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Abstract 

This paper investigates a new cash transportation problem, which is a variant of the capacitated 

vehicle routing problem. To better satisfy the demands of customers (e.g., banks, large retailers, 

shopping centers, automated teller machines (ATMs), etc.), the combination of different cash 

denominations (i.e., $100, $50, $20, etc.) is considered. The robbery risk, which is measured 

by both the amount of cash being carried and the distance covered by the vehicle carrying the 

cash, is limited by a risk threshold. The problem is formulated as mixed-integer linear 

programming to minimize the total cost, which consists of the total travel cost and the total 

penalties due to the unmet expected demand of customers. A combined hybrid tabu search 

metaheuristic is proposed to solve this problem. Tabu search is adopted for determining routing 

decisions while three methods, namely the exact method, the greedy method, and the mixed 

method, are proposed to be embedded within the tabu search to determine the denomination 

combination strategy. The numerical studies show that the proposed method makes a good 

tradeoff between the solution quality and the computation time. Experimental results also reveal 

the effects of the unit penalty and the risk threshold. 

Keywords: vehicle routing problem; cash transportation; cash denominations; risk management; 

combined hybrid tabu search 

1. Introduction and literature review 

With the rapid development of the social economy, the amount of cash in circulation has played 

a quite important role in commerce and trade year by year, and it is expected to maintain its 

dominance in the near future, despite the fact that the use of non-traditional payments methods 

(e.g., credit, debit, prepaid cards and mobile payments) is continuously growing. In many 

developing countries, people prefer only cash as the payment method. In fact, more than 2.5 

billion adult people do not have access to banks or to any other financial services. Specifically, 

in Brazil 57% of the adult population are unbanked, and in South Africa 54% of the adult 

population are unbanked (Geismar et al., 2016). In developed countries, in addition to small 
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value transactions, people prefer to use cash to preserve their anonymity. The cash demand is 

at slightly above 7% of GDP in the US and above10% of the GDP in Eurozone (Rogoff, 2017).  

The volume of cash in circulation has been increasing drastically in many countries in the 

past ten years. In the U.S., the currency in circulation increased 82.1% from 828,938 million in 

2007 to 1,509,440 million in 2016. In the developing countries, the currency in circulation 

increases much faster. For example, in China, the currency in circulation increased more than 

124% in the past ten years.  

With the circulation increasing, more and more currency issuance problems appear. For 

instance, the U.S. Federal Reserve reported that, in 2016, 660 million dollars (16.37% of its 

annual budget) were paid for costs associated with the production of nearly 7.3 billion Federal 

Reserve notes. In China, the total value of banknotes in the circulation market was 240 billion 

RMB in 2011. The average printing cost for each banknote is 0.5 RMB. By adding the 

transportation cost, inventory cost, disposal cost, and other handling fees, the total cost for each 

banknote is almost 1.2 RMB. Since the life cycle for each banknote is about three years, the 

monetary authority prints 80 billion pieces of banknotes every year, and the total cost is about 

96 billion RMB. Some of the costs mentioned above (e.g., the printing cost) are unavoidable, 

while the other costs (e.g., the transportation cost) can be reduced by means of scientific 

management. In view of this, the cash transportation problem is a key factor worthy of further 

investigation. 

The cash transportation problem is a real-life application of vehicle routing problem (VRP) 

(e.g., Partyka and Hall, 2000; Emir, 2002; Eksioglu et al., 2009; Michallet et al., 2014). In 

reality, to deal with the transfer of cash and valuables in this industry, logistics companies (self-

operation or outsourcing) transport banknotes, coins, and other valuable items from the depot 

(the place where the cash and valuables are deposited) to customers (e.g., banks, large retailers, 

shopping centers, ATMs, jewelers, casinos, etc.). Nowadays, the cash transportation business 

is a huge market where the worldwide cost of handling cash exceeds $300 billion per year 

(Talarico, 2016).  

However, the cash transportation problem has not received much attention so far. In the 

literature, few studies focus on this problem. Most researchers describe their studies as well-

known variants of the classical vehicle routing problem. Boonsam et al. (2011) modeled the 

cash distribution problem as the vehicle routing problem with time windows. All branches of 

the bank were first clustered to different distribution centers, and then the routes for each 

distribution center were designed. Dai and Liu (2012) considered banking cash transportation 

as the single vehicle routing problem. The influence of the traffic jam was considered in their 



model. Anbuudayasankar et al. (2012) modeled the process of replenishing money in the ATMs 

as the bi-objective vehicle routing problem with forced backhauls to reduce the total routing 

cost and the span of travel tour. Michallet et al. (2014) presented the periodic vehicle routing 

problem with time windows to deal with a real-case cash transportation problem for a software 

company. In particular, for a customer needed to be visited a few times during a predefined 

planning horizon, the regularity of arrival times of the visits must be avoided. Talarico et al. 

(2015b) considered the cash transportation problem as a practical application of the k-dissimilar 

vehicle routing problem. In order to increase unpredictability, an index of similarity, on the 

basis of the number of identical edges common between alternative solutions, was proposed. 

Roel et al. (2016) considered the replenishment of ATMs as a rich multi-period inventory 

routing problem with pickup and delivery. The cash pickups and deliveries were introduced in 

inventory routing problem context. Larrain et al. (2017) modeled the management of the 

amount of cash for ATMs as the inventory routing problem with cassettes and stockouts. The 

stockouts were allowed but penalized. 

In addition, few studies consider the robbery risk during transportation and propose 

different approaches to reduce the robbery risk. Tarantilis and Kiranoudis (2004) presented a 

decision support system to minimize the probability of having a successful vehicle robbery at 

any point in the road network. The risk of the robbery was associated with the minimum 

distance between the point of the road and the closest police department. Some researchers 

consider reducing the robbery risk by building peripatetic routes that are unpredictable for 

robbers. Ngueveu et al. (2010a, 2010b) proposed m-peripatetic vehicle routing problem (m-

PVRP). In m-PVRP, each customer can be visited several times during the m periods, but the 

use of the same edge twice is explicitly forbidden. The m-peripatetic salesman problem (m-

PSP) is a special case of the m-PVRP with single vehicle (e.g., Calvo and Cordone, 2003; 

Duchenne et al., 2007). Duchenne et al. (2012) proposed the m-capacitated peripatetic salesman 

problem (m-CPSP), which is an extended version of the m-PSP. In m-CPSP, the use of the 

same edge more than 𝐶𝐶𝑒𝑒 times is explicitly forbidden. Some researchers propose models to 

formulate more flexible vehicle routing to reduce the robbery risk. Yan et al. (2012) utilized a 

time-space network technique to model the cash transportation. To reduce the risk of robbery, 

there must be variations in daily vehicle routes and schedules, including the daily vehicle arrival 

time at each demand point. Followed this study, Yan et al. (2014) incorporated stochastic travel 

times and added the unanticipated penalty cost for violating planned operation time windows. 

Bozkaya et al. (2017) considered two robbery risk components: (i) following the same or very 

similar routes arranged before and (ii) visiting neighborhoods with low socioeconomic status 



along the routes. A risk-based model was proposed to generate alternative routing solutions that 

make the routes unpredictable. Some researchers (e.g., Talarico et al., 2015a; Talarico et al., 

2017a; Talarico et al., 2017b; Radojičić et al., 2018) considered the amount of cash being 

carried by vehicle and introduced a risk constraint when collecting the cash along the route and 

dealt with the robbery risk of a route that was increasing along the route.  

The most important observation is that all the above studies do not consider the demand 

for different denomination cash and are restricted to a single commodity case. Actually, the 

demand of customers for different domination cash varies. For example, a great demand of 

large denomination cash (i.e., $100, $50) is always needed in banks and ATMs, while small 

denomination cash (i.e., $20, $10, etc.) is far more largely required in the supermarket and 

subway Ticket Vending Machine. When the demand for the required denomination cash 

deviates from the supply, the inconvenience caused to the customers may reduce customers’ 

satisfaction. Therefore, the logistics company should design the distribution plan and vehicle 

routing by considering the demand of each denomination cash.  

In this paper, we present a cash transportation problem with the consideration of the 

optimal mix of different denomination cash. Due to the special characteristic of cash to be 

transported, in addition to the robbery risk, there are some other important decisions to be made 

which include: routing of the vehicles for the cash distribution and the combination of different 

cash denominations to satisfy the requirement of the customers for their daily operations. The 

objective is to minimize the total transportation cost and the penalties associated with the supply 

amount differences compared with the expected amount of different cash denominations for all 

the customers. The penalty is incorporated in the model to consider the inconvenience caused 

to the customer if the supplied cash denominations are deviating from the expected demand. 

The proposed problem has some characteristics that make it different from the aforementioned 

studies. (1) The customer demands consist of the total cash amount and the amounts of different 

denomination cash. Different denomination cash for the same total cash amount results in 

different weights, which will affect the vehicle load and dispatching strategy. Therefore, this 

problem includes the decision of the mix of different denomination cash in addition to the 

routing decision. (2) For each customer, the demand is the amount of cash, instead of the weight 

of cash. However, there is a weight capacity restriction for each vehicle. Therefore, the 

conversion of the cash amount to the weight is needed. (3) The cash on board is decreasing 

when the vehicle delivers goods along the route. Therefore, the robbery risk index of a route is 

a decreasing measure.  



The proposed problem is a multi-commodity capacitated vehicle routing problem with 

denomination and risk aspects, which is different from the capacitated vehicle routing problem 

in several ways. Firstly, the delivery quantity for each denomination cash at each customer is a 

decision variable and affects the objective function. Secondly, each customer has a demand for 

a total cash amount and has a minimum demand and maximum demand for each denomination 

cash. Each denomination cash transported is not independent but restricted to these demands. 

Thirdly, the robbery risk is considered in the course of cash transportation, and different risk 

threshold may affect the vehicle routing and the cash denomination combination transported. 

To solve the proposed problem, we may consider different solution methods, including 

exact methods (e.g., Roel et al., 2016; Yan et al., 2012) and heuristics. The latter includes ant 

colony optimization with large neighborhood search (e.g., Talarico et al., 2017a), an adaptive 

and diversified vehicle routing approach (Bozkaya et al., 2017), a progressive multiobjective 

optimization with iterative local search(e.g., Talarico et al., 2017b), a variable mixed integer 

programming neighborhood search (e.g.,Larrain et al., 2017), the multi-start and perturb-and-

improve metaheuristic (e.g., Talarico et al., 2015a), the multi-start iterated local search (e.g., 

Michallet, 2014), an improved ant colony algorithm (e.g., Dai and Liu, 2012), nearest neighbor 

algorithm (e.g., Boonsam et al., 2011), group sweep algorithm (e.g., Boonsam et al., 2011), and 

an adaptive memory-based metaheuristic (e.g., Tarantilis and Kiranoudis, 2004). The proposed 

problem is NP-hard since it is a variant of vehicle routing problem, exact methods may only 

obtain optimal solutions in quite small instances in a reasonable time. For large network 

applications, it is quite difficult to obtain optimal solutions efficiently. Therefore, heuristics are 

normally used for this problem. This paper adopts a tabu search method as the backbone of our 

solution method. However, the proposed optimization problem involves decision variables for 

the delivery quantity of different denomination cash, robbery risk, and cash amount on each 

vehicle on each arc in addition to vehicle route. Hence, we cannot apply the tabu search directly 

to solve the proposed problem. For this purpose, three methods namely the exact method, the 

greedy method, and the mixed method, are embedded within the tabu search.  

The contributions of this study include the following. 

(1) We propose a new cash transportation problem with the consideration of the optimal 

mix of different denominations. 

(2) We develop an efficient metaheuristic to solve small, medium and large instances.  

The remainder of this paper is organized as follows. Section 2 describes and formulates 

the problem. Section 3 presents the combined hybrid tabu search algorithm. Section 4 depicts 

the numerical examples. Section 5 gives our conclusions and directions for future research. 



2. Problem description and formulation 

The cash transportation problem is defined on a directed graph 𝐺𝐺 =  (𝑉𝑉,𝐴𝐴) with vertex 𝑉𝑉 =

{0, } ∪ {1, … ,𝑛𝑛}, where 0 is the depot, {1, … ,𝑛𝑛} is the set of customers, and 𝐴𝐴 = {(𝑖𝑖, 𝑗𝑗): 𝑖𝑖, 𝑗𝑗 ∈

𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗} is the set of arcs. For the sake of simplicity, the depot 0 is replaced by two dummy 

nodes, s(start) from which all vehicle routes depart and e (end) where all routes end. 

Each customer 𝑖𝑖 has a non-negative demand 𝑞𝑞𝑖𝑖  which represents the cash amount in 

value (say, 200 million dollars) to be delivered by the vehicle during its visit. Furthermore, 

there are |𝑀𝑀| kinds of denominations (e.g., $100, $50, $20, etc.), where 𝑀𝑀 is the set of the 

denominations. Although each customer has a demand for cash amount, they hope to get an 

expected allocation of different denomination cash for the service convenience, which is called 

an expected demand 𝑑𝑑𝑖𝑖𝑚𝑚  for the 𝑚𝑚𝑡𝑡ℎ  denomination cash at customer 𝑖𝑖 . There is a unit 

penalty 𝑝𝑝𝑖𝑖𝑚𝑚 which is associated with the deviation from the demand of the 𝑚𝑚𝑡𝑡ℎ denomination 

cash at customer 𝑖𝑖. Failing to meet the expected demand leads to a penalty cost for the logistics 

company because of the decline of customer satisfaction. Note that, for the purpose of reducing 

the total cost, delivering more denominations than the customer expected demand is allowed. 

In addition, the robbery risk is integrated into this problem. Talarico et al. (2015) proposed 

two factors that are the cash amount being carried and the travel distance by the vehicle carrying 

the cash to measure the robbery risk. To determine the robbery risk incurred by the vehicle 

when it delivers cash along the route, we adopt the same factors and calculate the robbery risk 

𝑅𝑅𝑖𝑖𝑘𝑘  by using Eq. (1), where 𝑄𝑄𝑖𝑖𝑘𝑘  is the total amount of cash in vehicle 𝑘𝑘  when it leaves 

customer 𝑖𝑖 . 𝑐𝑐𝑖𝑖𝑖𝑖  is the length of the directed arc (𝑖𝑖, 𝑗𝑗) and 𝑇𝑇  is the risk threshold. Fig. 1 

illustrate the calculation of risk. 

�
𝑅𝑅𝑖𝑖𝑘𝑘 = 𝑅𝑅𝑖𝑖𝑘𝑘 + 𝑄𝑄𝑖𝑖𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖

𝑅𝑅𝑖𝑖𝑘𝑘 ≤ 𝑇𝑇                  
 (1) 

 

Fig. 1. Original delivery route. 

In Fig. 1, the weight of each arc represents the distance 𝑐𝑐𝑖𝑖𝑖𝑖  while the values above 

customer 𝑖𝑖 denote the delivery amount of two cash denominations ($10, $20) for customer i. 

Vehicle 𝑘𝑘 takes a delivery route 0 → 1 → 2 → 3 → 0 with an initial cash amount 100 (2 ∙

10 + 0 ∙ 20 + 1 ∙ 10 + 1 ∙ 20 + 1 ∙ 10 + 2 ∙ 20 = 100) on board. By using Eq. (1), We can 

compute the risk 𝑅𝑅3𝑘𝑘 = 0(3 → 0) , 𝑅𝑅2𝑘𝑘 = 𝑅𝑅3𝑘𝑘 + 2 ∙ (1 ∙ 10 + 2 ∙ 20) = 100(2 → 3) , 𝑅𝑅1𝑘𝑘 =

𝑅𝑅2𝑘𝑘 + (1 ∙ 10 + 1 ∙ 20 + 1 ∙ 10 + 2 ∙ 20) ∙ 2 = 260(1 → 2) , 𝑅𝑅0𝑘𝑘 = 𝑅𝑅1𝑘𝑘 + 1 ∙ (2 ∙ 10 + 0 ∙ 20 +



1 ∙ 10 + 1 ∙ 20 + 1 ∙ 10 + 2 ∙ 20) = 360(0 → 1) sequentially. We can easily obtain that the 

risks along route are 360, 260, 100, 0, decreasingly. 

In this problem, each vehicle starts from the depot and performs a single route to execute 

its dispatching task by visiting a sequence of customers before returning to the depot. Each 

customer is only allowed to be visited exactly once. To formulate the problem, the following 

notations are needed. 

Set/Indices  

𝑀𝑀: Set of cash denominations, indexed by 𝑚𝑚 = 1, … , |𝑀𝑀|; 

𝑁𝑁: Set of customers, indexed by 𝑖𝑖 = 1, … ,𝑛𝑛. 

𝐾𝐾: Set of vehicles, indexed by 𝑘𝑘 = 1, … , |𝐾𝐾|. 

Parameters  

𝑞𝑞𝑖𝑖: Demand/supply for total cash amount at customer 𝑖𝑖; 

𝐿𝐿𝑖𝑖𝑚𝑚: Minimum demand (in units) of the 𝑚𝑚𝑡𝑡ℎ denomination cash of customer 𝑖𝑖; 

𝐻𝐻𝑖𝑖𝑚𝑚 Maximum demand (in units) of the 𝑚𝑚𝑡𝑡ℎ denomination cash of customer 𝑖𝑖; 

𝑑𝑑𝑖𝑖𝑚𝑚: Expected demand (in units) of the 𝑚𝑚𝑡𝑡ℎ denomination cash of customer 𝑖𝑖; 

𝑝𝑝𝑖𝑖𝑚𝑚: Unit penalty deviating from the expected demand for the 𝑚𝑚𝑡𝑡ℎ denomination cash of 

customer 𝑖𝑖; 

𝑎𝑎𝑚𝑚: Denomination coefficient of the 𝑚𝑚𝑡𝑡ℎ denomination cash;  

𝑤𝑤𝑚𝑚: Weight coefficient of the 𝑚𝑚𝑡𝑡ℎ denomination cash;  

𝑐𝑐𝑖𝑖𝑖𝑖: The distance of arc (𝑖𝑖, 𝑗𝑗); 

𝑇𝑇: The risk threshold; 

𝐶𝐶𝑘𝑘: Weight capacity of vehicle 𝑘𝑘; 

𝑀𝑀0: A sufficiently large value. 

Decision variables  

𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 = �1 if arc (𝑖𝑖, 𝑗𝑗) is traversed by vehicle  𝑘𝑘;
0 otherwise;   

𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘 : Supply (in units) of the 𝑚𝑚𝑡𝑡ℎ denomination cash for customer 𝑖𝑖 by vehicle 𝑘𝑘;  

𝑄𝑄𝑖𝑖𝑘𝑘: Cash amount/value of vehicle 𝑘𝑘 when leaving customer 𝑖𝑖; 

𝑅𝑅𝑖𝑖𝑘𝑘: Risk of vehicle 𝑘𝑘 when leaving customer 𝑖𝑖; 

𝐵𝐵𝑖𝑖𝑘𝑘: Auxiliary continuous variable associated with vehicle 𝑘𝑘 at customer 𝑖𝑖 used by the 

sub-tour elimination constraint; 

𝑧𝑧𝑖𝑖𝑚𝑚: Auxiliary continuous variable used to linearize |𝑑𝑑𝑖𝑖𝑚𝑚 − ∑ 𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘𝑘𝑘∈𝑁𝑁 |  in the original 

objective function. 

Formulation   

𝑚𝑚𝑖𝑖𝑛𝑛∑ ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘(𝑖𝑖,𝑖𝑖)∈𝐴𝐴𝑘𝑘∈𝐾𝐾 + ∑ ∑ 𝑝𝑝𝑖𝑖𝑚𝑚𝑧𝑧𝑖𝑖𝑚𝑚𝑚𝑚∈𝑀𝑀𝑖𝑖∈𝑁𝑁    (2) 



s.t.   

Auxiliary constraints:   

𝑧𝑧𝑖𝑖𝑚𝑚 ≥ 𝑑𝑑𝑖𝑖𝑚𝑚 − ∑ 𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘𝑘𝑘∈𝐾𝐾   ∀𝑖𝑖 ∈ 𝑁𝑁,𝑚𝑚 ∈ 𝑀𝑀 (3) 

𝑧𝑧𝑖𝑖𝑚𝑚 ≥ −(𝑑𝑑𝑖𝑖𝑚𝑚 − ∑ 𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘𝑘𝑘∈𝐾𝐾 )  ∀𝑖𝑖 ∈ 𝑁𝑁,𝑚𝑚 ∈ 𝑀𝑀 (4) 

Risk constraints and capacity constraints:   

𝐻𝐻𝑖𝑖𝑚𝑚 ≥ ∑ 𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘 ≥ 𝐿𝐿𝑖𝑖𝑚𝑚𝑘𝑘∈𝐾𝐾   ∀𝑖𝑖 ∈ 𝑁𝑁,𝑚𝑚 ∈ 𝑀𝑀  (5) 

𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘 ≤ 𝑀𝑀0 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖∈𝑁𝑁   ∀𝑖𝑖 ∈ 𝑁𝑁,𝑚𝑚 ∈ 𝑀𝑀,𝑘𝑘 ∈ 𝐾𝐾  (6) 

𝑞𝑞𝑖𝑖 = ∑ ∑ 𝑎𝑎𝑚𝑚𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚∈𝑀𝑀𝑘𝑘∈𝐾𝐾   ∀𝑖𝑖 ∈ 𝑁𝑁  (7) 

𝑄𝑄0𝑘𝑘 = ∑ 𝑞𝑞𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖∈𝑁𝑁𝑖𝑖∈𝑁𝑁    ∀𝑘𝑘 ∈ 𝐾𝐾  (8) 

𝑄𝑄𝑖𝑖𝑘𝑘 ≥ 𝑄𝑄𝑖𝑖𝑘𝑘 − 𝑞𝑞𝑖𝑖 − 𝑀𝑀0(1− 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 )  ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴,  𝑘𝑘 ∈ 𝐾𝐾  (9) 

𝑅𝑅𝑒𝑒𝑘𝑘 = 0  ∀𝑘𝑘 ∈ 𝐾𝐾  (10) 

𝑅𝑅𝑖𝑖𝑘𝑘 ≥ 𝑅𝑅𝑖𝑖𝑘𝑘 + 𝑄𝑄𝑖𝑖𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖 −𝑀𝑀0�1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 �  ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴,𝑘𝑘 ∈ 𝐾𝐾  (11) 

0 ≤ 𝑅𝑅𝑖𝑖𝑘𝑘 ≤ 𝑇𝑇  ∀𝑖𝑖 ∈ 𝑁𝑁,∀𝑘𝑘 ∈ 𝐾𝐾 (12) 

∑ ∑ 𝑤𝑤𝑚𝑚𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚∈𝑀𝑀𝑖𝑖∈𝑁𝑁 ≤ 𝐶𝐶𝑘𝑘  ∀𝑘𝑘 ∈ 𝐾𝐾 (13) 

Routing constraints:   
∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖:(𝑖𝑖,𝑖𝑖)∈𝐴𝐴 = 1𝑘𝑘∈𝐾𝐾   ∀𝑖𝑖 ∈ 𝑁𝑁  (14) 
∑ 𝑥𝑥𝑖𝑖,𝑒𝑒𝑘𝑘𝑖𝑖∈𝑁𝑁 = 1   ∀𝑘𝑘 ∈ 𝐾𝐾  (15) 
∑ 𝑥𝑥𝑠𝑠𝑖𝑖𝑘𝑘𝑖𝑖∈𝑁𝑁 = 1  ∀𝑘𝑘 ∈ 𝐾𝐾 (16) 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖∈𝑉𝑉\{𝑒𝑒} − ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖∈𝑉𝑉\{𝑠𝑠} = 0  ∀𝑗𝑗 ∈ 𝑁𝑁,𝑘𝑘 ∈ 𝐾𝐾  (17) 

𝐵𝐵𝑖𝑖𝑘𝑘 ≥ 𝐵𝐵𝑖𝑖𝑘𝑘 + 1 −𝑀𝑀0�1− 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 �  ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴,𝑘𝑘 ∈ 𝐾𝐾   (18) 

Variable constraints:   

𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 ∈ {0,1}  ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴,𝑘𝑘 ∈ 𝐾𝐾  (19) 

𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘 ≥ 0  ∀𝑖𝑖 ∈ 𝑁𝑁,𝑘𝑘 ∈ 𝐾𝐾,𝑚𝑚 ∈ 𝑀𝑀 (20) 

𝐵𝐵𝑖𝑖𝑘𝑘 ≥ 0  ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑖𝑖 ∈ 𝑉𝑉 (21) 

The objective function (2) is to minimize the total cost, including the total travel cost and 

the total penalty cost. As the two costs are monetary costs, they are combined directly in the 

objective of the model. Constraints (3) and (4) are used to linearize the absolute difference. 

Constraints (5) ensure that customer’s maximum and minimum demand for each 

denomination cash must be satisfied. Constraints (6) guarantee that if arc (𝑖𝑖, 𝑗𝑗) is not traversed 

by vehicle 𝑘𝑘, the unloaded quantity for each cash denomination cash equals 0. Constraints (7) 

guarantee that the customer’s demand for cash amount must be satisfied. Constraints (8) ensure 

that the vehicle starts with cash amount equal to the total amount to be delivered to all customers. 

It also ensures each vehicle must be empty when returning to the depot. Constraints (9) are the 

cash flow conservation conditions. They state that the quantity unloaded from a vehicle at a 



customer equals the difference between the quantity in the vehicle before and after visiting that 

customer. Constraints (10)-(12) are used to define the risk, which is mentioned in Section 2.1. 

Constraints (13) are used to restrict vehicle load not greater than the weight capacity of a vehicle 

throughout its tour. Constraints (14) state that every vertex has to be served exactly once. 

Constraints (15) and (16) guarantee that each vehicle starts at the depot and returns to the depot 

at the end of its route. Constraints (17) are the vehicle flow conservation conditions, which 

impose a requirement that vehicle 𝑘𝑘 can leave customer 𝑗𝑗 only if it has served 𝑖𝑖 previously. 

Constraints (18) are the sub-tour elimination constraints. Constraints (19) are binary constraints 

for the routing decision variables. Constraints (20) are the non-negativity constraints for the 

unloading decision variables. Constraints (21) are the non-negativity constraints for auxiliary 

variables associated with the sub-tour elimination constraints. 

3. The solution method 

We develop a combined hybrid tabu search to solve the proposed problem, by adopting a hybrid 

tabu search as the backbone algorithm to determine the routes and embedding three methods, 

namely the exact method, the greedy method and the mixed method, to determine supply 

quantity of each denomination cash to each customer, cash amount on each vehicle on each arc, 

and the risk of each arc on the given route.  

3.1. The hybrid tabu search 

The hybrid tabu search involves solution representation, initial solution, evaluation of solutions, 

neighborhoods, repairing, tabu list and aspiration criterion, diversification. The procedure of 

the algorithm is given below. 

Algorithm. Combined hybrid tabu search 

1: Generate an initial solution 𝑝𝑝  

2: 𝑝𝑝𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡 ← 𝑝𝑝 

3: Elite set 𝑆𝑆 ← ∅ 

4: While stopping condition is not satisfied do 

5:   Generate a selected neighborhood of 𝑝𝑝 by six moves  

6:   Repair all infeasible solutions in the neighborhood, then find the best feasible 𝑝𝑝′ 

7:   if 𝑝𝑝′ is better than 𝑝𝑝𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡 then 

8:     𝑝𝑝𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡 ← 𝑝𝑝′ 

9:     Add 𝑝𝑝𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡 to the elite set 𝑆𝑆, update 𝑆𝑆 

10:   end if 



11:   𝑝𝑝 ← 𝑝𝑝′ 

12:   if 𝑝𝑝𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡 is not improved for 𝐼𝐼𝑇𝑇 iterations then 

13:     Select a solution 𝑝𝑝𝑟𝑟 randomly and remove it from the elite set 𝑆𝑆 

14:     𝑝𝑝 ← 𝑝𝑝𝑟𝑟 

15:     Reset the tabu list 

16:   end if  

17: end While 

18: Return 𝑝𝑝𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡 

The initial setup is shown in lines 1-2; an initial solution 𝑝𝑝 is generated using nearest 

neighbor together with greedy randomized selection mechanism. At each iteration, a selected 

neighborhood is generated (line 5). However, they may exceed the vehicle capacity or the risk 

threshold. Therefore, infeasible solutions must undergo the repair operation (Line 6). Note that 

according to our aspiration criterion, if a forbidden move is able to improve the current best 

solution 𝑝𝑝𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡, it is revoked the tabu status. If 𝑝𝑝𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡 is improved, the algorithm adds the new 

solution to the elite set 𝑆𝑆 (line 7-10). If the best solution is not improved for 𝐼𝐼𝑇𝑇 iterations 

(line 12), the algorithm selects a solution 𝑝𝑝𝑟𝑟  randomly from the elite set 𝑆𝑆 randomly and 

updates current solution 𝑝𝑝 (line 13). Then, the tabu list is reset to empty (line 15). 

3.1.1. Solution representation  

In our algorithm, a solution 𝑝𝑝  is represented by a permutation of the visited customers. 

Suppose 𝑛𝑛 customers visited by 𝑘𝑘 vehicle routes, the representation is formed by a vector of 

length (𝑛𝑛 + 𝑘𝑘). For instance, if seven customers are visited by three trucks, the solution can be 

represented as 0 → 1 → 2 → 0 → 5 → 7 → 4 → 0 → 6 → 3 → 0. The three zeros mean there 

are three routes: 0 → 1 → 2 → 0, 0 → 5 → 7 → 4 → 0 and 0 → 6 → 3 → 0.  

3.1.2. Initial solution 

The initial solution for the algorithm is created with the nearest neighbor heuristic combined 

with a greedy randomized selection mechanism. The standard nearest neighbor heuristic 

constructs a solution by selecting the closest unvisited customer at each iteration. In this method, 

a greedy randomized selection mechanism is used instead of a simple greedy procedure. It 

means that the next customer is selected randomly from the restricted candidate set containing 

the first 𝜇𝜇 closest unvisited customers. If it is not possible to add any customer to the current 

route that satisfies the risk constraint and vehicle capacity constraint, a new route is started. 

3.1.3. Evaluation of solutions 



A solution 𝑝𝑝 gives an objective function value 𝑓𝑓(𝑝𝑝), which is the sum of total transportation 

costs and the penalty costs. In our algorithm, infeasible solutions are allowed to enhance the 

performance of the search. The infeasible solution can be yielded by relaxing the limit on the 

vehicle capacity and risk threshold. We set 𝑊𝑊(𝑝𝑝) and 𝐷𝐷(𝑝𝑝) as the penalties for exceeding 

the capacity and risk threshold, respectively. Therefore, 𝑓𝑓(𝑝𝑝) is modified to a fitness function 

value 𝐹𝐹(𝑝𝑝), defined as 

𝐹𝐹(𝑝𝑝) = 𝑓𝑓(𝑝𝑝) + 𝛼𝛼 ∙ 𝑊𝑊(𝑝𝑝) + 𝛽𝛽 ∙ 𝐷𝐷(𝑝𝑝)  (22) 

𝑊𝑊(𝑝𝑝) = 𝑚𝑚𝑎𝑎𝑥𝑥 {0, 𝑚𝑚𝑎𝑎𝑥𝑥(∑ ∑ 𝑤𝑤𝑚𝑚𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚∈𝑀𝑀𝑖𝑖∈𝑁𝑁 − 𝐶𝐶𝑘𝑘)𝑘𝑘∈𝐾𝐾}  (23) 

𝐷𝐷(𝑝𝑝) = 𝑚𝑚𝑎𝑎𝑥𝑥 {0,𝑚𝑚𝑎𝑎𝑥𝑥 (𝑅𝑅𝑖𝑖𝑘𝑘)𝑖𝑖∈𝑁𝑁,𝑘𝑘∈𝐾𝐾 − 𝑇𝑇}  (24) 

Where 𝛼𝛼 , 𝛽𝛽  represents the penalty parameter associated with 𝑊𝑊(𝑝𝑝), 𝐷𝐷(𝑝𝑝), respectively. 

Initially, 𝛼𝛼 = 𝛽𝛽 = 1. The penalties are updated when repairing the solutions. 

3.1.4. Neighborhood 

The neighborhood is a set of solutions obtained by applying some moves in all possible ways 

to the current solution. In each iteration, the solutions in the neighborhood may be feasible or 

infeasible in terms of the vehicle capacity and the risk threshold. Infeasible solutions must 

undergo the repair operation. After repairing all infeasible ones, the best feasible solution in the 

neighborhood is chosen. In the tabu search framework, six moves are adopted, including 

random insertions, random insertions of subsequences, random insertions of reversed 

subsequences, random swaps of subsequences, reversing a subsequence, random swaps of 

reversed subsequences. A detailed description of the six moves is given below. 

(1) Node relocation. Randomly select and relocate a node into another random position.  

(2) Subsequence relocation. Randomly select and relocate a subsequence with random length 

into another random position.  

(3) Reversed subsequence relocation. Randomly select and relocate a subsequence with random 

length into another random position. Then, reverse the selected subsequence.  

(4) Subsequence reversing. Randomly select and reverse a subsequence with random length.  

(5) Subsequences swapping. Random select and swap two independent subsequences with 

random length. 

(6) Reversed subsequences swapping. Random select and swap two independent subsequences 

with random length. Then, reverse the two selected subsequences. 

3.1.5. Repairing 

The solutions obtained from the neighborhood operator may be feasible and infeasible, because 

they may exceed the vehicle capacity or the risk threshold. Infeasible solutions must undergo 

the repair operation. Repair operation includes temporarily multiplying the penalty 



parameters  𝛼𝛼 , 𝛽𝛽  by 1 + 𝛾𝛾 . If the capacity (or risk threshold) is exceeded, 𝛼𝛼  (or 𝛽𝛽 ) is 

temporarily multiplied by 1 + 𝛾𝛾. If the capacity and risk threshold are exceeded at the same 

time, both 𝛼𝛼  and 𝛽𝛽  are temporarily multiplied by 1 + 𝛾𝛾 . The value of 𝛾𝛾  is chosen 

uniformly randomly in (0,1] at each iteration. Then, the neighborhood operator is restarted. The 

increase in the penalty parameters aims to redirect the search to feasible solutions. 

3.1.5. Tabu list and aspiration criterion 

When a move improves the current best solution 𝑝𝑝𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡, the move is declared forbidden for 𝜏𝜏 

iterations. The tabu tenure 𝜏𝜏 is randomly chosen in a uniform interval [1,�|𝑁𝑁|], where 𝑁𝑁 is 

the set of customers. If all the six moves are tabu, the one with the shortest tabu tenure is 

revoked the tabu status. If the current best solution 𝑝𝑝𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡 is not improved for 𝐼𝐼𝑇𝑇 iterations, 

the current solution 𝑝𝑝 is updated by 𝑝𝑝𝑟𝑟 randomly selected from the elite set 𝑆𝑆, and the tabu 

list is reset to empty. We use a single aspiration criterion: if a move can improve the solution 

better than other moves, it is performed even when it is tabu. 

3.1.6. Diversification 

In this paper, the diversification strategy is based on an elite set. Nguyen et al. (2013) have 

introduced an elite set to direct the search to potential unexplored promising regions when the 

search begins to stagnate. An elite set is designed as a diversified pool of high-quality solutions 

found during the tabu search.  

The elite set starts empty and is limited in size. The diversity of the elite set is controlled 

by inserting new best solutions produced by the tabu search and the elimination of the existing 

solutions in the elite set. Different from Nguyen et al. (2013), in our algorithm, the elimination 

is based on the similarity of solutions. The similarity Δ(𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖) is defined as the sum of the 

number of common arcs between solution 𝑝𝑝𝑖𝑖 and solution 𝑝𝑝𝑖𝑖. Note that, Δ�𝑝𝑝𝑖𝑖, 𝑝𝑝𝑖𝑖� ≤ 𝑛𝑛 − 1, 

where 𝑛𝑛 is the number of nodes of a solution 𝑝𝑝, and Δ�𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖� = 𝑛𝑛 − 1 means that 𝑝𝑝𝑖𝑖 is the 

same as 𝑝𝑝𝑖𝑖 . For instance, we suppose 𝑝𝑝1 =  (0,1,2,3,4,0,5,6,7,8) , 𝑝𝑝2 =

 (0,1,2,5,4,0,6,8,3,7). The common arcs between 𝑝𝑝1 and 𝑝𝑝2 are (0,1) and (1,2). Hence, 

the similarity Δ(𝑝𝑝1,𝑝𝑝2) is equal to 2. The elimination of a solution from the elite set is 

considered when a new best solution 𝑝𝑝𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡 is inserted. There are two cases. While the elite set 

is not yet full, we delete the solutions which are very similar to 𝑝𝑝𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡. In our algorithm, a 

solution 𝑝𝑝 is deleted when the similarity Δ(𝑝𝑝,𝑝𝑝𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡) ≤ 𝑛𝑛 − 2. When the elite set is full, 𝑝𝑝𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡 

replaces the solution p that is the most similar to it. 

3.2. The embedded methods  

The tabu search handles the search space of vehicle routes and determines 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 . For a given 

solution generated by tabu search, the embedded methods determine the supply quantity (in 



units) 𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘 . After 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘  and 𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘  are obtained, the value of the objective function can be 

determined. This subsection describes three embedded methods, namely the exact method, the 

greedy method and the mixed method. 

3.2.1. Exact method 

The optimal solutions of 𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘   can be obtained by solving a simplified version of the model 

formulated in section 2.2. As the routing problem is solved by the tabu search, 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘  becomes a 

known parameter, and therefore the model can be solved by a common linear programing (LP) 

solver by omitting routing constraints (14) - (18), the 0-1 constraints (19) and auxiliary 

constraints (21). We use Gurobi 7.0 to solve the LP problem. Although this method can obtain 

an optimal solution, it is restricted to small size networks because the computation time 

drastically increases with increasing network sizes. For larger networks, heuristics become 

more practical solution methods. 

3.2.2. Greedy method 

The basic idea of this method is to give a higher priority to the denomination who has a larger 

unit penalty of the unmet demand. The procedure is depicted as follow: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝1:  Determine 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 . We generate the vehicle routes by tabu search. We can obtain the 

value of 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 , as well as the route set 𝐾𝐾, indexed by 𝑘𝑘 = 1, … , |𝐾𝐾|. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝2: Determine 𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘 . 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝2.1:  Set 𝑘𝑘 = 1. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝2.2: Set the customer list 𝑉𝑉𝑘𝑘 = ∅. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝2.3: Let 𝑖𝑖 be the 𝑖𝑖′𝑡𝑡ℎ customer to be visited in route 𝑘𝑘. Set 𝑖𝑖′ = 1. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝2.4: Initialize 𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘 . Set 𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘 = 𝐿𝐿𝑖𝑖𝑚𝑚, ∀ 𝑚𝑚 ∈ 𝑀𝑀 to satisfy constraints (5). Update 

the demand in value 𝑞𝑞𝑖𝑖 ← 𝑞𝑞𝑖𝑖 − ∑ 𝐿𝐿𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀 . 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝2.5: Select the denomination with the largest penalty coefficient from the 

denomination set 𝑀𝑀 , and mark it as 𝑚𝑚𝑎𝑎𝑥𝑥 . Then, set 𝑦𝑦𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖
𝑘𝑘 =

min  {𝑑𝑑𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖, 𝑞𝑞𝑖𝑖
𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

} , update 𝑞𝑞𝑖𝑖 ← 𝑞𝑞𝑖𝑖 − 𝑎𝑎𝑚𝑚𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖
𝑘𝑘  and remove 𝑚𝑚𝑎𝑎𝑥𝑥  from 

𝑀𝑀. Repeat this step until 𝑞𝑞𝑖𝑖 = 0. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝2.6: Put 𝑖𝑖 into 𝑉𝑉𝑘𝑘. If 𝑉𝑉𝑘𝑘 includes all the customers visited by vehicle 𝑘𝑘, go to 

𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝2.7. Otherwise, update 𝑖𝑖′ ← 𝑖𝑖′ + 1, and go to 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝2.4. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝2.7: If 𝑘𝑘 < |𝐾𝐾|, update 𝑘𝑘 ← 𝑘𝑘 + 1 and go to Step 2.2. Otherwise, go to Step 3. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝3: Determine 𝑄𝑄𝑖𝑖𝑘𝑘 and 𝑅𝑅𝑖𝑖𝑘𝑘. 𝑄𝑄𝑖𝑖𝑘𝑘  and 𝑅𝑅𝑖𝑖𝑘𝑘 are determined by Eq. (25). 
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⎧ 𝑄𝑄0𝑘𝑘 = ∑ 𝑞𝑞𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖∈𝑁𝑁𝑖𝑖∈𝑁𝑁

𝑄𝑄𝑖𝑖𝑘𝑘 = 𝑄𝑄𝑖𝑖𝑘𝑘 − 𝑞𝑞𝑖𝑖               
𝑅𝑅0𝑘𝑘 = 0                          

𝑅𝑅𝑖𝑖𝑘𝑘 = 𝑅𝑅𝑖𝑖𝑘𝑘 + 𝑄𝑄𝑖𝑖𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖         

                          (25) 

3.2.3. Mixed method 

Adopting a greedy method is the simplest and fastest way to obtain a near-optimal solution but 

the optimality is not guaranteed, while the exact method can obtain an optimal solution with 

huge computation time. To balance the solution quality and the computation time, we propose 

a hybrid solution method by mixing these two methods. For the route candidates in the 

neighborhood generated in each iteration when adopting the tabu search, we divide these route 

candidates into two parts randomly with the proportion 𝜂𝜂: 1 − 𝜂𝜂 . One part (𝜂𝜂) are solved 

optimally by the exact method in Section 3.2.1, while another part ( 1 − 𝜂𝜂 ) is solved 

heuristically by the greedy method in Section 3.2.2. Thus, we can get an acceptable tradeoff 

between the solution quality and computation time. 

4. Numerical studies 

In this section, numerical examples are set up to illustrate the problem properties and the 

performance of the combined hybrid tabu search algorithm. The solution method is coded in 

C# on a 3.4GHz Intel i7-2600 processor with 16GB of RAM.  

4.1. Effect of the unit penalty on the delivery strategy 

In this section, we consider a small network with 2 trucks, 3 nodes (𝑁𝑁 = {1,2,3}) and 2 

denominations (𝑀𝑀 = {$10, $20}) to show the effects of the unit penalty on the delivery strategy. 

The data are shown in Table 1.  

Table 1 

The data of an instance with 3 nodes  

Parameters Values 

𝑐𝑐𝑖𝑖𝑖𝑖 , 𝑤𝑤𝑚𝑚, 𝑇𝑇 1, 1, 200 

𝐶𝐶𝑘𝑘 8, 6 

𝑞𝑞𝑖𝑖 80, 40, 40 

𝐿𝐿𝑖𝑖𝑚𝑚, 𝐻𝐻𝑖𝑖𝑚𝑚 0, 0 

𝑑𝑑𝑖𝑖𝑚𝑚 4, 2; 2, 1; 4, 0 

𝑝𝑝𝑖𝑖𝑚𝑚 1, 1; 10, 10; 100, 1 

 



 

Fig. 2. Effect of the unit penalty 𝑝𝑝𝑖𝑖𝑚𝑚 

Fig. 2a represents the initial optimal solution consisting of route 0 → 1 → 2 → 0 and 

route 0 → 3 → 0. The values of 𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘  are shown in the parentheses near a node.  

When 𝑝𝑝11 is increased to 10 (shown in Fig. 2b), a new optimal solution is obtained and 

the values of 𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘  are changed. At customer 1, the delivery quantities with $10 cash 

denomination increases to 4 to satisfy the expected demand. But the delivery quantity with $20 

cash denomination decreases 2, because the total demand of the customer must be satisfied. 

Meanwhile, the delivery amounts at customer 2 change to (0, 2) due to the vehicle capacity 

restriction. When 𝑝𝑝11 is increased to 10 and 𝑝𝑝31 is decreased to 1(shown in Fig. 2c), both 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘  

and 𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘  are changed. At customer 1, the total weight of delivered cash increases to 6. 

Meanwhile, customer 2 is visited by the second truck due to the vehicle capacity restriction. 

It is concluded that different unit penalties may lead to different cash denomination 

combination and different vehicle routing due to the vehicle capacity restriction. 

4.2. Effect of the risk threshold on the delivery strategy 

In this section, we consider a network with 2 trucks, 4 customers (𝑁𝑁 = {1, 2, 3, 4}) and 2 

denominations (𝑀𝑀 = {$10, $20}) to investigate the relationship between the risk threshold and 

the delivery strategy. The data are shown in Table 2. 

 

 



Table 2 

The data of an instance with 4 nodes  

Parameters Values 

𝑤𝑤𝑚𝑚, 𝑇𝑇 1, 250 

𝐶𝐶𝑘𝑘 7, 5 

𝑞𝑞𝑖𝑖 30, 40, 20, 50 

𝐿𝐿𝑖𝑖𝑚𝑚,𝐻𝐻𝑖𝑖𝑚𝑚 0, 10 

𝑑𝑑𝑖𝑖𝑚𝑚 1, 1; 2, 1; 2, 0; 5, 0 

𝑝𝑝𝑖𝑖𝑚𝑚 10, 10; 10, 10; 1, 1; 5, 5 

 

 

Fig. 3. Effect of the risk threshold 𝑇𝑇. 

The initial optimal solution is shown in Fig. 3a. The values in the parentheses near a node 

are the values of 𝑦𝑦𝑖𝑖𝑚𝑚𝑘𝑘 . 𝑄𝑄𝑖𝑖𝑘𝑘 and 𝑐𝑐𝑖𝑖𝑖𝑖 are above and below the arc respectively. We can easily 

obtain that the risk along route 1 are 230, 140, 20, 0, and along route 2 are 50, 0. 

When risk threshold 𝑇𝑇 is decreased from 250 to 200, a new optimal solution is obtained 

by reordering the customers of route 1 (shown in Fig. 3b). Furtherly, when risk threshold 𝑇𝑇 is 

decreased to 150, the customers visited by vehicles are changed (shown in Fig. 3c). Another 

observation is that the risk threshold can also affect the delivery quantity of dominations cash. 



When 𝑇𝑇=150, customer 3 is changed to be visited in route 2. Meanwhile, the cash mixes of 

customer 3 and customer 4 change due to the capacity restriction of truck 2.  

It is concluded that different risk threshold may lead to different vehicle routing and 

different cash denomination combination due to the vehicle capacity restriction. 

4.3. Performance analysis of the combined hybrid tabu search 

This section investigates the performance of the combined hybrid tabu search, including the 

hybrid tabu search embedded exact method (TS-EM), the hybrid tabu search embedded mixed 

method (TS-MM) and the hybrid tabu search embedded greedy method (TS-GM). Since the 

proposed problem has not been studied so far, no test instances are available in the literature. 

We generated 10 instances with |𝐾𝐾| × |𝑁𝑁| = 2 × 10, 2 × 13, 3 × 21, 4 × 25, 5 × 28, 5 ×

31, 7 × 49, 7 × 69, 10 × 81, 10 × 103. The data are shown in Table 3. 

Table 3   

All instances data  

Parameter Values 

𝑑𝑑𝑖𝑖𝑚𝑚, 𝐿𝐿𝑖𝑖𝑚𝑚, 𝐻𝐻𝑖𝑖𝑚𝑚 [1, 99] 

𝑝𝑝𝑖𝑖𝑚𝑚 [0, 9] 

𝑞𝑞𝑖𝑖   [1, 5] 

𝑎𝑎𝑚𝑚 0.001, 0.005, 0.01, 0.02, 0.05, 0.1 

𝑤𝑤𝑚𝑚 0.8, 0.9, 1, 1, 1, 1.1 

𝐶𝐶𝑘𝑘 1000 

𝑇𝑇  100, 100, 300, 500, 1600, 1000,  

1500, 18000, 6000, 39000 

|𝑀𝑀|  6 

node coordinates [-10, 10] 

4.3.1. Parameter settings 

Talarico et al. (2015a) performed a meta-calibration experiment to generate good values of 

parameter 𝜇𝜇 mentioned in Section 3.1.2. We adopt their parameter setting and set 𝜇𝜇 to 3. In 

the study of Nguyen et al. (2013), increasing the size of the elite set improves only slightly the 

solution quality. They found that setting the size of the elite set to 5 achieves a better balance 

between solution quality and computation. We also set |𝑆𝑆| to 5. For the sake of computation 

efficiency, 𝐼𝐼𝑇𝑇 is set as 20 and the termination criterion is set to 𝐼𝐼𝑇𝑇𝑚𝑚𝑖𝑖𝑖𝑖= 500. 

To test the parameter 𝜂𝜂 proposed in Section 3.2.3, an experimental analysis is performed. 

Fig. 4. shows the computation results for different 𝜂𝜂 (in steps of 0.1) in instance 3×21. With 

the increase of 𝜂𝜂, the objective value decreases, while the computing time increases. It suggests 



that the increase of the proportion of the exact method can lead to improving the solution quality 

at the cost of an increase in computing time. When 𝜂𝜂 ≥ 0.4, The objective value decreases 

more slowly. Thus, 𝜂𝜂 = 0.4 can be considered as a good tradeoff between the solution quality 

and computation time. The 10 generated instances are tested in the same way. A good tradeoff 

(good solution in a short time) can be obtained with different 𝜂𝜂 in the range [0.3, 0.5]. Thus, 

for the sake of simplicity, we adopt 𝜂𝜂 = 0.4 in the next section.  

 

Fig. 4. Computation results of instance 3×21 

4.3.2. Results and comparison 

To illustrates the performance of the combined hybrid tabu search, the 10 instances solved with 

combined hybrid tabu search were also solved with Gurobi 7.0. A running time of 2 h was 

imposed on Gurobi. Table 4 reports the running times (CPU), the upper bound s(UB), the lower 

bounds (LB) and the corresponding gaps obtained from Gurobi, including. Table 4 also reports 

the average objective values (Avg.obj), the standard deviation of the objective values (Std) and 

the average running times obtained with the combined hybrid tabu search in 20 runs, as well as 

the gaps representing the deviation of the Avg.obj from the LB. 

For small-size instances (|𝑁𝑁| = 10, 13), Gurobi obtained the optimal solutions. However, 

the computation time increased exponentially with the problem size. Whereas the combined 

hybrid tabu search could obtain optimal solutions in a very short time compared with Gurobi. 

 



Table 4 

Comparison of the performance of Gurobi and the combined hybrid tabu search. 

Instance 

Gurobi Combined hybrid tabu search 

CPU/s UB LB Gap/% 
TS-EM  TS-MM  TS-GM  

Avg.obj CPU/s Std Gap/% Avg.obj CPU/s Std Gap/% Avg.obj CPU/s Std Gap/% 

2×10 51.3 90.0* 90.0 0 90.0 25.1 0 0 90.0 11.0 0 0 90.0 0.1 0.21 0 

2×13 6402 247.1* 247.1 0 247.1 28.8 0 0 247.1 12.5 0 0 255.0 0.2 2.6 3.2 

3×21 7200 179.9 176.6 1.86 168.2 91.1 1.3 3.1 184.5 65.8 4.5 7.6 200.9 0.4 8.7 13.7 

4×25 7200 388.2 380.3 2.05 396.0 265.6 0.9 4.1 403.9 134.2 5.7 6.2 429.6 1.2 13.2 13.0 

5×28 7200 333.3 308.1 7.55 328.8 328.9 2.5 6.7 338.7 166.3 10.9 9.3 361.7 1.4 19.5 17.4 

5×31 7200 686.8 525.9 23.4 567.3 652.5 1.6 7.8 580.0 373.3 9.1 10.3 612.7 2.2 17.6 16.5 

7×49 7200 649.0 425.0 34.5 466.5 740.1 2.9 9.7 475.8 439.6 11.7 12.0 499 3.1 22.4 17.4 

7×69 7200 1771.5 1223.3 44.8 1429.6 1542.2 6.7 16.9 1458.2 848.3 12.5 19.2 1558.2 3.5 28.7 27.3 

10×81 7200 − − − 740.9 1993.3 7.1 − 750.5 1140.2 10.0 − 792.8 5.8 15.1 − 

10×103 7200 − − − 2112.9 3648.1 17.9 − 2155.2 2247.3 32.7 − 2303 7.7 50.4 − 

 



For medium-size instances (21≤ |𝑁𝑁| ≤ 69), Gurobi could not find the optimal solutions 

within the 2-h limit. When |𝑁𝑁| ≥28, the upper bounds were not too good compared to the 

results obtained from the combined hybrid tabu search and the average gap was over 27.5%. 

Whereas the combined hybrid tabu search could produce high-quality solutions within short 

computing times. As can be seen in table 4, the average gaps obtained with the combined hybrid 

tabu search are 10.3% (TS-EM), 12.7% (TS-MM) and 19.7% (TS-GM). 

For large-size instance (|𝑁𝑁| ≥ 81), Gurobi could not find feasible solutions within 2-h 

limit. Unlike Gurobi, the combined hybrid tabu search always found feasible solutions quickly. 

From table 4, it can be observed that TS-GM only takes 7.7s when |𝑁𝑁| = 103. 

Table 4 also shows the tradeoff between computation time and solution quality when 

solving larger networks. Among the three schemes of combined hybrid tabu search, TS-EM 

always got the best solutions compared with others at the cost of requiring the longest 

computation times. TS-GM always got the worst solutions among the three schemes. However, 

it only took less than 2% computation time of other two methods. TS-MM could always 

illustrate a tradeoff between the solution quality and the computation time. 

4.4. Effect of unit penalty and risk threshold towards the computing speed 

In this section, several thresholds and penalty levels are generated to test the model. For 

each instance, the base penalty level P and the base risk level T are defined as the initial unit 

penalty and the initial risk threshold, respectively. Additional levels are generated by using 

several multiplicative factors. Table 5 reports the computation results. As can be seen in table 

5, an increase for the unit penalty or the risk threshold does not make a significant change for 

the combined hybrid tabu search in computing time. 

Table 5 

Average running times at different penalty levels or risk levels. 

Instance Penalty level Risk level CPU time (s) 

TS-EM TS-MM TS-GM 

2×10 0.1P 0.5T 25.12 10.96 0.12 

P T 25.16 11.0 0.11 

10P 2T 25.45 11.23 0.15 

2×13 0.1P 0.5T 28.72 12.56 0.25 

P T 28.81 12.50 0.24 

10P 2T 28.91 12.54 0.25 

3×21 0.1P 0.5T 91.26 65.93 0.42 

P T 91.15 65.81 0.43 



10P 2T 91.80 65.30 0.41 

4×25 0.1P 0.5T 396.29 134.81 1.28 

P T 396.02 134.84 1.26 

10P 2T 396.27 134.66 1.21 

5×28 0.1P 0.5T 328.81 166.19 1.40 

P T 328.80 166.30 1.43 

10P 2T 328.74 166.74 1.41 

5×31 0.1P 0.5T 567.62 373.37 2.25 

P T 567.32 373.30 2.21 

10P 2T 567.19 373.25 2.26 

7×49 0.1P 0.5T 741.08 438.77 3.16 

P T 740.14 439.67 3.18 

10P 2T 739.50 440.31 3.18 

7×69 0.1P 0.5T 1428.43 847.74 3.54 

P T 1429.63 848.34 3.59 

10P 2T 1427.96 846.56 3.56 

10×81 0.1P 0.5T 1993.98 1139.47 5.84 

P T 1993.34 1140.25 5.86 

10P 2T 1990.83 1130.75 5.86 

10×103 0.1P 0.5T 3646.75 2246.15 7.67 

P T 3648.10 2247.31 7.70 

10P 2T 3648.33 2245.22 7.73 

5. Conclusions 

In this paper, we introduce a new cash-in-transit problem in order to optimize the mix of 

different denomination cash and build safe routes. We develop a mixed integer programming 

model and propose a combined hybrid tabu search metaheuristic to solve the model. The results 

show that the proposed method yields high-quality solutions and makes a good tradeoff 

between the solution quality and the computation time. The experimental results also show that 

the unit penalty determines the mix of different denomination cash and has an indirect effect 

on the vehicle routes. The risk threshold determines vehicle routes and has an indirect impact 

on the mix of different denomination cash. Future research can focus on addressing transporting 

multiples type of cash (i.e., new, used, damaged banknotes). 
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