and 	(s)= −fU(0)
∫
(v�s)2fZ(Ov) dv, respectively.

Denoting by Ĝn the distribution function of m−1/3 ∑m
i=1{mβ̂∗

n
(X∗

i ) − m
β̂n
(X∗

i )} condi-
tional on Xn, it follows immediately from Corollary 5.1 that the confidence region Rn,1−α =
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{β ∈ Sk : n−1/3 ∑n
i=1[mβ̂n

(Xi) − mβ(Xi)] ≤ Ĝ−1
n (1 − α)} for βF /|βF | has asymptotically

correct coverage probability 1 − α, for α ∈ (0,1).
In their study of the same example, [18] show that the statistic C

n (βF /|βF |)= n1/3{β̂n −
|βF |−2(β̂�

n βF )βF } converges weakly to O · argmaxs∈Rk−1 Z(s). A conventional approach to
constructing bootstrap confidence regions for βF /|βF | would have taken C

n (βF /|βF |) as a
pivot and estimated its distribution by that of m1/3{β̂∗

n − (β̂∗�
n β̂n)β̂n}, conditional on Xn. It is

clear that the latter distribution has support in the orthogonal complement Ĉ of {cβ̂n : c ∈ R}.
It then follows that the resulting bootstrap confidence region for βF /|βF | is necessarily con-
tained in the set {β ∈ Sk :C

n (β) ∈ Ĉ} = {β̂n,−β̂n}, a result which is practically useless. The
problem persists even if C

n (βF /|βF |) is redefined to be n1/3(β̂n − βF /|βF |). Our proposed
confidence region Rn,1−α is free of such deficiencies.

Bootstrap inference based on the maximum score estimator has been studied in previous
works. Abrevaya and Huang [1] show that the standard, n out of n, bootstrap distribution
of n1/3(β̂∗

n − β̂n) is inconsistent. Patra et al. [32] propose a smoothed bootstrap procedure
for consistently estimating the distribution of n1/3(β̂n − βF /|βF |) and constructing one-
dimensional confidence intervals for the first component of βF /|βF | with accurate empirical
coverages. When used for constructing multi-dimensional confidence regions for βF /|βF |,
the above smoothed bootstrap procedure encounters the same difficulty intrinsic to any at-
tempt to bootstrap the pivot C

n (βF /|βF |) directly, as has been discussed before. In their
proof of consistency of the smoothed bootstrap, [32] require that fZ be estimated with sup-
norm error of order op(n−1/3). It is well known that second-order kernel density estimators
cannot achieve an error rate faster than n−2/(k+4). For the case k ≥ 2, estimation of fZ with
op(n

−1/3) error necessarily calls for a higher-order kernel density estimator, which is not a
proper density function suitable for simulation purposes. Patra et al. [32] ignore the above
problem and use a Gaussian kernel, which is only second-order, in their simulation experi-
ments.

Simulation study. Let k = 2, 2U1 follow a standard Cauchy distribution and Z1 be bivari-
ate normal with mean (1,0.5)� and dispersion matrix ((0.6232,0)�, (0,0.3892)�). We set
βF = βF /|βF | = (cos 0.4, sin 0.4)�, for which 95% bootstrap confidence regions are to be
constructed based on the random sample (Y1,Z1), . . . , (Yn,Zn). Note that we cannot invoke
asymptotic normality to construct the confidence region based on the least squares estimator
β̂ols of βF , as U1 does not have a finite variance. In contrast, the maximum score estimator
provides a robust solution, noting that (MS1) holds for the Cauchy distribution.

Because of the anomaly of the conventional bootstrap confidence region built upon the
pivot C

n (βF /|βF |), we consider instead an alternative pivot defined by ̃C
n (βF /|βF |) =

n1/3{tan−1(β̂[2]
n /β̂[1]

n )− tan−1(β
[2]
F /β

[1]
F )}, where β[j ] denotes the j th component of the vec-

tor β ∈ R
2. The corresponding 100(1 − α)% equal-tailed m out of n bootstrap confidence

region is then given by

RC
n,1−α = {

(cosγ, sinγ )� : γ ∈ [
tan−1(

β̂[2]
n /β̂[1]

n

) − n−1/3Q̂n,1−α/2,

tan−1(
β̂[2]
n /β̂[1]

n

) − n−1/3Q̂n,α/2
]}
,

where Q̂n,α denotes the αth m out of n bootstrap quantile of ̃C
n (βF /|βF |). In addition to

the m out of n bootstrap, we apply the smoothed bootstrap of [32] to estimate the quantiles
of n(βF /|βF |) and ̃C

n (βF /|βF |), based on a Gaussian kernel and Scott’s bandwidth selec-
tion rule, yielding smoothed bootstrap confidence regions denoted by Rsb

n,1−α and RC,sb
n,1−α ,

respectively. Although theoretically invalid, we calculate also the confidence region RC,ols
n,1−α
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TABLE 1
Maximum score example—coverage probabilities of Rn,0.95, RC

n,0.95, Rsb
n,0.95, RC,sb

n,0.95 and RC,ols
n,0.95 for

n= 1000, each estimated by averaging over 200 random samples

m 100 200 300 400 500 600 700 800 900 1000

Rn,0.95 0.955 0.950 0.930 0.930 0.920 0.925 0.930 0.915 0.925 0.910
RC
n,0.95 0.480 0.505 0.520 0.510 0.520 0.555 0.530 0.540 0.515 0.500

Rsb
n,0.95 – – – – – – – – – 0.980

RC,sb
n,0.95 – – – – – – – – – 0.700

RC,ols
n,0.95 0.705

derived from normal approximation to the pivot tan−1(β̂
[2]
ols/β̂

[1]
ols )− tan−1(β

[2]
F /β

[1]
F ), assum-

ing, wrongly, a finite variance for U1.
Setting n= 1000 and averaging over 200 independent replicates, we compare the coverage

probabilities of Rn,0.95, RC
n,0.95, Rsb

n,0.95, RC,sb
n,0.95 and RC,ols

n,0.95. Monte Carlo approximation
to each bootstrap distribution is obtained from 100 bootstrap samples drawn from the parent
sample. In each case, the criterion function is maximised numerically by simulated annealing.
Table 1 shows the estimated coverages of the confidence regions, with m out of n bootstrap
sample sizes set to be m = 100j , j = 1, . . . ,10. We see that RC

n,0.95 yields very poor cov-

erages, which in no cases exceed 55.5%. Applying the smoothed bootstrap to ̃C
n (βF /|βF |)

yields a slightly better coverage of 70.0%, which is on a par with the 70.5% given by the in-
valid normal approximation method. The coverages of our proposed bootstrap region Rn,0.95
are considerably more accurate than those derived from the pivot ̃C

n (βF /|βF |), and the re-
sults appear to vary little with the choice of m. Its smoothed bootstrap version Rsb

n,0.95 exhibits
slight over-coverage, making no apparent improvement over Rn,0.95.

Figure 1 shows polar plots of the sample and population criterion functions against
ω = tan−1(β[2]/β[1]) ∈ [0,2π). The first random sample drawn in the above simulation study
is used for plotting the sample criterion function. We see that although the population crite-
rion function is maximised uniquely at the true value ωF = 0.4, the sample criterion function
admits multiple global maximisers, among which simulated annealing settles on the par-
ticular solution ω̂n = 0.0692. Nonuniqueness of maximisers as such accounts for the poor
performance of methods based on the conventional pivot ̃C

n (βF /|βF |) = n1/3(ω̂n − ωF ).
The problem recedes only when n becomes much bigger than 1000. Our proposed procedure
depends on ω̂n only through the maximised criterion functions B̂n(β̂n) and B̂∗

n(β̂n), which
are less adversely affected by the problem of multiple maxima.

5.2. L1 regression estimation. Following our general setting, we consider building con-
fidence regions for θF , a d-variate subvector of βF , for 1 ≤ d ≤ k. Assume that FU and FZ
satisfy, for some ζ,L,�> 0:

(LAD1) FU(u)− FU(0)= sgn(u)|u|ζL/ζ for |u| ≤�, and
∫ |u|dFU(u) <∞;

(LAD2) pr(Z�
1 ξ = 0) < 1 for any ξ �= 0, and

∫ |z|max{2,ζ+1} dFZ(z) <∞.

Note that (LAD1) covers a variety of shapes of FU around 0. In particular, for ζ ≥ 1, FU has
a finite density fU around 0 such that fU(0)= L or 0 according as ζ = 1 or ζ > 1. For ζ < 1,
FU is not differentiable at 0. Under (LAD2), FZ does not degenerate to a hyperplane passing
through the origin in R

k .
Define bξ (y, z)= −|y−z�ξ | for (y, z) ∈ R×R

k and ξ ∈ R
k . The L1 regression estimator

ξ̂n = (θ̂n, ψ̂n) is defined to be the maximiser of B̂n(ξ) = n−1 ∑n
i=1 bξ (Xi). Similarly, for a
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FIG. 1. Maximum score example—polar plots of BF (β) = EF [sgn(Y1)111{Z�
1 β ≥ 0}] (blue solid) and

B̂n(β) = n−1 ∑n
i=1 sgn(Yi)111{Z�

i β ≥ 0} (red solid) against tan−1(β[2]/β[1]) ∈ [0,2π). The blue dashed line

and circle indicate the true direction βF = (cos(0.4), sin(0.4))� and BF (βF ), respectively. The red dashed line
and circle indicate the estimated direction β̂n found by simulated annealing and B̂n(β̂n), respectively. The red
shaded sectors indicate the set of maximisers of B̂n(β).

given θ ∈ R
d , the profile estimator ψ̃n(θ) is the maximiser of B̂n(θ,ψ)= n−1 ∑n

i=1 bθ,ψ(Xi)

over ψ ∈ R
k−d . The m out of n bootstrap estimators ξ̂∗

n and ψ̃∗
n(θ̂n) are defined analogously,

with the observations Xi replaced by X∗
i . Our general Theorem 3.1 then implies the following

corollary, and hence asymptotic correctness of the confidence region Rn,1−α .

COROLLARY 5.2. Assume (B1), (LAD1) and (LAD2). Then, for some Gaussian process
Z in �∞(Rk × R

k−d), n(θF ) = n(1+ζ )/(2ζ ){B̂n(ξ̂n) − B̂n(θF , ψ̃n(θF ))} converges weakly
to sups∈Rk infu∈Rk−d Z(s, u), and m(1+ζ )/(2ζ ){B̂∗

n(ξ̂
∗
n ) − B̂∗

n(θ̂n, ψ̃
∗
n(θ̂n))} converges weakly

in probability to the same limit. The covariance and mean functions of Z are as speci-
fied in Theorem 3.1(i) where, for s, s1, s2 ∈ R

k , �(s1, s2) = ∫
s�1 zz�s2 dFZ(z) and 	(s) =

−2ζ−1(ζ + 1)−1L
∫ |z�s|ζ+1 dFZ(z).

We see from Corollary 5.2 that the process Z has a quadratic covariance function in
general. Lai and Lee [21] show under the same conditions that the conventional pivot
n1/(2ζ )(ξ̂n − βF ) converges weakly to the maximiser of a Gaussian process in �∞(Rk) with
mean function 	 and covariance function �.

In the special case where ζ = 1 so that FU has a positive density L at 0, the mean func-
tion of Z is also quadratic. It follows that Z(s, u) has the representation [s� − (0, u�)]W −
Ls��Zs + L(0, u�)�Z(0, u�)�, where �Z = ∫

zz� dFZ(z) and W ∼ N(0,�Z). Denot-
ing by W2 the last k − d components of W and by [�Z]22 its corresponding dispersion
matrix, sups∈Rk infu∈Rk−d Z(s, u) has the closed-form expression (1/4)L−1(W��−1

Z W −
W�

2 [�Z]−1
22 W2), which is distributed as (1/4)L−1χ2

d , a scaled chi-squared distribution on
d degrees of freedom. We note that in this case the standard, n out of n, bootstrap region is
asymptotically correct, while it generally fails to be consistent for ζ �= 1: see also Remark 3.1
for a general result.
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TABLE 2
L1 regression example—coverage probabilities of RC

n,0.95, and Rn,0.95 for n= 100, each estimated by
averaging over 100 random samples

m 10 20 30 40 50 60 70 80 90 100

RC
n,0.95 0.85 0.61 0.53 0.49 0.46 0.38 0.47 0.28 0.29 0.46

Rn,0.95 0.96 0.96 0.95 0.91 0.92 0.87 0.89 0.92 0.86 0.96

Simulation study. Define, for |u| ≤ 1, FU(u) = (1/2){1 + sgn(u)u2}, which satisfies
(LAD1) with ζ = 2 and � = L = 1. Setting k = 3, we take FZ to be the distribution func-
tion of the three-dimensional standard normal distribution, which satisfies (LAD2). We are
interested in constructing a two-dimensional 95% confidence region for θF = (β

[1]
F ,β

[2]
F )�,

the first two components of the three-dimensional regression parameter βF . Two choices of
pivot are considered, namely the conventional, two-dimensional pivot n1/4(θ̂n − θ) and our
proposed univariate pivot n(θ)= n3/4{B̂n(ξ̂n)− B̂n(θ, ψ̃n(θ))}. With the two-dimensional
pivot, the Tukey depth is used for calibrating its bootstrap distribution. We set n = 100 and
βF = (1,0.5,0.3)�, so that θF = (1,0.5)�. From each parent sample, 100 bootstrap samples
are generated for the construction of each bootstrap confidence region.

Table 2 shows the coverages of the bootstrap confidence regions RC
n,0.95 and Rn,0.95, built

respectively upon the conventional and our proposed pivots, with bootstrap sample sizes set
to be m = 10j , j = 1, . . . ,10. Each coverage is estimated by averaging over 100 random
samples. As in the maximum score example, the coverages of Rn,0.95 are much more accurate
than those of RC

n,0.95 under all choices of m. Indeed, with the exception of the case m =
10, the coverages of RC

n,0.95 are consistently poor and never exceed 61%. The coverages of
Rn,0.95, by contrast, lie between 86% and 96% irrespective of the choice of m.

5.3. Least quantile of squares estimation. Introduced by [34], the least median of squares
estimator of βF is defined to be the minimiser of the median of {|Y1 − Z�

1 ξ |2, . . . , |Yn −
Z�
n ξ |2} with respect to ξ . In this example, we extend the notion of median and consider the

least quantile of squares estimator ξ̂n, defined to be the value of ξ that minimises the qth
quantile of {|Y1 −Z�

1 ξ |2, . . . , |Yn −Z�
n ξ |2}, for some fixed q ∈ (0,1).

Define, for ξ ∈ R
k , ν > 0 and (y, z) ∈ R × R

k , bξ,η(y, z) = 111{|y − z�ξ | ≤ η}. De-
fine the nuisance parameter ηF = inf{η > 0 : supξ EF [bξ,η(X1)] ≥ q} and its estimator

η̂n = inf{η > 0 : supξ n
−1 ∑n

i=1 bξ,η(Xi) ≥ q}. The least quantile of squares estimator ξ̂n
can then be identified with the value of ξ which maximises B̂n(ξ)= n−1 ∑n

i=1 bξ,η̂n(Xi). We
assume:

(LQ1)
∫
zz� dFZ(z) exists and is positive definite;

(LQ2) FU has a density fU = F ′
U which is bounded, symmetric about 0, continuously

differentiable and nonincreasing on [0,∞), with f ′
U(ηF ) < 0.

Consider, as in Section 5.2, a partition βF = (θF ,ψF ) ∈ R
d × R

k−d and define, for a given
θ ∈ R

d , ψ̃n(θ) to be the maximiser of B̂n(θ,ψ) over ψ ∈ R
k−d . The m out of n bootstrap

estimators η̂∗
n, ξ̂∗

n and ψ̃∗
n(θ̂n) are defined similarly as η̂n, ξ̂n and ψ̃n(θ), respectively, with the

observations Xi replaced by X∗
i . The following corollary, which implies asymptotic correct-

ness of Rn,1−α , follows from Theorem 3.1.

COROLLARY 5.3. Assume (B1), (LQ1) and (LQ2). Then, for some Gaussian process
Z in �∞(Rk × R

k−d), n(θF ) = n2/3{B̂n(ξ̂n) − B̂n(θF , ψ̃n(θF ))} converges in distribu-
tion to sups∈Rk infu∈Rk−d Z(s, u), and m2/3{B̂∗

n(ξ̂
∗
n ) − B̂∗

n(θ̂n, ψ̃
∗
n(θ̂n))} converges weakly in
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probability to the same limit. The mean and covariance functions of Z are as specified in
Theorem 3.1(i) where, for s, s1, s2 ∈ R

k , 	(s) = f ′
U(ηF )

∫
(z�s)2 dFZ(z) and �(s1, s2) =

fU(ηF )
∫ {|z�s1| + |z�s2| − |z�(s1 − s2)|}dFZ(z).

For the case q = 1/2, Kim and Pollard [18] show under the same conditions that n1/3(ξ̂n−
ξF ) converges weakly to the maximiser of a Gaussian process with mean function 	 and
covariance function � as specified in Corollary 5.3 above.

In the special case where k = d = 1 and Zi ≡ 1, the weak limit asserted in Corollary 5.3
has the expression {4fU(ηF )2/|f ′

U(ηF )|}1/3 sups∈R{B(s)− s2}, where B denotes a standard
two-sided Brownian motion on (−∞,∞). Groeneboom [15] has derived the joint density
function of the maximum and maximiser of the process B(s) − s2, which, combined with
consistent estimation of fU(ηF ) and f ′

U(ηF ), provides a possible method for constructing an
asymptotically correct confidence set for βF ∈ R. Assuming further that ηF is known, ξ̂n then
reduces to Chernoff’s univariate modal estimator of βF . In their motivation of a smoothed
bootstrap confidence interval based on Chernoff’s modal estimator, [24] stress the importance
of drawing bootstrap samples from a kernel-smoothed empirical distribution which is sym-
metrized about a consistent estimator, such as the sample median, of βF with a convergence
rate faster than n1/3. It is not clear how their procedure can be extended to higher-dimensional
settings. Our proposed region Rn,1−α requires neither explicit estimation of fU and f ′

U , nor
any problem-specific modification of the bootstrapping scheme, and extends readily to high-
dimensional settings with k ≥ d ≥ 1.

Simulation study. Consider first the case k = d = 2, which corresponds to a bivari-
ate parameter of interest θF = βF . We compare coverage probabilities of 95% m out of n
bootstrap confidence regions RC

n,0.95 and Rn,0.95, built respectively upon the bivariate pivot

n1/3(θ̂n − θ) and the univariate pivot n2/3{B̂n(θ̂n)− B̂n(θ)}, where θ̂n is calculated by least
median of squares. The Tukey depth is used for calibrating the bivariate bootstrap distribution
in the construction of RC

n,0.95. Calculation of each bootstrap region is based on 100 bootstrap
samples drawn from the parent sample. The first set of results, summarised in Table 3, com-
pares the two bootstrap confidence regions under different choices of m, with n set to be

TABLE 3
Least median of squares example—coverage probabilities of RC

n,0.95 and Rn,0.95 for n= 100, each estimated
by averaging over 500 random samples

m 5 6 7 8 9

RC
n,0.95 0.86 0.81 0.85 0.78 0.80

Rn,0.95 0.99 0.98 0.97 0.97 0.98

m 10 20 30 40 50

RC
n,0.95 0.76 0.76 0.66 0.61 0.61

Rn,0.95 0.99 0.97 0.98 0.97 0.95

m 60 70 80 90 100

RC
n,0.95 0.60 0.64 0.57 0.55 0.54

Rn,0.95 0.97 0.94 0.98 0.97 0.96
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TABLE 4
Least median of squares example—coverage probabilities of RC

n,0.95 and Rn,0.95. Each probability is estimated
by averaging over 500 random samples for n= 100, and over 1000 random samples for n= 50

n= 100, m= 10, Z1 ∼N
((10

10
)
,
( 25 0

0 25

))
βF (1,2)� (1,10)� (1,100)� (10,20)�

RC
n,0.95 0.78 0.88 0.89 0.89

Rn,0.95 0.93 0.93 0.90 0.93

n= 50, m= 10, βF = (1,2)�, Z1 ∼N
((μ

0
)
,
(
σ 2 0
0 25

))
(μ,σ ) (0,5) (10,1) (10,10)

RC
n,0.95 0.75 0.72 0.73

Rn,0.95 0.97 0.96 0.96

100. Here, the covariate Z1 is bivariate normally distributed with mean (0,0)� and disper-
sion matrix ((25,0)�, (0,25)�), whereas U1 has the standard normal distribution. The true
value of βF is set to be (0,2)�. Each coverage probability is estimated by averaging over
500 random samples. The coverage of RC

n,0.95 decreases in general from about 86% to 54%
as m increases from 5 to 100, suggesting that a small choice of m may be desirable. On the
other hand, Rn,0.95 exhibits more accurate and stable coverages, which lie between 94% and
99% under all choices of m. Simulation results are also obtained under different settings of
βF and FZ . The bootstrap sample size m is fixed at a small value compared to n, which finds
favour with RC

n,0.95. The findings are summarised in Table 4. Each coverage probability is es-
timated by averaging over 500 random samples for n= 100, and over 1000 random samples
for n= 50. We see again that Rn,0.95 outperforms RC

n,0.95 in all cases. For a visual compari-

son of the two bootstrap regions, we calculate Rn,0.95 and RC
n,0.95 from a random sample of

size n = 100; see Figure 2. Here, we set m = 10, βF = (1,2)�, U1 ∼ N(0,1) and Z1 to be
bivariate normal with mean (10,10)� and dispersion matrix ((25,0)�, (0,25)�). We see that

FIG. 2. Least median of squares example—95% confidence regions Rn,0.95 (blue) and RC
n,0.95 (red), based on

a random sample of size 100 and m= 10. True value βF = (1,2)�.
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TABLE 5
Chernoff’s mode example—coverage probabilities of Rn,0.95, RC

n,0.95, Rsym
n,0.95, RC,sym

n,0.95 , Rsb
n,0.95, RC,sb

n,0.95,

Rsym,sb
n,0.95 and RC,sym,sb

n,0.95 for n= 100, each estimated by averaging over 500 random samples

m 10 20 30 40 50 60 70 80 90 100

Rn,0.95 0.786 0.800 0.790 0.826 0.810 0.808 0.818 0.796 0.814 0.826
RC
n,0.95 0.668 0.666 0.660 0.644 0.650 0.640 0.634 0.632 0.626 0.616

Rsym
n,0.95 0.808 0.896 0.908 0.936 0.942 0.948 0.956 0.944 0.960 0.966

RC,sym
n,0.95 0.820 0.852 0.864 0.880 0.900 0.898 0.918 0.918 0.936 0.940

Rsb
n,0.95 – – – – – – – – – 0.962

RC,sb
n,0.95 – – – – – – – – – 0.906

Rsym,sb
n,0.95 – – – – – – – – – 0.962

RC,sym,sb
n,0.95 – – – – – – – – – 0.970

the two regions have similar orientations, with Rn,0.95 covering a slightly smaller area and
having a more irregular boundary. The true value βF = (1,2)� lies well within the interiors
of both regions.

In the second study, we set k = d = 1, Zi ≡ 1, assume ηF = 1.7 is known, and con-
struct 95% m out of n bootstrap confidence intervals RC

n,0.95 and Rn,0.95 for θF = βF based

on Chernoff’s modal estimator θ̂n, taken to be the mid-point of the interval argmaxθ B̂n(θ).
The interval RC

n,0.95 is constructed to be equal-tailed. We include in the study six other in-

tervals, namely RC,sym,sb
n,0.95 , Rsym,sb

n,0.95 , RC,sb
n,0.95, Rsb

n,0.95, RC,sym
n,0.95 and Rsym

n,0.95, where RC,sym,sb
n,0.95

and Rsym,sb
n,0.95 are constructed by the symmetrized smoothed bootstrap method [24], based re-

spectively on the pivots n1/3(θ̂n − θ) and n2/3{B̂n(θ̂n) − B̂n(θ)}, using a Gaussian kernel
and a bandwidth set by the normal reference rule, RC,sb

n,0.95 and Rsb
n,0.95 are constructed simi-

larly by the smoothed bootstrap alone without symmetrization, and RC,sym
n,0.95 and Rsym

n,0.95 are
obtained by m out of n bootstrapping from the symmetrized empirical distribution without
smoothing. Each interval is constructed using 500 bootstrap samples. The results are shown
in Table 5 under different choices of m, with n set to be 100 and U1 to be standard normal.
Each coverage probability is estimated by averaging over 500 random samples. We see again
that Rn,0.95 is in general more accurate, and less sensitive to the choice of m, than RC

n,0.95.
Coverage errors of both intervals are reduced if bootstrap samples are drawn from an empiri-
cal distribution modified by either symmetrization, kernel-smoothing or both symmetrization
and kernel-smoothing. It is noteworthy that under either modification scheme, intervals con-
structed using our proposed pivot n2/3{B̂n(θ̂n) − B̂n(θ)} enjoy better coverages than those
based on the conventional pivot n1/3(θ̂n − θ) in almost all cases.

5.4. Ordered binomial probabilities. It is well known that order restricted models often
pose difficulties for standard inference procedures when the true parameter lies close to the
boundary of the order restricted parameter space. In particular, the conventional bootstrap
has been found to fail under the latter scenario; see, for example, [2]. Cohen and Sackrowitz
[11] discuss several issues concerning order restricted inference in general. Construction of
univariate confidence intervals for normal means under order restriction has been studied
extensively; see [31] for a recent contribution. Multivariate confidence regions have, how-
ever, received relatively little attention. An exception is [25], who study a bootstrap method
for constructing confidence regions for two ordered binomial probabilities. We take as our



290 S. M. S. LEE AND P. YANG

last example the two-sample binomial model considered by [25], and compare our bootstrap
regions with theirs.

Let Xn = {Xi = (Yi,Zi) : i = 1, . . . , n} be independent and identically distributed obser-
vations in {0,1} × {1,2} such that pr(Zi = 1) = ηF and pr(Yi = 1|Zi = z) = ξ

[z]
F , z = 1,2.

Thus Xn consists of two binomial samples of random sizes, with their underlying popula-
tions indexed by Zi . Suppose that the two binomial probabilities ξF = (ξ

[1]
F , ξ

[2]
F ) are order

restricted with ξ
[1]
F ≤ ξ

[2]
F , so that � = {(ξ [1], ξ [2]) : 0 ≤ ξ [1] ≤ ξ [2] ≤ 1}. We consider three

choices of θF : (i) θF = ξF , (ii) θF = ξ
[1]
F and (iii) θF = ξ

[2]
F ; whereas ηF ∈ H = [0,1] repre-

sents a nuisance parameter. Restricted maximum likelihood estimation of (ξF , ηF ) amounts
to setting bξ,η(y, z) = z logη + (1 − z) log(1 − η) + y log ξ [z] + (1 − y) log(1 − ξ [z]), for
(ξ, η) ∈�×H. The corresponding M-estimator of ξF has an explicit expression given by

ξ̂n = (
ξ̂ [1]
n , ξ̂ [2]

n

)�
=

(
min

{
N11

N01 +N11
,
N11 +N12

n

}
,max

{
N12

N02 +N12
,
N11 +N12

n

})�
,

where Nab = ∑n
i=1 111{Yi = a,Zi = b} for a = 0,1 and b = 1,2. For any θ ∈ [0,1], the profile

estimator ψ̃n(θ) is given by ψ̃n,j (θ)≡ max{θ,N1j /(N0j +N1j )}, where j = 2 and 1 under
cases (ii) and (iii), respectively. The m out of n bootstrap estimators ξ̂∗

n and ψ̃∗
n(θ̂n) are de-

fined similarly, with n replaced by m and Nab replaced by N∗
ab = ∑m

i=1 111{Y ∗
i = a,Z∗

i = b},
where pr(Y ∗

i = a,Z∗
i = b|Xn) = Nab/n, for a = 0,1 and b = 1,2. The nuisance estimators

η̂n and η̂∗
n can be arbitrarily set, as they would have been eliminated during calculations of

n(θ) and ∗
n(θ̂n). Asymptotic correctness of the confidence region Rn,1−α then follows

from Theorem 3.1, as elucidated in the following corollary.

COROLLARY 5.4. Assume that ηF ∈ (0,1) and ξF ∈ [ζ,1 − ζ ] × [ζ,1 − ζ ] for some
ζ ∈ (0,1/2). Let W1, W2 denote independent standard normal random variables.

For θF = ξF , 2n(ξF ) = 2n{B̂n(ξ̂n) − B̂n(ξF )} converges weakly to W 2
1 + W 2

2 if ξ [1]
F <

ξ
[2]
F , and to (

η
1/2
F W1 + (1 − ηF )

1/2W2
)2111

{
η

−1/2
F W1 > (1 − ηF )

−1/2W2
}

+ (
W 2

1 +W 2
2
)
111
{
η

−1/2
F W1 ≤ (1 − ηF )

−1/2W2
}

if ξ [1]
F = ξ

[2]
F .

For θF = ξ
[b]
F , b = 1,2, 2n(ξ

[b]
F ) = 2n{B̂n(ξ̂n) − B̂n(ξ

[b]
F , ψ̃n,3−b(ξ

[b]
F ))} converges

weakly to W 2
b if ξ [1]

F < ξ
[2]
F , and to(

η
1/2
F W1 + (1 − ηF )

1/2W2
)2111

{
η

−1/2
F W1 > (1 − ηF )

−1/2W2
}

+ (
W 2

1 +W 2
2
)
111
{
η

−1/2
F W1 ≤ (1 − ηF )

−1/2W2
} −W 2

3−b111
{
(−1)bW3−b < 0

}
if ξ [1]

F = ξ
[2]
F .

In all cases, ∗
n(θ̂n) converges weakly in probability to the same limit as does n(θF ),

provided that m satisfies (B1).

Note that the statistic 2n(θF ) is nothing but the generalised likelihood ratio based on
the restricted maximum likelihood estimator. The results given in Corollary 5.4 for the case
ξ

[1]
F < ξ

[2]
F reflect the classical large-sample likelihood theory under regularity conditions,

and hold also with m= n. The asymptotic chi-squared limit changes to a very different form
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when ξ
[1]
F = ξ

[2]
F , which poses problems for standard inference procedures. The m out of n

bootstrap successfully circumvents such difficulties.
That n(θF ) can be expressed in terms of the Nab’s renders it feasible to investigate into

the error rate of the m out of n bootstrap. Consider for simplicity case (i) θF = ξF . We prove
in the Supplementary Material [22] the following result.

PROPOSITION 5.1. Assume the conditions of Corollary 5.4. Then, for any fixed x ∈ R,

pr
(
∗

n(ξ̂n)≤ x|Xn

) = prF
(
n(ξF )≤ x

) +Op

(
m−1/2 + (m/n)1/2111

{
ξ

[1]
F = ξ

[2]
F

})
.

Without prior knowledge of ξF , the error given in Proposition 5.1 attains a minimax or-
der of n−1/4 with the choice m ∝ n1/2. In an m out of n bootstrap application to construct
Stein confidence sets, [10] propose a special iterative scheme to reduce coverage error from
O(n−1/4) to O(n−1/3). Given the similarity in asymptotic properties between the two prob-
lems, we conjecture that a similar scheme can be adopted to improve the error rate obtained
in Proposition 5.1, but refrain from pursuing it further in the present work.

Simulation study. As the nuisance parameter ηF does not play any role in inference about
ξF , we consider Nb =N0b +N1b, b = 1,2, fixed in the simulation study and apply the boot-
strap separately to samples arising from the two different populations. Note that Corollary 5.4
holds here with ηF =N1/(N1 +N2)=N1/n.

Setting bootstrap sample sizes to be M1 = ηFm and M2 = (1 − ηF )m for the first and
second populations, respectively, construction of Rn,1−α is based on bootstrap observations
N∗

1b = Mb − N∗
0b, which follow the binomial (Mb,N1b/Nb) distributions, for b = 1,2. Ta-

ble 6 shows the coverage probabilities of 95% confidence regions Rn,0.95 for the parameter
ξF = (0.2,0.2)� under different choices of m, with (n, ηF ) set to be (300,1/3). Each region
is constructed with 1000 bootstrap samples and its coverage estimated by averaging over
1000 independent replications. The coverages are in general accurate and rather insensitive
to the choice of m, except for the cases of small m where Rn,0.95 exhibits a slight degree of
over-coverage.

We also compare Rn,1−α with two different approaches to constructing parametric boot-
strap confidence regions of the form {θ : |θ̂n − θ | ≤ q̂n,1−α}. The first approach calculates
q̂n,1−α to be the (1 −α)th quantile of |θ̂∗

n − θ̂Un |, where θ̂∗
n is derived from bootstrap observa-

tions N∗
1b = Nb −N∗

0b generated from the binomial (Nb,N1b/Nb) distribution, b = 1,2 and
θ̂Un denotes the unrestricted maximum likelihood estimator of θF calculated from Xn. Li et al.
[25] consider a similar approach with θ̂Un replaced by θ̂n, which is theoretically unsupported.
The second approach calculates q̂n,1−α to be the (1 − α)th quantile of |θ̂∗

n − θ̂An |, where θ̂∗
n

TABLE 6
Ordered binomial probability example—coverage probabilities of Rn,0.95 for n= 300 and ηF = 1/3, each

estimated by averaging over 1000 random samples

m 30 60 90 120 150
(M1,M2) (10,20) (20,40) (30,60) (40,80) (50,100)

Coverage 0.963 0.963 0.960 0.956 0.956

m 180 210 240 270 300
(M1,M2) (60,120) (70,140) (80,160) (90,180) (100,200)

Coverage 0.957 0.956 0.955 0.954 0.956
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FIG. 3. Ordered binomial probability example—95% confidence regions Rn,0.95 (blue), RE1
n,0.95 (red) and

RE2
n,0.95 (brown), based on two different random samples (a) and (b), with n = 300 (N1 = 100,N2 = 200),

ηF = 1/3 and m= 150. True value ξF = (0.2,0.2).

is based on N∗
1b drawn from the binomial (Nb, p̂

A
b ) distribution, and θ̂An = (p̂A1 , p̂

A
2 )

� or

p̂Ab according as θF = ξF or ξ [b]
F . Following [2], we define, for b = 1,2, p̂Ab to be N1b/Nb

if N12/N2 − N11/N1 > 2
√

log logn/n and (N11 + N12)/n otherwise, so that the two ap-
proaches coincide whenever N12/N2 −N11/N1 > 2

√
log logn/n. We denote by RE1

n,1−α and
RE2

n,1−α the level 1 −α confidence regions constructed using the first and second approaches,

respectively. It can be shown that RE1
n,1−α is asymptotically correct if ξ [1]

F < ξ
[2]
F but not if

ξ
[1]
F = ξ

[2]
F , whereas RE2

n,1−α is asymptotically correct under either condition.
Consider first the case (i) θF = ξF . Figure 3 displays the three bootstrap regions obtained

from two different samples: (a) (N11,N12) = (25,40), and (b) (N11,N12) = (8,48), with
n = 300, m = 150, ηF = 1/3 and ξF = (0.2,0.2)�. Each region is constructed using 5000
bootstrap samples. The two regions RE1

n,0.95 and RE2
n,0.95 take on a circular shape due to their

use of a Euclidean distance-based pivot. Sample (a) is typical of the setting ξF = (0.2,0.2),
where Rn,0.95 has a size far smaller than RE1

n,0.95 and RE2
n,0.95. Sample (b) represents a rare

case under ξF = (0.2,0.2), in which RE1
n,0.95 and RE2

n,0.95 coincide with each other, and have
a size comparable to that of Rn,0.95. For a comparison in coverage accuracy, we construct
Rn,0.95, RE1

n,0.95 and RE2
n,0.95 under different settings of n and ξF , with ηF always set to be

1/3 and m= n/2. Each region is constructed using 1000 bootstrap samples and each coverage
probability estimated by averaging over 1000 replications. Table 7 summarises the coverage
results, which suggest that Rn,0.95 and RE2

n,0.95 have comparable coverage accuracies, while
RE1

n,0.95 yields somewhat inferior results, especially when ξF assumes more extreme values.

The above comparison is repeated for cases (ii) θF = ξ
[1]
F and (iii) θF = ξ

[2]
F , with each

coverage probability estimated by averaging over 100 replications. As before, we set ηF =
1/3, m = n/2 and construct each interval using 1000 bootstrap samples. The results, shown
in Table 8, suggest that Rn,0.95 yields the best, or almost the best, coverage accuracy among
the three methods in all cases.

6. A subsampling method for selecting m. In their treatise on the subsampling method,
[33] suggest several empirical approaches to fixing the subsample size. One of the ap-
proaches, which applies specifically to confidence interval construction, consists of min-
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TABLE 7
Ordered binomial probability example—coverage probabilities of Rn,0.95 (m= n/2), RE1

n,0.95 and RE2
n,0.95,

each estimated by averaging over 1000 random samples, with ηF = 1/3 and parameter of interest θF = ξF

n= 150 n= 300

(i) θF = ξF (0.2,0.2) (0.5,0.5) (0.8,0.8) (0.2,0.2) (0.5,0.5) (0.8,0.8)

Rn,0.95 (m= n/2) 0.949 0.944 0.949 0.947 0.952 0.952
RE1
n,0.95 0.933 0.954 0.960 0.939 0.955 0.969

RE2
n,0.95 0.944 0.950 0.956 0.936 0.949 0.945

imising the volatility of the interval end points. This method extends naturally to our d-
dimensional m out of n bootstrap confidence region Rn,1−α as follows. For each possible
value of m, the volatility of Rn,1−α is calculated to be the running standard deviation of the
2k+1 values of Ĝ−1

n (1−α), obtained using bootstrap sample sizes m−k,m−k+1, . . . ,m+
k respectively. The value of m which minimises this volatility is then chosen. Assuming va-
lidity of Edgeworth expansions of a certain type, [14] suggest estimating m by minimising
some distance measure between a pair of m out of n bootstrap distribution estimators based
on bootstrap sample sizes m and m/2, for even m. Bickel and Sakov [4] propose a similar
procedure in which the pair of estimators are obtained from bootstrap sample sizes qjn and
qj+1n, for a fixed q ∈ (0,1) and j = 0,1, . . . .

We propose below an alternative, theoretically better justified, subsampling approach to
selecting m. First, fix T ≥ 2 distinct subsample sizes n1 < · · ·< nT < n. Generate a number
B1 of subsamples, each of size nT drawn without replacement from Xn. For each t = 1, . . . , T
and b1 = 1, . . . ,B1, denote by X †(b1)

t the set of the first nt observations in the b1th subsample.
Similarly, generate from each X †(b1)

t B2 bootstrap samples, each of size �nt/2�, and denote
by X †∗(b1,b2)

t,m the set of the first m observations in the b2th bootstrap sample, b2 = 1, . . . ,B2.

Write 
†(b1)
t (θ) and 

†∗(b1,b2)
t,m (θ) for the analogues of n(θ) and ∗

n(θ), respectively,

with (Xn,X ∗
m) replaced by (X †(b1)

t ,X †∗(b1,b2)
t,m ). Denote by ξ̂

†(b1)
t = (θ̂

†(b1)
t , ψ̂

†(b1)
t ) the M-

estimator based on X †(b1)
t . We then estimate the coverage error of the m out of nt bootstrap

TABLE 8
Ordered binomial probability example—coverage probabilities of Rn,0.95 (m= n/2), RE1

n,0.95 and RE2
n,0.95,

each estimated by averaging over 100 random samples, with ηF = 1/3 and parameter of interest θF

n= 60 n= 150

ξF (0.5,0.5) (0.8,0.8) (0.5,0.5) (0.8,0.8)

(ii) θF = ξ
[1]
F :

Rn,0.95 (m= n/2) 0.95 0.97 0.96 0.94
RE1
n,0.95 0.98 0.98 0.98 0.96

RE2
n,0.95 0.98 0.98 0.99 0.96

(iii) θF = ξ
[2]
F :

Rn,0.95 (m= n/2) 0.96 0.93 0.95 0.96
RE1
n,0.95 0.95 0.92 0.96 0.90

RE2
n,0.95 0.95 0.92 0.96 0.91
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confidence region by

CEt (m)=
∣∣∣∣∣B−1

1

B1∑
b1=1

111

{
B−1

2

B2∑
b2=1

111
{


†∗(b1,b2)
t,m

(
θ̂

†(b1)
t

) ≤
†(b1)
t (θ̂n)

} ≤ 1 − α

}

− (1 − α)

∣∣∣∣∣,
for m = 1, . . . , nt and t = 1, . . . , T . Select m = mt which minimises CEt (m) over m ∈
{1, . . . , nt }. Fitting the optimal choices mt by a parametric form �nωt , for � > 0 and
ω ∈ (0,1) independent of n, we obtain by standard least squares approximation that
ω ≈ max{0,min{1, (T L2 − M1L1)/(TM2 − M2

1 )}} and � ≈ exp{(L1 − ωM1)/T }, where
M1 = ∑T

t=1 lognt , M2 = ∑T
t=1(lognt)2, L1 = ∑T

t=1 logmt and L2 = ∑T
t=1(lognt )(logmt).

Extrapolating the above results to the full sample, we calculate the optimal m to be
min{max{�nω,m◦}, n}, rounded to the nearest integer, for some reasonably small lower
bound m◦ < n. The following proposition states conditions under which CEt (m) consistently
estimates the coverage error of the m out of nt bootstrap confidence region, thus justifying
theoretically the above selection procedure.

PROPOSITION 6.1. Assume the conditions of Theorem 3.1 and further that

(G3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ̃n(ϑ)− ψ̃n(θF )=Op

(|ϑ − θF |),
EF

[
b(θ,ψ),η(X1)− b(θF ,ψ ′),η(X1)

] =O
(
r−ν
n

)
,

EF

{
b(θ,ψ),η(X1)− b(θF ,ψ ′),η(X1)

}{
b(θ ′,ψ ′′),η(X1)− b(θF ,ψ ′′′),η(X1)

}
=O

(
nr−2ν

n

)
,

uniformly over ϑ in a neighbourhood of θF , (θ,ψ), (θF ,ψ ′), (θ ′,ψ ′′), (θF ,ψ ′′′) in a neigh-
bourhood of (θF ,ψF ) and η in a neighbourhood of ηF , with |θ − θF | + |θ ′ − θF | + |ψ −
ψ ′| + |ψ ′′ − ψ ′′′| = O(r−1

n ). Assume that B1,B2 → ∞ and n−1
1 + nT /n = o(1). Then we

have, for t = 1, . . . , T ,

CEt (m)= ∣∣prF (θF ∈ Rnt ,1−α)− (1 − α)
∣∣

+Op

{
(n/nt )

1/2(rnt /rn)
ν + n−1/2 +B

−1/2
1 +B

−1/2
2

}
.

Condition (G3) requires that the profile M-estimator ψ̃n(ϑ) depend sufficiently smoothly
on ϑ in a neighbourhood of θF , and extends validity of the asymptotic orders prescribed in
(G1) and (G2) from the fixed points ψ ′ = ψ ′′′ = ψF and η = ηF to small neighbourhoods
around them. Assuming that Rn,1−α has an optimal coverage error of order not smaller than
n−1/2, as is typically the case under nonstandard conditions, Proposition 6.1 suggests that
CEt (m) consistently estimates the coverage error of Rnt ,1−α , that is,

CEt (m)= prF (θF ∈ Rnt ,1−α)− (1 − α)+ op
(
n

−1/2
t

)
, t = 1, . . . , T ,

if we set nt = o(min{B1,B2}) and (n/nt )
1/2(rnt /rn)

ν = o(n
−1/2
t ) for each t = 1, . . . , T . The

latter conditions are equivalent to setting

(6.1) nT = o
(
min{B1,B2}) and rnT = o

(
n−1/(2ν)rn

)
.

Applications of (6.1) to the examples discussed in Section 5 suggest the choices nT = o(n1/4)

for maximum score estimation (Section 5.1) and least quantile of squares estimation (Sec-
tion 5.3), nT = o(n1/(ζ+1)) for L1 regression (Section 5.2) and nT = o(n1/2) for ordered
binomial probability estimation (Section 5.4), provided that B1 and B2 have orders exceed-
ing nT in each case.
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REMARK 6.1. Writing mopt(n) for the theoretically optimal choice of m that minimises
the coverage error, we have proposed approximating mopt(n) by a parametric fit �nω, esti-
mation of which requires at least T = 2. A rationale behind the form �nω lies in the notion
that the coverage error of an m out of n bootstrap confidence region is typically dominated by
terms of orders m−c1 and mc2n−c3 , for some c1, c2, c3 > 0, leading to an optimal m of order
nc3/(c1+c2); see Proposition 5.1 for an example. At extra computational cost we may consider
increasing T and approximating mopt(n) by a nonparametric fit instead, an approach which
we do not pursue in the present work.

REMARK 6.2. Since nT satisfying (6.1) is typically small relative to n, our proposed
subsampling method requires only moderate simulation sizes B1 and B2.

REMARK 6.3. In the rare event of Rn,1−α having an optimal coverage error of order
o(n−1/2), which is atypically small, the optimal m selected by the subsampling method under
(6.1) may not yield the best error rate but still guarantees a coverage error of order O(n−1/2).

REMARK 6.4. Minimisation of CEt (m) over m ∈ {1, . . . , nt }, at each t = 1, . . . , T , re-
quires

∑T
t=1 nt evaluations of CEt (m), which may be computationally very costly. A more

efficient approach is to evaluate CEt (m) for m selected from a small subset Mt ⊂ {1, . . . , nt }
likely to contain the optimal mt , and approximate mt by minimising a quadratic interpolation
of the points {(m,CEt (m)) :m ∈ Mt } over the real interval [1,max{m′ :m′ ∈ Mt }].

Simulation study. For an empirical illustration, we repeat the simulation study in Sec-
tion 5.1, with m selected by our proposed subsampling method. We set T = 2, n1 = 16,
n2 = 48, B1 = 100, B2 = 50 and m◦ = 5. For t = 1,2, CEt (m) is minimised approxi-
mately by quadratic interpolation as described in Remark 6.4, with M1 = {4,5,6,7,8,9}
and M2 = {4,6,8,10,16,25}. The coverage probability, estimated by averaging over 200
replications, is found to be 0.955, which is comparable to the best result achieved by fixing m
at different values shown in Table 1. Figure 4(a) shows the histogram of the 200 empirically
selected values of m, which have a mean value of 48.275 and a standard deviation of 87.096.
Among the 200 replications, m is selected to be the lower bound m◦ in 135 cases. Generally
speaking, our subsampling method favours use of a small m, whose values accord well with
the optimal range suggested by fixed-m results shown in Table 1.

We also apply the subsampling method to select m in the simulation study reported in
Table 6 for the ordered binomial probability example. Here, we set T = 2, n1 = 10, n2 = 30,
B1 = B2 = 100, m◦ = 6, M1 = {3,4,5,6,7,8} and M2 = {4,6,8,11,15,20}. The coverage
probability is estimated to be 0.950 based on 1000 replications, which outperforms all the
fixed-m results shown in Table 6. The 1000 selected values of m have mean 27.642 and
standard deviation 41.135, and take on the lower bound m◦ 535 times. Their histogram,
plotted in Figure 4(b), shows a trend similar to that observed in Figure 4(a) for the maximum
score example.

7. Unknown convergence rate. Practical implementation of our proposed confidence
procedure presupposes some working knowledge of the normalising factor rνn as a function of
n, typically derived from the conditions (G1) and (G2). This has been shown to be analytically
available in the examples considered in Section 5. However, situations may arise where the
criterion function has a structure too complex to permit tractable analysis of rνn , or where rn
and ν involve some unknown features of the underlying distribution F . In such cases, one may
resort to empirical methods for estimating the values of rn and ν. One possible approach, sug-
gested by [33], Section 8.2, is as follows. For distinct ρ1, ρ2 in (0,1), calculate the (1 − α)th



296 S. M. S. LEE AND P. YANG

FIG. 4. Histograms of bootstrap sample size m selected by subsampling method in simulation studies con-
ducted for examples (a) maximum score estimation (n = 1000), and (b) ordered binomial probability estimation
(n= 300).

bootstrap quantiles of B̂∗
n(ξ̂

∗
n ) − B̂∗

n(θ̂n, ψ̃
∗
n(θ)) based on bootstrap sample sizes m1 = nρ1

and m2 = nρ2 , respectively, and denote their values by Q1 and Q2. Then estimate the nor-
malising factors rνn and rνm by nλ̂ and mλ̂, respectively, where λ̂= log(Q1/Q2)/ log(m2/m1).
It can be shown, under the assumption that rνn = nλ for some λ > 0, the above procedure

yields a consistent estimator λ̂ = λ + op(1/ logn). It follows that nλ̂ = nλ{1 + op(1)} and

mλ̂ =mλ{1 + op(1)}, so that Theorem 3.1 remains valid with λ replaced by λ̂. Similarly, not-

ing that nλ̂t = nλt {1 + op(1)}, the subsampling procedure described in Section 6 for selecting
m retains its theoretical properties with λ estimated by λ̂, while the second condition in (6.1)
suggests the choice nT = o(n1−1/(2λ̂)).

8. Conclusion. We have proposed a novel m out of n bootstrap procedure for construct-
ing confidence regions under nonstandard M-estimation settings. By using a univariate pivot
defined in terms of the maximised criterion function, our procedure is proved to be consistent,
applies readily to multidimensional parameters, and is rid of anomalies typical of conven-
tional pivots based directly on multivariate M-estimators. Simulation results show that our
procedure improves upon conventional methods in coverage accuracy. Interestingly, the im-
provement remains noticeable even after the bootstrap scheme has been modified by smooth-
ing or symmetrization, techniques which have been proposed in the literature in selected
contexts. The need for selecting m motivates us to develop a subsampling procedure for con-
sistently estimating the coverage error under different subsample sizes, based on which some
kind of extrapolation can be applied to yield an empirical choice of m. The procedure has
been tested via simulations, generating very encouraging results.
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When developing our procedure, we have made a critical assumption (A1) that the nui-
sance estimator η̂n converges at a faster rate than does the M-estimator. However, it is not un-
common to find in a semiparametric M-estimation context an infinite-dimensional ηF which
can only be estimated at a rate slower than the Euclidean parameter of interest ξF . In the
latter case and under standard regularity conditions, ξ̂n can be shown to be n1/2-consistent
and asymptotically normal, thus allowing for applications of the standard bootstrap [9] or
the perturbation bootstrap [27]. Advances have also been made in problems concerning high-
dimensional ξF . Spokoiny and Zhilova [35] propose a multiplier bootstrap confidence region
for ξF of growing dimension p = o(n1/3), based on a log-likelihood ratio pivot akin to ours
but still subject to standard regularity conditions. Chatterjee and Bose [8] consider asymptot-
ically normal M-estimators, defined as solutions to differentiable estimating equations, and
establish consistency for a general class of bootstrap methods with d fixed and p subject
to a growing rate which amounts to o(n) under regularity conditions. For high-dimensional
regression problems under sparsity assumptions, a popular strategy is provided by penalised
M-estimation of the lasso type, for which a variety of bootstrap methods have been developed
to draw inference for the regression parameter subvector θF when either d or p increases with
n [7, 12, 26, 40, 41]. It would be of interest to extend our m out of n bootstrap procedure to
the above contexts under nonstandard conditions, when asymptotic normality no longer holds
for the M-estimator ξ̂n and when p or q increases with n.
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SUPPLEMENTARY MATERIAL

Supplement to “Bootstrap confidence regions based on M-estimators under nonstan-
dard conditions” (DOI: 10.1214/18-AOS1803SUPP; .pdf). The supplement contains proofs
of Theorems 3.1–3.3, 4.1, Corollaries 5.1–5.4, Propositions 5.1 and 6.1.
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