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Abstract: Epstein—Barr virus (EBV) successfully persists in the vast majority of adults but causes
lymphoid and epithelial malignancies in a small fraction of latently infected individuals. Innate
immunity is the first-line antiviral defense, which EBV has to evade in favor of its own replication
and infection. EBV uses multiple strategies to perturb innate immune signaling pathways activated
by Toll-like, RIG-I-like, NOD-like, and AIM2-like receptors as well as cyclic GMP-AMP synthase.
EBV also counteracts interferon production and signaling, including TBK1-IRF3 and JAK-STAT
pathways. However, activation of innate immunity also triggers pro-inflammatory response and
proteolytic cleavage of caspases, both of which exhibit proviral activity under some circumstances.
Pathogenic inflammation also contributes to EBV oncogenesis. EBV activates NF«B signaling and
induces pro-inflammatory cytokines. Through differential modulation of the proviral and antiviral
roles of caspases and other host factors at different stages of infection, EBV usurps cellular programs
for death and inflammation to its own benefits. The outcome of EBV infection is governed by a
delicate interplay between innate immunity and EBV. A better understanding of this interplay will
instruct prevention and intervention of EBV-associated cancers.
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1. Introduction

Epstein—Barr Virus (EBV), also known as human herpesvirus 4 (HHV-4), is a member of the
subfamily of Gammaherpesvirinae, which also includes Kaposi sarcoma-associated herpesvirus (KSHV).
EBV infects more than 95% of adults worldwide. EBV is transmitted through saliva and primarily
infects B cells and epithelial cells, but macrophages and dendritic cells also play important roles in EBV
infection. EBV is associated not only with oral diseases such as infectious mononucleosis and oral hairy
leucoplakia but also with several types of epithelial cell carcinoma, such as nasopharyngeal carcinoma
(NPC) and gastric carcinoma, and with B cell lymphoma, including Burkitt lymphoma, posttransplant
lymphoproliferative disorder, and Hodgkin and non-Hodgkin lymphoma [1]. EBV establishes latency
in the host cells after primary infection, which is a typical characteristic of a gammaherpesvirus. The
viral genetic material replicates along with the host genome. Lytic reactivation can be induced by the
expression of viral BZLF1 protein, also known as Zta, leading to virion production and the spread of
EBV infection. Both lytic and latent phases are required in the life cycle of EBV. Whereas EBV-associated
malignancies develop only in latently infected cells, lytic replication is thought to be required for
EBV oncogenesis [2]. The lytic-latent switch is an important event in EBV infection, but its regulatory
mechanism remains to be fully understood [3-5].
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At least three different latency states of EBV have been defined based on different expression
patterns of latent genes. During latency III, B cells are transformed into immortalized lymphoblastoid
cell lines expressing six EBV nuclear antigens (EBNAs), three latent member proteins (LMPs), and
several noncoding RNAs (ncRNAs), including EBV-encoded RNAs (EBERs), BamHI A rightward
transcripts (BARTs), and EBV-encoded microRNAs (miRNAs). Latency II occurs in NPC cells, and
the expression of EBV genes is restricted to EBNA1, LMPs, and ncRNAs. In contrast, typical Burkitt
lymphoma cells are in latency I, where only EBNA1 and ncRNAs are expressed [6,7]. In addition,
another special latency program known as Wp-restricted latency can be established by EBNA2-deleted
EBV in Burkitt lymphoma cells [8,9]. In this state, EBNA1, EBNA3s, and EBNA-LP are expressed from
a Wp promoter rather than a Qp promoter. BCL2 homolog BHRF1 is also expressed.

During viral infection, viral constituents containing pathogen-associated molecular patterns
(PAMPs) are recognized by pattern recognition receptors (PRRs) of the infected cell, hence stimulating
innate antiviral immune response. This response results in the production and release of various
cytokines including interleukins (ILs), tumor necrosis factor (TNF), and interferons (IFNs) from the
infected cells. Type I IFN response is one of the vital antiviral defense mechanisms of the host cells.
The major PRRs consist of membrane-bound and cytoplasmic sensors, which can be subdivided into
several protein families including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like
receptors (NLRs), and AIM2-like receptors (ALRs). In addition, cyclic GMP-AMP (cGAMP) synthase
(cGAS) is another key sensor of cytoplasmic DNA. Activation of PRRs by PAMPs triggers not only
JAK-STAT-mediated IFN response but also different branches of innate immune signaling including
NFkB pathway; inflammasome activation; and programmed cell death such as apoptosis, necroptosis,
and pyroptosis [10,11].

To evade innate immune sensing and the consequent activation of antiviral cascades, EBV has
evolved multiple effective countermeasures. These can occur at different pathways and steps ranging
from recognition by cell surface, endosomal, and intracellular sensors to IFN production and signaling.
This interplay between EBV and innate immunity is influential to the outcome of infection. The main
theme is to promote viral replication and to sustain viral infection. However, innate immunity is a
double-edge sword as the induction of pro-inflammatory responses and activation of programmed
cell death might release a burst of virions and may therefore facilitate the spread of infection [12].
Furthermore, activation of caspases might serve a proviral role in the lytic replication of EBV through
proteolytic cleavage of critical cellular and viral proteins [13]. Further investigations are required to
elucidate how inflammasome activation, programmed cell death, and caspase activation fulfill their
proviral function in the context of EBV infection. In this review, we will discuss the current knowledge
of countermeasures adopted by EBV to perturb innate immune response with a focus on IFN production
and signaling, inflammasome assembly, programmed cell death, and caspase activation.

2. EBV Perturbation of PRRs

2.1. TLR Signaling

Most viruses, including herpesviruses, stimulate innate immune response during primary
infection predominantly by activating TLRs. TLRs activate downstream adaptor molecules such as
MyD88, TIRAP, TRAFs, TRIF, and TRAM to induce type I IFNs [14-17]. These adaptor molecules
form multiprotein complexes containing TBK1 kinase to induce the activation of IRF3 and IRF7
transcriptional factors, which induce type I IFN production. NF«B is another downstream effector of
TLR signaling. EBV is capable of modulating various TLRs and TRAFs to perturb IFN production and
NFkB activation.

Viral constituents can be recognized by TLRs expressed at the cell surface, in the endosomal
membrane, or in the cytoplasm. As such, TLR2, TLR3, TLR4, TLR7, TLRS, and TLR9 are known
to recognize EBV during infection [18,19]. The expression and activity of TLRs in infected cells are
activated by EBV [20]. In addition, during the lytic cycle, EBV also activates TLR signaling in pDCs.
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TLR2 detects herpesviruses such as herpes simplex virus 1, cytomegalovirus, varicella-zoster virus,
and EBV [21,22]. During primary infection, TLR2 is likely activated by EBV surface glycoprotein gp350
(Figure 1), which also binds to cellular receptor CD21 to mediate viral entry and membrane fusion [23].
Table 1 provides a summary of the EBV genes discussed in this review. Another PAMP of TLR2 is the
EBV-encoded dUTPase, which is a nonstructural protein and an early antigen [24]. EBERs produced in
the infected cells are detected by TLR3 [25]. EBV can activate monocytes and plasmacytoid dendritic
cells (pDCs) through cooperative action of TLR9 and TLR2 [26]. TLR9 is the major TLR present in B
cells and is responsible for the production of IFNs, IL-6, TNF-«, and immunoglobulins from infected
cells. TLRY can also recognize CpG motifs in dsDNA and, therefore, can detect DNA genome of EBV
and murine gammaherpesvirus 68 (MHV68), which serves as a model for both EBV and KSHV [27].
Endosomal TLR7 and TLR9 in pDCs also cooperate with each other to sense MHV68 infection [28]. In
this regard, the ligand of TLRY is single-stranded RNA. Interestingly, TLR9 is known to inhibit EBV
lytic replication by suppressing BZLF1 [29].
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Figure 1. Epstein-Barr virus (EBV) perturbation of Toll-like receptor (TLR), RIG-I-like receptor (RLR),
and cyclic GMP-AMP (cGAMP) synthase (cGAS) signaling. Signaling through TLR (left part of the
diagram), RIG-I (right part), and cGAS (central part) is positively and negatively regulated by EBV
proteins and RNAs. On the one hand, EBV proteins and RNAs inhibit these pathways to suppress
antiviral interferons (IFN) and cytokine production to facilitate viral infection (highlighted in red). On
the other hand, they can also activate some of these pathways to promote cellular growth and survival
(shown in green). See text for further details.

EBV is capable of regulating TLRs differentially, depending on the phase of life cycle and the stage
of viral egress. Whereas robust amplification and replication of EBV genome during the lytic phase
require more efficient suppression of host antiviral response, EBV also has to evade innate recognition
and clearance persistently during latency. During primary infection, EBV downregulates TLR7, TLRS,
and TLR9 expression to support viral replication in infected B cells [30]. Multiple lytic proteins are
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employed to antagonize TLR signaling. TLR9 mRNA is targeted for degradation in EBV-infected B cells
by EBV lytic protein BGLF5, leading to reduced production of TLR9 [31]. BGLF5, being a viral alkaline
exonuclease, also targets TLR2 by reducing its expression in the infected cells [32]. Additionally,
another EBV-encoded protein BPLF1, a deubiquitinase and a late lytic tegument protein, interferes with
the ubiquitination and activation of signaling intermediates in the TLR pathway, thereby inhibiting
TLR-mediated IFN production in infected cells [33]. During latency, EBV also suppresses TLR2-,
TLR5-, and TLR9-mediated IFN production. In particular, EBV-encoded major oncogenic protein
LMP1 expressed in latency II and III cells targets TLRY by inhibiting its promoter activity [34]. In
addition, EBV-encoded miRNAs including miR-BARTSs are also thought to be capable of suppressing
TLR signaling [35].

Table 1. Summary of EBV genes, their function in viral life cycle and pathogenesis, as well as their
impact on innate immunity.

Gene Function in Viral Life Cycle Impact on Innate Immunity
e Inhibits TLR9 transcription
e Recruits and activates TRAFs
e Promotes RIG-I degradation
e Activates NLRP3 inflammasome
LMP1 e Major viral oncoprotein e Induces IL-1«, IL-1$3, and TNF-«
CD40 mimic e Induces IRF7
e Inhibits TYK2 kinase
e Activates STAT3
e Inhibits apoptosis when underexpressed
e Promotes apoptosis when overexpressed
.. e Increases turnover of IFENARs and IFNGRs
LMP2A/B B cell receptor mimic e Activates STAT3
EBNA2 e Regulates latent gene transcription e Prevents ISG induction
e B cell immortalization Blocks Nur77-mediated apoptosis
EBNA3C Regulates latent gene transcription Inhibits p53-, IRF4/8-, and E2F1-mediated apoptosis
EBER Abundantly expressed small e Activates RIG-I signaling and PKR

noncoding RNAs Stimulates TLR3 signaling

Induces p65 nuclear translocation but inhibits its function
Inhibits dimerization of IRF7

Increases turnover of IFNARs and IFNGRs

Inhibits tyrosine phosphorylation of JAK1 and JAK2

BZLF1 (Zta) Lytic gene trans-activator

BRLF1 (Rta)

Lytic gene trans-activator

Reduces production or promotes degradation of IRF3/7

e Deneddylase and deubiquitinase

e Inhibits TRAF6, IKKy, and IkBx

BPLFL e Tegument protein e Inhibits TRIM25-mediated RIG-I activation
BLRF2 Tegument protein Inhibits cGAS-STING signaling
BLLE3 dUTPase Activates TLR2 and NF«B
LF2 Rta binding protein Inhibits dimerization of IREF7
e Suppresses NFkB by targeting an essential coactivator UXT
BGLF4 Protein kinase e Impedes formation of stable IRF3-DNA complex
e Inhibits Tyr701 phosphorylation and activation of STAT1
BGLF5 Exonuclease Shuts down TLR2 and TLR9 production
gp350 Envelope glycoprotein Activates TLR2
BMLF1 (SM) : ?&II{};;A h(;):gglr;gfactor Induces STAT1 expression
BHRF1 BCL2 mimic Inhibits apoptosis by binding to Bax
IS s it e e oo LA Sy K i,

TRAFs are adaptor proteins in TLR signaling. TRAF6 is important in the maintenance of EBV
latency and the inhibition of lytic cycle progression. The impact of EBV-encoded LMP1 on TLR-TRAF
signaling has been well-characterized. LMP1 has two cytoplasmic domains called CTAR1 and CTAR2,
which have binding sites for TRAFs. LMP1 recruits and activates TRAF2, TRAF3, and TRAF6, thereby
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activating downstream NFkB signaling to promote cell growth and survival. EBV-encoded lytic
protein BPLF1 inhibits TRAF6 activation through its deubiquitinase activity (Figure 1), leading to
the suppression of IFN production and NF«B activation [33,35,36]. This favors lytic replication or
reactivation. In other words, inhibition of TRAF6 serves to trigger the latent-lytic switch.

EBV perturbation of TLR signaling during lytic and latent phases is dynamic and under stringent
control. TLR signaling is activated transiently after viral entry but has to be effectively suppressed
subsequently. Enforced activation of TLR signaling using a TLR9 agonist prevents initiation of
the EBV lytic cycle [37]. Interestingly, TLR7 has been shown to activate LMP1 [38], which in turn
suppresses TLR9 as described above [34]. Thus, they possibly constitute a negative feedback loop. TLR9
polymorphism is influential in the susceptibility of immunocompromised infants to EBV infection [39].
This lends support to the notion that TLR signaling is critical in EBV infection. Whereas the antiviral
effect of TLR signaling is effectively suppressed by EBV, the pro-inflammatory response triggered
by TLR signaling is still prominent under some circumstances. Chronic inflammation as a result of
EBV infection not only contributes to EBV pathogenesis and oncogenesis but also exhibits a proviral
effect. Thus, EBV and innate immunity have reached a mutualistic equilibrium after a long history of
coevolution [40,41].

2.2. RLR and cGAS Signaling

Although viruses are detected by TLRs during their entry into target cells, the nucleic acid sensors
in the cells detect viral DNA and RNA that have already successfully entered the cells. As a DNA
virus, EBV is thought to be recognized primarily by DNA sensors. The viral DNA is detected by
cytoplasmic DNA sensors. Although different sensors including IFI16, DDX41, and DAI have been
suggested to play a role in the detection of viral DNA, cyclic GMP-AMP (cGAMP) synthase (cGAS)
is now well-recognized as the master DNA sensor, which produces a cGAMP second messenger to
bind and activate STING, leading ultimately to type I IFN production [42,43]. Interestingly, other
sensors such as IFI16 either cooperate with or operate through cGAS [44—46]. In addition, EBV also
encodes RNAs that can be detected by cytoplasmic RNA sensors such as RIG-I [47]. All these PRRs
activate downstream TBK1 signaling, which is largely overlapping with that trigged by activation of
TLRs [48,49].

2.2.1. RLR Signaling

RLRs are intracellular PRRs that detect cytoplasmic RNAs. RLRs include RIG-I, MDAS5, and
LPG2, among which RIG-I is known to play a role in sensing EBV infection. Particularly, EBERs
are recognized by RIG-I [47]. EBERs including EBER1 and EBER?2 are abundantly expressed in
EBV-infected cells. As such, laboratory detection of EBERs serves as a defining diagnostic test for EBV
infection. EBERs are highly structured, and it is therefore not surprising that EBERs activate RIG-I
signaling. ERERs can activate other RNA sensors such as TLR3 described above [25] and can also
suppress PKR [50,51]. Whether the BART transcripts abundantly expressed in EBV-infected cells and
particularly epithelial cells might also trigger RIG-I signaling remains to be determined. In addition,
two lines of loss-of-function experiments would help to fully characterize the activation of RIG-1 by
EBERs. First, a recombinant EBV that either does not produce EBERs or produces significantly less
amounts of EBERs should show a difference in its ability to activate RIG-I in a physiologically relevant
cell line. Second, the induction of type I IFN by EBV should be examined in RIG-I7/~ cells. The function
of EBERs remains incompletely understood, and it will be of great interest to see whether their major
role in infected cells is to serve as a PAMP. One report suggests that EBER1 binds with cellular La
ribonucleoprotein in B cells to evade sensing by RIG-I. In addition, EBER1 carrying 5’-triphosphates
in infected B cells can be transferred via exosomes to nonpermissive pDCs to drive innate immune
sensing [52]. One interesting alternative mechanism through which EBV activates innate immunity is
to unmask cellular 55 rRNA pseudogene transcripts for recognition by RIG-I [53]. This unmasking
also occurs during infection with HSV-1 and influenza A virus.
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EBV can inhibit RIG-I-mediated sensing of viral RNAs in infected cells to prevent the induction of
type I IFNs. EBV-encoded LMP1 promotes RIG-I degradation via the proteasome-degradation pathway
by recruiting an E3 ubiquitin ligase named CHIP to RIG-I [54]. EBV-encoded deubiquitinase BPLF1
can bind to another E3 ligase TRIM25, which ubiquitinates RIG-I at K63, resulting in its binding with
MAVS and in the activation of downstream signaling. BPLF1 forms a ternary complex with TRIM25
and 14-3-3 scaffold protein to promote auto-ubiquitination of TRIM25, which reduces ubiquitination of
RIG-I and dampens RIG-I signaling [55]. Furthermore, EBV also encodes miRNAs to inhibit the RIG-I
pathway. EBV-encoded miBART6-3p targets RIG-I mRINA, resulting in the inhibition of type I IFN
expression and the consequent reduction of phospho-STAT1 levels in peripheral blood mononuclear
cells [56]. Additional RIG-I-targeting miR-BARTs might also be identified and characterized. It is
seemingly contradictory that the primary transcripts of EBV-encoded RNA such as EBERs activate
RIG-1I, whereas the mature viral miRNAs exert an inhibitory effect (Figure 1). Further investigations
are required to clarify the net effect of EBV-encoded noncoding RNAs on RIG-I signaling and, more
importantly, the relevance to EBV biology.

2.2.2. cGAS-STING

Although the cGAS-STING signaling pathway of innate DNA sensing is more relevant to
EBYV, studies on EBV DNA sensing or EBV perturbation of DNA sensing are scarce and should be
strengthened. Currently, it is assumed that EBV will be sensed in the same way as any other herpesvirus
or gammaherpesvirus. EBV-specific mechanisms of sensing and anti-sensing remain to be elucidated.

Herpesviruses can activate cGAS-STING signaling [42,57-59]. For example, MHV68 can activate
cGAS-mediated DNA sensing. For the benefit of their own replication, gammaherpesviruses have to
develop strategies to bypass or suppress cGAS signaling. An abundantly expressed KSHV tegument
protein ORF52 as well as its homologs in EBV and MHV68 are known to interact with cGAS, hindering
its capacity to bind with viral dsDNA [60,61]. EBV has also been shown to induce cellular E3 ligase
TRIM29 to induce K48-linked ubiquitination and degradation of STING (Figure 1), preventing the
activation of cGAS-STING signaling [62,63]. One recent study suggests that human B cells are
dysfunctional in cGAS-STING signaling. As such, EBV-transformed B cells cannot produce type I
IFNs upon stimulation with dsDNA or cGAMP [64]. It remains to be fully understood how this defect
might be relevant to EBV infection of B cells. In this regard, several important questions need to be
addressed experimentally:

e Is cGAMP production activated by EBV in infected B cells and epithelial cells?

e Is EBV capable of suppressing cGAS-STING signaling in a physiologically relevant context?

e Is there a real difference between EBV-infected B cells and epithelial cells in the sensing of
EBV DNA?

e  What is end result of the interplay between EBV and DNA sensing?

2.3. NLR and ALR Signaling

NLRs are PRRs that contain a nucleotide-binding oligomerization domain (NOD). NLRs can
recognize a wide range of PAMPs and danger signals. ALRs are PRRs that are structurally related to
AIM2 containing an N-terminal pyrin domain (PYD) and a C-terminal HIN domain [65]. Whereas PYD
helps to recruit the inflammasome adapter protein ASC through PYD-PYD interaction, the positively
charged HIN is a dsDNA-binding domain.

One NLR and two ALRs have currently been implicated in host-EBV interaction (Figure 2). While
NLRP3 is the NLR that has been shown to be modulated by EBV oncoprotein LMP1 [66], AIM2 and
IFI16 are the two ALRs that are known to be dysregulated by EBV [67,68]. Activation of NLRP3,
AIM2, and IFI16 by EBV PAMPs such as its DNA genome results in the assembly of inflammasome.
Inflammasome is the multiprotein complex formed to recruit the essential adaptor protein ASC,
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which recruits procaspase 1 through CARD-CARD interaction, leading to proteolytic activation of
pro-inflammatory cytokines IL-13 and IL-18 [69].

NLRPB/AIMZ

LMP1~ T~ EBV
IF116 miR- BART15
ASC AS Oi sc

Pro-caspase 1 Pro caspase 1

Caspase 1 —

N

IL-1B Pro-IL-1B
IL-18 Pro-IL-18

Cytoplasm
Nucleus
Zta — N\ ~AAAA
™ \, — N\ ~AAAA
IFI16 EBV episome >

Pro-inflammatory cytokines

Figure 2. EBV perturbation of NOD-like receptor (NLR) and AIM2-like receptors (ALR) signaling. On
the one hand, EBV suppresses these pathways through its viral proteins and RNAs to circumvent their
antiviral effects (shown in red). On the other hand, EBV can also activate some of these pathways to
cause pathogenic inflammation and to facilitate viral spreading and infection (highlighted in green).
See text for further details.

Inflammasome activation might serve both antiviral and proviral roles during EBV infection. As
part of the innate antiviral response, it could help to restrict EBV replication and infection. However,
it might also promote viral dissemination by releasing a large amount of infectious EBV virions. In
addition, when myeloid cells have migrated to the inflammation site, EBV will spread to dendritic
cells and macrophages; this serves an important function in EBV infection in vivo [69].

There is only circumstantial evidence in support of the activation of NLRP3 inflammasome by LMP1
in association with the expansion of myeloid-derived suppressor cells in the tumor microenvironment
of NPC [66]. In another perspective, NLRP3 activation is induced by extracellular ATP and reactive
oxygen species in EBV-associated NPC, whereas AIM?2 is required for IL-1p production induced
by EBV DNA in infected epithelial cells. As a result of IL-1f3 secretion, neutrophil recruitment is
enhanced, which serves as a favorable prognostic marker for local recurrence-free survival [70]. The
activation of AIM2 but not NLRP3 or IFI16 is also seen in EBV-infected THP-1 cells, which results
in IL-1B secretion [67]. On the other hand, EBV-encoded miR-BART15 has been shown to inhibit
NLRP3 and IL-1$ maturation (Figure 2). Interestingly, miR-BART15 can be secreted by infected B
cells via exosomes to inhibit NLRP3 activation in noninfected cells [71]. In addition, EBV-encoded
miR-BHRF1-2-5p targets IL-1 receptor 1 to prevent the action of IL-1x and IL-1§ [72]. It will be of
interest to see at what stage of infection and through what mechanism EBV mobilizes its activators and
inhibitors of inflammasome activation to avoid dangers and to gain benefits.
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The genome of HSV-1 is also thought to be detected by IFI16 in infected cells. Whereas
AIM2 is a cytoplasmic protein, IFI16 localizes primarily to the nucleus. As such, IFI16 co-localizes
with EBV and KSHV genome in infected cells. IFI16 contains two C-terminal HIN domains in
addition to the N-terminal pyrin domain. The HIN domains named HIN A and HIN B bind dsDNA
cooperatively [73]. This led to the hypothesis that IFI16 might act as a nuclear sensor of EBV genome
with the ability to distinguish nonself from self-DNA [68,74]. This results in the constitutive activation of
an [FI16-ASC-caspase-1 inflammasome and AIM2-independent production of IL-1f3 [74-77]. Activation
of IFI16 could also lead to pyroptosis of infected cells [78]. Notably, the distribution of IFI16 in the
cytoplasm of macrophages and lymphocytes could enable it to sense DNA, to facilitate cGAMP
synthesis by cGAS, and to activate STING-dependent IFN production [45]. IFI16 shuttles dynamically
between the nucleus and the cytoplasm under the control of acetylation of its nuclear localization signal
(Figure 2). In this sense, IFI16 functions as a DNA sensor in both the nucleus and the cytoplasm [79].

However, although IFI16 might be a restriction factor for EBV and other herpesviruses, its exact
role in EBV infection and the dependence on IFN signaling remain controversial. In this regard, three
lines of evidence are noteworthy. First, as mentioned above [44—46], IFI16 interacts with cGAS and
might rely upon cGAS-STING signaling to exert its influence on IFN production [80,81]. Second, IFI16
accumulates on the genome of herpesviruses and modulates viral gene expression through histone
modifications [82]. Finally, IFN response to cytoplasmic DNA and DNA virus remains intact in mice
deficient in p204, which is the mouse counterpart of IFI16, and all other 12 ALRs. In other words, p204
is nonessential for DNA-induced type I IFN production or sensing of DNA viruses in vivo [83]. Thus,
further investigations are required to elucidate exactly how IFI16 is involved in the EBV life cycle.

2.4. TLR and RLR Effectors

TLR and RLR signaling converges to activate NFxB and IRF3/IRF7 transcription factors. Upstream
of this, transducer proteins including MAVS and TBK1 are also shared by different pathways. All these
steps are also perturbed by EBV. Ensuring an effective and accurate suppression of innate antiviral
response would be one reason for EBV to target these common effectors.

2.4.1. NFkB Pathway

NFkB is a master transcription factor in immunity and inflammation. It is highly influential in
EBYV life cycle and oncogenesis. NF«B inhibits the lytic replication of EBV [84] through repression of
the expression of lytic inducers Zta and Rta [85,86]. One mechanism through which EBV activates
NEFkB is through the recognition of EBV virions or surface glycoprotein gp350 by host TLRs via a
MyD88-dependent signaling pathway. This results in the induction of cytokine expression in infected
cells [87].

To establish and maintain latency in infected cells, EBV oncoprotein LMP1 activates NFxB
pathway through its cytoplasmic domains CTAR1 and CTAR2. LMP1 is a member of the TNF receptor
superfamily, and it mimics CD40 to activate NF«B and other growth and survival pathways [88,89].
The CTAR1 domain of LMP1 directly recruits TRAF1, TRAF2, TRAF3, and TRAF5 to activate the
IKKx-dependent NF«B pathway, whereas the CTAR2 domain of LMP1 indirectly recruits TRAF6 to
activate the IKKf3- and IKK«-dependent NF«B pathways [90,91]. NF«B signaling promotes growth
and survival of the infected cells [36,92,93]. Through NF«B activation, LMP1 also induces IL-1e, IL-1f3,
and TNF-« in infected cells, favoring transformation as in the context of NPC development [94,95].

On the other hand, the NF«B pathway is downregulated during lytic replication of the virus. EBV
deubiquitinase BPLF1 exerts an inhibitory effect on TRAF6 to prevent NF«B activation [33,36,47]. Early
lytic transactivator Zta induces p65 nuclear translocation but inhibits its transcriptional activity [96].
It also binds to TNF-a promoter to impede the function of NF«B [97]. Rta of MHV68 promotes
ubiquitination and degradation of RelA, a subunit of NF«B. It also inhibits MAVS-dependent NF«kB
activation [98,99]. BGLF4 kinase of EBV can also suppress NF«B by targeting an essential coactivator
UXT [86]. In addition, EBV-encoded miR-BART6-3p and miR-BHRF1-2-5p downregulate NF«B by
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targeting IL-6 receptor and IL-1 receptor, respectively during latency or lytic reactivation [72,100].
Several EBV-encoded miRNAs are also known to perturb B cell receptor engagement, thereby
attenuating downstream NF«kB signaling [101]. Generally, EBV promotes NF«kB activation during
latency to maintain cell growth but inhibits NF«B signaling during the lytic replication cycle.

2.4.2. IRF3 and IRF7

IRF3 and IRF7 are the principal transcription factors that activate IFN production in response to
the activation of TLRs, RLRs, and other PRRs [102]. IRF3 and IRF7 are also important during EBV
infection and transformation. Interestingly, IRF7 was initially discovered as a negative regulator of
the Qp promoter of EBV, from which EBNA-1 mRNA is transcribed during latency I [103]. IRF7 is
also known to be induced by EBV oncoprotein LMP1 [104]. Apparently, IRF3 and IRF7 might not
just be inhibited during EBV infection, and at some stages, they could also be activated and can serve
proviral or pro-transformation roles. It will be of great interest to see whether their induction might
be influential in different latency states of EBV and in EBV oncogenesis. On the other hand, their
inhibition during lytic replication is required for proper progression of the lytic cycle.

Indeed, during lytic replication, IRF3 is targeted by EBV-encoded BGLF4 and Rta. BGLF4 is a
protein kinase, which directly interacts with and phosphorylates IRF3 to impede formation of a stable
IRF3-DNA complex. Therefore, BGLF4 inhibits type I IFN expression, resembling its herpes simplex
virus 1 ortholog UL13 [105]. Rta also downregulates IRFs in the infected cells. EBV-encoded Rta has
been suggested to suppress IRF3 expression in HeLa cells by inducing the E2F1 transcription factor that
binds to the IRF3 promoter [106]. However, exactly how Rta induces E2F1 and how E2F1 represses IRF3
expression in a physiologically relevant context remain elusive. It will be of interest to see whether Rta
reduces the production or promotes the degradation of IRF3 and IRF7. In this regard, KSHV-encoded
Rta exhibits E3 ubiquitin ligase activity that targets IRF7 and other key transducers in innate immune
signaling such as MyD88 and TRIF, which are critical in TLR signaling, for degradation [107-109].
Therefore, Rta proteins of gammaherpesviruses negatively regulate type I IFN responses to facilitate
viral replication [110]. Whether EBV Rta might suppress IRF7 and innate immune signaling through
an intrinsic E3 activity like its distantly related counterpart in KSHV merits further investigations.
In addition, IFN antagonism of another key lytic inducer Zta and tegument protein LF2 of EBV has
also been documented. Both directly interact with IRF7 to inhibit its dimerization but not nuclear
translocation or phosphorylation [111,112].

As mentioned above, the expression pattern of IRF7 in latency is opposite to that during lytic
replication. Induction of IRF7 and type I IFN by LMP1 is thought to prime cells for the establishment
of latency [113,114]. Furthermore, LMP1 activates IRF7 by enhancing K63-linked ubiquitination of
IRF7 by RIP [115]. To counterbalance the effect of IRF7, LMP1 also induces the expression of an IRF7C
splice isoform that has an inhibitory effect, adding another level of complexity [116].

The diagrams in Figures 1 and 2 depict the perturbations of TLR, NLR, RLR, ALR, and cGAS
signaling by EBV.

3. EBV Perturbation of IFN Signaling

When expressed in cells, IFNs execute their antiviral functions through JAK-STAT signaling.
It is therefore not surprising that EBV has developed multiple strategies to counteract not only
IFN production but also IFN signaling. JAK-STAT pathways are activated when IFNs produced by
virus-infected cells bind to their specific receptors. Type I IFNs including IFN-«, -3, -¢ and other
subtypes interact with IFNAR1 and IFNAR?2, which are respectively associated with TYK2 and JAK1
tyrosine kinases, which phosphorylate and activate downstream transcription factors STAT1 and
STAT?2 (Figure 3). Together with IRF9, a ternary complex of STAT1-STAT2-IRF9, also called ISGF3, is
formed to stimulate the transcription of interferon-stimulated genes (ISGs) such as MX-A, ISG15, ISG56,
and OASI through IFN-stimulated response elements (ISREs) [117]. Type III IFNs such as IFN-A bind
to receptors IL-10-R2 and IFNLR1 to activate JAK1 and TYK2. On the other hand, IFN-vy is recognized
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by IFNGR1 and IFNGR?2, leading to the activation of JAK1 and JAK2. These kinases phosphorylate
and activate STAT1 to form homodimers, also known as GAF [118]. This dimer translocates into the
nucleus to induce the transcription of ISGs such as IP10, IRF1, EGR1, CIITA, and CCL2S through
enhance elements named gamma activated sequence (GAS) [117].
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Figure 3. EBV perturbation of IFN signaling. EBV proteins and RNAs suppress Type I and Type II
IFN signaling to facilitate EBV infection, maintenance, and reactivation in the infected cells (molecules
depicted in red). Some of them can also activate STAT signaling, including STAT3, to promote cell
proliferation, survival, and immune evasion (molecules depicted in green). STAT3RE: STAT3 response
element. See text for further details.

It is not surprising that type I IFNs can inhibit the replication of gammaherpesviruses in infected
cells [119]. Perturbation of IFN signaling by EBV is generally seen as a protective and adaptive
mechanism to ensure successful infection and other benefits to the virus.

3.1. JAK-STAT Signaling

JAK-STAT signaling is triggered by the binding of IFNs to their receptors. EBV proteins target
IFN receptors to prevent IFNs from binding and activating their receptors. Particularly, LMP-2A/2B
and Zta increase the turnover of IFNARs and IFNGRs, thus inhibiting IFN response [120,121].

STATs are the transcription factors that are phosphorylated and activated by upstream JAK kinases.
JAKSs and STATs are common targets of EBV proteins and miRNAs. We discussed above that LMP1
has a negative impact on TLR signaling [34]. It also induces IRF7 to activate IFN response [113,114]. In
addition, LMP1 has an N-terminal transmembrane domain, which directly interacts with TYK2 kinase
involved in type I and type III IEN signaling and suppresses phosphorylation of both STAT1 and
STAT?2 (Figure 3). Therefore, LMP1 can block IFN-mediated antiviral response in infected cells [122].
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These findings are seemingly at odds with each other. Whether the different observations might be
explained by the cell type or experimental setting remains to be determined. It will also be of great
interest to see whether LMP1 might differentially regulate IFN production and signaling, leading to
the induction of specific subsets of ISGs. Nevertheless, LMP1 might have dual regulatory roles and
may selectively activate or repress some ISGs to facilitate viral infection.

EBV also targets type Il IFN signaling by altering STAT1 levels and preventing transcription of ISGs.
Lytic trans-activator Zta inhibits tyrosine phosphorylation of JAK1 and JAK2. Zta and protein kinase
BGLF4 of EBV inhibit Tyr701 phosphorylation of STAT1, inhibiting its nuclear translocation [105,121].
Therefore, there is no induction of ISGs in response to IFN-y. In addition, EBV miRNAs can also inhibit
JAK/STAT signaling. miR-BART 20-5p and miR-BARTS are known to suppress type II IEN signaling,
whereas miRNA-BARTS also inhibits STAT1 translation in cells, therefore affecting both type I and
type IL IFN signaling [123,124].

On the contrary, SM, also called BMLF1/EB2/MTA, which is an early lytic nuclear protein and
a posttranscriptional gene activator, induces the expression of STAT1, particularly STAT1-$ splice
variant, and thus increases the expression of ISGs. Although SM does not directly affect IFN-«/f3
production [125], it might induce STAT1 possibly as a transcription factor to facilitate the transcription
of EBV genes. Several unanswered questions concerning the roles and mechanism of SM in EBV
replication and innate immune modulation arise when we consider this finding together with current
literature. SM can inhibit several viral and cellular regulators of viral replication and innate immunity
including RNA helicase DHX9 [126], which is known to be important in the repression of innate
immunity. In particular, DHX9 is critically involved in DNA and RNA sensing [127,128]. It also
interacts with MAVS and activates NF«kB and TLR signaling [129,130]. Whether SM might promote
DHX9 function remains to be elucidated. On the other hand, SM has a more general stimulatory
effect on translational initiation [131]. Whether its induction of STAT1 is specific requires further
investigations. Assuming that SM does induce STAT1 and ISGs, the relevance of this induction to
EBV infection remains to be clarified. Whether this occurs at an early stage of primary infection and
mediates the initial burst of IFNs and cytokines awaits further analysis. In this regard, transcriptomic
analysis would be very helpful in determining the subset of ISGs induced by SM.

In addition to STAT1 and STAT2, other STATs also play a role in cytokine signaling. They could
also form heterodimers with STAT1, which might possess unique transcriptional activity. These other
STATs have also been shown to be activated by EBV* leukemic cells [132]. Particularly, STAT3 is
selectively activated by LMP1 [133-135]. In addition, LMP2A can also induce IL-10 through activation
of STAT3 [136]. One functional outcome of STAT3 activation by EBV might be autophagy of infected
cells [135]. Nevertheless, the restriction of EBV latency as a result of B cell-specific knockout of STAT3
not only provides in vivo support to the importance of STAT3 in EBV latency establishment but also
suggests that targeting STAT3 might have beneficial effects in EBV-associated B cell malignancies [137].

3.2. ISGs

EBV proteins capable of inhibiting IFN signaling such as Zta, BGLF4, and LMP1 necessarily affect
the expression of ISGs, thereby preventing the establishment of an antiviral state and promoting viral
replication. However, the orthodoxical view of all ISGs being antiviral has been challenged. Indeed,
some ISGs are proviral or have dual activities [138]. Thus, EBV proteins might differentially modulate
the expression of ISGs. Some of them are also capable of differentially regulating IFN production and
signaling. For example, although EBNA2 can induce a low amount of type I IFNs, it still prevents the
induction of ISGs. Hence, EBNA2 might induce inflammation mediated by IFNs but might prevent the
establishment of the antiviral state through inhibition of ISG expression [139,140].

Several EBV miRNAs also contribute to the suppression of ISG expression. EBV-encoded miRNA
BHRF1-3 suppresses the expression of CXCL11, an ISG important for T cell activation [141]. In addition,
miR-BART20-5p and miR-BARTS inhibit IFN-y signaling by reducing the levels of phosphor-STAT1 [94].
miR-BART16 inhibits IFN and ISG expression by targeting CREB binding protein (CBP), a transcriptional
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coactivator [142]. Since the effect of CBP on transcription should not be specific to IFNs and ISGs, it
remains to be seen how targeting CBP could exert a specific suppressive effect on IFN response.

3.3. SOCS Proteins

IFNs induce suppressor of cytokine signaling (SOCS) proteins as a negative feedback mechanism
to regulate IFN signaling. As such, type I IFNs upregulate SOCS1, SOCS3, and USP18 to tune down
IEN signaling and ISG induction. EBV can activate SOCS3 in infected cells to inhibit type I IFN
secretion, providing an additional mechanism to keep IFN signaling in check [143]. Apart from
encoding viral miRNAs, EBV also upregulates cellular miRNAs. EBV-induced cellular miRNA155
downregulates SOCS1 and induces STAT3, which induces proliferation and inflammation in favor of
cellular transformation (Figure 3). It also induces cytokines such as type II IFN and interleukins to
further promote inflammation in tissues, facilitating viral egress and cell transformation [144-146].

4. EBV Perturbation of Programmed Cell Death

Programmed cell death is an integral part of innate antiviral defense that can be triggered by TLR,
RLR, NLR, and ALR signaling. Apoptosis, necroptosis, and pyroptosis are on the expanding list of
different forms of programmed cell death. Apoptosis is a cell death pathway featuring the activation
of a series of initiator and executioner caspases. The initiator caspases include caspases 2, 8, 9, and 10,
whereas the executioner caspases comprise caspases 3, 6, and 7 [147]. Necroptosis is another form of
programmed cell death in which necrosis is mediated by the serine/threonine kinase activity of RIPK1,
RIPK3, and MLKL. Morphologically distinct from apoptosis, necroptosis involves membrane rupture
and the release of cellular content [148]. Pyroptosis is one form of pro-inflammatory death involving the
activation of inflammasome complex and inflammatory caspases, including caspases 1, 4, 5, and 11, to
mediate the formation of the pores on the host cell membrane through processing of gasdermin D [147].
Inflammatory cytokines IL-1f3 and IL-18 will also be matured and released from the cells to prolong the
pro-inflammatory response. Cell death is the host’s last resort in the battle against viruses. In this sense,
all three forms of programmed cell death serve antiviral functions to some extent. As a survival strategy,
viruses have evolved countermeasures to combat different forms of cell death, especially apoptosis. As
one of the most successful human viruses, EBV is well-equipped with antiapoptotic weapons to be used
in different stages of its life cycle. During lytic replication, its BHRF1 protein is abundantly expressed
in the early lytic phase. As the viral homolog of cellular antiapoptotic protein Bcl-2, BHRF1 binds to
proapoptotic protein Bax and prevents cytochrome c release from the mitochondria, an initiation signal
of apoptosis. It can also bind and inhibit a subset of proapoptotic Bcl-2 family proteins including Bid,
Bim, PUMA, and Bak. The abundant expression of BHRF1 ensures the operation of the viral factory
during its lytic phase of replication [149-152]. During latent infection, EBV makes use of other proteins
or miRNAs to counteract apoptosis. In latency III, EBV harnesses its nuclear antigen EBNA2 to block
Nur77-mediated apoptosis [153]. It also harnesses EBNA3C to inhibit p53-, IRF4/8-, and E2F1-mediated
apoptosis [154-156]. In latency I and II, EBV miRNAs are highly expressed to modulate apoptotic
pathways. Different EBV-encoded miR-BARTs have been shown to inhibit key components of apoptotic
pathways, including PUMA (miR-BART5) [157]; Bim (miR-BART cluster I or II) [158]; caspase-3
(miR-BART1-3p, 16, and 22) [159,160]; Bad (miR-BART20-5p) [161]; TOMM?22 (miR-BART16) [162];
FEM1B and CASZ1la (miR-BART3); OCT1 (miR-BART6); ARID2 (miR-BARTS); CREBBP and SH2B3
(miR-BART16); as well as PPP3R1, PAK2, and TP53INP1 (miR-BART22) [163]. Besides miRNAs, the
underexpression of LMP1 can also inhibit Fas receptor- or TRAIL receptor-induced apoptosis [164]. It
can also suppress necroptosis by targeting RIPK1 and RIPK3 ubiquitination [165]. However, a high
expression level of LMP1 will induce apoptosis in the host cell [166]; therefore, the LMP1 expression
level is tightly controlled in the infected cells.

Although programmed cell death is generally accepted as an antiviral mechanism, recent studies
have also demonstrated its proviral roles in the life cycle of gammaherpesviruses. Activated caspases 3,
6, and 8 can cleave the protein inhibitor of activated STAT1 (PIAS1) to facilitate EBV lytic reactivation.
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PIASI is a negative regulator of STAT1 signaling; it can also act as an inhibitor of the transcriptional
factors involved in EBV lytic gene reactivation. Upon B cell receptor stimulation or chemical induction
of lytic cycle, EBV can hijack the apoptotic caspases to cleave and inactivate PIAS1 for effective lytic
replication [167]. For KSHYV, a caspase-dependent mechanism is in place to block type I IFN response.
The activated caspase 8 inhibits the TBK1/IKKe-IRF3 pathway to prevent the production of type
I IFNs [7,168]. Taken together, apoptosis may act as a two-edged sword in EBV biology. On one
hand, it can prevent the spread of the infectious materials by initiating the suicide commitment of
the infected cells. On the other hand, it can help the virus escape from the cellular inhibitors to
maintain effective viral infection and replication. How viruses modulate apoptosis to maintain a fine
balance between its proviral and antiviral roles requires further investigations. Other than apoptosis,
inflammasome activation and pyroptosis also exhibit a proviral role in EBV biology. In general,
inflammasome activation by caspase 1 increases the processing of IL-13 and IL-18 and initiates the
antiviral pro-inflammatory response and pyroptosis [148]. However, recent studies also suggest that
activated caspase 1 can enhance the processing of the large tegument protein deubiquitinase BPLF1 of
EBV [169] and can destabilize the host suppressive factor KAP1 to facilitate EBV lytic reactivation [170].
These proviral effects of caspase 1 redefine the role of inflammasome activation in EBV biology. In
summary, the roles of programmed cell death in EBV biology might be more complicated than we
originally expected. Further studies are required to dissect its function in the viral life cycle. How EBV
fine-tunes the level of programmed cell death to its own benefit remains an important question in the
next phase of analysis. The concept that caspases have proviral properties against gammaherpesviruses
has emerged and received more and more support. However, the possibility that caspases could serve
proviral functions independent of their roles in apoptosis and pyroptosis should also be challenged
with new experiments.

The intricate balance between the proviral and antiviral roles of caspases during EBV infection is
depicted in Figure 4.

BHRF1
EBNA2
EBNA3C ~—— t LMP1
miR-BARTs Caspases

1 LMP1

Programmed
cell death

Cleavage of host
and viral factors

t BPLF1 | TBK1/IKKe-IRF3
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| KAP1

Host factors:
Viral factor: | PIAS1
Necroptosis

Limiting the spread e

of EBV reactivation of EBV

Figure 4. Delicate balance of proviral and antiviral roles of caspases in EBV biology. On the one hand,
activation of caspases leads to programmed cell death such as apoptosis and pyroptosis, which limit
the spread of virus. On the other hand, activated caspases can cleave host restriction factors such as
PIAS1, TBK1/IKKe-IRF3, and KAP1 and the viral factor BPLF1 to facilitate EBV lytic reactivation. The
viral inhibitors of caspase signaling are depicted in red, and the activators are depicted in green. See
text for further details.
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5. Conclusions

The interplay between EBV and innate immunity is dynamic and complex. The view that innate
immunity combats EBV whereas EBV develops counterstrategies to evade innate immunity might
need to be modified to reflect the dual roles of innate immunity and the multifaceted interaction
between EBV and host. Whether innate immunity is a friend or foe of EBV depends on the context.
Although we discuss above the interplay between EBV and innate immunity in different sections
based primarily on different branches of innate immune signaling, the following trends should also
be noted. First, one EBV protein can target multiple pathways in a highly orchestrated manner. For
example, EBV deubiquitinase BPLF1 can suppress multiple pathways including NF«B signaling, IFN
production, and IEN signaling [171]. Second, the same EBV protein can differentially target different
players in the same or different pathways. The aforementioned opposite regulatory effects of LMP1 on
different routes of cell signaling [90,122,166] serve as a good example of its pleiotropism. Third, innate
immunity has stage-specific effects on EBV. Its roles in lytic and latent phases are different and even
opposite. It will be of great interest to see whether differences could also be seen in early and late lytic
phases as well as in different forms of latency states. Unfortunately, many observations documented in
the literature are derived from overexpression experiments conducted in physiologically irrelevant
cultured cells. Many NPC cells widely used in the research community represent contaminants or
somatic hybrids with HeLa [172-174]. A warning alarm should be sounded loud and clear. It is very
important that key experiments concerning the interaction between EBV and innate immunity be
verified in physiologically relevant systems. Ideally, cells that can be naturally infected with EBV
should be used and the key cellular factor should be genetically knocked out in these cells. In addition
to NPC, gastric cancer is another EBV-associated epithelial cancer. The interplay between EBV and
innate immunity has not been well-studied in gastric cancer cells. It will, therefore, be of interest to see
how compromising innate immune signaling in these cells might affect EBV infection. Moreover, it
will be of great importance to compare and contrast the perturbation of innate immune response by
EBV in epithelial cells and lymphocytes. It should not be taken for granted that identical patterns will
be seen in epithelial cells exposed to EBV as in infected lymphocytes. On the other hand, EBV genes
that are thought to play a role in modulating innate immunity should be disrupted and the mutant
viruses should be characterized in full for replication dynamics and ability to activate innate immunity.
The application of new technologies including CRISPR and CRISPRa screening as well as organoids
in EBV research should also help break new grounds in our understanding of the interplay between
EBV and innate immunity. Some of the most important questions that should be put at the top of the
priority list are as follows.

e  First, are type I and type III IFNs induced and innate immunity activated in EBV-infected B cells
and epithelial cells in latency I, II, and III?

e  Second, can treatment with type I and type III IFNs clear EBV infection from latently infected cells?

e  Third, is inflammasome activated in EBV-infected cells in latency I, II, and III?

e Fourth, can treatment with inflammasome inhibitors prevent cancer development in
EBV-infected individuals?

These and other key issues in the study of EBV-host interactions will keep us busy in the coming
few years.
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