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ON MERGINGS IN ACYCLIC DIRECTED GRAPHS\ast 

GUANGYUE HAN\dagger 

Abstract. Consider an acyclic directed graph G with sources s1, s2, . . . , sn and sinks r1, r2, . . . ,
rn. For i = 1, 2, . . . , n, let ci denote the size of the minimum edge cut between si and ri, which, by
Menger's theorem, implies that there exists a group of ci edge-disjoint paths from si to ri. Although
they are edge disjoint within the same group, the above-mentioned edge-disjoint paths from different
groups may merge with each other (or, roughly speaking, share a common subpath). In this paper
we show that by choosing these paths appropriately, the number of mergings among all these edge-
disjoint paths is always bounded by a finite function \scrM (c1, c2, . . . , cn), which is independent of the
size of G. Moreover, we prove some elementary properties of \scrM (c1, c2, . . . , cn), derive exact values
of \scrM (1, c) and \scrM (2, c), and establish a scaling law of \scrM (c1, c2) when one of the parameters is fixed.
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1. Introduction. Let G = (E, V ) be an acyclic directed graph with the edge
set E and vertex set V . In this paper, an edge e \in E linking a vertex v1 \in V to
another vertex v2 \in V will be represented by (v1, v2) and, more generally, a directed
path \beta consisting of vertices v1, v2, . . . , v\ell +1, ordered according to the direction of the
path, will be represented by (v1, v2, . . . , v\ell +1), where each vj will be referred to as the
direct predecessor of vj+1 on \beta (see Figure 1(a) for a quick example). We say m \geq 2
directed paths \beta 1, \beta 2, . . . , \beta m merge at an edge e = (u, v) \in E if (1) e belongs to all
\beta j and (2) there exist j1 \not = j2 such that the direct predecessors of u on \beta j1 and \beta j2
are distinct; see Figure 1 for some illustrative examples.

We are primarily interested in the case that G has n distinct sources s1, s2, . . . , sn,
n distinct sinks r1, r2, . . . , rn, and for each i, the size of the minimum edge cut
between si and ri is ci, which, by Menger's theorem [9], implies the existence of
\alpha i = \{ \alpha i,1, \alpha i,2, . . . , \alpha i,ci\} , a set of edge-disjoint paths from si to ri. Throughout
the paper, for each feasible i, an element in \alpha i will be referred to as an \alpha i-path,
and an edge on some \alpha i-path will be referred to as an \alpha i-edge, and the set of all
\alpha i-edges will be denoted by E(\alpha i). For any edge e, let \alpha i(e) denote the \alpha i-path pass-
ing through e (note that \alpha i(e) is well-defined if and only if e is an \alpha i-edge), and let
\alpha (e) = \{ \alpha 1(e), \alpha 2(e), . . . , \alpha n(e)\} . Let \scrG (c1, c2, . . . , cn) denote the set of all such G.

Apparently, an \alpha i1-path merges with an \alpha i2-path only if i1 \not = i2. An edge e \in E
is said to be a merging with respect to \alpha 1, \alpha 2, . . . , \alpha n if there exist i1 \not = i2 such that
some \alpha i1 -path and some \alpha i2-path merge at e. Let M(G;\alpha 1, \alpha 2, . . . , \alpha n) denote the
number of mergings in G with respect to \alpha 1, \alpha 2, . . . , \alpha n.

Noting that the choices of each \alpha i may not be unique, we let \Lambda i(G) denote the set
of all possible \alpha i. The main result of this paper is that one can choose \alpha i \in \Lambda i(G) for
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(a)
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v3
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Fig. 1. In (a), the path \beta 1 = (v1, v2, v3) consists of two concatenated edges: e1 = (v1, v2) and
e2 = (v2, v3). Note that though paths \beta 1 and \beta 2 share the vertex v2, they do not share any edges,
so \beta 1 and \beta 2 do not merge. In (b), \beta 1 and \beta 2 merge at the edge (v1, v2), however, not at (v2, v3);
\beta 1, and \beta 3 merge at the edge (v2, v3); \beta 2, and \beta 3 merge at the edge (v2, v3); \beta 1, \beta 2, and \beta 3 merge
at the edge (v2, v3).

all feasible i such that M(G;\alpha 1, \alpha 2, . . . , \alpha n) is upper bounded by a finite function of
\alpha 1, \alpha 2, . . . , \alpha n, which is independent of the size of the graph G. Here we remark that
for any fixed i, the the Edmonds--Karp algorithm [5] (an efficient implementation of
the classical Ford--Fulkerson method [6]) can find a minimum edge cut and a set of
edge-disjoint paths between si and ri in polynomial time. On the other hand though,
the fact that the link disjoint problem, which essentially asks if there are two edge-
disjoint paths from si, sj to ri, rj for any i \not = j, is NP-complete [7] suggests the
intricacy of the scenarios where multiple pairs of sources and sinks are involved.

The following definition introduces some fundamental notions to be examined in
this paper.

Definition 1.1. For any G \in \scrG (c1, c2, . . . , cn), we define

M(G) \triangleq min
\alpha i\in \Lambda i(G): i=1,2,...,n

M(G;\alpha 1, \alpha 2, . . . , \alpha n)

and, furthermore, for any c1, c2, . . . , cn, we define

\scrM (c1, c2, . . . , cn) = sup
G\in \scrG (c1,c2,...,cn)

M(G).

Colloquially, for the purpose of minimizing the number of mergings by appropriately
choosing all \alpha i-paths, M(G) is the result of our best decision for a given graph G, and
\scrM (c1, c2, . . . , cn) is the worst performance of our best decisions among all possible
graphs G \in \scrG (c1, c2, . . . , cn).

Example 1.2. It can be easily verified that the graph G in Figure 2 belongs to
\scrG (2, 2). Let

\alpha 1 = \{ \alpha 1,1, \alpha 1,2\} = \{ (s1, v1, v2, v3, v4, r1), (s1, v5, v6, v7, v8, r1)\} ,

\alpha 2 = \{ \alpha 2,1, \alpha 2,2\} = \{ (s2, v1, v2, v7, v8, r2), (s2, v5, v6, v3, v4, r2)\} .
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s2
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e3

e2

α1,1 α1,2

Figure 2: an illustrative example

Definition 1.1. For any G ∈ G(c1, c2, . . . , cn), we define

M(G) , min
αi∈Λi(G): i=1,2,...,n

M(G;α1, α2, . . . , αn),

and furthermore, for any c1, c2, . . . , cn, we define

M(c1, c2, . . . , cn) = sup
G∈G(c1,c2,...,cn)

M(G).

Colloquially, for the purpose of minimizing the number of mergings by appropriately choosing
all αi-paths, M(G) is the result of our best decision for a given graph G, andM(c1, c2, . . . , cn)
is the worst performance of our best decisions among all possible graphs G ∈ G(c1, c2, . . . , cn).

Example 1.2. It can be easily verified that the graph G in Figure 2 belongs to G(2, 2). Let

α1 = {α1,1, α1,2} = {(s1, v1, v2, v3, v4, r1), (s1, v5, v6, v7, v8, r1)},

α2 = {α2,1, α2,2} = {(s2, v1, v2, v7, v8, r2), (s2, v5, v6, v3, v4, r2)}.
Apparently, e1, e2, e3, e4 are the only 4 mergings with respect to α1, α2 and so

M(G;α1, α2) = 4.

Now, with the following alternative set of two edge-disjoint paths from s1 to r1:

α′1 = {α′1,1, α′1,2} = {(s1, v1, v2, v7, v8, r1), (s1, v5, v6, v3, v4, r1)},

one verifies that e1, e3 are the only 2 mergings with respect to α′1, α2, and thereby

M(G;α′1, α2) = 2,

3

Fig. 2. An illustrative example.

Apparently, e1, e2, e3, e4 are the only 4 mergings with respect to \alpha 1, \alpha 2 and so

M(G;\alpha 1, \alpha 2) = 4.

Now, with the following alternative set of two edge-disjoint paths from s1 to r1,

\alpha \prime 
1 = \{ \alpha \prime 

1,1, \alpha 
\prime 
1,2\} = \{ (s1, v1, v2, v7, v8, r1), (s1, v5, v6, v3, v4, r1)\} ,

one verifies that e1, e3 are the only 2 mergings with respect to \alpha \prime 
1, \alpha 2 and, thereby,

M(G;\alpha \prime 
1, \alpha 2) = 2

and, furthermore, the choice of \alpha \prime 
1 and \alpha 2 achieves M(G) = 2. Note that it will be

established in Theorem 4.4 that \scrM (2, 2) = 5, that is to say, for any graph in \scrG (2, 2),
there is a way to choose \alpha 1, \alpha 2 such that the number of mergings in the graph with
respect to \alpha 1, \alpha 2 is at most 5, which can be achieved by some graph in \scrG (2, 2).

At first glance, \scrM (c1, c2, . . . , cn) may be infinite. However, the following theorem,
which is the main result in this paper, asserts its finiteness.

Theorem 1.3. For any c1, c2, . . . , cn, we have

\scrM (c1, c2, . . . , cn) < \infty .

Theorem 1.3 follows from Proposition 3.4, which establishes the finiteness of \scrM with
two parameters via an explicit upper bound, and Proposition 3.5, which upper bounds
\scrM with multiple parameters using a sum of \scrM with two parameters.

Remark 1.4. Theorem 1.3 does not hold for cyclic directed graphs: For the cyclic
directed graph G in Figure 3, \alpha 2,1 merges with \alpha 1,2 at e1, e2, e3, e4, e5 and it can be
verified that M(G) = 5. Moreover, in a similar fashion, one can construct a graph G\prime 

such that \alpha 2,1 merges with \alpha 1,2 at e1, e2, . . . , e\ell with M(G\prime ) = \ell for an arbitrary \ell ,
which means that \scrM (2, 2), if defined on cyclic directed graphs, is in fact infinity.

D
ow

nl
oa

de
d 

10
/3

0/
19

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON MERGINGS IN ACYCLIC DIRECTED GRAPHS 1485
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Figure 3: an illustrative example

and furthermore, the choice of α′1 and α2 achieves M(G) = 2. Note that it will be established
in Theorem 4.4 that M(2, 2) = 5, that is to say, for any graph in G(2, 2), there is a way
to choose α1, α2 such that the number of mergings in the graph with respect to α1, α2 is at
most 5, which can be achieved by some graph in G(2, 2).

At first glance,M(c1, c2, . . . , cn) may be infinite. However, the following theorem, which
is the main result in this paper, asserts its finiteness.

Theorem 1.3. For any c1, c2, . . . , cn, we have

M(c1, c2, . . . , cn) < ∞.

Theorem 1.3 follows from Proposition 3.4, which establishes the finiteness of M with two
parameters via an explicit upper bound, and Proposition 3.5, which upper bounds M with
multiple parameters using a sum of M with two parameters.

Remark 1.4. Theorem 1.3 does not hold for cyclic directed graphs: For the cyclic directed
graph G in Figure 3, α2,1 merges with α1,2 at e1, e2, e3, e4, e5 and it can be verified that
M(G) = 5. Moreover, in a similar fashion, one can construct a graph G′ such that α2,1

merges with α1,2 at e1, e2, . . . , e` with M(G′) = ` for an arbitrary `, which means that
M(2, 2), if defined on cyclic directed graphs, is in fact infinity.

Theorem 1.3 has a number of variants. For one example, the definition ofM carries over
almost verbatim to the cases that some of the sources and/or some of the sinks are identical,
for which Theorem 1.3 still holds true. For another example, we note that (I) each ci can
be redefined as the size of mininum vertex cut between si and ri; and (II) each αi can be
redefined as a set of ci vertex-disjoint paths; and (III) the notion of merging can be redefined
as follows: we say m ≥ 2 directed paths β1, β2, . . . , βm merge at v ∈ V if 1) v belong to
all βj; and 2) there exist j1 6= j2 such that the direct predecessors of v on βj1 and βj2 are

4

Fig. 3. An illustrative example.

Theorem 1.3 has a number of variants. For one example, the definition of \scrM 
carries over almost verbatim to the cases that some of the sources and/or some of the
sinks are identical, for which Theorem 1.3 still holds true. For another example, we
note that (I) each ci can be redefined as the size of a mininum vertex cut between
si and ri; (II) each \alpha i can be redefined as a set of ci vertex-disjoint paths; and (III)
the notion of merging can be redefined as follows: we say m \geq 2 directed paths
\beta 1, \beta 2, . . . , \beta m merge at v \in V if (1) v belong to all \beta j and (2) there exist j1 \not = j2 such
that the direct predecessors of v on \beta j1 and \beta j2 are distinct. It can be easily verified
that with the above-mentioned new definitions in place, the definition of \scrM carries
over in a straightforward fashion and Theorem 1.3 still holds true.

As elaborated below, Theorem 1.3 and its variants can be of use in certain prac-
tical situations where a network features multiple sources and/or multiple sinks.

In particular, the case that all ri are identical is of relevance to transportation
networks. More specifically, consider the traffic in a monocentric city during the
morning rush hour (see, e.g., [11, 1, 2]), where a very large number of commuters
travel from home (presumably in the suburban areas) to the workplace (presumably
in the downtown area). Apparently, the bulk of the suburban traffic (i.e., traffic
outside the downtown area) in such a situation is ``largely"" loopless: before reaching
the downtown area, it makes no sense for any traveler to first go substantially further
away from the workplace in order to eventually get to work, or take a circuitous detour
in any part of his/her journey. As a result, we can assume, through contracting the
downtown area to a single destination and orientating the occupied roads, that the
suburban morning traffic is acyclic with multiple origins s1, s2, . . . , sn and one single
destination r. Assume the travel demand from si to r is ci, which in turn demands
traffic assignments on a set of ci edge-disjoint paths of unit capacity from si to r. Then,
Theorem 1.3 implies that under the optimal routing strategy, the minimum number of
traffic mergings is always upper bounded by \scrM (c1, c2, . . . , cn), which is independent
of the size of the underlying transportation network. Generally speaking, noting that
traffic mergings naturally give rise to congestions in transportation networks [3, 10],
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1486 GUANGYUE HAN

we expect that Theorem 1.3 can lead to an enhanced understanding on the level of
traffic congestion in transportation networks under system-optimum route choices.

In constrast, the case that all si are identical is of relevance to communication
networks. Below, we briefly mention the connection between our work and the theory
of network coding [12]: Let G be an acyclic directed communication network with one
sender s and n receivers r1, r2, . . . , rn. Again, let ci denote the size of the minimum
edge cut between s and ri. It has been shown that if network coding is employed at
some intermediate nodes, then information can be simultaneously transmitted from s
to ri at full rate ci for all i. The so-called network encoding complexity refers to the
least number of encoding nodes required for a feasible network coding scheme (see [8]
and references therein). It turns out for the above-mentioned network, its network
encoding complexity is always bounded by \scrM (c1, c2, . . . , cn).

Here we remark that an independent work [4] has conducted an in-depth analysis
on routings on vertex-disjoint paths for graphs of a given treewidth, which has im-
plications to relevant aspects of graph theory and computational complexity. It has
been observed that a slightly modified proof of the main results in [4] can be used to
establish \scrM (c, c) = O(c4), whereas, by comparison, our Proposition 3.4 implies that
\scrM (c, c) = O(c3). It however remains to be seen if our arguments can be modified to
yield a sharper upper bound for the setting in [4] since the graphs considered therein
are more general and in particular may not necessarily be acyclic.

The remainder of the paper is organized as follows. First of all, notations and
terminology that will be used in our proofs will be introduced in section 2. And in
section 3, we will prove Theorem 1.3, the main result in this paper. Some properties,
exact values, and a scaling law of\scrM will be established in sections 4; more specifically,
we will show that for any positive integer c, \scrM (1, c) = c (Theorem 4.3) \scrM (2, c) =
3c - 1 (Theorem 4.4), and a scaling law of \scrM (c1, c2) with one of the parameters fixed
(Theorem 4.6).

2. Notations and terminologies. Let G \in \scrG (c1, c2, . . . , cn). For an edge e in
G, we will use h(e) and t(e) to denote its head and tail, respectively. And we say a
vertex v is reachable from another vertex u if there is a directed path from u to v.
For a directed path \beta containing two vertices u, v with v reachable from u, let \beta [u, v]
denote the segment of \beta starting from u and ending at v. For two distinct vertices
u, v, we say u is smaller than v (or, equivalently, v is larger than u) if v is reachable
from u. Similarly, for two distinct edges e, f in G, we say e is smaller than f (or,
equivalently, f is larger than e) if t(f) is reachable from h(e); if, in addition, e, f ,
and the connecting path from h(e) to t(f) all belong to a path \beta , we say e is smaller
than f on \beta . For a set of vertices v1, v2, . . . , vk in G, define G| v1, . . . , vk) to be the
part of G that is ``upstream"" of v1, v2, . . . , vk or, more rigorously, G| v1, . . . , vk) is the
subgraph of G induced on the set of vertices, each of which is smaller than or equal
to some vi, i = 1, 2, . . . , k.

Now, choose \alpha = \{ \alpha 1, \alpha 2, . . . , \alpha n\} such that each \alpha i \in \Lambda i(G), i = 1, 2, . . . , n.
We say \alpha i is reroutable if there exists a different set \alpha \prime 

i of ci edge-disjoint paths from
si to ri; and, more specifically, we say \alpha i can be rerouted to \alpha \prime 

i through removing
E(\alpha i)  - E(\alpha \prime 

i) from the \alpha i-paths and then adding E(\alpha \prime 
i)  - E(\alpha i) to form the \alpha \prime 

i-
paths. Here, we remark that it is possible that E(\alpha i) = E(\alpha \prime 

i) even if \alpha i and \alpha \prime 
i

are different, in which case, we say \alpha i is equivalent to \alpha \prime 
i, denoted by \alpha i \sim \alpha \prime 

i (see
Figure 4 for an example). And we say G is reroutable with respect to \alpha 1, \alpha 2, . . . , \alpha n if
some \alpha i is reroutable. Note that for a nonreroutable G, the choice of \alpha i is unique, so
M(G) is simply M(G;\alpha 1, \alpha 2, . . . , \alpha n). For any fixed i, reverse the directions of those
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s1

r1

s2

r2

v1 v2

v3

v4 v5 v6

s1

r1

s2

r2

v1 v2

v
(1)
3 v

(2)
3

v4 v5 v6

Figure 4: For the graph on the left, let α1,1 = (s1, v1, v3, v5, r1), α1,2 = (s1, v2, v3, v4, r1),
α2,1 = (s2, v1, v3, v4, r2), α2,2 = (s2, v2, v3, v6, r2), α′1,1 = (s1, v1, v3, v4, r1) and α′1,2 =
(s1, v2, v3, v5, r1). As illustrated by the graph on the right, during the corresponding type
(D) operation, we first reset α1,1 to be α′1,1 and reset α1,2 to be α′1,2; and then split v3 into

v
(1)
3 , v

(2)
3 ; and finally re-route α1,1, α2,1 through v

(1)
3 and α1,2, α2,2 through v

(2)
3 .

Remark 3.2. It follows from Lemma 3.1 that to compute M(c1, c2), it is enough to take
the supremum in Definition 1.1 over all graph G such that G is non-reroutable and reduced.

We also need the following key lemma, which gives the necessary and sufficient conditions
for a reduced graph in G(c1, c2) to be reroutable.

Lemma 3.3. Let G ∈ G(c1, c2) be reduced with respect to α1, α2, where αi ∈ Λi(G). The
following statements are equivalent:

a) α1 (resp. α2) is reroutable.

b) there exists a merging e such that h(e) semi-reaches itself along α1 (resp. α2).

c) there exists a merging e such that t(e) semi-reaches itself along α1 (resp. α2).

Proof. We first establish the equivalence between b) and c). If h(e) semi-reaches itself via
u1, u2, . . . , u`, h(e), then u1 must be a tail of certain merging ê, which semi-reaches itself via
u2, u3, . . . , h(e), u1, establishing b) ⇒ c). A similar argument can be used to establish c) ⇒
b). So, in the following, we only prove the equivalence between a) and b).

a) ⇒ b). Suppose that α1 can be rerouted to α′1 and that E(α1)−E(α′1) consists of the
following α1-edges: e1, e2, . . . , e`. Without loss of generality, assume that {α1,1, α1,2, . . . , α1,k}
is the set of α1-paths which contain at least one ej, that is,

⋃̀

j=1

α1(ej) = {α1,1, α1,2, . . . , α1,k};

8

Fig. 4. For the graph on the left, let \alpha 1,1 = (s1, v1, v3, v5, r1), \alpha 1,2 = (s1, v2, v3, v4, r1), \alpha 2,1 =
(s2, v1, v3, v4, r2), \alpha 2,2 = (s2, v2, v3, v6, r2), \alpha \prime 

1,1 = (s1, v1, v3, v4, r1), and \alpha \prime 
1,2 = (s1, v2, v3, v5, r1).

As illustrated by the graph on the right, during the corresponding type (D) operation, we first reset

\alpha 1,1 to be \alpha \prime 
1,1 and reset \alpha 1,2 to be \alpha \prime 

1,2; and then split v3 into v
(1)
3 , v

(2)
3 ; and finally re-route \alpha 1,1,

\alpha 2,1 through v
(1)
3 and \alpha 1,2, \alpha 2,2 through v

(2)
3 .

edges which do not belong to any \alpha i-path to obtain a new (possibly cyclic) graph \~G.
For any two vertices v, v\prime in G, if there is a directed path (v, u1, u2, . . . , u\ell , v

\prime ) in \~G,
we say v\prime is semireachable from v along \alpha i, and more specifically, we may also say v
semireaches v\prime via u1, u2, . . . , u\ell , v

\prime .

Example 2.1. Again, consider the graph in Figure 2. Note that e1 is smaller than
both e2 and e4, and so is e3. G| s1, s2) only consists of two isolated vertices s1, s2;
G| v1, v5) is the subgraph of G induced on the set of vertices \{ s1, s2, v1, v5\} ; G| v4, v8)
is the subgraph of G induced on the set of vertices \{ s1, s2, v1, v5, v2, v6, v3, v7, v4, v8\} ;
and G| r1, r2) is just G itself.

Let \alpha 1, \alpha 2, \alpha 
\prime 
1 be chosen as in Example 1.2. Note that \alpha 1 is reroutable, since

there exists another group \alpha \prime 
1 of two edge-disjoint paths from s1 to r1 and, hence, G

is reroutable with respect to \alpha 1, \alpha 2; similarly, one can verify that \alpha 2 is also reroutable.
It is also easy to check, by definition, that v3 semireaches v7 along \alpha 2 via v2, v7; v2
semireaches v7 along \alpha 2 via v7; and v7 semireaches itself along \alpha 1 via v2, v3, v6, v7;
and v7 also semireaches itself along \alpha 2 via v6, v3, v2, v7.

In the remainder of this section, we focus on the case that n = 2 and consider the
following 4 types of operations on G with \alpha = \{ \alpha 1, \alpha 2\} chosen as above:

(A) If a vertex v is isolated, then remove v.
(B) If an edge e does not belong to any \alpha j-path, j = 1, 2, . . . , n, then remove e.
(C) If, for a vertex v, there is only one incoming edge (v\prime , v) and only one outgoing

edge (v, v\prime \prime ), we then contract the edge (v, v\prime \prime ) into one single vertex, which,
for any \alpha j-path passing through (v, v\prime \prime ), naturally yields a corresponding new
\alpha j-path.
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(D) A vertex v in G is said to be splittable if the set of its incoming links can be
partitioned into \ell \geq 2 subsets, \{ ei,1, ei,2, . . . , ei,ji\} , and the set of its outgoing
links can be partitioned into \ell subsets, \{ fi,1, fi,2, . . . , fi,ki

\} , i = 1, 2, . . . , \ell ,

such that for any feasible i, \cup ji
l=1\alpha 

\prime (ei,l) = \cup ki

l=1\alpha 
\prime (fi,l) for some \alpha \prime = \{ \alpha \prime 

1, \alpha 
\prime 
2\} 

with \alpha \prime 
i \sim \alpha i, i = 1, 2. Note that it can be easily verified that

(2.1) M(G;\alpha \prime 
1, \alpha 

\prime 
2) \leq M(G;\alpha 1, \alpha 2).

For any such v, reset \alpha to be \alpha \prime , split v into \ell copies, v(1), v(2), . . . , v(\ell ), and
for each feasible i, reroute all paths in \alpha (ei,l) through v

(i) instead of v to form
the corresponding new \alpha -paths (see Figure 4 for an illustrative example).

A repeated application of the above 4 types of operations to G until there are no
feasible operations left will yield \^G \in \scrG (c1, c2), a reduced version of G, with \^\alpha =
\{ \^\alpha 1, \^\alpha 2\} , where \^\alpha j \in \Lambda j(G) corresponds to \alpha j , j = 1, 2. Noting that a type (D)
operation will not increase the number of mergings and all other types of operations
will keep the number of mergings, we conclude that

(2.2) M(G;\alpha 1, \alpha 2) \leq M( \^G; \^\alpha 1, \^\alpha 2),

where the strict inequality holds if (2.1) strictly holds for at least one type (D) opera-
tion during the procedure. Here, we remark that a rerouting of \^\alpha that strictly reduces
the number of mergings naturally corresponds to a rerouting of \alpha that strictly reduces
the number of mergings, which will be implicitly used throughout this paper. We say
G is reduced with respect to \alpha 1, \alpha 2 if all the 4 types of operations are unfeasible
for G. If, in addition, G is nonreroutable, we simply say G is reduced and rewrite
M(G;\alpha 1, \alpha 2) as | G| \scrM without referencing \alpha 1, \alpha 2 since each \alpha j is the only element in
\Lambda i(G).

3. Proof of Theorem 1.3. We first need the following lemma.

Lemma 3.1. Let G \in \scrG (c1, c2) be reduced with respect to \alpha 1, \alpha 2, where \alpha i \in \Lambda i(G),
i = 1, 2. Then, a rerouting of \alpha 1 to \alpha \prime 

1 will strictly decrease the number of mergings
in G, that is,

(3.1) M(G;\alpha 1, \alpha 2) < M(G;\alpha \prime 
1, \alpha 2).

Proof. Let V0 denote the set of vertices in G whose in-degrees are at least 2. Since
G is reduced with respect to \alpha 1, \alpha 2, we have M(G;\alpha 1, \alpha 2) = | V0| . Let G\prime denote the
subgraph of G induced on all the \alpha \prime 

1-paths and all the \alpha 2-paths, and let V \prime 
0 denote

the set of vertices in G\prime whose in-degrees are at least 2. Similarly as above, it holds
that M(G;\alpha \prime 

1, \alpha 2) = | V \prime 
0 | . Obviously, V \prime 

0 \subseteq V0, which means that | V \prime 
0 | \leq | V0| . Now,

one verifies that each nonterminal vertex in G either (has exactly two incoming edges
and one outgoing edge) or (has exactly one incoming edge and two outgoing edges),
which then implies that E(\alpha 1) - E(\alpha \prime 

1) is nonempty and so there exists at least one
vertex v \in V0 such that v \not \in V \prime 

0 and, thereby, V \prime 
0 \subset V0, which further implies (3.1), as

desired.

Remark 3.2. It follows from Lemma 3.1 that to compute \scrM (c1, c2), it is enough
to take the supremum in Definition 1.1 over all graph G such that G is nonreroutable
and reduced.

We also need the following key lemma, which gives the necessary and sufficient
conditions for a reduced graph in \scrG (c1, c2) to be reroutable.
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Lemma 3.3. Let G \in \scrG (c1, c2) be reduced with respect to \alpha 1, \alpha 2, where \alpha i \in \Lambda i(G).
The following statements are equivalent:

(a) \alpha 1 (resp., \alpha 2) is reroutable.
(b) There exists a merging e such that h(e) semireaches itself along \alpha 1 (resp.,

\alpha 2).
(c) There exists a merging e such that t(e) semireaches itself along \alpha 1 (resp.,

\alpha 2).

Proof. We first establish the equivalence between (b) and (c). If h(e) semireaches
itself via u1, u2, . . . , u\ell , h(e), then u1 must be a tail of certain merging \^e, which
semireaches itself via u2, u3, . . . , h(e), u1, establishing (b) \Rightarrow (c). A similar argument
can be used to establish (c) \Rightarrow (b). So, in the following, we only prove the equivalence
between (a) and (b).

(a) \Rightarrow (b). Suppose that \alpha 1 can be rerouted to \alpha \prime 
1 and that E(\alpha 1)  - E(\alpha \prime 

1)
consists of the following \alpha 1-edges: e1, e2, . . . , e\ell . Without loss of generality, assume
that \{ \alpha 1,1, \alpha 1,2, . . . , \alpha 1,k\} is the set of \alpha 1-paths which contain at least one ej , that is,

\ell \bigcup 

j=1

\alpha 1(ej) = \{ \alpha 1,1, \alpha 1,2, . . . , \alpha 1,k\} ;

and assume that e1, e2, . . . , ek are the smallest edges from E(\alpha 1) - E(\alpha \prime 
1) on \alpha i,1, \alpha i,2,

. . . , \alpha i,k, respectively. Since G is reduced with respect to \alpha 1, \alpha 2, E(\alpha \prime 
1) - E(\alpha 1) only

consists of \alpha 2-edges and, furthermore, there are some \alpha 2-edges f1, f2, . . . , fk such
that for each i = 1, 2, . . . k, there exists 1 \leq ki \leq \ell such that t(fi) = t(ei), h(fi) =

h(eki
). It then follows that one can find a subset \{ \^k1, \^k2, . . . , \^ks\} of \{ 1, 2, . . . , k\} such

that h(f\^k1
) \in \alpha 1,\^k2

, h(f\^k2
) \in \alpha 1,\^k3

, . . . , h(f\^ks
) \in \alpha 1,\^k1

, which implies that there is

a merging whose head semireaches itself along \alpha 1 (see Figure 5 for an illustrative
example).

(b) \Rightarrow (a). Assume that h(e) semireaches itself along \alpha 1 via v1, v2, . . . , v\ell . Let

C = \{ (h(e), v1), (v1, v2), (v2, v3), . . . , (v\ell  - 1, v\ell ), (v\ell , h(e))\} .
Let A = \{ (u,w) \in C : (w, u) is a reversed \alpha 2-edge\} , and let B = C  - A. Then, it
can be readily verified that the subgraph of G induced on (E(\alpha i) \cup A)  - B consists
of ci connected components, each of which is a path from si to ri (see Figure 5 for an
illustrative example).

Before the proof of Theorem 1.3, we will first prove the following proposition,
which will establish the finiteness of \scrM (c1, c2) .

Proposition 3.4. For any c1, c2,

\scrM (c1, c2) \leq c1c2(c1 + c2)/2.

Proof. It suffices to prove that for any G \in \scrG (c1, c2) with \alpha = \{ \alpha 1, \alpha 2\} , where
\alpha i \in \Lambda i(G), i = 1, 2, if

(3.2) M(G;\alpha 1, \alpha 2) \geq c1c2(c1 + c2)/2 + 1,

then \alpha can be routed, say, to \alpha \prime = \{ \alpha \prime 
1, \alpha 

\prime 
2\} , such that

(3.3) M(G;\alpha \prime 
1, \alpha 

\prime 
2) < M(G;\alpha 1, \alpha 2).

First of all, we repeatedly apply the 4 types of operations to G as in section 2 to
obtain its reduced version \^G. If the strict inequality in (2.2) holds, then, as argued in
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s2

r2

s1

r1

e1

e4

e2

e3

f1
f2

f3

e5

α1,1

α1,2

α1,3

Figure 5: For the merging e5, t(e5) semi-reaches itself along α1 via
t(f3), h(e3), t(f2), h(e2), t(f1), h(e1), t(e4), t(e5). One verifies that α1 can be rerouted
to skip e1, e2, e3, e4 and pass through f1, f2, f3 instead.

and assume that e1, e2, . . . , ek are the smallest edges from E(α1)−E(α′1) on αi,1, αi,2, . . . , αi,k,
respectively. Since G is reduced with respect to α1, α2, E(α′1) − E(α1) only consists of α2-
edges, and furthermore, there are some α2-edges f1, f2, . . . , fk such that for each i = 1, 2, . . . k,
there exists 1 ≤ ki ≤ ` such that t(fi) = t(ei), h(fi) = h(eki). It then follows that one can

find a subset {k̂1, k̂2, . . . , k̂s} of {1, 2, . . . , k} such that h(fk̂1) ∈ α1,k̂2
, h(fk̂2) ∈ α1,k̂3

, . . . ,
h(fk̂s) ∈ α1,k̂1

, which implies that there is a merging whose head semi-reaches itself along α1

(see Figure 5 for an illustrative example).
b) ⇒ a). Assume that h(e) semi-reaches itself along α1 via v1, v2, . . . , v`. Let

C = {(h(e), v1), (v1, v2), (v2, v3), . . . , (v`−1, v`), (v`, h(e))}.

Let A = {(u,w) ∈ C : (w, u) is a reversed α2-edge}, and let B = C − A. Then, it can be
readily verified that the subgraph of G induced on (E(αi) ∪A)−B consists of ci connected
components, each of which is a path from si to ri (see Figure 5 for an illustrative example).

Before the proof of Theorem 1.3, we will first prove the following proposition, which will
establish the finiteness of M(c1, c2) .

Proposition 3.4. For any c1, c2,

M(c1, c2) ≤ c1c2(c1 + c2)/2.

9

Fig. 5. For the merging e5, t(e5) semireaches itself along \alpha 1 via t(f3), h(e3), t(f2), h(e2),
t(f1), h(e1), t(e4), t(e5). One verifies that \alpha 1 can be rerouted to skip e1, e2, e3, e4 and pass through
f1, f2, f3 instead.

section 2, the existence of \alpha \prime then immediately follows. So, in the following, we only
need to prove (3.3) for the case that G is reduced with respect to \alpha ; more specifically,
we will show that if G is reduced with respect to \alpha and (3.2) holds, then either \alpha 1 or
\alpha 2 is reroutable, which, by Lemma 3.1, implies (3.3).

Consider the following operations on G: we first delete all the edges that are both
\alpha 1-edges and \alpha 2-edges, which are necessarily mergings due to the assumption that G
is reduced, then we reverse the directions of the remaining \alpha 2-edges. Note that after
the above operations, for any directed path in \^G, each edge is either an \alpha 1-edge or a
reversed \alpha 2-edge. Suppose that there is a directed cycle (v1, v2, . . . , v\ell ) in \^G, where
v\ell = v1 and ei \triangleq (vi, vi+1) is a reversed \alpha 2-edge for any odd i and an \alpha 1-edge for
any even i. It can be verified that all vj belong to V\scrM , where V\scrM denotes the set of
all the tails and heads of all the mergings. It then follows that v1 semireaches itself
along \alpha 1 via v2, v3, . . . , v\ell  - 1, v\ell , v1, which implies \alpha 1 is reroutable.

So, in the following, we assume that \^G is acyclic. Note that in \^G, s1, r2 have
outdegree c1, c2, respectively, s2, r1 has in-degree c1, c2, respectively, and any vertex
in V\scrM has in-degree 1 and out-degree 1. It then immediately follows that \^G consists
of c1+c2 pairwise vertex-disjoint paths, each of which starts from either s1 or r2, ends
at either s2 or r1, and consists of a sequence of concatenated edges that alternates
between an \alpha 1-edge and a reversed \alpha 2-edge. It then follows from

| V\scrM | = 2M(G;\alpha 1, \alpha 2) \geq c1c2(c1 + c2) + 1,

that out of the c1+c2 edge-disjoint paths, there must be at least one path, say, \gamma , that
contains more than c1c2 vertices in V\scrM . It then follows that there are two distinct
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vertices u, v \in V\scrM on \gamma and i0, j0 such that u corresponds to a merging by \alpha 1,i0

and \alpha 2,j0 , and so does v. Note that if u is smaller (resp., larger) than v on \alpha 1,i0 ,
then u will also be smaller (resp., larger) than v on \alpha 2,j0 , otherwise we would have
a cycle formed by concatenating \alpha 1,i0 [u, v] and \alpha 2,j0 [v, u] in G, which contradicts the
assumption that G is acyclic.

In what follows, we assume that \gamma [u, v] = (u,w1, w2, . . . , w\ell , v) and we consider
the following conditions:

\bullet u is smaller (larger) than v on \alpha 1,i0 ;
\bullet u is the tail (head) of the corresponding merging in G, v is the tail (head) of

the corresponding merging in G.
Ignoring the parenthesized words for the moment, one verifies that v semireaches itself
along \alpha 2 via w\ell , w\ell  - 1, . . . , w1 and vertices on \alpha 1,i0 [u, v] (ordered by the direction of
the path \alpha 1,i0), implying \alpha 2 is reroutable. A similar argument can be applied to other
cases when any parenthesized words replace the words before them, which completes
the proof.

We are now ready for the proof of Theorem 1.3. With Proposition 3.4 established,
it suffices to prove the following proposition.

Proposition 3.5. For any c1, c2, . . . , cn, we have

\scrM (c1, c2, . . . , cn) \leq 
\sum 

i<j

\scrM (ci, cj).

Proof. It suffices to prove that for n \geq 3

(3.4) \scrM (c1, c2, . . . , cn) \leq \scrM (c1, c2, . . . , cn - 1) +
\sum 

i<n

\scrM (ci, cn).

Consider any graph G \in \scrG (c1, c2, . . . , cn) with \alpha i \in \Lambda i(G), i = 1, 2, . . . , n. Let
\=G denote the subgraph of G induced on all \alpha j-paths, j = 1, 2, . . . , n  - 1. Note that,
through rerouting if necessary, we can assume that \alpha 1, \alpha 2, . . . , \alpha n - 1 are chosen such
that

M( \=G;\alpha 1, \alpha 2, . . . , \alpha n - 1) \leq \scrM (c1, c2, . . . , cn - 1).

A merging e is said to be new if e is an \alpha n-edge, and \alpha n(e) merges with each
(well-defined) \alpha j(e), j = 1, 2, . . . , n - 1, at e. We will prove that if the number of new
mergings between \alpha n and \alpha 1, \alpha 2, . . . , \alpha n - 1 is larger than or equal to

l \triangleq \scrM (c1, cn) +\scrM (c2, cn) + \cdot \cdot \cdot +\scrM (cn - 1, cn) + 1,

certain reroutings can be done to strictly reduce the number of new mergings. Ap-
parently, this is sufficient to imply (3.4) and then the proposition. For ease of presen-
tation, in the remainder of this proof, we assume that all mergings in G are new.

Now, label all the new mergings as e1, e2, . . . , el. Then, by the pigeonhole prin-
ciple, there exists some i = 1, 2, . . . , n  - 1 such that \alpha i merges with \alpha n for more
than \scrM (ci, cn) times. As a consequence, the subgraph of G induced on \{ \alpha i, \alpha n\} is
reroutable; in other words, either \alpha i or \alpha n can be rerouted in this induced subgraph
of G. If such a rerouting is in fact a rerouting of \alpha n, then the number of new mergings
between \alpha n and \alpha 1, \alpha 2, . . . , \alpha n - 1 will be strictly decreased after such a rerouting. So
in the following we assume that the rerouting between every \alpha i and \alpha n, if it exists, is
a rerouting of \alpha i. Then, after the rerouting of \alpha i, there are at least

\scrM (c1, ck+1) + \cdot \cdot \cdot +\scrM (ci - 1, ck+1) +\scrM (ci+1, ck+1) + \cdot \cdot \cdot +\scrM (ck, ck+1) + 1
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of the ej 's, at which the new \alpha i does not merge. This implies that there exists at
least one ej such that none of \alpha i's, i = 1, 2, . . . , n  - 1, merge with \alpha n at ej . So the
number of new mergings between \alpha 1, \alpha 2, . . . , \alpha n - 1 and \alpha n strictly decreases after the
reroutings of all \alpha i's.

4. Properties, exact values, and a scaling law. With the finiteness of \scrM 
established in Theorem 1.3, one natural question is to compute the values of \scrM ,
which seems to be fairly difficult, even for small parameters. In this section, among
other results, we will derive the values of \scrM for certain special parameters. Some
propositions on properties of \scrM as a function of its parameters will be established as
well; these propositions, besides helping to derive the values of \scrM , are of interest in
their own right.

The following proposition shows that \scrM is ``sup-linear"" in all its parameters.

Proposition 4.1. For any c1,0, c1,1, c2, . . . , cn, we have

\scrM (c1,0 + c1,1, c2, . . . , cn) \geq \scrM (c1,0, c2, . . . , cn) +\scrM (c1,1, c2, . . . , cn).

Proof. We only prove the proposition for the case n = 2, the case with a generic
n being similar.

For any c1,0, c1,1, and c2, consider the following acyclic directed graph G (see
Figure 6 for an illustrative example) with 2 sources s1, s2 and 2 sinks r1, r2 such that

1. there is a set \alpha 1 of c1,0 + c1,1 edge-disjoint paths from s1 to r1, here \alpha 1 =

\alpha 
(0)
1 \cup \alpha 

(1)
1 , where \alpha 

(0)
1 and \alpha 

(1)
1 are mutually exclusive, consisting of c1,0,

c1,1 edge-disjoint paths, respectively, and there is a set \alpha 2 of c2 edge-disjoint
paths from s2 to r2;

2. mergings by \alpha 
(0)
1 , \alpha 2 and mergings by \alpha 

(1)
1 , \alpha 2 are ``sequentially isolated"" on

\alpha 2 in the sense that on each \alpha 2-path, the smallest \alpha 
(1)
1 -merging is larger than

the largest \alpha 
(0)
1 -merging;

3. the number of mergings in the subgraph of G induced on \alpha 
(0)
1 and \alpha 2 achieves

\scrM (c1,0, c2), and the number of mergings in the subgraph of G induced on \alpha 
(1)
1

and \alpha 2 achieves \scrM (c1,1, c2).
It can be verified that for such G, the size of the minimum edge cut between s1

and r1 is c1,0 + c1,1, and the size of the minimum edge cut between s2 and r2 is c2,
and

M(G;\alpha 1, \alpha 2) = \scrM (c1,0, c2) +\scrM (c1,1, c2),

which implies that

\scrM (c1,0 + c1,1, c2) \geq \scrM (c1,0, c2) +\scrM (c1,1, c2).

The following proposition gives a lower bound on \scrM with multiple parameters
using \scrM with two parameters.

Proposition 4.2. For any c1, c2, . . . , cn and any fixed k with 1 \leq k \leq n, we have

\scrM (c1, c2, . . . , cn) \geq 
\sum 

i\leq k,j\geq k+1

\scrM (ci, cj).

Proof. For any c1, c2, . . . , cn, consider the following directed graph G (see Figure 7
for an illustrative example) with n sources s1, s2, . . . , sn and n sinks r1, r2, . . . , rn such
that for any fixed k with 1 \leq k \leq n,
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s1

r1

s2

r2

α
(0)
1,1

α
(1)
1,1

α2,1

α2,2

α2,3

Figure 6: Each merging by α
(0)
1,1 and a α2-path is smaller than than that by α

(0)
1,2 and the same

α2-path.

1. there is a set αi of ci edge-disjoint paths from si to ri for each i;

2. all αi’s, i ≤ k, do not merge with each other, and all αj’s, j ≥ k + 1, do not merge
with each other;

3. for any i with i ≤ k, mergings by αi and all αj’s, j ≥ k+ 1, are “sequentially isolated”
on αi in the sense that on each αi-path, for any j1 < j2 with j1, j2 ≥ k+1, the smallest
αj2-merging is larger than the largest αj1-merging. Similarly for any j with j ≥ k + 1,
mergings by αj and all αi’s, i ≤ k, are sequentially isolated on αj;

4. the number of mergings in the subgraph of G induced on any αi, i ≤ k, and any αj,
j ≥ k + 1, achieves M(ci, cj).

One checks that for such a graph G, the size of the minimum edge cut between si and ri
is ci, and

M(G) =
∑

i≤k,j≥k+1

M(ci, cj),

which implies that

M(c1, c2, . . . , cn) ≥
∑

i≤k,j≥k+1

M(ci, cj).

The following theorem is straightforward. We give a proof for completeness.

Theorem 4.3. For any c,
M(1, c) = c.

13

Fig. 6. Each merging by \alpha 
(0)
1,1 and an \alpha 2-path is smaller than than that by \alpha 

(0)
1,2 and the same

\alpha 2-path.

s1
\alpha 1,1

s2
\alpha 2,1

r1 r2

s3

s4

r3

r4

\alpha 3,1

\alpha 4,1

Fig. 7. On the path \alpha i,1, i = 1, 2, the merging with \alpha 3,1 is smaller than that with \alpha 4,1, and on
the path \alpha i,1, i = 3, 4, the merging with \alpha 1,1 is smaller than that with \alpha 2,1.

1. there is a set \alpha i of ci edge-disjoint paths from si to ri for each i;
2. all \alpha i's, i \leq k, do not merge with each other, and all \alpha j 's, j \geq k + 1, do not

merge with each other;
3. for any i with i \leq k, mergings by \alpha i and all \alpha j 's, j \geq k + 1, are sequen-

tially isolated on \alpha i in the sense that on each \alpha i-path, for any j1 < j2 with
j1, j2 \geq k+1, the smallest \alpha j2-merging is larger than the largest \alpha j1 -merging.
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Similarly for any j with j \geq k + 1, mergings by \alpha j and all \alpha i's, i \leq k, are
sequentially isolated on \alpha j ;

4. the number of mergings in the subgraph of G induced on any \alpha i, i \leq k, and
any \alpha j , j \geq k + 1, achieves \scrM (ci, cj).

One checks that for such a graph G, the size of the minimum edge cut between
si and ri is ci, and

M(G) =
\sum 

i\leq k,j\geq k+1

\scrM (ci, cj),

which implies that

\scrM (c1, c2, . . . , cn) \geq 
\sum 

i\leq k,j\geq k+1

\scrM (ci, cj).

The following theorem is straightforward. We give a proof for completeness.

Theorem 4.3. For any c,
\scrM (1, c) = c.

Proof. Consider a nonreroutable and reduced graph G \in \scrG (1, c) with \alpha i \in \Lambda i(G),
i = 1, 2. If \alpha 1,1 merges with some \alpha 2-path, say, \alpha 2,j , at mergings e and \^e, then we can
reroute \alpha 1,1 by replacing \alpha 1,1[t(e), t(\^e)], the subpath of \alpha 1,1 starting from t(e) to t(\^e),
by \alpha 2,j [t(e), t(\^e)], the subpath of \alpha 2,j starting from t(e) to t(\^e). This contradicts the
assumption that G is nonreroutable, which implies that \alpha 1,1 can be chosen to merge
with each \alpha 2-path for at most once, which further implies that

\scrM (1, c) \leq c.

For the other direction, by Proposition 4.1, we have

\scrM (1, c) \geq 
c\sum 

i=1

\scrM (1, 1) = c,

the last equality follows from the simple fact that \scrM (1, 1) = 1.

Theorem 4.4. For any c,

\scrM (2, c) = 3c - 1.

Proof. The upper bound direction. We first show that

\scrM (2, c) \leq 3c - 1.

Consider a nonreroutable and reduced G \in \scrG (2, c) with \alpha i \in \Lambda i(G), i = 1, 2. In
this proof, for notational convenience, we rewrite \alpha 1, \alpha 2 as \psi , \phi , respectively. Assume
that out of c \phi -paths, there are k \phi -paths, say \phi 1, \phi 2, . . . , \phi k, each of which merges
for at least 3 times. Notice that when k = 0, the total number of mergings in G
is upper bounded by 2c, which trivially implies the upper bound direction. So, in
this proof, we only consider the case when k \geq 1. For i = 1, 2, . . . , k, assume that
\phi i sequentially merges at edges ei,1, ei,2, . . . , ei,mi

. Let \ell (i, j) denote the index of the
\psi -path which ei,j belongs to. Since each \phi -path has to merge with \psi 1, \psi 2 alternately,
we have \ell (i, j) = \ell (i, k) if j = k mod 2.

Note that for each pair of mergings ei,j , ei,j+2, there must exist at least one
merging, say fi,j , which is in-between ei,j and ei,j+2 on \psi \ell (i,j). It can be readily
verified (see Figure 8 for an illustrative example) that
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s1

r1

φ1 e1,1

e1,2

e1,3

e1,4

e1,5

ψ1 ψ2

φ2

f1,2

g

Figure 8: On φ2, the next merging after f1,2, say, g, will have to be in between e1,1 and e1,3,
and as a result, the non-reroutability of G forbids the third merging. Indeed, g cannot be
in between s1 and e1,1 since the acyclicity assumption would be violated. And g cannot be
(in between e1,3 and e1,5) or (in between e1,5 and r1) since it would mean ψ is reroutable;
for example, if g is in between e1,5 and r1, then t(g) can semi-reach itself along ψ via
h(f1,2), t(e1,4), h(e1,3), t(e1,5), h(e1,5), t(g).

Notice that when k = 0, the total number of mergings in G is upper bounded by 2c, which
trivially implies the upper bound direction. So, in this proof, we only consider the case when
k ≥ 1. For i = 1, 2, . . . , k, assume that φi sequentially merges at edges ei,1, ei,2, . . . , ei,mi

. Let
`(i, j) denote the index of the ψ-path which ei,j belongs to. Since each φ-path has to merge
with ψ1, ψ2 alternately, we have `(i, j) = `(i, k) if j = k mod 2.

Note that for each pair of mergings ei,j, ei,j+2, there must exist at least one merging, say
fi,j, which is in between ei,j and ei,j+2 on ψ`(i,j). It can be readily verified (see Figure 8 for
an illustrative example) that

• for any i, j, φ(fi,j) merges with ψ-paths at most twice; and

• if φ(fi,j) = φ(fi,k) for any j < k, then necessarily k = j + 1.

Now, for the associated φ-paths of all fi,j, we claim that:

Claim 4.5. For any fixed i, one can choose all fi,j such that for j 6= k, φ(fi,j) 6= φ(fi,k).

The claim can be shown via an inductive argument on the length of path φi. The case
when mi = 3 is trivial. Now suppose the claim is established for mi = l and assume that
fi,2, fi,3, . . . , fi,l+1 all belong to different φ-paths. We next show that the claim is also true
for mi = l + 1. We will consider each of the following cases:

Case 1: φ(fi,1) 6= φ(fi,2). For this case, by induction assumptions, the claim is trivially
true.

15

Fig. 8. On \phi 2, the next merging after f1,2, say, g, will have to be in-between e1,1 and e1,3,
and as a result, the nonreroutability of G forbids the third merging. Indeed, g cannot be in-between
s1 and e1,1 since the acyclicity assumption would be violated. And g cannot be (in-between e1,3 and
e1,5) or (in-between e1,5 and r1) since it would mean \psi is reroutable; for example, if g is in-between
e1,5 and r1, then t(g) can semireach itself along \psi via h(f1,2), t(e1,4), h(e1,3), t(e1,5), h(e1,5), t(g).

\bullet for any i, j, \phi (fi,j) merges with \psi -paths at most twice; and
\bullet if \phi (fi,j) = \phi (fi,k) for any j < k, then necessarily k = j + 1.

Now, for the associated \phi -paths of all fi,j , we claim the following.

Claim 4.5. For any fixed i, one can choose all fi,j such that for j \not = k, \phi (fi,j) \not =
\phi (fi,k).

The claim can be shown via an inductive argument on the length of path \phi i. The case
when mi = 3 is trivial. Now suppose the claim is established for mi = l and assume
that fi,2, fi,3, . . . , fi,l+1 all belong to different \phi -paths. We next show that the claim
is also true for mi = l + 1. We will consider each of the following cases:

Case 1: \phi (fi,1) \not = \phi (fi,2). For this case, by induction assumptions, the claim is
trivially true.

Case 2: \phi (fi,1) = \phi (fi,2). For this case, either (in-between ei,1 and fi,1 on \psi \ell (i,1))
or (in-between fi,2 and ei,4 on \psi \ell (i,2)), there must be a merging, whose associated
\phi -path is different from that of fi,1 and fi,2. Otherwise, t(ei,4) would semireach itself
along \phi via h(fi,2), t(fi,1), h(ei,4), t(ei,4), which implies \phi is reroutable, a contradiction.

Case 2.1: In-between ei,1 and fi,1 on \psi \ell (i,1), there is a merging f \prime i,1 such that
\phi (f \prime i,1) \not = \phi (fi,1). For this case, one can simply reset fi,1 to be f \prime i,1, then the claim
immediately follows.

Case 2.2: In-between fi,2 and ei,4 on \psi \ell (i,2), there is a merging f \prime i,2 such that
\phi (f \prime i,2) \not = \phi (fi,1). For this case, we have the following subcases.

Case 2.2.1: \phi (f \prime i,2) \not = \phi (fi,3). For this case, we can simply reset fi,2 to be f \prime i,2 to
establish the claim.
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s1

r1

φ1 e1,1

e1,2

e1,3

e1,4

e1,5

ψ1 ψ2

φ2

f1,2

f1,1φ3

f1,3

f ′1,2

Figure 9: If there are no mergings between f1,3 and e1,5, then t(e1,5) can semi-reach itself along
φ via h(f1,3), t(f ′1,2), h(f1,2), t(f1,1), h(e1,1), t(e1,2), h(e1,2), t(e1,3), h(e1,3), t(e1,4), h(e1,4), t(e1,5).

Case 2: φ(fi,1) = φ(fi,2). For this case, either (in between ei,1 and fi,1 on ψ`(i,1)) or
(in between fi,2 and ei,4 on ψ`(i,2)), there must be a merging, whose associated φ-path is
different from that of fi,1 and fi,2. Otherwise, t(ei,4) would semi-reach itself along φ via
h(fi,2), t(fi,1), h(ei,4), t(ei,4), which implies φ is reroutable, a contradiction.

Case 2.1: in between ei,1 and fi,1 on ψ`(i,1), there is a merging f ′i,1 such that φ(f ′i,1) 6=
φ(fi,1). For this case, one can simply reset fi,1 to be f ′i,1, then the claim immediately follows.

Case 2.2: in between fi,2 and ei,4 on ψ`(i,2), there is a merging f ′i,2 such that φ(f ′i,2) 6=
φ(fi,1). For this case, we have the following subcases.

Case 2.2.1: φ(f ′i,2) 6= φ(fi,3). For this case, we can simply reset fi,2 to be f ′i,2 to establish
the claim.

Case 2.2.2: φ(f ′i,2) = φ(fi,3). For j = 2, 3, . . . ,mi − 3, we say fi,j is of type I if (there
exists exactly one merging f ′i,j in between fi,j and ei,j+2) and (f ′i,j, fi,j+1 belong to the same
φ-path).

Case 2.2.2.1: all fi,j, j = 2, 3, . . . ,mi − 3, are of type I. For this case, consider fi,mi−2.
One checks that there must exist at least a merging, say, f ′i,mi−2, in between fi,mi−2 and ei,mi

on ψ`(i,mi−2), since otherwise t(ei,mi
) would semi-reach itself along φ via

h(fi,mi−2), t(f ′i,mi−3), h(fi,mi−3), . . . , t(fi,1) and vertices on φi[h(ei,1), t(ei,mi
)],

which implies φ is reroutable, a contradiction (see Figure 9 for an illustrative example). Then
we can reset fi,mi

to be f ′i,mi
, fi,mi−1 to be f ′i,mi−1, . . . , fi,2 to be f ′i,2. One checks that each

of newly defined fi,j belongs to different φ-paths.
Case 2.2.2.2: for some 2 ≤ k ≤ mi − 3, fi,k is not of type I. Let 2 ≤ k ≤ mi − 3 be the

smallest index such that fi,k is not of type I, meaning either

16

Fig. 9. If there are no mergings between f1,3 and e1,5, then t(e1,5) can semireach itself along
\phi via h(f1,3), t(f \prime 1,2), h(f1,2), t(f1,1), h(e1,1), t(e1,2), h(e1,2), t(e1,3), h(e1,3), t(e1,4), h(e1,4), t(e1,5).

Case 2.2.2: \phi (f \prime i,2) = \phi (fi,3). For j = 2, 3, . . . ,mi  - 3, we say fi,j is of type I
if (there exists exactly one merging f \prime i,j in-between fi,j and ei,j+2) and (f \prime i,j , fi,j+1

belong to the same \phi -path).
Case 2.2.2.1: All fi,j , j = 2, 3, . . . ,mi  - 3, are of type I. For this case, consider

fi,mi - 2. One checks that there must exist at least a merging, say, f \prime i,mi - 2, in-between
fi,mi - 2 and ei,mi

on \psi \ell (i,mi - 2), since otherwise t(ei,mi
) would semireach itself along

\phi via

h(fi,mi - 2), t(f
\prime 
i,mi - 3), h(fi,mi - 3), . . . , t(fi,1) and vertices on \phi i[h(ei,1), t(ei,mi

)],

which implies \phi is reroutable, a contradiction (see Figure 9 for an illustrative example).
Then we can reset fi,mi

to be f \prime i,mi
, fi,mi - 1 to be f \prime i,mi - 1, . . . , fi,2 to be f \prime i,2. One

checks that each of the newly defined fi,j belongs to a different \phi -path.
Case 2.2.2.2: For some 2 \leq k \leq mi  - 3, fi,k is not of type I. Let 2 \leq k \leq mi  - 3

be the smallest index such that fi,k is not of type I, meaning either
\bullet there is no merging in-between fi,k and ei,k+2 on \psi \ell (i,k+2); or
\bullet there is a merging, say f \prime i,k, in-between fi,k and ei,k+2 on \psi \ell (i,k+2); however,
\phi (f \prime i,k) \not = \phi (fi,k+1).

The first case implies that t(ei,k+2) semireaches itself along \phi by itself via

h(fi,k), t(f
\prime 
i,k - 1), h(fi,k - 1), . . . , t(fi,1) and vertices on \phi i[h(ei,1), t(ei,k+2)],

a contradiction to the fact that G is nonreroutable; while for the second case, one can
reset fi,k to be f \prime i,k, fi,k - 1 to be f \prime i,k - 1, . . . , and fi,2 to be f \prime i,2 to establish the claim.
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One also verifies that for any i, j = 1, 2, . . . , k, \phi i and \phi j are ``well-separated"";
more precisely, one of the pair, say \phi i, must be ``smaller"" than the other one, \phi j ,
in the sense that the mergings by \phi i on \psi 1, \psi 2 must be smaller than the mergings
by \phi j on \psi 1, \psi 2, respectively. Through renumbering, if necessary, we assume that
for any 1 \leq i < j \leq k, \phi i is always smaller than \phi j . Then with this, one checks
that for any 1 \leq i1 < i2 \leq k, fi1,j1 and fi2,j2 share the same \phi -path if and only if
i2 = i1 + 1 and j1 = mi1  - 2, j2 = 1. Thus, by Claim 4.5, there must exist at least
(m1  - 2+m2  - 2+ \cdot \cdot \cdot +mk  - 2) - (k - 1) \phi -paths, each of which contains some fi,j ,
and again each of these \phi -paths can merge at most twice.

Now, we conclude that (below, | \cdot | \scrM is a shorthand notation for the number of
mergings; see the end of section 2)

| G| \scrM \leq m1 +m2 + \cdot \cdot \cdot +mk + 2(c - k),

where

(m1  - 2) + (m2  - 2) + \cdot \cdot \cdot + (mk  - 2) - (k  - 1) \leq | \{ \phi (fi,j)\} | \leq c - k,

which further implies that
| G| \scrM \leq 3c - 1.

So, we have established the upper bound direction.
The lower bound direction. To show

\scrM (2, c) \geq 3c - 1,

it suffices to construct a nonreroutable graph G withM(G) = 3c - 1. For instance, we
can first choose \phi 1 to alternately merge with \psi 1, \psi 2 for c+1 times at e1, e2, . . . , ec+1.
Next we choose each \phi i, i = 2, 3, . . . , c, to merge exactly twice, while ensuring that, for
all i < j, \phi is smaller than \phi j in the sense that the merged subpaths by \phi i on \psi 1, \psi 2

are smaller than the merged subpaths by \phi j on \psi 1, \psi 2, respectively. Moreover we also
require that \phi 2i first merges with \psi 1 in-between e2i - 1 and e2i+1, and then merge with
\psi 2 in-between e2i - 2 and e2i, and that \phi 2i+1 first merges with \psi 2 in-between e2i and
e2i+2, and then merges with \psi 1 in-between e2i - 1 and e2i+1 (see an example graph in
Figure 10 for the case c = 3). It can be checked that such a graph is nonreroutable
and the number of mergings is 3c - 1.

We next prove that when fixing one parameter, \scrM (c1, c2) grows at most linearly
with respect to the other parameter.

Theorem 4.6. For any fixed c1, there exists a positive constant Cc1 such that for
all c2,

\scrM (c1, c2) \leq Cc1c2.

Proof. For notational simplicity, in this proof, we rewrite c1, c2 as k, l, respectively,
that is, we will prove that for any fixed k, there exists a positive constant Ck such
that for all l,

\scrM (k, l) \leq Ckl.

We proceed by induction on k. It follows from \scrM (1, l) = l (see Theorem 4.3) that for
the case when k = 1, the theorem is true with C1 = 1. Now for any k \geq 2, assume
that for any i = 1, 2, . . . , k  - 1, there exists a positive constant Ci such that for all l,

\scrM (i, l) \leq Cil;

D
ow

nl
oa

de
d 

10
/3

0/
19

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1498 GUANGYUE HAN

s1

r1

s2

r2

ψ1 ψ2φ1

e1

e2

e3
e4

φ2

φ3

Figure 10: an example graph in G(2, 3) achieving M(2, 3)

Theorem 4.6. For any fixed c1, there exists a positive constant Cc1 such that for all c2,

M(c1, c2) ≤ Cc1c2.

Proof. For notational simplicity, in this proof, we rewrite c1, c2 as k, l, respectively, that is,
we will prove that for any fixed k, there exists a positive constant Ck such that for all l,

M(k, l) ≤ Ckl.

We proceed by induction on k. It follows from M(1, l) = l (see Theorem 4.3) that for the
case when k = 1, the theorem is true with C1 = 1. Now for any k ≥ 2, assume that for any
i = 1, 2, . . . , k − 1, there exists a positive constant Ci such that for all l,

M(i, l) ≤ Cil;

we next show that there exists a positive constant Ck such that for all l,

M(k, l) ≤ Ckl.

Consider G ∈ G(k, l) and assume G is non-reroutable and reduced. Rewriting

α1 = {α1,1, α1,2, . . . , α1,k}, α2 = {α2,1, α2,2, . . . , α2,l}

as
ψ = {ψ1, ψ2, . . . , ψk}, φ = {φ1, φ2, . . . , φl},

respectively. We only need to prove that there exists Ck such that

|G|M ≤ Ckl.

Consider the following iterative procedure on G, where, for notational simplicity, we treat
a graph as the union of its vertex set and edge set.

18

Fig. 10. An example graph in \scrG (2, 3) achieving \scrM (2, 3).

we next show that there exists a positive constant Ck such that for all l,

\scrM (k, l) \leq Ckl.

Consider G \in \scrG (k, l) and assume G is nonreroutable and reduced. Rewrite

\alpha 1 = \{ \alpha 1,1, \alpha 1,2, . . . , \alpha 1,k\} , \alpha 2 = \{ \alpha 2,1, \alpha 2,2, . . . , \alpha 2,l\} 

as

\psi = \{ \psi 1, \psi 2, . . . , \psi k\} , \phi = \{ \phi 1, \phi 2, . . . , \phi l\} ,
respectively. We only need to prove that there exists Ck such that

| G| \scrM \leq Ckl.

Consider the following iterative procedure on G, where, for notational simplicity,
we treat a graph as the union of its vertex set and edge set.

Initialization. Set

\BbbS (0) = \emptyset , \BbbR (0) = G.

Finding a normal block. Now for an arbitrary yet fixed K > 0 (we will choose K
large enough later) and each j = 1, 2, . . . , k, pick merging e0,j such that e0,j belongs to
path \psi j and (roughly speaking, \BbbR (0)| h(e0,1), h(e0,2), . . . , h(e0,k)) as below means the
part of \BbbR (0) that is upstream of e0,1, e0,2, . . . , e0,k; see the first paragraph of section 2
for the precise definition)

| \BbbR (0)| h(e0,1), h(e0,2), . . . , h(e0,k))| \scrM = K.

Without loss of generality, we can assume that, within \BbbR (0)| h(e0,1), h(e0,2), . . . , h(e0,k)),
e0,j is the largest merging on \psi j (one can set h(e0,j) to be s1 if such merging does
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not exist on \psi j). Now, set

\BbbL (1) = \BbbR (0)| h(e0,1), h(e0,2), . . . , h(e0,k))

and, subsequently,

\BbbS (1) = \BbbS (0) \cup \BbbL (1), \BbbR (1) = \BbbR (0)  - \BbbL (1).

If a merging is the smallest (resp., the largest) on a \phi -path, we say it is an x-terminal
(resp., y-terminal) merging on the \phi -path, or simply a \phi -terminal merging. Suppose
that we have already obtained

\BbbL (i) = \BbbR (i - 1)| h(ei - 1,1), h(ei - 1,2), . . . , h(ei - 1,k))

and
\BbbS (i) = \BbbS (i - 1) \cup \BbbL (i), \BbbR (i) = \BbbR (i - 1)  - \BbbL (i),

where \BbbL (i) contains exactly K mergings and at least one \phi -terminal merging. We then
try to pick within \BbbR (i) a merging ei,j on each \psi j such that

| \BbbR (i)| h(ei,1), h(ei,2), . . . , h(ei,k)| \scrM = K,

where each ei - 1,j , j = 1, 2, . . . , k, is chosen to be largest merging on \psi j , and there is
at least one \phi -terminal merging in \BbbR (i)| h(ei,1), h(ei,2), . . . , h(ei,k)). If such ei,j exist
or | \BbbR (i)| \scrM < K, we then set

\BbbL (i+1) = \BbbR (i)| h(ei,1), h(ei,2), . . . , h(ei,k))

and, subsequently,

\BbbS (i+1) = \BbbS (i) \cup \BbbL (i+1), \BbbR (i+1) = \BbbR (i)  - \BbbL (i+1);

furthermore, for the case | \BbbR (i)| \scrM < K, we will terminate the procedure. So far, for
any obtained ``block"" \BbbL (i+1), either we have (| \BbbL (i+1)| \scrM < K) or (| \BbbL (i+1)| \scrM = K and
there are at least one \psi -terminal mergings in \BbbL (i+1)); such a block \BbbL (i+1) is said to
be normal. If | \BbbR (i)| \geq K, however, we cannot find a normal block, we continue the
procedure and define a singular \BbbL (i+1) in the following.

Finding a singular block. A merging within \BbbS (i) is said to be critical with respect
to \BbbS (i) if its associated \phi -path, after the said merging, does not merge anymore within

\BbbS (i). Now, let \{ \beta (i)
j \} denote the set of all critical mergings with respect to \BbbS (i), and

let \=\BbbT (i) denote the set of all the mergings whose heads or tails are semireachable by

the head of some \beta 
(i)
j along \phi . One verifies at least one \psi -path in \{ \psi (\beta (i)

j )\} does not

contain any mergings within \=\BbbT (i) (since otherwise \psi can be proven to be reroutable,
a contradiction).

Assume that fi,1, fi,2, . . . , fi,mi
, 1 \leq mi \leq k  - 1, are the largest mergings within

\=T (i), and they belong to paths \psi ji,1 , \psi ji,2 , . . . , \psi ji,mi
, respectively. Now, we set

\BbbL (i+1) = \BbbR (i)| h(fi,1), h(fi,2), . . . , h(fi,mi
))

and define

\BbbT (i) =

mi\bigcup 

j=1

\psi ji,j [h(ei - 1,ji,j ), h(fi,j)].
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fi,1 fi,2

fi,3

ψ1 ψ2 ψ3 ψ4 ψ5

φ1

L(i)

T(i) L(i) − T(i)

Figure 11: This diagram illustrates how to find a singular block, where mergings are repre-
sented by solid dots. Note that φ1 is an excursive path with respect to fi,3.

Recursive application. We continue these operations in an iterative fashion to further
obtain normal blocks and singular blocks until there are no mergings left in G. �

Suppose that upon the termination of the above procedure, l1 singular blocks Lj1 ,Lj2 , . . . ,
Ljl1 and l2 normal blocks are found. Note that except the last normal one, each block has
at least one φ-terminal merging, which implies that

l1 + l2 ≤ 2l + 1.

In any case, we will have for some Ck > 0,

|G|M ≤ Kl2 +

l1∑

i=1

[Ck−1(xji + yji) + Ck−1(2k − 3)]

≤ 2Ck−1l + (K − Ck−1)l2 + Ck−1(2k − 3)l1

≤ Ckl.

Remark 4.7. Theorem 4.6 partially confirms the following conjecture:

Conjecture 4.8. There exists a positive constant C such that for any c1, c2, we have

M(c1, c2) ≤ Cc1c2.

Note that this conjecture, together with the easily verifiable fact that M(c, c) ≥ c2, implies
that M(c, c) is exactly of order c2.

Acknowledgement. This work is supported by the Research Grants Council of the
Hong Kong Special Administrative Region, China, under Project 17301017 and by the Na-
tional Natural Science Foundation of China, under Project 61871343. We thank the anony-
mous reviewers for their valuable comments and suggestions, which have greatly improved
the presentation of the paper.
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Fig. 11. This diagram illustrates how to find a singular block, where mergings are represented
by solid dots. Note that \phi 1 is an excursive path with respect to fi,3.

Here, let us note that \psi ji,j [h(ei - 1,ji,j ), h(fi,j)] is the segment of \psi ji,j that is within

\BbbR (i) and before h(fi,j) or, more formally,

\psi ji,j [h(ei - 1,ji,j ), h(fi,j)] = \psi ji,j [s1, h(fi,j)] \cap \BbbR (i).

Let xi and yi denote the number of x-terminal and y-terminal mergings in the
\phi -paths in \BbbL (i), respectively. Note that for any fi,j , j = 1, 2, . . . ,mi, the associated
\phi -path, from fi,j , may merge outside \BbbT (i) the next time; if this \phi -path merges within
\BbbT (i) again after a number of mergings outside \BbbT (i), we call it an excursive \phi -path
(with respect to fi,j ; see Figure 11 for an illustrative example). One checks that
there are at most mi  - 1 excursive \phi -paths (since, otherwise, we can find a cycle
in G, which is a contradiction). Note that for any merging within \BbbT (i) other than
fi,j , j = 1, 2, . . . ,mi, say g, the associated \phi -path, from g, can only merge within \BbbT (i).
Now, consider all \phi -paths that contains at least one merging within \BbbL (i+1), the number
of connected components of such \phi -paths is upper bounded by yi+1 +mi (restricted
to \BbbT (i), an excursive path can be split into multiple connected components). Then,
by the induction assumptions,

| \BbbL (i+1) \cap \BbbT (i)| \scrM \leq Cmi(yi+1 +mi) \leq Ck - 1yi+1 + Ck - 1(k  - 1).

One also checks that there exists at least one \psi ji,j , j = 1, 2, . . . ,mi, which does not

merge with any \phi -paths within \BbbL (i+1) - \BbbT (i) (since otherwise we can find a cycle in G,
which is a contradiction). Also, it is clear that all nonexcursive \phi -paths that contain
at least one merging within \BbbL (i+1) - \BbbT (i) must have x-terminal mergings in \BbbL (i+1), and
the number of involved connected components of \phi -paths is at most xi+1 +mi  - 1.
Thus, by the induction assumptions,

| \BbbL (i+1)  - \BbbT (i)| \scrM \leq Ck - 1(xi+1 +mi  - 1) \leq Ck - 1xi+1 + Ck - 1(k  - 2).
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It then immediately follows that

| \BbbL (i+1)| \scrM \leq Ck - 1(xi+1 + yi+1) + Ck - 1(2k  - 3).

Now, we claim that if K is chosen such that K \geq \scrM (k - 1, k)+1, then necessarily

xi+1 + yi+1 \geq 1. Indeed, let zi =
\sum i

j=1(xi  - yi), that is, zi is the number of \phi -paths

that will continue to merge within \BbbR (i). Then if zi \geq k, one verifies that at least one
\phi -path merges within \BbbL (i+1), however, not within \BbbR (i+1), which means yi+1 \geq 1; if
zi \leq k  - 1, then an x-terminal merging must exist within \BbbL (i+1), which implies that
xi+1 \geq 1.

Recursive application. We continue these operations in an iterative fashion to
further obtain normal blocks and singular blocks until there are no mergings left in
G.

Suppose that upon the termination of the above procedure, l1 singular blocks
\BbbL j1 ,\BbbL j2 , . . . , \BbbL jl1

and l2 normal blocks are found. Note that except for the last
normal one, each block has at least one \phi -terminal merging, which implies that

l1 + l2 \leq 2l + 1.

In any case, we will have for some Ck > 0,

| G| \scrM \leq Kl2 +

l1\sum 

i=1

[Ck - 1(xji + yji) + Ck - 1(2k  - 3)]

\leq 2Ck - 1l + (K  - Ck - 1)l2 + Ck - 1(2k  - 3)l1

\leq Ckl.

Remark 4.7. Theorem 4.6 partially confirms the following conjecture.

Conjecture 4.8. There exists a positive constant C such that for any c1, c2, we
have

\scrM (c1, c2) \leq Cc1c2.

Note that this conjecture, together with the easily verifiable fact that \scrM (c, c) \geq 
c2, implies that \scrM (c, c) is exactly of order c2.

Acknowledgment. We thank the anonymous reviewers for their valuable com-
ments and suggestions, which have greatly improved the presentation of the paper.
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