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Abstract

rankdist is a recently developed R package which implements various distance-based
ranking models. These models capture the occurring probability of rankings based on
the distances between them. The package provides a framework for fitting and evaluating
finite mixture of distance-based models. This paper also presents a new probability model
for ranking data based on a new notion of weighted Kendall distance. The new model is
flexible and more interpretable than the existing models. We show that the new model has
an analytic form of the probability mass function and the maximum likelihood estimates
of the model parameters can be obtained efficiently even for ranking involving a large
number of objects.
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1. Introduction
Ranking data occur when raters are asked to rank order a set of objects. Examples of ranking
data arise in elections, movie rankings, shopping preferences and so on. By analyzing ranking
data, we may want to understand the patterns of rank-order preferences of raters and to find
the most representative ranking generally consented by the raters. Ranking data analysis
thus has important applications in market research, recommendation systems and political
sciences.
In a survey paper, Critchlow (1986) broadly categorized probability models for ranking data
into four classes: (1) order statistics models, (2) paired comparison models, (3) distance-based
models, and (4) multistage models. For more details, please refer to the monograph by Alvo
and Yu (2014). Among them, the order statistics models have the longest history. Typical
examples of these include independent order statistics models (Thurstone 1927; Luce 1959)
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and multivariate order statistics models (Yu 2000; Joe 2001). The basic idea behind these
models is that each rater assigns a latent score or utility to each object according to his/her
perception of the object and the ordering of these utility scores then determines the rater’s
ranking of the objects. While this approach works well when the number of objects is small,
its parameter estimation often becomes computationally demanding when a large number of
objects are ranked. Both the paired comparison models (Smith 1950; Mallows 1957) and the
multistage models (Fligner and Verducci 1988) try to decompose the ranking process into a
set of independent decisions. The assumed independence between decisions greatly simplifies
the computation. A common critique of these two approaches is that the underlying cognitive
model of assigning rankings may not always be true. Distance-based models (Diaconis 1988)
rely on distance metrics between two rankings. They were not as popular as the above three
models until recently because they were thought to be too inflexible. This paper introduces
the R package rankdist (Qian 2019) which provides a unified way to fit different distance-based
ranking models. This paper also presents an original model which has an elegant analytic
form of the probability mass function.
The paper is organized as follows. In Section 2, we review the general formulation of distance-
based models and several well-known examples. We then introduce the weighted Kendall
distance and formulate the weighted Kendall distance model in Section 3. Section 4 shows
possible ways to extend distance-based models. We review existing software for ranking model
and give details on the package architecture in Section 5. In Section 6, we give concrete
examples of using package rankdist to model complete and top-q rankings. In Section 7, we
first validate the parameter estimation procedure with a comprehensive simulation study. We
then present two real-data applications of weighted Kendall distance model using rankdist. We
compare the results with other ranking models in terms of goodness of fit and interpretability.
Finally, we discuss the strengths of our new model and directions for future development of
the rankdist package.
Before we introduce the model in full details, it is helpful for us to review some important
conventions of permutation notations. In the rest of this paper, permutations are denoted
as lower-case Greek letters π, σ, τ etc. π(i) denotes the rank given to object i, and π−1(i)
denotes the object assigned the rank i. The total number of objects in the ranking is t. For
any two permutations π and σ, the product τ = πσ is defined by the equation τ(i) = π(σ(i)),
i = 1, 2, . . . , t.

2. Distance-based ranking models

2.1. Overview of distance-based models

Sometimes it is reasonable to assume that there exists a modal ranking π0 which has the
highest probability to occur and most observed rankings rm are close to π0. Thus we should
assign the highest probability to π0 and for any other ranking the probability should be
negatively correlated with its distance from π0. According to this framework, Diaconis (1988)
proposed a family of distance-based model

P(π | λ, π0) = e−λD(π,π0)

C(λ) , (1)
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where π0 denotes the modal ranking, D(π, π0) is a distance function between π and π0, λ ≥ 0
is the dispersion parameter and C(λ) is the normalization constant. The common properties
of D(π, π0) are: (1) reflexivity, d(π, π) = 0; (2) positivity, d(π, σ) > 0 if π 6= σ; and (3)
symmetry, d(π, σ) = d(σ, π). For ranking data, the distance should also satisfy an additional
property: (4) right-invariance, d(π, σ) = d(πν, σν) for any permutation π, σ and ν. This
ensures that a relabeling of the objects has no effect on the distance. If a distance satisfies
the triangular inequality: (5) d(π, ν) ≤ d(π, σ) + d(σ, ν), the distance function is said to be
a metric. The following are some commonly used distance metrics. Each of these distances
can be formulated into a ranking model as in Equation 1.

• Kendall distance:

DK(π, σ) =
∑
i<j

I {[π(i)− π(j)] [σ(i)− σ(j)] < 0} ,

where I{·} is the indicator function taking values 1 or 0 depending on whether the
statement in brackets holds or not.

• Spearman distance:

DS(π, σ) = 1
2

t∑
i=1

[π(i)− σ(i)]2

• Hamming distance:

DH(π, σ) =
t∑
i=1

I {π(i) 6= σ(i)}

• Footrule distance:

DF (π, σ) =
t∑
i=1
|π(i)− σ(i)|

• Cayley distance: DC is defined as the minimum number of transpositions needed to
transform one ranking into the other.

The existing distance-based models often have one or more of the following limitations.

• The normalization constant C(λ) is intractable. The general way of finding C(λ) in-
volves the summation of t! terms, which is not computationally feasible when the number
of items is large (>10). As a result, the log-likelihood will also be intractable, which
poses challenge for inference and parameter estimation.

• There is only one parameter λ controlling the dispersion of the model, which is too
restrictive in some cases.

• The distance function is not a metric, which makes the model unintuitive and less
interpretable.

• It might be hard to generate samples from the model. The general way of drawing
samples is to calculate probability for all t! rankings and sample from the corresponding
categorical distribution. This approach is not computationally feasible for t > 10 even
if the normalization constant is tractable because it involves calculating and storing t!
probabilities.
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In this paper, we present the weighted Kendall model which addresses all four issues mentioned
above. The model is based on a proper distance metric, the weighted Kendall distance. The
dispersion parameters are directly related to positions of the ranked list, which is flexible and
interpretable. Evaluating the normalization constant has time complexity O(t), and obtaining
samples takes O(t2). Both are huge improvements over the O(t!) complexity.
We will first review several existing distance-based models in order to motivate the weighted
Kendall model.

2.2. Mallows’ φ model

Among the distance functions listed in the previous section, the Kendall distance is the most
popular one. Its distance-based model, also called the Mallows’ φ model (Mallows 1957), has
a closed-form normalization constant:

C(λ) =
t−1∏
i=1

1− e−(t−i+1)λ

1− e−λ .

Kendall distance is a metric and it can also be interpreted as the minimum number of adjacent
transpositions required to transform π−1 to σ−1.
The Mallows’ φ-model has only one dispersion parameter λ. As a results, the transpositions
between any two items at any position in the list will have the same effect to the probability,
which might seem inflexible in some cases. For example, swapping items near the beginning
of the list should have a larger effect than swapping items at the end of the list when the rater
pays more attention to the top items. Another example will be swapping radically different
items might have a larger effect than swapping very similar items even if the adjacent trans-
position takes place at the same position. As a final example, some items might carry higher
importance than others and swapping items with higher importance should have a larger
effect to the probability. The Mallows’ φ-model can capture none of these subtleties. Kumar
and Vassilvitskii (2010) presents more examples and several generalized distance measures.
Efforts have also been taken to introduce more richness into distance-based models, and we
will describe two such examples below.

2.3. The φ-component model

The φ-component model proposed by Fligner and Verducci (1986) is a generalization of Mal-
lows’ φ-model. Its basic idea is that the Kendall distance can be decomposed into a sum of
t− 1 scores Vi(π, σ), i = 1, . . . , t− 1 obtained in a ranking process:

DK(π, σ) =
t−1∑
i=1

Vi(π, σ),

where

Vi(π, σ) =
t∑

j=i+1
I{[π(σ−1(i))− π(σ−1(j))] > 0}. (2)

Here V1(π, σ) represents the number of adjacent transpositions on π required to place the
object σ−1(1) (the object ranked first in σ) in the first position in ranking π. In the ith stage
(2 ≤ i ≤ t − 1), π−1(j) = σ−1(j) for j = 1, . . . , i − 1, and Vi(π, σ) is the number of adjacent
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transpositions needed to place the object σ−1(i) in the ith position in ranking π. Therefore,
the ranking can be described as t− 1 stages where Vi(π, σ) can be interpreted as the number
of mistakes made in assigning rank to object σ−1(i) after (i − 1) stages and it takes value
0, 1, . . . , (t− i).
The φ-component model introduces dispersion parameter λi for each Vi(π, π0), and takes the
form of:

P(π | λ, π0) = e−
∑t−1

i=1 λiVi(π,π0)

C(λ) , (3)

where λ = (λ1, . . . , λt−1)′ and C(λ) is the normalization constant with a closed-form, which
equals

C(λ) =
t−1∏
i=1

1− e−(t−i+1)λi

1− e−λi
≡

t−1∏
i=1

C(λi).

Thus Equation 3 can be simplified as

P(π | λ, π0) =
t−1∏
i=1

e−λiVi(π,π0)

C(λi)
,

which is a joint probability mass function of t− 1 statistically independent variables V1, . . .,
Vt−1.
The term∑t−1

i=1 λiVi in the φ-component model extends the notion of Kendall distance between
two rankings and it degenerates to Kendall distance if all λi’s are the same. Decomposing the
ranking process into statistically independent variables also opens up new interpretations of
model parameters.
However, φ-component model violates the symmetric property of distance metric as shown
in Lee and Yu (2012). For example, we have ranking π−1 = A | C | B and σ−1 = C | B | A,
then D(π, σ) = λ1 +λ2 while D(σ, π) = 2λ1. It’s clear that they are not equal when λ1 6= λ2.
The violation of symmetry poses an immediate issue: the distance between modal ranking
π0 and one observation will not be the same as the distance between the observation and π0.
Hence, it’s hard to interpret π0 as a “central” ranking in a geometric sense.

2.4. Weighted-tau distance model

Lee and Yu (2012) proposed new distance-based models by using weighted distance measures
to allow different weights for different ranks. The properties (1)-(4) of a distance function are
preserved. The weighted version of Kendall distance between two rankings π and σ with the
modal ranking π0 and weights w = (w1, . . . , wt) under this model is defined as

Dwt(π, σ | π0,w) =
∑
i<j

wπ0(i)wπ0(j)I {[π(i)− π(j)] [σ(i)− σ(j)] < 0} .

Lee and Yu (2012) called this distance as weighted Kendall tau distance or simply weighted
tau distance. Note that the weighted tau distance is not equivalent to any of the generalized
distances proposed in Kumar and Vassilvitskii (2010). One obvious difference is that the
weighted tau distance is parameterized by a set of weights as well as the central ranking π0
while the distances in Kumar and Vassilvitskii (2010) do not take into account π0.
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The probability of observing a ranking π under the weighted tau distance-based ranking model is

P(π | w, π0) = e−Dwt(π,π0|π0,w)

Cwt(w) ,

where the weight wiwj represents the loss in the disagreement in the ranking of the two
objects π−1

0 (i) and π−1
0 (j) between π and π0.

The shortcoming of this model is that the normalization constant Cwt(w) does not have
a closed form. The exact probability and likelihood become easily intractable as the time
complexity of evaluating them is O(t!).

3. Weighted Kendall distance nodel

3.1. Motivation and definition of weighted Kendall distance

The new model presented in this paper is motivated by another generalization of Kendall
distance first introduced in Kumar and Vassilvitskii (2010) and later axiomized by Farnoud
and Milenkovic (2014). The distance has been shown to be a distance metric, and we will
refer to it as the weighted Kendall distance.
As a motivating example, consider three orderings, σ−1 = A | B | C | D, π−1

1 = A | B | D | C
and, π−1

2 = B | A | C | D. In terms of the original Kendall distance: D(π1, σ) = D(π2, σ) = 1,
but the difference between π1 and σ occurs at the bottom of the list while the difference
between π2 and σ occurs in the first two positions. In reality, raters may care more about the
top positions than the bottom positions. A concrete example will be people’s perception of
the outcome of the Olympic games: in general the public care more about who is the winner
than who has ended up in the fourth place. In this case, D(π1, σ) should be smaller than
D(π2, σ). The weighted Kendall distance is developed to capture this phenomenon.
Several additional definitions are needed for a clear presentation of the distance. A transpo-
sition τa,b, a, b < t is defined as a permutation such that τ(a) = b and τ(b) = a and τ(c) = c
for all c 6= a,b. In particular, τa,a+1 is referred to as an adjacent transposition, and will be
simply denoted as τa.
We associate a non-negative weight wi with each adjacent transposition τi, i = 1, . . . , t − 1.
Define the set

A(π, σ) = {〈τ(1), τ(2), . . .〉 | σ = πτ(1)τ(2) . . .}

to be the set of all ordered sequences of adjacent transpositions that transform π to σ. In the
above definition τ(i) is the adjacent transposition taking place in the ith step. Note that the
sequences in A(π, σ) might have different lengths. The weighted Kendall distance between
two rankings π and σ is defined as

DwK(π, σ) = min
〈τ(1),τ(2),...〉∈A(π,σ)

∑
i

w(i), (4)

where w(i) is the weight associated with the ith adjacent transposition τ(i) applied to σ in
the sequence. In a nutshell, the weighted Kendall distance corresponds to the best way to
transform ranking π to σ via adjacent transformation.
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The weights wj ’s have the natural interpretation as the “difficulty” of transposing adjacent
objects at certain rank positions in the ranking. If we define Qj(π, σ) to be the total number
of adjacent transposition τj applied to σ in the minimizer, the distance can be explicitly
represented as a linear combination of weights:

DwK(π, σ) =
t−1∑
j=1

wjQj(π, σ). (5)

3.2. Weighted Kendall distance as a graphic distance

Similar to the original Kendall distance, the weighted Kendall distance is also a graphic
distance, which means the distance between π and σ is the length of the shortest path between
vertices π and σ on a certain graph. The vertices of such a graph are all possible rankings π’s
(or orderings π−1’s) of t objects and two vertices are linked by an edge if the corresponding
orderings of the objects are different only by one adjacent transposition. In the context of
weighted Kendall distance, if the edge corresponds to adjacent transposition τi this edge has
a weight wi. By definition, the shortest path minimizes the right hand side of Equation 4.
It follows that when all the wi’s equal 1, the weighted Kendall distance degenerates to the
original Kendall distance.
Figure 1 provides an illustration of paths used in weighted Kendall distance. The label on
each vertex is an ordering. The color of an edge represents the weight associated with that
edge. A blue edge represents an transposition between the top two objects and is associated
with weight w1. Likewise, a green edge is associated with w2, and red edge w3. Suppose we
are interested in finding the weighed Kendall distance between the two orderings A|B|C|D
and D|C|A|B. The shortest path 〈τ(1), τ(2), . . .〉 is not unique in this case and is marked with
arrows. The Qj in Equation 5 corresponds to the number of edges with a certain color on
the shortest path. There is one blue edge, two green edges and two red edges on the path, so
Q1 = 1, Q2 = 2, Q3 = 2. Although there could be more than one shortest paths, the value of
Qj ’s are the same for all these paths and hence the distance is uniquely specified as expected.

3.3. Computing weighted Kendall distance

Applying shortest path algorithms on the graph introduced in Section 3.2 to compute dis-
tances is not computationally feasible in general since the graph has t! vertices. Farnoud
and Milenkovic (2014) showed that if the weights are decreasing, the distance computation
between two rankings of t objects can be performed efficiently with time complexity O(t2).
Surprisingly, the sequence of adjacent transpositions used to iteratively find Vi in the φ-
component model in Equation 2 is the minimizer of Equation 4 (Farnoud and Milenkovic
2014).

3.4. The normalization constant

The weighted Kendall distance introduced in Section 3.3 can be formulated into a probability
model. For the ranking of t objects, the model includes t − 1 decreasing weights as well
as a modal ranking π0. We refer to this new model as the weighted Kendall model. The
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Figure 1: Graphical representation of weighted Kendall distance between four objects.

probability of observing a ranking π is

P(π | w, π0) = e−DwK(π,π0)

CwK(w) ,

where CwK(w) is the normalization constant. Although the distance term in the model
can be computed efficiently in O(t2), the exact probability would still be intractable if the
normalization constant does not have a closed form. Fortunately due to the special structure
of the model we show that CwK(w) has a closed form and is given as follows.

CwK(w) =
t−1∏
i=1

1 +
i∑

j=1
e
−
∑i

k=j
wt−k

 . (6)

The derivation can be found in Appendix A. Despite having multiple summations and prod-
ucts, the normalization constant can be evaluated very efficiently in O(t) complexity via a
recursion. The derivation is also given in Appendix A.
By the composition rule of convex functions one can verify that log(CwK(w)) is a convex
function of w. This property has important implications when we estimate w with maximum
likelihood method.
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Algorithm 1 Estimating central ranking with known weights.
Inputs: true weights w and initial ranking π00

1. Initialize candidate ranking to be π00

2. Evaluate the log-likelihood with π0 set to the candidate ranking

3. Evaluate the log-likelihoods with π0 set to candidate ranking’s neighbors.
(rankings which are different from the candidate ranking by one adjacent trans-
position)

4. If the candidate ranking achieves highest log-likelihood among its neighbors,
return the candidate ranking. Otherwise set the candidate ranking to be the
neighbor that has highest log-likelihood and repeat 2–4.

3.5. Parameter estimation

Estimating central ranking π0

Given a set of weights w and n observed rankings σ1, . . . , σn, finding the maximum likelihood
estimate of central ranking π0 is equivalent to minimizing the total distance between π0 and
the observed rankings Equation 7.

π0 = arg min
{

n∑
i=1

DwK(π0, σi)
}

(7)

Dwork, Kumar, Naor, and Sivakumar (2001) studied this problem where the distance metric
is the original Kendall distance, i.e., the weights are all equal. They showed that even when
n = 4, the problem is NP-complete. We have seen little evidence suggesting that introducing
different weights will reduce the complexity of this problem. Therefore, we have to resort
to an optimization algorithm that finds a local optimum. A ranking π is a local optimal of
problem in Equation 7 if there is no ranking π′ that can be obtained from π by performing a
single adjacent transposition and having a smaller total distance.
We propose a heuristic algorithm to find local optimums (Algorithm 1). The algorithm is
provided with an initial value of π0, denoted as π00. This initial value could be a frequently
observed ranking or the result of a rank aggregation algorithm such as the Borda count
algorithm (Marden 1995). The algorithm repeatedly checks the neighbors of the candidate
ranking until the log-likelihood can no longer be improved. Since in each step the objective
function in Equation 7 always decreases and there are only a limited number of π0’s to choose
from, the algorithm will stop eventually. In Section 7.1 we evaluate this heuristic algorithm
with simulation studies. The simulation result shows that when the observed rankings are
generated by weighted Kendall model, the algorithm is likely to find the true ranking even
when the number of objects are large (~40) and the sample size is small (~200).

Estimating weights w

The weights in the weighted Kendall distance are closely related to the “dispersion” of rank-
ings. They also indicate the relative importance of locations in the ranked list.
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Recall that the log-likelihood function of the weighted Kendall model is

`(π1, π2, . . . , πn) = −
n∑
i=1

t−1∑
j=1

wjQj(πi, π0)− n log(CwK(w)),

where Qj(πi, π0) are defined as in Equation 5, and they are constants if π0 is given. In
Section 3.4 we showed that the logarithm of the normalizing constant CwK(w) is a convex
function in w. It follows that the log-likelihood function is a concave function in w. Since
the non-decreasing constraint on w is a linear inequality constraint, the problem of finding
maximum likelihood estimate of w is a convex optimization problem, which has a global
optimal solution.
In practice, we reparameterized wj as wj = ∑t−1

i=j φi, where φi ≥ 0 for all i, and transform
the non-increasing constraint on w into a box constraint on φ. The log-likelihood function is
still concave and it can be rewritten in terms of φ as:

`(π1, π2, . . . , πn) = −
n∑
i=1

t−1∑
j=1

φj

 j∑
k=1

Qk(πi, π0)

− n log(CwK(w(φ))).

With the simplified constraint, we can apply a general convex optimization solver to estimate
w. The L-BFGS-B method in the R package optimx (Nash 2014) is used for the optimization
in rankdist. The simulation studies in Section 7.1 confirms that the optimization procedure
is reliable.

Estimating central ranking π0 and weights w jointly

In most cases, neither π0 nor w is known to us and both need to be estimated from the data.
It is hard to estimate π0 and w simultaneously because π0 is a ranking while w is a vector
of real numbers. Instead, we apply a stage-wise method that iteratively searches for the two
parameters (Algorithm 2).
The algorithm is provided with an initial value of π0, denoted as π00, which can be the result
of any rank aggregation algorithm. Similar to Algorithm 1, the algorithm repeatedly check
the neighbors of current candidate ranking until log-likelihood can no longer be improved.
The algorithm will stop eventually because there are only a limited number of candidate
rankings.
We evaluate the joint optimization algorithm in Section 7.1 with simulation studies. The
simulation result shows that when the observed rankings are generated by weighted Kendall
model, the algorithm is likely to find the true ranking and the true weights even when the
number of objects are large (~40) and the sample size is relatively small (~500).

4. Extension of distance-based models

4.1. Mixture of distance-based models

Introducing additional parameters into the distance-based ranking models increases the flex-
ibility of the models. However, all the models presented in the previous sections are strongly
uni-modal. Fortunately these models can be easily extended to a finite mixture of several
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Algorithm 2 Estimating central ranking and weights.
Inputs: initial ranking π00

1. Initialize candidate ranking to be π00

2. Estimate the weights and evaluate the log-likelihood with π0 set to the candi-
date ranking

3. Estimate the weights and evaluate the log-likelihoods with π0 set to candidate
ranking’s neighbors. (rankings which are different from the candidate ranking
by one adjacent transposition)

4. If the candidate ranking and weights achieves highest log-likelihood among its
neighbors, the algorithm stops. Otherwise set the candidate ranking to be the
neighbor that has highest log-likelihood and repeat 2-4.

Algorithm 3 EM-algorithm for fitting mixture models.
1. E-Step: compute the value of zg for each observation i:

ẑ(i)
g = pgP(π(i) | wg, π0,g)∑G

g′=1 pg′P(π(i) | wg′ , π0,g′)

2. M-Step: for each component g, estimate π0,g and wg in the same way as for
the case of single component except that each observation i has a ’discounted’
frequency ẑ(i)

g .

3. Repeat the above steps until convergence.

distance-based component models in order to cater for the heterogeneity of the rank-order
preferences among the raters. Each component model may represent a different group of
raters with their own favorite/modal ranking (π0,g) and weights (wg) used in the distance
function. The mixture model of G components can be defined as:

P(πi) =
G∑
g=1

pgP(πi | wg, π0,g),

where pg is proportion of raters in the gth component.
Murphy and Martin (2003) first applied the EM-algorithm to efficiently fit such mixture
models. We introduce latent variables z to record the component membership of each obser-
vation. The latent (membership) variable z = (z1, z2, . . . , zG) is defined such that zg = 1 if
the observation certainly belongs to component g and zg = 0 otherwise. The EM-algorithm
is summarized in Algorithm 3.

4.2. Top-q rankings

If the raters evaluate all objects but only report the rankings of the best q objects then we
obtain top-q ranking data. Top-q ranking data is very common when the number of objects
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to be ranked is large. The top-q ranking can be viewed as a missing data problem, where
additional assumptions about the structure of missing data is needed.
A common assumption roots in the maximum entropy principle. According to this principle,
all complete rankings that are compatible with the observed top-q ranking have the same
probability to occur. We will refer to this assumption as the equal-probability assumption.
It follows that in terms of likelihood function, observing a top-q ranking π(q) is equivalent to
assigning weight 1

(t−q)! to all complete rankings compatible with π(q). In this way the top-
q rankings are transformed into complete rankings and any model that works for complete
rankings can be applied. Note that this approach works for missing ranking in general, i.e.,
the missing rankings do not need to occur at the bottom of the list. However, this approach
has issues with scalability. For a top-q ranking, the number of all its compatible rankings is
(t− q)!. Evaluating all of them has huge computational cost when t− q is big.
The weighted Kendall model can avoid such problem if an additional assumption is imposed.
This assumption is that the raters consider all unreported objects to be equally bad, or in
other words, those unreported objects have tied rank q + 1. We will refer to this assumption
as the tied-rank assumption. Under this assumption we are able to assign wj = 0 for all
j > q, which means swapping objects with rank larger than q does not affect the likelihood
(since they are tied). It follows from the definition of the weighted Kendall distance that if
wk = 0 for all k > q,

DwK(πi, σ) = DwK(πj , σ)

Here σ can be any complete ranking and πi πj are two complete rankings compatible with
π(q). Therefore, with wk = 0 for all k > q we can define DwK(π(q), σ) = DwK(π, σ) where π
is any complete ranking compatible with π(q).
The algorithm for evaluating distance between top-q rankings is presented in the box “Al-
gorithm 4”. Note that the distance computation can be optimized to have time complexity
O(q2) and the computational cost is no longer related to the number of objects (t), which
is an extremely desirable property in applications where a large number of objects are com-
pared. We will show in Appendix B that the normalization constant Cq(w) for top-q rankings
is proportional to the normalization constant CwK(w) for complete rankings. In particular
Cq(w) = CwK(w)

(t−q)! .
Note that the tied-rank assumption is stronger than the equal-probability assumption. In
some applications the tied-rank assumption may not be valid and the resulting model would
not be as good. However this assumption greatly simplifies computation when t− q is big.
If a data set contains both complete and top-q rankings for m distinct values of q, the model
can still be adapted to such heterogeneity. We can write the likelihood of the whole data set
as follows:

`(~π(q1), ~π(q2), . . . , ~π(qm)) = log
m∏
i=1

P(~π(qi))

=
m∑
i=1

[
−

nqi∑
k=1

DwK(πk(qi), π0)− nqi log(Cqi)
]

(8)

where ~π(qi) is the sample of all the top-qi rankings in the data set and nqi is the sample size
of ~π(qi).
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Algorithm 4 Computing weighted Kendall distance between top-q rankings.
for r in 1 to q:

obj = the object with rank r in pi_1
pos = UNFOUND
for r2 in 1 to q:
if obj has rank r2 in pi_2:

pos = r2
if pos == UNFOUND:
increment each weight
increment the rank of each remaining object in pi_2

else:
for j in r to (pos-1):

increment weight j
increment rank j in pi_2

return weight

5. Package architecture and implementation
The rankdist package is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.otg/package=rankdist. The latest development version can be
found at https://github.com/ZhaozhiQIAN/rankdist. The software is written in R (R
Core Team 2019) and C++.

5.1. Existing software for modeling ranking data

At present, there are several alternative packages for modeling ranking data in R including
PerMallows (Irurozki, Calvo, and Lozano 2016), Rankcluster (Grimonprez and Jacques 2014),
pmr (Lee and Yu 2015) and mlogit (Croissant 2019).
Package PerMallows implements six common distance-based models. The key features that
distinguish rankdist from PerMallows are (1) rankdist supports mixture models; (2) the
more compact representation of ranking data set; and (3) extendability. The components in
rankdist are modularized so that minimum effort is needed to implement a new model. Hence,
rankdist is very suitable for developing and testing new ranking models. Package PerMallows
has two functionality that are currently unavailable in rankdist. It contains abundant high-
performance utility functions to perform calculations related to permutations and it includes
different ways to draw samples from the fitted model.
To our knowledge, Rankcluster and rankdist are the only two well-maintained R packages that
provide functionality to fit mixture model for ranking data. Package Rankcluster implements
one ranking model, the ISR model proposed in Biernacki and Jacques (2013). Evaluating the
exact probability of a ranking in ISR model involves summing up t! terms, which is intractable
when the number of items is greater than twenty. Biernacki and Jacques (2013) proposed a
MCMC (Markov chain Monte Carlo) based algorithm to approximate the likelihood in large-
t situation. The algorithm is implemented in Rankcluster as the default inference method.
The user needs to tune and specify the sample size, sampling iteration, burn-in period and
several other parameters to control the behavior of MCMC sampling. Package Rankcluster
is able to model partial rankings in general while rankdist only supports top-q rankings. The

https://CRAN.R-project.otg/package=rankdist
https://github.com/ZhaozhiQIAN/rankdist
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rankings of unrated items are treated as missing variables in Rankcluster. They are imputed
by reusing the MCMC samples drawn in the inference step. In Section 7.2, we will compare
the performance of rankdist and Rankcluster on a well-studied real data set.
Package pmr includes four distance-based ranking models and their weighted version. It
currently does not support mixture models. Package mlogit implements the mixed logit
model and multinomial probit model, which belong to the order-statistics models (Alvo and
Yu 2014).

5.2. Package architecture

The package rankdist is designed with efficiency and extendability in mind. Where possible,
C++ code is used to perform computationally intensive steps. The R code is optimized to
reduced memory footprints. The package is carefully modularized. Making modifications on
one part of the software is unlikely to affect the other parts. Unit tests are also implemented
in order to avoid code degradation.
Three S4 classes serve as the backbone of the package. The ‘RankData’ class keeps all the
information about the ranking data set. The ‘RankInit’ class specifies initial parameter
settings and indicates whether we want to fit a mixture model. The ‘RankControl’ class is
a void class and it has to be derived into a ‘RankControl[model]’ class. This class specifies
which model we want to fit and the control parameters used in the optimization procedure.
Three input objects are provided to the model generator function RankDistanceModel. This
function will apply the EM solver if the ‘RankInit’ object contains initial values for more
than one component. As discussed in Section 4.1, each component model in the mixture is
fitted to a ranking data set with “discounted” observations. In fact the EM solver will prepare
those data sets and make multiple calls to SearchPi0, which fits a single component model.
The function SearchPi0 then searches the optimum modal rankings. The details of this
algorithm is described in Section 3.5. Checked candidates are cached in a hash table to prevent
double checking. For each candidate modal ranking, the function SingleClusterModel is
called to estimate parameter weightings. It is implemented as a generic function and the
internal method dispatch mechanism will apply suitable solver according to the signature of
the ‘RankControl[model]’ object.
The object-oriented approach brings two immediate benefits. First of all, the ranking data
stored in the data structure are better protected against user mistakes such as confusing
rankings with orderings. The data integrity benefits as a result. Secondly, with a higher level
of abstraction implementing a new ranking model reduces to extending the ‘RankControl’
class and implementing the two methods (SingleClusterModel and FindProb), and the other
parts of the software do not need to be affected. Such infrastructure can be used in other
packages which deal with ranking data. We hope the package would make experiments with
new ranking models easier.

6. Using the rankdist package

6.1. Preprocessing

The ranking data have two equivalent representations: ranking and ordering. The rank-
ing representation records the ranks of objects in the form (π(1), π(2), . . .) where π(i) is



Journal of Statistical Software 15

the rank of object i while the ordering representation records the objects in the rank order
(π−1(1), π−1(2), . . .) where π−1(i) is the object ranked the ith. Since both representations
are common, it is very important for us to make a clear distinction and avoid any confusion.
The rankdist package stores ranking data in a S4 class ‘RankData’. The user only needs to
initialize the object once using either representation and the software would handle the data
storage problem internally. The details of the initialize method of ‘RankData’ class can be
found in the full documentation that is available as part of the software.
In the following example, we illustrate how to initialize a ‘RankData’ object from different
representations. We will use a helping function GenerateExample to generate two simple
data sets. The representation of generated data depends on the argument ranking = TRUE.
In the example, the data set gen1 is encoded in ranking representation, and the data set gen2
is encoded in ordering representation. Note that the ranking or ordering matrix do not
have duplicated rows, and the number of observations for each ranking is specified in a vector
named count. The ‘RankData’ objects dat1 and dat2 are then initialized from the two raw
data sets by supplying the constructor with appropriate arguments.

R> library("rankdist")
R> gen1 <- GenerateExample(ranking = TRUE)
R> tail(gen1$ranking)

[,1] [,2] [,3] [,4] [,5]
[115,] 5 4 1 2 3
[116,] 5 4 1 3 2
[117,] 5 4 2 1 3
[118,] 5 4 2 3 1
[119,] 5 4 3 1 2
[120,] 5 4 3 2 1

R> dat1 <- new("RankData", ranking = gen1$ranking, count = gen1$count)
R> gen2 <- GenerateExample(ranking = FALSE)
R> tail(gen2$ordering)

[,1] [,2] [,3] [,4] [,5]
[115,] 3 4 5 2 1
[116,] 3 5 4 2 1
[117,] 4 3 5 2 1
[118,] 5 3 4 2 1
[119,] 4 5 3 2 1
[120,] 5 4 3 2 1

R> dat2 <- new("RankData", ordering = gen2$ordering, count = gen2$count)

The user can also store a data set that contains top-q rankings as illustrated in the next
example. We use another helping function GenerateExampleTopQ to generate a simple data
set containing top-three rankings of five objects. Two additional arguments need to be pro-
vided to the constructor. The argument nobj represents the total number of objects, which
is typically the number of columns of the ranking matrix. The argument topq specifies the
value of q, the position where exact rankings are available.
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R> genq <- GenerateExampleTopQ()
R> head(genq$ranking)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 4
[2,] 1 2 4 3 4
[3,] 1 2 4 4 3
[4,] 1 3 2 4 4
[5,] 1 3 4 2 4
[6,] 1 3 4 4 2

R> datq <- new("RankData", ranking = genq$ranking, count = genq$count,
+ nobj = ncol(genq$ranking), topq = max(genq$ranking) - 1)

6.2. Model generation

In this section, we illustrate how to fit models in rankdist after we have obtained ‘RankData’
objects.
We first introduce the ‘RankControl’ class, which specifies the type of model and controls
the behavior of parameter estimation. In the following example, we create two ‘RankControl’
objects, ctrl1 and ctrlq. They specify the desired model class to be the Mallows’ φ
model and the weighted Kendall model respectively. We provide an additional argument,
SearchPi0_show_message = FALSE, to suppress the message output when searching for the
central ranking. All other available arguments are detailed in the software documentation.

R> ctrl1 <- new("RankControlKendall", SearchPi0_show_message = FALSE)
R> ctrlq <- new("RankControlWeightedKendall",
+ SearchPi0_show_message = FALSE)

We use the ‘RankInit’ object to specify initial values of parameters as well as properties
of the mixture model. The central ranking can be initialized with any rank aggregation
procedure. The initialization of weight parameters is less important as we have shown in
Section 3.5 that weights estimation is a convex optimization problem which has global optimal
solution. Function MomentsEst creates feasible initial values for weights. The number of
mixture components needs to be specified in the clu argument. If clu > 1, the user needs
to provide initial π0 and weights for each component.
In the following example, we first create object init1 to fit a single cluster model for complete
rankings. The central ranking is estimated using Borda count method (Marden 1995) and the
weights are given by the helper function MomentsEst. Next, we create object init1c to fit
a two-cluster mixture model for complete rankings. For simplicity, the central rankings are
initialized randomly for each cluster. Finally, we create object initq to fit a single cluster
model for top-q rankings. Again, rank initialization is done by Borda count method. Note
that the algorithm will treat all rankings greater than q properly. The weights are initialized
by an arbitrary value in the feasible region (0.5).

R> str1 <- MomentsEst(dat1, 500)
R> avg_rank <- dat1@count %*% dat1@ranking
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R> modal_ranking.init <- OrderingToRanking(order(avg_rank))
R> modal_ranking.init.c1 <- sample(dat1@nobj, dat1@nobj)
R> modal_ranking.init.c2 <- sample(dat1@nobj, dat1@nobj)
R> init1 <- new("RankInit", param.init = list(str1),
+ modal_ranking.init = list(modal_ranking.init), clu = 1L)
R> init1c <- new("RankInit", param.init = list(str1, str1),
+ modal_ranking.init = list(modal_ranking.init.c1, modal_ranking.init.c2),
+ clu = 2L)
R> initq <- new("RankInit", param.init = list(rep(0.5, datq@topq)),
+ modal_ranking.init = list(modal_ranking.init), clu = 1L)

With three objects ‘RankData’, ‘RankControl’, and ‘RankInit’, model fitting is simply done
by calling the generic function RankDistanceModel as illustrated as follows.

R> model1 <- RankDistanceModel(dat1, init1, ctrl1)
R> model1c <- RankDistanceModel(dat1, init1c, ctrl1)
R> modelq <- RankDistanceModel(datq, initq, ctrlq)

The function ModelSummary provides a summary of the fitted model. Two common approaches
to assess the goodness of fit of a particular model is the BIC (Bayesian information criterion)
value and the sum of squares of Pearson residuals (SSR).

BIC = −2 · `(π1, π2, . . . , πn) + dof · log(n),

SSR =
t!∑
i=1

(Oi − Ei)2

Ei
,

where dof is the number of free parameters in the model and Oi and Ei are the observed and
expected frequencies of the ith ranking, respectively. A lower value in BIC and SSR indicates
a better fit.

R> ModelSummary(model1)

Summary of model1
================
Goodness of Fit
SSR: 109.426
BIC: 18832.76
dof: 1
Parameter Estimation
Cluster A B C D E p Parameters
1 1 2 3 4 5 1 0.2
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7. Experimental study

7.1. Simulation study

The aim of the simulation study is to verify that the estimation procedure produces reasonable
parameter estimations when the sample rankings are generated by the weighted Kendall
model. We are especially interested in cases when the number of objects t is large (more than
20). For simulations involving large t, the first problem is to generate samples from the pre-
defined weighted Kendall distribution. The naive way is to calculate the probability of each
ranking and take samples from the corresponding categorical distribution. The naive method
does not scale up as it involves calculating and storing t! probabilities. The typical alternatives
are MCMC type algorithms such as the Metropolis-Hasting algorithm. These algorithms are
computational and memory efficient but the generated samples will not be independent. In
the next section, we introduce a way to efficiently obtain independent samples from weighted
Kendall model. Then we proceed to the simulation results.

Generating samples from the weighted Kendall model

A sample ranking σ can be recursively generated from weighted Kendall model with π0 and
w. In the first stage, the algorithm samples the item to be ranked first, i.e., σ−1(1), from t
available items. The probability for choosing item k as the first item is given by

P
(
σ−1(1) = k

)
∝ exp

− π0(k)−1∑
i=1

wi

 .
The summation inside represents the weights accumulated when item k is moved to the top
of π0 via adjacent transpositions.
After σ−1(1) is sampled, the item will be removed from π0. The weights should also be
updated by removing w1 and keeping the remaining ones. The same procedure is then used
again with updated π0 and w. The algorithm chooses one item from the remaining t−1 items
to be σ−1(2).
After t steps, σ will be a complete ranking and the recursion will end. The complexity of
obtaining one sample is O(t2), a big improvement over the naive method.

Estimating π0 with given w

This simulation study tests the heuristic algorithm presented in Section 3.5. A data set of n
sample rankings of t objects is generated from weighted Kendall model with a certain π0 and
w. We choose t to be 40 to capture the large-t scenario and test the scalability of the algorithm.
The choice of π0 does not affect the result of this simulation because the distance metric is
invariant under relabeling of items. The weight w is decreasing and wi = log(41− i)/5. The
weight gives the right amount of dispersion so that the sample rankings are highly likely to
be unique.
The algorithm is provided with the sample data, the true weights w, and an initial ranking
π00 estimated using the Borda count method (Marden 1995). We record the Kendall distance
between the central ranking found by the algorithm and the true π0. This procedure is then
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n Distance 0 1 2 3

200 initial 263 190 42 5
final 354 128 16 2

500 initial 422 76 2 0
final 450 49 1 0

Table 1: Distribution of Kendall distance between the true π0 and the estimated ones. The
results are for two simulations with sample sizes 200 and 500. Type “initial” represents the
distance between the initial ranking (Borda count method) and true π0, and type “final”
represents the distance between the ranking estimated by the algorithm and true π0. The
number in the cell represents the number of runs that the distance is observed. The numbers
in each row sum up to 500 because the sampling-estimation procedure is repeated for 500
times for each simulation.

repeated for 500 times. On a laptop with a 2.6 GHz CPU each repetition takes less than one
second to finish.
In Table 1, we tabulate the distribution of distance for two simulations with sample sizes
n = 200 and 500 respectively. The distance between the initial ranking (Borda count method)
and π0 is also shown for reference. We observe that in general the rankings produced by the
heuristic algorithm is closer to the true π0 than the initial ranking.

Estimating w with given π0

This simulation study tests the algorithm for estimating weights w presented in Section 3.5.
The data generation procedure is the same as Section 7.1. The choice of π0 and w also
remains the same and the sample size is chosen to be 500.
The weight estimation algorithm is provided with the sample data and the true ranking π0.
We record the estimated weights in each run. This procedure is then repeated for 500 times.
Again, each repetition takes less than one second to finish.
Figure 2 illustrates the true weights wi (red dots) and the distribution of estimated weights
in the 500 runs (box plot). In most cases the true weight is very close to the median value of
the estimated weights. In all cases, the true weights fall between the quartiles of estimated
weights.

Estimating both π0 and w
This simulation study tests the algorithm that jointly estimates π0 and w presented in Sec-
tion 3.5. The data generation procedure is the same as Section 7.1. The choice of π0 and w
also remains the same and the sample size is chosen to be 500.
The algorithm is provided with the sample data and an initial ranking π00 estimated using
the Borda count method (Marden 1995). We record the Kendall distance between the central
ranking found by the algorithm and the true π0 as well as the estimated weights. This
procedure is then repeated for 500 times. Each repetition takes around 15 seconds to finish.
In Table 2, we tabulate the distribution of recorded distance. We observe that in general the
rankings estimated by the algorithm is closer to the true π0 than the initial ranking. Compared
with the results in Section 7.1, the estimation of π0 does not seem to be significantly worse
when weights are also unknown.
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Figure 2: Visualization of estimated weights when the true π0 is given. In this setting the
weights are the only parameters to be estimated. The simulation involves 39 unknown weight
parameters, which are plotted across the horizontal axis. The true weights are represented as
a red dot. The distribution of the estimated weight in the 500 runs is illustrated via a box
plot. The box plot encodes the median, lower and upper quartiles, and outliers.

n Distance 0 1 2

500 initial 414 84 2
final 467 33 0

Table 2: Distribution of Kendall distance between the true π0 and the estimated ones.

Figure 3 illustrates the true weights wi (red dots) and the distribution of estimated weights
in the 500 runs (box plot). Similar to the results in Section 7.1 we found that in most cases
the true weight is very close to the median value of the estimated weights. In all cases, the
true weights fall between the quartiles of estimated weights.

This simulation suggests that π0 and w can be estimated reliably by the algorithm.
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Figure 3: Visualization of estimated weights when the true π0 is also unknown. Unlike the
previous setting, the weights and π0 have to be estimated jointly here. The simulation involves
39 unknown weight parameters, which are plotted across the horizontal axis. As before, the
true weights are represented as a red dot, and the distribution of the estimated weight in the
500 runs is illustrated via a box plot. The box plot encodes the median, lower and upper
quartiles, and outliers.

7.2. Modeling ranking probability

Data set and methodology

The purpose of this experiment is two-fold: to show that the weighted Kendall model is able
to achieve excellent performance on real data set, and to show that one can easily fit and
evaluate different ranking models in package rankdist.
In the experiment we use the APA Election data set, which consists of votes in the 1980
American Psychological Association (APA) presidential election (Diaconis 1988). This data
set is well studied in the literature and it has been included in the rankdist package. It
contains 15, 449 rankings of five candidates, of which 5, 738 are complete rankings. The rest
are top-q rankings with q ranging from 1 to 3. Note that only one of the five candidates will
be elected as the president. Therefore the voters are likely to put more emphasis on the top
positions, a scenario which can be captured by weighted Kendall model.
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Model Components Free parameters BIC
Weighted Kendall 3 9 53685.4
Mallows’ φ 5 9 53729.3
Weighted tau 3 17 53785.2
ISR1 4 11 54335.8

Table 3: Summary of the fitted models for complete rankings.

Model Cluster Modal ranking π0g w1g w2g w3g w4g w5g
Proportion

g A B C D E pg

Weighted
Kendall

1 2 3 1 5 4 1.03 1.03 0.52 0.34 - 37%
2 3 4 5 1 2 0.48 0.48 0.36 0.36 - 33%
3 4 2 5 3 1 0.23 0.22 0.22 0.22 - 30%

Mallows’
φ

1 3 2 5 1 4 0.38 - - - - 27%
2 2 3 1 5 4 0.83 - - - - 25%
3 3 4 5 2 1 0.61 - - - - 21%
4 3 4 2 5 1 0.24 - - - - 20%
5 2 5 1 3 4 0.72 - - - - 8%

Weighted
tau

1 1 5 2 4 3 0.19 0.61 0.16 1.15 0.24 56%
2 3 2 1 4 5 5.43 5.77 5.46 1.69 0.11 24%
3 3 4 1 2 5 4.04 0.98 0.58 −0.93 0.28 20%

Table 4: Parameter estimates of the fitted models for complete ranking.

In the experiment, we consider the following distance-based ranking models available in the
rankdist package:

• Mixture of Mallows’ φ model (Section 2.2)

• Mixture of weighted tau model (Section 2.4)

• Mixture of weighted Kendall model proposed in this paper (Section 3)

We will also evaluate mixture of ISR model (Jacques and Biernacki 2014) using package
Rankcluster (Grimonprez and Jacques 2014).
For single-parameter models we fit a mixture of up to eight components and for more com-
plicated models we fit up to three components. The BIC (Bayesian information criterion) is
used to select the best number of components in the mixture model by choosing the one with
the smallest BIC. Multiple initial value configurations have been tried and the best results
are shown below.

Modeling for the complete rankings

We present the model fitting results in Tables 3 and 4. Table 3 displays the best fitted models
selected using the BIC criterion while Table 4 shows the parameter estimates of the three
fitted models. The weighted Kendall model achieves the best fit in terms of BIC.
There are several well-known facts about the APA election data set. First, candidates A and
C are research psychologists, candidates D and E are clinical psychologists and candidate
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Figure 4: Visualization of APA data with fitted model.

B is a community psychologist. Candidates naturally form three competing subgroups, and
voters show different preferences towards different subgroups. Estimation result shows that
candidates A and C are ranked at the top two in the first cluster while candidates D and E are
preferred in the second cluster, and the third cluster assigns the highest rank to candidate E.
The competing effects between different candidates are successfully captured. The weighted
tau model does not capture this phenomenon although a three-component mixture model
is found. The Mallows’ φ model captures the competing relationship with the first two
clusters, but it also includes a few smaller but confounding components. The inflexibility of
single-parameter models often requires a larger number of mixing components, which makes
interpretation more difficult.
The weighted Kendall model also allows more fine-grained interpretation. The weights for
swapping first three positions are higher in the first cluster than the second cluster. This
suggests that for those who prefer candidates A and C, they have a stronger tendency to do
so. On the contrary, the weights for the third cluster is lower, suggesting that voters in this
cluster have more diverse preferences.

1Figure 1 of Jacques and Biernacki (2014) shows that mixture of ISR model with four components achieves
BIC value around 53000 on the complete rankings of APA data set (the exact value was not given). However,
we were not able to reproduce this result with package Rankcluster (version 0.94) after trying various MCMC
configurations. The BIC value shown in the table is the best result obtained in our experiment.
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Model Components Free parameters BIC
Equal probability 3 10 141276.5
Tied rank 3 9 141479.5
ISR2 3 8 144774.2

Table 5: Summary for the fitted models for all rankings.

Assumption Cluster Modal ranking π0g w1g w2g w3g w4g
Proportion

g A B C D E pg

Equal probability
1 3 4 5 1 2 0.41 0.41 0.24 0.18 42%
2 2 3 1 5 4 1.08 1.08 0.36 0.22 29%
3 3 1 5 4 2 0.18 0.18 0.15 0.15 28%

Tied rank
1 3 4 5 2 1 0.52 0.52 0.41 0.04 42%
2 3 1 5 2 4 0.33 0.33 0.33 0.05 29%
3 2 3 1 5 4 1.62 1.62 0.27 0.27 28%

Table 6: Parameter estimates of the fitted models for all rankings.

We apply a multidimensional scaling (MDS) to the 120× 120 distance matrix with each cell
being the Kendall distance between two observed rankings. Figure 4 shows a plot of the
two-dimensional solution to MDS. Each point on the plot represents a ranking. The distance
between points on the plot is approximately proportional to the Kendall distance between
two corresponding rankings. The size of the point represents the observed frequency of the
ranking, whereas the color represents the expected frequency from the fitted weighted Kendall
model.
We observe that larger dots have darker color in general, which indicates the expected fre-
quencies agree with observed ones. The modal rankings of the three clusters are labeled as
1, 2 and 3 on the plot. The first two clusters in the model are clearly reflected on the plot as
two distinct regions of larger points whereas the structure of the third cluster looks a bit less
clear. This feature is supported by the estimation result which suggests voters in the third
cluster have more diversified opinions. It is thus reasonable that there are few dominating
rankings in this cluster and the cluster looks more noisy.

Modeling for all rankings

In the APA election data set, there are 5,738 complete rankings and 9,711 incomplete rankings.
Analysis based on the data with the incomplete rankings removed may have a significant effect
on the conclusion drawn from the data. Here, we fit weighted Kendall model to all rankings.
Both the equal probability and tied rank assumptions described in Section 4.2 are considered
in the estimation of the model parameters. The results are also compared with mixture of
ISR model obtained by Rankcluster. Tables 5 and 6 show the best fitted mixture models and
the parameter estimates.
BIC suggests a three-component solution for all models considered in this experiment. Both
forms of weighted Kendall models outperform the ISR model. The model based on the equal
probability assumption has the best fit in terms of BIC.

2Figure 1 of Jacques and Biernacki (2014) reports worse BIC value (around 151800, exact value not reported)
than we have obtained with package Rankcluster (version 0.94) using default arguments.
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Data set name Nobj Nobs BetterObs DistToTruth BordaToTruth
Nine of Ten Amendments 9 63 0% 0 1
Book Releases 10 78 18% 7 7
Classic Oscar Releases 10 78 9% 4 3
Country Landmasses 10 142 0% 1 1
Country Populations 10 78 18% 11 11
European City Populations 10 78 23% 12 11
Hardness of Materials 10 78 27% 13 11
Movie Releases 10 78 6% 2 2
Recent Oscar Releases 10 78 0% 1 4
River Lengths 10 78 14% 12 11
Super bowl 10 78 4% 10 10
Ten Amendments 10 78 5% 4 6
Ten Commandments 10 78 18% 11 12
US City Populations 10 142 1% 6 2
US Holidays 10 146 1% 1 2
US Presidents 10 142 0% 0 0
US States West to East 10 78 1% 1 3
World City Populations 10 144 4% 10 9
NBA East 2010 Season 15 148 20% 35 36
NBA West 2010 Season 15 135 9% 19 24

Table 7: Rank aggregation results of 20 different data sets.

Note that more than 60% of data are incomplete rankings. After fitting the weighted Kendall
models (with equal probability assumption) to all rankings, the results are slightly different
from those for complete rankings. Table 6 shows that the largest cluster (44%) becomes the
one with candidates D and E ranked at the top two and the one with candidates A and C
ranked at the top two is the next largest cluster (29%). This indicates that the voters who
gave incomplete rankings tend to prefer candidates D and E more. Finally, the third cluster
represents about 27% of voters who have diverse views on their favorable candidates.

7.3. Test of general knowledge

In this section, we empirically validate whether the weighted Kendall distance model gives
reasonable estimation on the central ranking. We use 20 different data sets collected by Lee,
Steyvers, and Miller (2014) where undergraduates recruited from the human subjects pool at
the University of California Irvine were asked to perform 20 ranking tasks. The ranking tasks
involve general knowledge of existing ground truths.
As the true rankings of the objects are known in all 20 tasks, we can assess the goodness of
the estimated modal ranking by measuring its distance to truth. We also use the aggregated
ranking given by Borda count method (Marden 1995) as a reference.
The data sets and the model performance are summarized in Table 7. All data sets involve
around 10 objects and fewer than 150 observations. The column “BetterObs” of Table 7
records the percentage of observed rankings which are closer to the true ranking than the
aggregated ranking in terms of Kendall distance. The column “DistToTruth” records the
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Kendall distance between the true ranking and the aggregated ranking. The last column
records the Kendall distance between the true ranking and the ranking obtained from the
Borda count method.
The results reveal that in most cases, only a small fraction of observed rankings are closer to
truth than the aggregated ranking. Furthermore, in 17 out of 20 cases the ranking obtained by
weighted Kendall model is closer or has the same distance to the truth than the one obtained
by Borda count method. This indicates that the model performs reasonably well in finding
the modal ranking.

8. Conclusions
In this paper, we presented the R package rankdist for fitting different distance-based ranking
models. We also introduced a new probability model based on weighted Kendall distance
whose parameterization are both flexible and interpretable. We showed that the model has a
nice analytic form. We also proposed and validated the parameter estimation procedure.
In the experimental study we have shown that the package offers a simple and coherent way
to fit a wide variety of ranking models. Model selection and comparison are made easy as
a consequence. Moreover the package rankdist can be easily modified to incorporate new
ranking models. Thus it provides a platform for simulation experiments and development of
new ranking models.
We found that the computation time for model-fitting procedure is dominated by the neighbor-
checking step in the search of modal ranking. In this step the program checks all neighbors of
the current best modal ranking. A possible way to improve the rankdist package is therefore
to parallelize this step and fully utilize the power of multi-core processors.
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A. Derivation of the normalization constant
Denote St be the set of all possible permutations of t objects labeled by integers {1, . . . , t},
and π0 be the modal ranking of interest. For any ranking π in St, we can use Equation 2 to
construct a vector ~V = 〈V1, V2, . . . , Vt−1〉, where

Vi =
t∑

j=i+1
I{[π(π−1

0 (i))− π(π−1
0 (j))] > 0}.

Note that Vi can take value 0, 1, . . . , t− i. Let Ω = {〈V1, V2, . . . , Vt−1〉|Vi ≤ t− i, Vi ∈ N0} be
the set of all possible values of the Vi’s, where N0 = {0, 1, 2, . . .}. Fligner and Verducci (1988)
showed that the definition of ~V itself provides a bijective mapping f : St → Ω. It follows that
if the sets Γ1,Γ2, . . . ,Γm partition the set Ω, then the sets f−1(Γ1), f−1(Γ2), . . . , f−1(Γm)
partition the set St, and vice versa.
In the first step, we partition Ω into the following two sets:

Γ1,1 = {〈V1, V2, . . . , Vt−2, 1〉|Vi ≤ t− i, Vi ∈ N0},
Γ1,0 = {〈V1, V2, . . . , Vt−2, 0〉|Vi ≤ t− i, Vi ∈ N0}.

Let g : Γ1,0 → Γ1,1 be a mapping such that

g(〈V1, V2, . . . , Vt−2, 0〉) = 〈V1, V2, . . . , Vt−2, 1〉.

Note that the mapping g is also a bijection. For all ~V ∈ Γ1,0,

DwK(f−1(~V ), π0) = DwK(f−1(g(~V ), π0)− wt−1.

This equation holds because the path between f−1(g(~V )) and π0 is longer than the path
between f−1(~V ) and π0 by one adjacent transposition τt−1. It follows that

CwK(w) =
∑
~V ∈Ω

exp
[
−DwK(f−1(~V ), π0)

]
=


∑

~V ∈Γ1,0

exp
[
−Dw(f−1(~V ), π0)

] (1 + e−wt−1).

The next step is to partition Γ1,0 into three sets:

Γ2,2 = {〈V1, V2, . . . , Vt−3, 2, 0〉|Vi ≤ t− i, Vi ∈ N0},
Γ2,1 = {〈V1, V2, . . . , Vt−3, 1, 0〉|Vi ≤ t− i, Vi ∈ N0},
Γ2,0 = {〈V1, V2, . . . , Vt−3, 0, 0〉|Vi ≤ t− i, Vi ∈ N0}.

Using the same method, we can show that

∑
~V ∈T1,0

exp
[
−DwK(f−1(~V ), π0)

]
=


∑

~V ∈T2,0

exp
[
−DwK(f−1(~V ), π0)

] (1 + e−wt−2 + e−wt−2−wt−1).
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In each step, we form partitions of the target set and reduce the number of summations. In
the final step, Γt−1,0 = {〈V1, 0, . . . , 0, 0, 0〉|V1 ≤ t − 1, V1 ∈ N0}, and it should be partitioned
into t subsets according to the value of V1. Thus the normalization constant can be written
as

CwK(w) = (1 + e−wt−1) ·
(1 + e−wt−2 + e−wt−2−wt−1) ·
(1 + e−wt−3 + e−wt−3−wt−2 + e−wt−3−wt−2−wt−1) · · ·

After reorganization, we obtain Equation 6.
The time complexity of evaluating CwK(w) is O(t). To see that, we need to use the recursive
structure of the terms in the product. If we denote the ith term in the product as Mi, then
the following equation holds

Mi+1 = 1 + wt−i−1 ·Mi.

Hence, it only takes constant time to obtain a new term in the product, and the overall
complexity is O(t).

B. Derivation of normalization constant for top-q rankings

Here, we are going to show that under the tied-rank assumption, the normalization constant
for top-q rankings is proportional to the normalization constant for complete rankings. The
proof is given below.
By definition P(π(q)) = ∑

π P(π), where π are compatible complete rankings of the top-q
ranking π(q). Furthermore, for all pairs of complete rankings πi and πj compatible with the
same top-q ranking P(πi) = P(πj) if and only if wk = 0 if k > q. It means that under the
assumption P(π(q)) = (t− q)! · P(π). That is,

P(π(q)) = e−DwK(π(q),π0)

Cq(w) = (t− q)! · e
−DwK(π,π0)

CwK(w) .

Since wk = 0 if k > q, we have DwK(π(q), π0) = DwK(π, π0). We finally obtain

Cq(w) = CwK(w)
(t− q)! ,

and the proof is completed.
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