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ABSTRACT

The understanding of mangrove forest structure and dynamics at species level is essential for
mangrove conservation and management. To classify mangrove species, remote-sensing tech-
nologies provide a better way with high spatial resolution image. The spatial structure is usually
viewed as effective complementary information for classification. However, it is still a challenge to
design handcrafted features for mangrove species due to their non-structure texture. To leverage
the advantage of convolutional neural networks (CNNs) in abstract feature exploration, a small
patch-based CNN is proposed to overcome the requirement of fixed and large input which limits
the applicability of CNNs to fringe mangrove forests. The function of down-sampling technology
was substantially reduced to make deeper network for small input in our work. Meanwhile, the
inception structure is used to exploit the multi-scale features of mangrove forests. Furthermore,
the network is optimized with lesser convolution kernels and a single fully connected layer to
reduce overfitting via reducing the training parameters. Compared to the features of grey level
co-occurrence matrix with support vector machine, our proposed CNN shows better performance
in classification accuracy. Moreover, the differences between mangrove species can be perceptive
via CNN visualization, which offers better understanding of mangrove forests.
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Introduction reconstruction, and invasive species monitoring, etc

Mangrove forests are the most productive ecosystems in  (Vaiphasa, Skidmore, and de Boer 2006).

the world with providing essential and unique ecological
goods and services to human beings and adjacent systems
including coastline and flood protection, shrimp farming
and habitat provision for various terrestrial, estuarine and
marine species (Giri et al. 2011; Wang, Sousa, and Gong
2004; Polidoro et al. 2010). Dominating the intertidal zone
of tropical and subtropical coastlines, different mangrove
species adapting to specific environment are distributed
parallel to the coast or riverine system. Usually, they form
distinct zones to be ‘foundation species’, which can control
population and ecosystem dynamic, including fluxes of
energy and nutrients, hydrology, food webs, and biodiver-
sity (Polidoro et al. 2010; Ellison et al. 2005; Claridge and
Burnett 1993). However, mangrove forests decline rapidly
in both area and species (Polidoro et al. 2010; Giri et al.
2008), resulting from serious human intervention and envir-
onment pollution. Thus, mangrove forests monitoring at
species level can help understand their structure and
dynamics, and then offer guidance for the management,
such as conservation, assessment of mangrove

Remote sensing provides a sufficient tool for mangrove
monitoring over a large scale (Jia et al. 2016). In terms of
monitoring mangrove at species level, the median-low
resolution remote-sensing images like Landsat TM are not
appropriate due to coarser resolution (Wang, Sousa, and
Gong 2004). High-resolution remote-sensing images offer
a cost-efficient way with more detailed information. Still,
some serious challenges remain, such as the spectral simi-
larity of mangrove and associate species and unclear zona-
tion between species, especially when vegetation is sparse
or degraded (Heumann 2011). The exploratory experiment
has indicated that individual mangrove species could not
be separated only using spectral features (Heumann 2011;
Blasco et al. 1998), and more information or new methods
are needed (Ji et al. 2008). Textural characteristics (e.g. grey-
level co-occurrence matrix or lacunarity) of the canopy and
leaves are the main complementary features for mangrove
community’s distinction (Kuenzer et al. 2011; Wang et al.
2015, 2004; Myint et al. 2008). Compared to pixel-based
classification, object-based classification (Myint et al. 2008;
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Liu et al. 2007; Wan et al. 2014), integration pixel-based and
object-based classification (Wang, Sousa, and Gong 2004),
fuzzy classification (Neukermans et al. 2008) and NDVI-
based classification (Valderrama-Landeros et al. 2018)
were also applied for mangrove species mapping.
A principle behind them is that more robust features con-
sidering spatial information (the affinity of a pixel and its
neighbours) were developed to improve mangrove species
mapping, which is also indicated in Vaiphasa, Skidmore,
and de Boer (2006; Heumann 2011; Myint et al. 2008).
However, these features usually were handcrafted and in
low-level, which are suitable for the objects with a clear
edge, shape, and texture. For forests with non-structure
features, an advanced feature or representation for accu-
rate mangrove species mapping is needed.

Deep convolutional neural networks (DCNNs) have
been prevalent in image processing because of its
strong ability of learning representative and discrimina-
tive features in a hierarchical way. Stacking convolu-
tional layers and pooling layers, high-level features
can be further learnt. The first and last convolutional
layers were usually visualized to explain what kind of
features were learnt and why they are so effective for
classification (Zeiler and Fergus 2014). Also, it has been
widely used for remote-sensing applications. Four main
categories were found according to 190 records, includ-
ing object detection (vehicle detection Chen et al. 2014;
Li et al. 2017b; Qu, Zhang, and Sun 2017, aircraft detec-
tion Pan et al. 2017; Wang et al. 2017; Zhang et al. 2018,
2016, ship detection Zou and Shi 2016; Yao et al. 2017;
Lin, Shi, and Zou 2017, road detection Cheng et al.
2017, building detection Guo et al. 2016; Tian et al.
2017, airport Xiao et al. 2017; Zhang et al. 2017; Cai
et al. 2017), object recognition (ocean front Lima et al.
2017, building shape Tian et al. 2017 and others Liu and
Zheng 2017), scene classification (Hu et al. 2015; Zhong,
Fe, and Zhang 2016; Li et al. 2017a) and semantic
segmentation. These studies mainly focus on urban
with appreciable features, like regular shape, clear
edge and structure texture. However, few studies
about mangrove forests taking advantage of their abil-
ity in feature extraction were found.

Mangrove species classification is a task of semantic
segmentation (pixelwise classification in Maggiori et al.
2017), which is to assign a label to each pixel in an
image. Usually, CNN models, such as AlexNet
(Krizhevsky, Sutskever, and Hinton 2012), GoogleNet
(Szegedy et al. 2015), VGG, and ResNet (He et al.
2016), consist of stacked convolutional layers, followed
by fully connected layer to output a single label for the
input. An image patch centred at a pixel is fed on CNN
models, and the output is the for the pixel, then
a strategy of ‘sliding window’ is used to get the labels

for all pixels in an image (Marmanis et al. 2016; Liu et al.
2017). In addition, the Fully Convolutional Network
(FCN) is another option for semantic segmentation
(Lin, Shi, and Zou 2017; Long, Shelhamer, and Darrell
2015). Instead of fully connected layers, FCN employs
deconvolutional layers (transposed convolutional layers
in Liu et al. 2017) to decode a full-resolution label map
from a reduced convolutional layer, providing an end-
to-end way for classification. Generally, FCN rather than
prior CNNs is viewed as a better choice for semantic
segmentation in computation and performance.
However, FCNs do not leverage the spatial information.
More importantly, the training samples of ground truth
for FCN are tough to obtain for mangrove because of
the difficulties in outlining the boundary of different
mangrove species. Hence, this paper adopts CNNs
rather than FCNs. For fringe mangrove, the fixed and
large input size of CNNs, such as the size of 256 for
AlexNet, becomes a serious problem, such a large
homogenous patch is difficult to obtain and the severe
overlap between adjacent image patches will seriously
reduce the model’s performance.

In this paper, a small-patched CNN is proposed for
mangrove mapping at species level. The main objective
of this paper is twofold:

(1) A novel CNNs is designed for the need of smaller
input patch which classifies the mangrove forests
using CNNs. Tailored for strip-like zone of man-
grove forests, the stride of 1 for convolution layers
and pooling layers is adapted to keep the size of
feature maps constant and make deeper network
possible. Also, the inception structure from
GoogLeNet is used to exploit multi-scale feature;

(2) The ability of CNNs in feature representation of
mangrove forests was investigated.

Study sites and preprocessing
Study sites

DeepBay is a special place where there are two famous
mangrove reservation zones, Shenzhen Mangrove Forest
Nature Reserve (SZMFNR) and Mai Po Marshes Nature
Reserve (MPMNR). SZMRNR (22°30"-22°32" N and 113°59'-
114°03' E) is in the northeast region of the DeepBay, while
the MPMNR (22°28'-22°31" N and 113°59'-114°04' E) lies on
the opposite shores of Deep Bay in New Territories,
Hong Kong. Both are well protected and play an important
role in ecosystem balance.

Mangrove forests in SZMFNR are about 100 ha. The
climate here is tropical zone maritime climate with annual



precipitation of 1962 mm and average temperature of
22.5°C (Congjiao et al. 2016). Governed by the continent
of mainland China, in MPMNR, the summer is hot and
humid with winds from the south and southeast, while
winter is cool and dry because of the continental air
streams from the north and northeast (Jia et al. 2014).
Because of well protection by Hong Kong government
since 1975, mangrove forests in MPMNR are the largest
one with area of 170 ha in Hong Kong (Wang et al. 2015).

The dominant species in SZMFNR include Avicennia
marina (AM), Kandelia obovata (KO), Sonneratia apetala
(SA) and Sonneratia caseolaris (SC). In 1993, SC and SA
from Hainan and Bangladesh are brought in to reconstruct
the mangrove forests. Floating through the DeepBay, SA
and SC can be firstly found in MPMNR in 2000, but they are
viewed as invasive species due to their high adaptability
and threat of potential colonization and have been consis-
tently removed by the Agriculture, Fisheries and
Conservation Department (AFCD) to protect native species
(Peng 2003; Ren et al. 2009; Wong and Fung 2014). In
addition, four dominant species including Avicennia mar-
ina, Acanthus ilicifolius (Al), Kandelia obovata, and Aegiceras
corniculatum (AC) were found during our fieldwork (Wang
et al. 2015), which is different from the report of eight
species of mangroves in this area (AFCD 2015).

Image preprocessing

A WorldView 2 standard image (level 2) covering SZMFNR
and MPMNR was acquired on 14 November 2010. It was
delivered in a geo-registered UTM/WGS84 projection with
a 16-bit depth standard ENVI format with basic preproces-
sing including radiation correction, geometrical reference
and ortho rectification, resulting in eight resampled multi-
spectral bands and a panchromatic band with spatial
resolution of 2 m and 0.5 m. For generalization in the
input image requirement, general bands including blue,
green, red, and near-infrared (NIR) band were used in this
paper. Since we focus on mangrove species differentia-
tion, the main regions growing mangrove forests in both
reserves (Figure 1) are depicted manually based on coarse
classification using NDVI with a threshold of 0.2.

Field survey and sample collection

The field survey for MPMNR was conducted on
10 November 2015. Due to the strict protection of
mangrove forest and limited access policy, collecting
reference data in MPMNR is extremely difficult. Hence,
the samples collected in MPMNR are mainly via visual
interpretation  through  panchromatic band of
WorldView 2 data and GoogleEarth; the samples from
other studies are also used for reference. In SZMFNR,
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Figure 1. WorldView 2 image (true color) of study area and
mangrove regions.

the in-situ samples were collected on 11 April 2017.
Thanks to the guidance under the local manager, the
data collected are relatively easy and trusted. Finally,
reference samples of seven classes (six mangrove spe-
cies and the other vegetation, Figure 2) with around
1100 pixels for each were randomly collected. To bal-
ance the training samples, the dominant species with
much more samples are cut down and the final number
for training and testing can be found in Table 1.
Although the time of data collection is far behind
the day of image acquisition, it is still acceptable to
assign the data labels to the image since both reserves
are well protected, and no strong human disturbance
and no destroyed disaster happen during these years.
The effect of the SA clearance from AFCD on the cover
change can be easily avoided because the trace is very
clear in image with high spatial resolution.

Methods

Generally, a typical CNN contains five parts: input, convolu-
tional layers, pooling layers, fully connected layers and
output. The change of input usually leads to the change
of the whole CNN architecture; however, no any evidence
shows that a rule can be followed to design a new CNN in
a new domain, but follows the classic ones. Firstly, the
proposed architecture of small patch-based CNNs is
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Figure 2. Samples of seven classes in WV2. Al, Acanthus ilicifolius; SC, Sonneratia caseolaris; AC, Aegiceras corniculatum; KO,
Kandelia obovate; AM, Avicennia marina; SA, Sonneratia apetala; OV*, other vegetation (non-mangrove).

Table 1. Samples of six mangrove species and other

vegetation.
Class Training number Testing number
Al 824 354
SC 823 354
AC 844 353
KO 845 353
AM 845 354
SA 844 354
ov* 736 316

Al, Acanthus ilicifolius; SC, Sonneratia caseolaris; AC, Aegiceras cornicula-
tum; KO, Kandelia obovate; AM, Avicennia marina; SA, Sonneratia apetala;
OV*, other vegetation (non-mangrove)

presented (Figure 3), and then some of the novel or unu-
sual parts of our CNNs are described below.

Pooling layers

Pooling layers inserted in-between successive convolu-
tion layers in CNNs mainly function to reduce the
dimension of feature maps to reduce parameter num-
ber and computation, and hence to control overfitting
(CS231n). However, it becomes a problem and limits the
network depth for the input with small patches,
because the reduction in feature maps’ dimension pos-
sibly causes no sufficient size for pooling operator in

latter part of CNNs. Precisely, pooling operator summar-
izing a neighbourhood centred at the location of the
pooling unit does not make any change to the output
unless the moving stride of pooling operator is greater
than 1. In Basaeed, Bhaskar, and Al-Mualla (2016), a CNN
architecture with no pooling layers was proposed and
convolution layers with a stride achieves the same func-
tion of sub-sampling. In our work, we adapt pooling
layers with a stride of 1 to keep the feature maps’
dimension and then make deeper network possible. In
addition, it may improve performance and help reduce
overfitting (Krizhevsky, Sutskever, and Hinton 2012).
The reasons why keep pooling layers rather than
remove them are as follows: (1) max or average pooling
can help with anti-noise, especially for high spatial
resolution image with high intraclass variance; (2) pool-
ing layers will not add extra trainable parameters for
CNNs; (3) less modification makes classic CNN architec-
ture adaptation easy and further transfer learning
possible.

Convolution layers

Inspired from the cells in cat’s visual cortex, which are
sensitive to small sub-regions of the visual field (also
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Figure 3. The architecture of proposed CNN.

1ing

called a receptive field), the convolution layers acting as
local filters over the entire visual field were introduced
to exploit the strong spatially local correlation in natural
images (deep learning tutorial, LISA lab, University of
Montreal). To capture multi-scale features, the inception
structure with multi-convolution kernels with different
sizes are adopted. Due to the limitation of input size,
the kernels with size of 3 by 3 and 5 by 5 were applied
in convolutional layers.

Reduce overfitting

Transfer learning and pre-trained CNNs are valid ways to
reduce overfitting for applications in new domains. In our
work, we train the network from scratch because of the
change in CNN architecture and the lag between different
model domains. For so many trainable parameters (e.g.
60 million parameters for AlexNet), data augmentation
(Krizhevsky, Sutskever, and Hinton 2012) and dropout
(Krizhevsky, Sutskever, and Hinton 2012; Szegedy et al.
2015) are common tricks. A light CNN with less parameters
here is needed in consideration of the following factors: (1)
the target classes of mangrove species mapping is much
less than 1000 classes of applications in computer vision;
(2) the dataset for mangrove forests is not enormous even
with the help of data augmentation like random clip,
vertical/horizontal reflection transformation.

The CNNs go deeper and deeper after the compar-
able result to human beings got by AlexNet, especially
after the residual network was developed. However,
many effective features for mangrove species

separation rather than an optimal CNN are the result
we aim for. Hence, a CNN with less convolution layers is
acceptable only if there is a minor cost of performance.
Therefore, the stacked convolution layers with incep-
tion structures and fully connected layers from AlexNet
and GoogleNet mainly construct our CNNs.
Furthermore, the fully connected layers were cut
down but kept only one to reduce the training para-
meters based on the evidence that fully connected
layers contain larger number of parameters than con-
volution layers (Szegedy et al. 2015; He et al. 2016).
Finally, the number of convolution kernels and neurons
in fully connected layers is also cut down in view of the
species of mangrove is far less than 1000 for ImageNet.

Results

Through trials of layer construction, the network of two
convolution layers with 64 and 192 kernels, six incep-
tion layers with 64, 120, 128, 132, 208, and 256 kernels,
and a single fully connected layer with 100 neuros was
adapted, resulting in 4.64 million parameters to be
trained. ReLU was used as the activation function. The
largest input size was reduced to 15 pixels by 15 pixels,
because the width of narrow fringe mangrove forests
with a homogenous species is from 18 m to 30 m and
the inputs with larger size will cause severe ‘margin-
effect’ (Wan et al. 2018). The random selection of pixels
to generate small patches as the training samples func-
tions random crop. Consequently, only vertical/horizon-
tal reflection transformation was used to enlarge
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training samples. To reduce overfitting, dropout with
value of 0.4, the tech of early stop, and the batch size of
20 were also adapted in our work. The whole experi-
ment was conducted in Python based on Keras with the
backend of tensorflow. It performs over the platform of
windows 10 OS with a core processor of i7-7700K, and
32 GB memory. A GTX 1070 display card with 8 GB
display memory was assisted in training acceleration.

Mangrove mapping at species level

When train the small-patched CNN, the epoch was set to
60 from which it starts to converge for different settings.
The input patches with size of 9 and 13 were also fed for
training to support the selection of 15 pixels by pixels for
our CNN (Figure 4). Clearly, training with input size of 15
can converge soon with minor loss, and the procedure
stopped at epoch of around 27.

To assess the performance of small-patched CNN,
the grey level co-occurrent matrix (GLCM) features as
well as the spectral features with support vector
machine (SVM) were used for comparison. For GLCM,
the processing window was set to 15 x 15 and the co-
occurrence shift was set to 1 x 1 to be consistent with
the kernel used in the small-patched CNN. The grey-
scale quantization levels of 64 were adapted to com-
pute the texture measures of contrast, correlation,
homogeneity and entropy (Wang et al. 2015; Wan
et al. 2018). For SVM, the kernel of RBF with gamma
of 0.25 was used as well as the default values for the
rest parameters in Envi. In addition, GooglLeNet from
which the small-patched CNNs are derived was also
applied for comparison.

From the confusion tables (Table 2), the overall accuracy
and kappa coefficient from our method is much higher

— wnd=9 loss wnd=13 loss wnd=15 loss
wnd=9 acc wnd=13 acc wnd=15 acc
2 1.2
1.5k 1
\

2 1\ {08 8
2 4 5
037 \\A~ |
0 L e e el 0.4

1 11 21 31 41 51

epoch

Figure 4. Training with different sizes for input patches; ‘wnd’
is abbreviated for ‘window’ and the value is the side length of
a square window, the ‘acc’ is for ‘accuracy’.

than that from GooglLeNet with over accuracy of 17.17%.
Nothing but chaos can be observed from the classification
result (Figure 5). It is mainly because a large window with
size of 224 by 224 pixels in GooglLeNet introduces abundant
irrelated information, weakening the contribution from the
valid information of narrow and strip-like mangrove forests.
In addition, little information of mangrove forests within the
larger windows gradually vanished when it passed through
the pooling layers in GooglLeNet. A worse situation is that
invalid information flows through the latter layers in
GooglLeNet, making results out of control. Inspired from
the limitation in the requirement of a large window and
information loss in pooling layers, our small-patched CNNs
were proposed.

Compared to the conventional features (GLCM), our
model gets higher overall accuracy of 98.8105% and
kappa coefficient of 0.986064, about 30% improvement.
Using our proposed CNN (Figure 5(a)), the strip feature of
mangrove can be clearly perceived, while that using

Table 2. Confusion matrix of mangrove classification using different methods.

GoogleNet SVM+GLCM

Al SC AC KO AM SA ov*  Total Al SC AC KO AM SA ov* Total
Al 63 43 48 38 60 46 23 321 Al 274 0 144 12 7 13 9 459
SC 15 35 40 17 16 13 8 144 SC 0 309 7 34 8 4 42 404
AC 25 32 45 23 38 35 19 217 AC 49 8 119 1 5 52 30 274
KO 103 68 79 93 86 91 63 583 KO 3 1 20 9 310 15 10 378
AM 47 54 41 67 37 40 53 339 AM 19 1 31 46 13 207 1 328
SA 67 50 64 78 91 93 59 502 SA 7 4 19 219 10 59 59 377
ov* 34 30 21 34 26 25 30 200 ov* 2 21 13 23 0 4 155 218
Total 354 312 338 350 354 343 255 2306  Total 354 354 353 354 353 354 316 2438

Ours

Al SC AC KO AM SA ov*  Total
Al 352 0 0 2 0 0 0 354 Overall accuracy Kappa coefficient
SC 0 342 0 0 0 12 0 354 GooglLeNet 17.17% 0.0295
AC 2 0 353 0 0 1 0 356 SVM+GLCM 65.3404% 0.5952
KO 0 0 0 351 0 0 0 351 Ours 98.8105% 0.986064
AM 0 0 0 0 354 0 0 354
SA 0 12 0 0 0 341 0 353
ov* 0 0 0 0 0 0 316 316
Total 354 354 353 353 354 354 316 2438




ANNALS OF GIS (&) 51

Legend

- mask

A

I sc

[ Ac

!:] Other_vegetation
[_Jxo

I

[ sa

GooglLeNet

Ours

SVM+GLCM

Figure 5. Mangrove classification at species level using different methods, and the main differences between SVM with GLCM
features and ours in three regions: landward mixed region of non-vegetation and different mangrove species (1); narrow striped
region with a clear feature of ‘zonation’ (2); seaward region with many creeks (3); the details can be found from the right parts.

handcrafted features shows a serious phenomenon of ‘pep-
per-noise’. It is caused by the vast variance of inter-class,
which is a side effect coupled with detailed structure infor-
mation brought by high spatial resolution images (Figure 5
(b)). The main differences between them can be found in
three parts: first, the landward region of SZMFNR (Figure 5
(1)) where non-mangrove and SC are mixed; they are easily
confused (Figure 5(1a)) when using GLCM and spectral
features, but ours can resolve this problem (Figure 5(1b)).
The second part is the narrow-striped region where differ-
ent mangrove species grow with a clear feature of ‘zona-
tion’. Three different mangrove species can be identified
clearly by our CNN, but they are mixed using GLCM (Figure
5(2)). The last one is the seaward region where ACs grow
along the creeks. Using GLCM with spectral features, ACs
are submerged by surroundingswhile ours can recognise
them all (Figure 5(3)).

CNN features visualization

To explore the features extracted by our model, the
filters were visualized. Considering the small filters in
our model, instead of visualizing the filters directly, we

here visualize the inputs that maximize the activation of
the filters; the details can be found in Chollet (2016).
The filters in first convolution layer were visualized to
expect to get low-level features of different mangrove
species. Unlike the previous works on CNN visualization
in which there are clear low-level features such as the
edges and direction extracted by the first convolution
layers, there are more features exploited by our CNNs,
and they can be observed from visualization of the first
convolution layer (Figure 6). The first 32 filters mainly
focus on the colour with little difference in texture of
‘pepper noise’, while some of the rest filters
(patches = {(5,2), (5,5), (5,6),(6,2),(6,8)}) exhibit the ‘dot
matrix’ with directionality, showing the ability of indivi-
dual tree detection, especially for the seventh filter in
row 5, the outline of trees can be observed. It indicates
that for mangrove forests discrimination, the low fea-
tures of minor difference in colour still make contribu-
tions. Instead of clear edge, the low features of ‘dots’
presented by trees also play an important role. In addi-
tion, the results from the last filter in row 5 and first
filter in row 6 possibly give us a clue that the external
environment can offer extra information for mangrove
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Figure 6. Visualization of first convolution layer (48 of 64 filters
were listed).

species mapping. These features may be the reasons
why our model outperforms better than GLCM and
spectral features with SVM.

To get insight into the high-level features exploited by
our CNNs, the output of the final inception was also visua-
lized (Figure 7). Based on the result, no distinguished fea-
tures but chaos were observed, meaning that the high-level
features are statistical features rather than structure feature,
which is unexpected. The statistical features resulting from
the distinguished low-level features indicate that the micro-
feature for mangrove species is statistical, but this conclu-
sion should be supported by more extra experiments with
different visualization technologies, because different
visualization technologies have different visual effects and
whether the capacity of our model can be completely
exposed via visualization is still unknown. However, the
statistical features from ours are better than those from
GLCM and spectral features.

Conclusion and discussion

This paper explores the ability of CNNs in mangrove
species mapping and assesses the performance in feature
extraction. Because of the requirement of large input size
in conventional CNNs which is invalid in the classification
of mangrove forests with a stripe zonation, a small-
patched CNN with multi-scale features extractor was pro-
posed. According to the results, the small-patched CNNs
can give an acceptable classification than the result with
handcrafted features. Because of the characteristic of
small patch for input, the stripe region can be well
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Figure 7. Visualization of the output of last inception (56 of
1024 filters were listed).

detected. The multi-scale feature extractor helps with
the fragmentation reduce. In addition, the low- and high-
level features extracted by small-patched CNNs were also
exploited. The experiments show that our model can
capture many distinguished low-level features including
colours, dot patterns and directionalities, and high-level
statistical features. Compared to GLCM and spectral fea-
tures, both are statistical, but ours are better.

Nevertheless, aimed for the applicability of conven-
tional CNNs to mangrove species classification, some
work, like the hyperparameter settings and more meth-
ods of reducing overfitting, was not perfected.
Although some tricks were adapted to reduce overfit-
ting, this problem did not resolve in our work possibly
because of insufficiency in data or more parameters to
be trained, which will be done in the future.
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