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Rising electricity prices, concerns regarding system security, and emissions reduction are central to an
energy policy debate under way in Australia. To better evaluate mechanisms that seek to address the nexus
of engineering, economic, and environmental challenges facing the country’s electricity system, we have
constructed network and generator datasets describing the operation of Australia’s largest transmission
network. These data have been collated using open-source software, and are available under an open
license. They include the geospatial locations of network elements, and have been designed to interface
with a public database maintained by the Australian Energy Market Operator. This interface allows historic
data, such as generator dispatch and regional load signals, to be integrated with market models. Interactive
network maps, independent datasets, and power-flow models have been used to assess the completeness
and functionality of the derived datasets. In the context of Australia, these data can be used to examine
geospatial and temporal impacts of power injections from renewables. More generally, they allow market
models to be benchmarked against realised outcomes.
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Background & Summary
Australia’s largest transmission network is located along the country’s eastern seaboard, delivering power
to 90% of the population1. Generators and loads within this network participate in the National
Electricity Market (NEM), with the Australian Energy Market Operator (AEMO) overseeing system
operation. In recent years, the rapid deployment of intermittent renewable generators within some NEM
regions has coincided with the closure of several baseload power plants2. This shift has presented a
number of engineering and economic challenges, which have been compounded by a complex energy
policy landscape that exists within the country. Federal Government initiatives, such as the Renewable
Energy Target3, incentivise investment in renewables but do not consider the impacts of intermittency
associated with these technologies. Following a major blackout in South Australia in 2016, new policies
have been proposed at state and federal levels that seek to reward dispatchable forms of generation4,5.
Concurrently, there is a long-running debate regarding the future direction of climate change policies
within Australia, with numerous schemes proposed over the past 10 years6–8. The cacophony of
mechanisms with competing objectives has created an uncertain environment for investors, with industry
experts describing the situation as a ‘crisis’9.

Given the NEM’s significance in the context of Australia’s energy system, modelling this network
would provide a powerful means by which to evaluate the expected operation of the network under
different policy scenarios. At present, publicly available models of the NEM often ignore topological
considerations10, or greatly simplify the network using a transshipment approach11. Research initiatives
instigated by the Commonwealth Scientific and Industrial Research Organisation have attempted to
address this issue by considering the NEM’s topology in the context of predicting future electricity prices,
emissions, and system security12,13. Models used in these studies, along with other works analysing
similar issues14–16, typically use17 as the basis for their network data, which has been designed to capture
the long, linear structure of the transmission network along Australia’s eastern seaboard, and is
comprised of 14 generators, 45 buses, and 55 AC transmissions lines. However, this network is only
“loosely based on the southern and eastern Australian networks”17, and was developed with the intention
to investigate small-signal stability issues. While AEMO may provide more comprehensive models to
market participants, and in some cases researchers18, they are made available on a confidential basis.
Consequently, there is considerable scope for the development of an open grid representation of
the NEM.

Open grid models generally require network elements to be manually geocoded based on diagrams
provided by the system operator19,20, or make use of open-licensed geospatial datasets which contain
network information21. To-date, such models within the literature typically focus on European grids, with
no geospatial representations developed for Australian networks. Despite the absence of such a
representation, the components required for an open grid model are readily accessible. Data released by
AEMO22 and Geoscience Australia (GA)23–25 provide a substantial amount of information regarding the
NEM’s participants and topology. This data descriptor demonstrates how information from these sources
can be compiled to produce generator and network datasets that can be used in power-flow studies.

Datasets describing generator and network information were constructed independently and then
linked via the use of cross-reference tables and database join operations. This modular approach to their
design greatly increases their re-use potential and the ease with which they can be updated. In total, the
resulting generator dataset contains technical and economic information relating to 203 generating units,
while the network dataset consists of 912 nodes, 1406 AC edges, and three HVDC links, with line voltages
in the range of 110 kV to 500 kV. These datasets have also been designed to easily integrate with AEMO’s
Market Management System Data Model (MMSDM) database26, which contains public tables describing
regional load information, along with dispatch profiles for individual units. To the authors’ knowledge,
AEMO is the only system operator to publish such profiles for units participating within an electricity
market. This interface also allows market models to be tested and benchmarked against observed
outcomes. An overview of the network’s topology, the geospatial distribution of generating assets,
regional demand signals, and aggregate generation by fuel type is given in Fig. 1. The following sections
describe the methods used to construct these datasets, the process implemented to integrate them, and
finally evidence of their technical validity.

Methods
The Python programming language was used when constructing both network and generator datasets,
with open-source packages, Pandas27 and GeoPandas28, used extensively when collating and processing
GA and AEMO data. An overview of the construction procedure is shown in Fig. 2. The network and
generator datasets were integrated by assigning generators to nodes via the use of cross-reference tables.
Population data from the Australian Bureau of Statistics (ABS) were also used in conjunction with the
network dataset to approximate the geopsatial distribution of electricity consumption. Load and nodal
power injection signals from intermittent sources obtained from AEMO’s MMSDM database were then
combined with the network dataset, resulting in a geospatial representation of the NEM that can be used
in market models. The following sections describe the construction of these datasets, the design of cross-
reference tables used to link them, and also the methods implemented to extract historic load and unit
dispatch profiles from AEMO’s MMSDM database.
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Network
Information regarding the locations and attributes of major power stations, substations, and transmission
lines within Australia were obtained from GA. Metadata accompanying each dataset describes how GA
analysts have used satellite imagery in conjunction with high-voltage network diagrams produced by
AEMO29 when compiling network feature information30–32. For each dataset, four files formats are
available for download: xls, csv, gdb, and kmz. Of these file types only gdb and kmz files contain
coordinates describing the paths of transmission lines. As calculation of line electrical properties is
dependent on line length, the choice of suitable file formats was limited to gdb and kmz. For this analysis
kmz files were used as, when extracted, they can be interrogated using standard text editors. However, a
limitation of using kmz files is the inability to directly load these data into GeoPandas GeoDataFrames -
the principle data structure used when handling geospatial network information in this analysis. The
construction of GeoDataFrames first required that each kmz file be extracted, yielding a kml file, with the
kml file then converted to geojson format using an open-source Python tool, kml2geojson33. These
geojson files were then imported into GeoDataFrames.

While GA’s datasets are extensive, there are several important limitations associated with their use.
The first relates to a lack of information regarding network elements that provide reactive power support
to the grid e.g. capacitor banks. Additionally, no information is provided regarding transformers, with
this analysis assuming that all transformers have nominal turns ratios, and that there are no phase-
shifting transformers. Finally, no information is provided that links network elements between datasets.
For example, no details are given linking substations or power stations to transmission lines.
Relationships between these elements form the foundation of any network model, which the network
construction procedure ultimately seeks to establish.

An overview of the network dataset construction procedure is given in the top-left corner of Fig. 2.
Following the filtering of network elements, network nodes and edges were defined. Power stations and
substations were then assigned to nodes based on proximity - linking the three GA datasets. Points of

Figure 1. Dataset overview. (a) NEM network with transmission lines categorised by voltage level. Coloured

areas represent NEM zones. (b) Generators by fuel type. Marker size is indicative of relative capacity.

(c) Demand data at 30 min intervals for each NEM region. (d) Aggregate dispatch from fossil, hydro, solar, and

wind power plants at 30 min intervals.
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connection for HVDC links and interconnectors were identified using substation names. Electrical
parameters were then computed for AC edges.

Filter network elements
Records in the transmission lines, substations, and power stations GeoDataFrames were first filtered, with
network elements outside NEM states removed. As this analysis is primarily concerned with the bulk
transmission of electrical energy, low and medium voltage lines were also removed - only transmission
lines with line-to-line voltages 100 kV and above were retained.

Construct network nodes
The definition of transmission lines within metadata accompanying GA’s transmission line dataset30

informed the strategy used to construct the set of network nodes. GA defines transmission lines as being:
“unbroken from end-point to end-point; where end-points coincide with and are snapped to the location
of a substation or power station”30. Based on this definition, the first and last latitude-longitude
coordinate pairs were obtained for each transmission line. Duplicated coordinates were removed, with
those remaining describing the locations of all nodes in the network. Node identifiers (IDs) were then
assigned to these coordinates.

To link the network model to AEMO’s MMSDM database, and also provide a means of implementing
useful aggregation operations when constructing mathematical models of the NEM, additional geospatial
information was derived for each node. First, NEM region IDs, which correspond to states within
Australia, were assigned to each node (note that AEMO aggregates New South Wales and the Australian
Capital Territory into one region). These regions were assigned by using a dataset published by the ABS
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Figure 2. Overview of dataset construction procedures. Red dashed boxes denote GA datasets. (1) Define

nodes using coordinates from the ends of transmission lines. Assign ‘from’ and ‘to’ nodes to each line to

construct network edges. Use ABS population data to approximate the geospatial distribution of electricity

consumption. (2) Assign nodes to power stations and substations based on proximity. (3) Define locations of

interconnectors/HVDC links using substation names, and create a map describing power station-node

assignments. (4) Use MMSDM tables as the basis for the generator dataset. (5) Join cross-reference table foreign

keys to DUIDs. (6) Join generator technical and economic parameters from NTNDP database. (7) Integrate

network and generator datasets. Assign DUIDs to network nodes. (8) Integrate unit dispatch and regional load

data with network and generator datasets.
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detailing state and territory boundaries34. Spatial join operations were performed to assign a state name
to each node based on its geographic location. Region IDs were then assigned to each node based on its
state name.

NEM zone IDs were also assigned to each node. These zones describe boundaries at a more
disaggregated level than NEM regions, and are used in AEMO’s own market models35. While information
regarding the exact boundaries of these zones is not made publicly available, diagrams released by
AEMO35 do provide an approximate description of these zones, along with the locations of some high-
voltage transmissions lines. Using transmission lines as a common reference, the diagram produced
by AEMO was compared to a map of GA transmission lines, allowing zone boundaries to be geocoded.
Fig. 1a illustrates these zones using different colours. Spatial join operations were then performed to
assign zones to nodes.

Construct network edges
The construction of network edges required that relationships be established between the ends of each
transmission line and nodes in the network. Note that node locations are given by the set of geographic
coordinates describing the ends of transmission lines, with this set filtered such that duplicates were
removed. Nodes were assigned to transmission lines by taking the first and last coordinates of each line’s
path, and looking up the node IDs that corresponded to these coordinates. The first and last coordinates
in a line’s path were defined to be ‘from’ and ‘to’ nodes respectively. Having established a set of nodes and
edges, the SciPy36 Python package was used to identify disconnected nodes within the grid. In most
instances disconnected nodes were located in rural areas, often near mines, and are not a part of the
NEM. Few instances of nodes in urban areas disconnected from the greater network were observed. In
total, 1.7% of transmission lines and 5% of nodes within NEM regions were removed as a result of this
procedure. Total lengths of remaining transmissions lines by voltage level are given in Table 1.

Assign power stations and substations to nodes
Substations and power station records were assigned to nodes in the filtered and connected network, with
these assignments based on proximity. For each substation and power station, the haversine distance
between it and all nodes in the connected network was computed. The node closest to the network
element, and distance to this node in kilometres, was then returned. In the majority of cases power
stations and substations were co-incident with their assigned nodes - consistent with GA’s definition of
transmission lines. However, there were instances where this distance was non-zero. This often occurred
for wind farms, as turbines can be distributed over large areas, causing these network elements to be
located some distance from their nearest node. There were also network elements located in rural areas,
often near mines, that were located in NEM states but not part of the NEM network. To filter out these
elements a cut-off distance was defined such that a power station or substation could be no more than
100 km from its nearest node. This relatively large cut-off distance has been used as several power stations
were observed to be connected to the greater network via transmission lines with voltages less
than 100 kV. As these lines were removed when constructing network edges, power stations connected to
these transmission lines were located some distance from their nearest node. A distance of 100 km was
deemed to provide a suitable trade-off between retaining network elements that were close, but not co-
incident, to their assigned node, and removing elements that were clearly disconnected from the network.
If this distance was exceeded, the network element was flagged as being disconnected, and omitted from
the final dataset.

Construct HVDC links
Three HVDC branches exist within the NEM. Names of the substations to which they are connected were
obtained from AEMO37, and looked-up in GA’s substations dataset. Note that in the previous step each
substation was assigned a node in the connected network. Using these assignments, ‘from’ and ‘to’ nodes
were obtained for each HVDC link. Inspection of GA’s transmission line dataset revealed that HVDC
lines were included in the dataset, but no attributes were assigned to differentiate them from AC

Voltage [kV] Total line length [km]

110 4292

132 20768

220 6408

275 11482

330 7449

400 359

500 2170

Table 1. Total line length by voltage level.
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transmission lines. Using the points of connection defined for each HVDC link, GA transmission lines
corresponding to HVDC links were identified and tagged accordingly.

Compute electrical parameters for AC edges
Having defined the network’s topology, the electrical properties of AC edges were then computed. As data
relating to the electrical parameters of transmission lines used in the NEM’s network are scant, they have
been derived from first principles using assumptions regarding conductor types and spacing between
phases. A public document released by Ausgrid, one of Australia’s largest energy companies, suggests that
Pluto AAC 19/3 conductors are often used in their new medium and high-voltage transmission lines38.
The derivation of electrical parameters for transmission lines assumed that all conductors within the
network are of this type, with conductor properties obtained from manufacturer specifications39. The
geometric mean radius and per-length resistance of this conductor, along with the assumed system base
power and frequency are listed in Table 2. With respect to the geometric configuration of transmission
lines, it has been assumed that phases are equally spaced, with minimum separation distances between
phases for lines at different voltage levels, Dmin, obtained from40. In practice it is likely that a safety factor
is applied to this minimum separation distance. In the absence of additional information, a safety factor
of 1.5 is adopted, which is multiplied by the minimum separation distance to yield the assumed distance
between phases, Deq. Using these data the inductance, L, inductive reactance, XL, line-neutral capacitance,
CN, and shunt susceptance, BN, were calculated. Base impedance, Zbase, and base admittance values, Ybase,
are also computed for lines at each voltage level, V. These parameters are presented in Table 3, which also
includes the formulae obtained from41 used in their derivation. The length of each transmission line, l,
was then computed by summing the haversine distance between adjacent points constituting each line’s
path. Nominal per-unit values for each AC edge were calculated by multiplying the length of each
transmission line by per-unit per-length electrical parameters corresponding to its voltage level. It should
be noted that the simplifying assumptions adopted ignore the effects of conductor bundling, coupling
between phases and neutral conductors, and coupling between parallel lines. For this reason the code
used to construct the network dataset, available at42, has been designed to easily accommodate different
electrical parameters, which can be updated according to user requirements.

Generator dataset
An up-to-date repository of generator information can be found within AEMO’s MMSDM database,
accessible via the nemweb portal43. Datasets within nemweb differ in content, and also the frequency with
which they are updated. To accommodate the data requirements of market participants, each month
AEMO aggregates MMSDM data, sending this information to participants via DVDs. In 2017 AEMO
began releasing public versions of these Particpant DVDs22. The release of these data significantly

Name Symbol Value Units

Permittivity of air ɛ 8.854 × 10−12 F/m

System frequency f 50 Hz

Base power Sb 100 MVA

Conductor resistance† R 0.168 Ω/km

Conductor geometric mean radius Ds 7.1 × 10−3 m

Table 2. System-wide parameters. †Values for Pluto AAC 19/3 conductor, obtained from39.

V Zbase
a Dmin

b Deq Lc XL
d CN

e BN
f

[kV] [−] [m] [m] [mH/km] [Ω/km] [nF/km] [μS/km]

110 121 1.09 1.64 1.088 0.342 10.02 3.21

132 174 1.25 1.88 1.116 0.350 9.97 3.13

220 484 1.83 2.75 1.191 0.374 9.34 2.93

275 756 2.22 3.33 1.230 0.386 9.05 2.84

330 1089 2.60 3.90 1.262 0.396 8.82 2.77

400 1600 3.07 4.60 1.295 0.407 8.59 2.70

500 2500 3.81 5.71 1.338 0.420 8.31 2.61

Table 3. Voltage-dependent electrical parameters. aZbase ¼ V2

Sb
;Ybase ¼ 1

Zbase
. bBased on data obtained

from40. cL ¼ 2 ´ 10 - 4 lnDeq

Ds
[H/km]. dXL= 2πfL [Ω/km]. eCN ¼ 103 ´ 2πε

ln
Deq
Ds

[F/km]. fBN= 2πfCN [S/km].
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increases the ease with which generator information can be accessed, reducing the effort required to sort,
store, and clean MMSDM data. Registered capacities of generators, ramp-rates, regional demand, and
historic generator dispatch can be found within these tables. As the schema of this database is time
invariant, DVDs from different time periods can be used interchangeably, with the possibility to combine
data across multiple months to perform long-run analyses. At the time of writing, data from July 2009 to
December 2017 are available for download.

Basic technical parameters for units, such as registered capacities, were obtained from MMSDM tables.
Unit specific parameters relating to the economics of plant operation, such as fuel costs, start-up costs,
and minimum up and down times, were obtained from AEMO’s National Transmission Network
Development Plan (NTNDP)44 database. An important difference between these two sources is the
frequency with which they are released. MMSDM Participant DVDs are released monthly, while
components of the NTNDP database are typically updated annually. Construction of the generator
dataset involved the systematic compilation of information from these two sources. First, this procedure
involved constructing a list of all generators within the NEM. As MMSDM data are updated monthly, an
up-to-date list can be found using these tables. It should be noted that MMSDM tables provide details for
generators at differing levels of aggregation. At the most disaggregated level, AEMO identifies collections
of prime movers as a genset. A collection of gensets constitutes a Dispatchable Unit Identifier (DUID),
and a collection of DUIDs constitutes a station. Inspection of MMSDM tables revealed that DUIDs are
used when reporting historic generator output, which motivated the decision to use DUIDs as primary
keys in the compiled generator dataset. Doing so establishes a link between the compiled generator
dataset and historic dispatch for each generator, which can then be easily integrated into market models -
a novel attribute of this dataset.

While MMSDM tables use a consistent convention when referring to generators, the same is not true
for tables within the NTNDP database. Often units are identified by DUIDs, but in some cases different
conventions apply. In order to join NTNDP and MMSDM data, cross-reference tables were manually
constructed. These tables map generator IDs in NTNDP tables to DUIDs in MMSDM tables. If the
underlying datasets are updated or changed, only the cross-reference tables need to be updated. There
were instances where corresponding NTNDP IDs could not be found for some DUIDs. Where possible,
an existing unit of similar type in the NTNDP database was assigned to the DUID. Assumptions made
when making these assignments were documented in the comments field within each cross-
reference table.

In this analysis MMSDM tables for June 2017 have been used to construct the generator dataset.
This time period was selected for two reasons. First, this period is after the retirement of Hazelwood
power station in March 2017, which was one of Australia’s largest baseload generators. As we anticipate
that these datasets will have future-oriented applications, we seek to use a time period after this plant had
ceased operation, as this prevents dispatch signals for other DUIDs being influenced by output
from Hazelwood. The second reason for selecting this time period relates to the availability of AEMO
datasets which can be used to cross-check registered capacities listed in MMSDM tables. AEMO
periodically publishes such datasets, with one available for June 201745. By using MMSDM data from the
same period, registered capacities of generators in different regions can be cross-checked against an
additional source.

Database operations performed to construct the generator dataset are illustrated on the right-side of
Fig. 2. Each box represents a table within the underlying MMSDM and NTNDP datasets, with the
database operation used to join each table to the compiled dataset displayed above each box. The
direction of arrows denotes the order in which each operation is performed. The collation procedure
started by taking an MMSDM table providing a summary of DUID details as the basis. This table also
contained a version history of records for each DUID. As we wish to extract the most recent records, a
filter was applied to remove records corresponding to previous versions. Registered capacities, station
names, and emissions intensities were then joined to this basis table using DUIDs as join keys. It should
be noted that additional steps were required when joining emissions intensities to the compiled dataset as
they are reported by genset. Each emissions intensity record contains the genset ID, and also the DUID
corresponding to the genset. A group-by operation was performed to compute the mean emissions
intensity for each collection of gensets which constituted a DUID. In most cases gensets within these
collections had identical emissions intensities, but some instances were observed where emissions
intensities differed among gensets. As it is impossible to determine the proportion each genset contributes
to aggregate output for each DUID, computation of the mean emissions intensity was deemed to provide
a suitable trade-off, making the implicit assumption that each genset contributes equally to DUID output.
It should also be noted that this emissions intensity table was obtained from the Current Reports
directory on nemweb46, as participant DVDs do not provide information allowing emissions intensities to
be mapped to DUIDs.

Having compiled MMSDM data, foreign keys from cross-reference tables were joined to this table
using DUIDs as join keys. These foreign keys were then used to join data from each NTNDP table to
the compiled dataset. Note that the arrows for joining cross-reference tables are in parallel, illustrating
that these join operations can be performed in any order. Finally, two attributes were assigned to each
DUID. First, a fuel category was assigned based on the specific fuel-type associated with each DUID.
All coal and natural gas power plants were assigned the fuel category ‘Fossil’. Hydro, wind, solar, and
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plants using biofuels were assigned the categories ‘Hydro’, ‘Wind’, ‘Solar’, and ‘Biofuel’ respectively.
Mapping from fuel-types to general fuel categories assisted in performing aggregation operations,
allowing units of different types to be easily identified and grouped. The short-run marginal cost
(SRMC) of electricity production for each generator was then computed based on each unit’s
heat rate, fuel cost, and variable operations and maintenance (VOM) cost, as shown in equation (1),
with fuel costs for 2016–17 used in the calculation. There was one gas-fired power station, Swanbank
E, for which a 2016–17 fuel cost is unavailable. This unit’s SRMC was based on its 2017–18 fuel cost
instead.

SRMC½$=MWh� ¼ HeatRate½GJ=MWh� ´ FuelCost½$=GJ� þ VOMCost½$=MWh� ð1Þ

While generally comprehensive for thermal power plants, generators with the following primary fuel
types: natural gas (pipeline), coal seam methane, kerosene - non-aviation, and diesel oil had no minimum
dispatchable output assigned. In practice there would be a level below which output from these generators
would non-dispatchable. As a number of these power plants are peaking facilities, minimal online
production levels are likely to be dependent on plant specific characteristics. Given the difficulty
associated with their approximation, we do not attempt to estimate these values. Instead we acknowledge
the incompleteness of these records, and suggest users be mindful of this omission in any potential use
cases. Additionally, the NTNDP database does not contain economic parameters for several hydro
generators. As these power plants do not have fuel costs, the SRMC is equal to their VOM cost. It was
observed that hydro generators in the NTNDP database were assigned a VOM cost of 7 $/MWh,
irrespective of their capacity. Consequently, for hydro generators missing economic parameters, a default
SRMC of 7 $/MWh was assigned. Similarly, several wind and solar generators were missing VOM costs.
Inspection of the NTNDP database revealed that these generators were always assigned a VOM cost of
0 $/MWh, with this value set as the default SRMC for wind and solar plants missing economic
parameters. Technical parameters were also missing for solar power plants. Ramp-rates for these
generators were instead obtained from MMSDM tables reporting maximum ramp-rates for DUIDs. Note
that these differ from those obtained from the NTNDP database, which report ramp-rates for start-up,
shut-down, and normal operation. As power output is variable for wind and solar generators, it was
assumed that there is no required minimum on or off period for these units. Start-up costs for solar
generators were also assumed to be zero.

Geospatial load distribution
AEMO provides load-signals for each NEM region at the temporal resolution of 30 min intervals.
However, no information is provided regarding the spatial distribution of load with regions. In order to
allocate load to nodes, a similar approach to that used by19,20 was implemented. This load assignment
strategy assumes that the geospatial distribution of load follows that of population - areas with larger
populations are assumed to consume proportionally more electricity. To implement this strategy,
geospatial population data were obtained from the ABS47. It should be noted that these data are
available at differing levels of aggregation, with each geographic boundary referred to as a Statistical
Area. In this analysis Statistical Area Level 2 (SA2) population datasets were used, as boundaries at this
level of aggregation seek to “represent a community that interacts together socially and economically”48

. The dataset is comprised of 1875 areas which are within states and territories that constitute the NEM,
with the population in 2015 given for each record. An approximation of the population served by each
node was made by constructing a Voronoi tessellation of the network, using network nodes as seeds,
and then overlaying Voronoi cells with SA2 areas. The steps taken to compute the population within
each Voronoi cell, and by extension the population served by each node, are given in Algorithm 1. For
each Voronoi cell the SA2 areas with which it intersects were found. The proportion of an SA2 area’s
population living within each intersected area was estimated by computing the area of intersection as a
fraction of total SA2 area, and multiplying this value by the SA2 area’s population. Population
contributions from each intersected SA2 area were then summed, yielding an estimate of the total
population within each Voronoi cell, and by extension the population served by the node within that
cell. The total population assigned to each node was then divided by the total population of the NEM
region in which the node was located. The resulting fraction is the proportion of the NEM region’s
population assigned to that node, which was used as a proxy for the proportion of regional electricity
consumed at that node.

Algorithm 1 Node-population assignment

1: for each Voronoi cell do
2: find all SA2 areas with which the Voronoi cell intersects
3: for each intersected SA2 area do
4: compute area of intersection as a proportion of total SA2 area
5: multiply the fraction computed in 4 by the SA2 area’s population
6: end for
7: sum the population contributions from each SA2 area found in 5
8: end for

Table .

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180203 | DOI: 10.1038/sdata.2018.203 8



Figure 3 illustrates the data that underlies the demand allocation procedure, with Fig. 3a showing SA2
areas, while Fig. 3b illustrates the Voronoi tessellation based on network nodes. Fig. 3c shows the final
demand allocation with dot sizes representative of the proportion of regional demand consumed. From
this figure it can be seen that more electricity is consumed near each capital city - a pattern of demand
consistent with expectations.

Linking datasets
Generator and network datasets. The generator and network datasets developed in the previous
sections have been constructed independently, with this modular approach to their design simplifying the
process of applying updates. In order to make use of these datasets when constructing market models,
they must be integrated. This was accomplished by creating a map between DUIDs in the generator
dataset and nodes in the network dataset. This involved mapping DUIDs to GA power stations, with
these power stations having already been mapped to nodes in the network construction phase. The
schematic below illustrates the DUID-node assignment procedure.

For some DUIDs a corresponding GA power station could not be found. The locations of these DUIDs
were manually looked-up, and compared against a map of GA power stations. If an alternative GA power
station was located close to a DUID, this station was assigned instead. Note the different functions of the
projections described in the above schematic. Assigning DUIDs to GA power stations essentially
attributes geospatial information to DUIDs. The second map then projects power stations onto the set of
network nodes, capturing the geospatial distribution of generating assets. Therefore, direct
correspondence between DUIDs and GA power stations is not necessary, what is important is the
ability of the assigned GA power stations to approximate the locations of DUIDs. This assignment
strategy is particularly advantageous when one considers making alterations to the network’s topology. If
for example transmission lines were filtered by a different voltage level, a new set of nodes would arise.
GA power stations would again be assigned to nodes based on proximity. The static cross-reference table
would still assign DUIDs to the same GA power stations, allowing DUIDs to be assigned to the new set of
nodes. Consequently, this allocation procedure allows generator and network datasets to be easily
integrated following an alteration to the network’s topology.

MMSDM load profiles. Load profiles for each node were constructed by linking tables from AEMO’s
MMSDM database to the network dataset previously described. Demand profiles are provided for each
NEM region within the MMSDM database, with demand given at 30 minute intervals. For each interval,
the proportion of regional demand consumed at each node was multiplied by the level of regional
demand corresponding to that node. This yielded nominal demand profiles for each node in MW. As
MMSDM table schema do not change over time, demand profiles for any period between July 2009 and
December 2017 can be constructed. In this analysis we have extracted and transformed regional load
profiles for the month of June 2017, which can be found in signals_regional_load.csv (Data Citation 1).

Figure 3. Demand allocation. (a) SA2 areas with the locations of network nodes denoted by red markers.

(b) Voronoi tessellation with colour denoting population in each polygon. (c) Final demand allocation. Size of

dots indicates proportion of regional demand allocated to node.
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Historic dispatch. AEMO’s MMSDM database contains historic dispatch signals for each DUID, with
output in MW given at 5 min intervals. To keep demand and dispatch signals at the same level of
temporal resolution, these dispatch data were aggregated, yielding mean power output at 30 minute
intervals for each DUID, and can be found in signals_dispatch.csv (Data Citation 1). When developing
models, these data were used to construct signals for intermittent nodal power injections. This was
accomplished by first identifying DUIDs corresponding to intermittent generators. These intermittent
generator DUIDs were then grouped by the node to which they were assigned, with their corresponding
dispatch profiles superimposed. The resulting profiles take into account the spatio-temporal relationship
of nodal power injections from intermittent sources. Mathematical models within the GitHub repository
associated with this project42 contain code implementing the signal construction procedure described
here. In addition to constructing signals for intermittent generators, these data also provide a unique
opportunity to compare historic dispatch to results obtained from market models. Due to data availability
issues, it has previously been impossible to benchmark such models against realised market outcomes.
However, dispatch profiles released by AEMO now make such analyses possible.

Similar to the load data described above, MMSDM table schema for dispatch profiles are time
invariant. As the MMSDM database is periodically updated we have not attempted to construct long-run
generator dispatch profiles, as they would soon be outdated. Instead we have included signals for the
month of June 2017 as a sample, and made available a tool that can be used to extract dispatch and load
signals for any month within the MMSDM database, which can be found at42.

Code availability
All code used to construct the network and generator datasets is contained within two Jupyter Notebooks
at the GitHub repository associated with this project42. Data that underlies these datasets, along with
notes relating to their provenance, are also included. Interested parties can interrogate each step of the
dataset construction process and re-produce all results. A third notebook provides a tool used to extract
generator and dispatch load signals from MMSDM tables. Additional Jupyter Notebooks are provided
which contain code used in the data validation process, and implement market models using the
generator and network datasets as inputs. A Jupyter Notebook that plots all results from these analyses is
also included, allowing output from the network construction and data validation procedures to be
visualised. All code is available under an MIT license.

Data Records
Eight csv files constitute the network and generator datasets: generators.csv, network_edges.csv,
network_nodes.csv, network_hvdc_links.csv, network_ac_interconnector_links.csv,

network_ac_interconnector_flow_limits.csv, signals_dispatch.csv, and signals_regional_load.csv (Data
Citation 1). Tables 4 and 5 summarise the inputs used to construct the network and generator datasets
respectively. An overview of fields within datasets describing network nodes, edges, HVDC links, and

Filename Source Description

ElectricityTransmissionLines_v2/doc.kml GA23 GA transmission line data

ElectricityTransmissionSubstations_v2/doc.kml GA24 GA substation data

MajorPowerStations_v2/doc.kml GA25 GA major power station data

STE06aAUST.shp ABS34 State and territory boundaries

32180 SA2 ERP 2015/doc.kml ABS47 SA2 population data

Table 4. Network dataset inputs.

Table Name Source Description/contents

DUDETAILSUMMARY MMSDM22 Schedule type and station IDs

DUDETAIL MMSDM22 Registered capacities

STATION MMSDM22 Station names

CO2EII_AVAILABLE_GENERATORS MMSDM46 Emissions intensities

Existing Generators NTNDP44 Technical parameters for units

Coal Cost NTNDP44 Fuel cost profiles for coal units

Gas Cost NTNDP44 Fuel cost profiles for gas units

VOM NTNDP44 VOM costs for each DUID

Heat Rates NTNDP44 DUID heat rates

Table 5. Generator dataset inputs.
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Col. Col. Name Format Units Range Description

1 NODE_ID str — 1–960 Node ID

2 STATE_NAME str — — State in which node is located

3 NEM_REGION str — — NEM region in which node is located

4 NEM_ZONE str — — NEM zone in which node is located

5 VOLTAGE_KV int kV 110–500 Node voltage

6 RRN int — 0–1 If 1 node is a RRN, if 0 node is not a RNN

7 PROP_REG_D float — 0.0–0.123 Proportion of NEM regional demand consumed at node

8 LATITUDE float N° �43.2–15.9 Latitude (GDA94)

9 LONGITUDE float E° 135.5–153.5 Longitude (GDA94)

Table 6. Network nodes dataset summary.

Col. Col. Name Format Units Range Description

1 LINE_ID str — — Network edge ID

2 NAME str — — Name of network edge

3 FROM_NODE int — 1–960 Node ID for origin node

4 TO_NODE int — 1–960 Node ID for destination node

5 R_PU float p.u. 6.09 × 10�6–0.407 Per-unit resistance

6 X_PU float p.u. 1.52 × 10�5–0.829 Per-unit reactance

7 B_PU float p.u. 1.07 × 10�5–1.249 Per-unit susceptance

8 NUM_LINES int — 1–4 Number of parallel lines

9 LENGTH_KM float km 0.03–315.7 Line length

10 VOLTAGE_KV float kV 110–500 Line voltage

Table 7. Network edges dataset summary.

Col. Col. Name Format Units Range Description

1 HVDC_LINK_ID str — — HVDC link ID

2 FROM_NODE int — 605–806 Node ID of origin node

3 TO_NODE int — 88–298 Node ID of destination node

4 FORWARD_LIMIT_MW float MW 180–594 ‘From’ node to ‘To’ node power-flow limit

5 REVERSE_LIMIT_MW float MW 180–478 ‘To’ node to ‘From’ node power-flow limit

6 VOLTAGE_KV float kV 132–400 HVDC link voltage

Table 8. Network HVDC links dataset summary.

Col. Col. Name Format Units Range Description

1 INTERCONNECTOR_ID str — — AC interconnector ID

2 FROM_NODE int — 40–806 Node ID of origin node

3 FROM_REGION str — — Region in which ‘From’ node is located

4 TO_NODE int — 5–807 Node ID for destination node

5 TO_REGION str — — Region in which ‘To’ node is located

6 VOLTAGE_KV float kV 110–330 Line voltage

Table 9. AC interconnector locations dataset summary.
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interconnectors are presented in Tables 6, 7, 8, 9, 10. Fields within the generator dataset are described in
Table 11, while Tables 12 and 13 describe fields in regional load and DUID dispatch time series. Note that
we have not elected to use the IEEE Common Data Format49 for this dataset. Several reasons motivated
this decision. First, the standard format does not support the inclusion of historic dispatch and regional
load signals. Secondly, it does not support the inclusion of geospatial information, such as latitude and
longitude coordinates, which have been provided for network nodes. Thirdly, AEMO’s definition of
interconnector limits, obtained from50, are incompatible with this format. While most interconnector
limits are with respect to the flow over a single link, the Victoria to New South Wales interconnector is
defined as the aggregate flow over several lines. For this reason interconnector information has been split

Col. Col. Name Format Units Range Description

1 INTERCONNECTOR_ID str — — AC interconnector ID

2 FROM_REGION str — — Region in which ‘From’ node is located

3 TO_REGION str — — Region in which ‘To’ node is located

4 FORWARD_LIMIT_MW float MW 107–1600 ‘From’ node to ‘To’ node power-flow limit

5 REVERSE_LIMIT_MW float MW 210–1350 ‘To’ node to ‘From’ node power-flow limit

Table 10. AC interconnector flow limits summary.

Col. Col. Name Format Units Range Description Sourcea

1 DUID str — — Unique ID for each unit 22

2 STATIONID str — — ID of station to which DUID belongs 22

3 STATIONNAME str — — Name of station to which DUID belongs 22

4 NEM_REGION str — — Region in which DUID is located

5 NEM_ZONE str — — Zone in which DUID is located

6 NODE int — 9–940 Node to which DUID is assigned

7 FUEL_TYPE str — — Primary fuel type 22

8 FUEL_CAT str — — Primary fuel category

9 EMISSIONS float tCO2/MWh 0.0–1.56 Equivalent CO2 emissions intensity 46

10 SCHEDULE_TYPE str — — Schedule type for unit 22

11 REG_CAP float MW 21–1500 Registered capacity 22

12 MIN_GEN float MW 0.0–347.2 Minimum dispatchable output 22,44

13 RR_STARTUP float MW/h 60–1200 Ramp-rate for start-up 44

14 RR_SHUTDOWN float MW/h 40–9740 Ramp-rate for shut-down 44

15 RR_UP float MW/h 60–12000 Ramp-rate up when running 44

16 RR_DOWN float MW/h 60–10080 Ramp-rate down when running 44

17 MIN_ON_TIME int h 0–16 Minimum on time 44

18 MIN_OFF_TIME int h 0–16 Minimum off time 44

19 SU_COST_COLD int $ 0–260400 Cold start start-up cost 44

20 SU_COST_WARM int $ 0–89280 Warm start start-up cost 44

21 SU_COST_HOT int $ 0–29760 Hot start start-up cost 44

22 VOM float $/MWh 0.0–12.5 Variable operations and maintenance costs 44

23 HEAT_RATEb float GJ/MWh 0.0–15.7 Heat rate 44

24 NL_FUEL_CONS float — 0.0–0.3 No-load fuel consumption as a proportion of full load consumption 44

25 FC_2016-17 float $/GJ 0.0–8.6 Fuel cost for the year 2016–17 44

26 SRMC_2016-17 float $/MWh 0.0–129.7 Short-run marginal cost for the year 2016–17

Table 11. Generator dataset summary. aWhere no source is given, the value has been derived as part of the
dataset construction procedure. NEM_REGION and NEM_ZONE were found by determining the region and
zone of each generator’s assigned node. FUEL_CAT assigns a generic category to FUEL_TYPE. MIN_GEN was
computed by combining minimum output as a proportion of nameplate capacity from44 with registered
capacities from22. SRMC_2016-17 is calculated from VOM, HEAT_RATE, and FC_2016-17 fields, using
equation (1). bWhile not explicitly stated, it is assumed that a lower heating value is referred to. This is
consistent with another field in44 that gives DUID thermal efficiency in terms of lower heating values.
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into two files: network_ac_interconnector_links.csv which contains the nodes to which each AC
interconnector is attached, while network_ac_interconnector_flow_limits.csv contains the aggregate bi-
directional flow limits for each AC interconnector. HVDC link information is also contained within a
separate file, with this file structure enabling these records to be more easily examined, maintained, and
updated.

The files provided at Data Citation 1 provide a complete description of the final network and
generator datasets. Those seeking to re-produce these datasets can do so by using Jupyter Notebooks
within the GitHub repository42 associated with this project.

Technical Validation
Validation of the derived datasets seeks to assess their completeness, consistency, and functionality. Here
completeness and consistency refers to the extent to which the derived data capture information relating
to features within the network, while functionality assesses the ability to use these data when formulating
mathematical representations of the NEM. When assessing completeness, where possible, derived data
have been compared to additional datasets, not used in their derivation, to independently verify their
contents. Graphical techniques have also been used to construct interactive network maps which assisted
in verifying the logical consistency of relationships between elements. With respect to functionality, the
ability to construct feasible mathematical models was first verified. Historic dispatch and interconnector
flow signals were then used as a benchmark against which the results from generic power-flow models
were compared. It should be noted that there are several limitations associated with using a modelling
approach to validate these datasets. Considerations such as contractual obligations between generators
and retailers, strategic bidding behaviour of generators, and hydro scheduling constraints have not be
taken into account. Unplanned outages and crew availability are additional factors that could cause model
and observed outcomes to diverge. It is therefore not expected that dispatch and interconnector flows will
exactly correspond. Rather the goal is to determine if qualitative trends associated with the basic
economic and operational aspects of the NEM can be captured using these data. In this way the following
assays seek to provide an overall assessment regarding the capability of the presented datasets to emulate
the operation of the system which they seek to represent.

Completeness and consistency
Generator data. Information within the generator dataset was first evaluated by examining the
number of DUIDs within MMSDM tables that were assigned to network nodes, and therefore included in
the final generator dataset. It was noted that MMSDM tables contain more unique DUIDs than the final
generator dataset; however, not all of these correspond to physical units. For example, DUIDs pre-fixed
with ‘RT’ or ‘DG’, acronyms for reserve trader and dummy generator respectively, are in fact components
used in the automated dispatch protocol within AEMO’s National Electricity Market Dispatch Engine.
These non-generator DUIDs were excluded when comparing DUIDs in the underlying and final datasets.
In total 203 DUIDs are present within the final generator dataset, accounting for all scheduled and semi-
scheduled DUIDs in the filtered MMSDM tables. Note that non-scheduled units are present in MMSDM
tables, but have not been included in the final generator dataset, as these generators do not participate in
central dispatch.
Registered capacities were also checked against an additional dataset provided by AEMO. Periodically,

AEMO makes available separate datasets containing generation information data detailing registered capacities
of generators in each NEM region45. Table 14 shows registered capacities for scheduled and semi-scheduled

Col. Col. Name Format Units Range Description

1 SETTLEMENTDATE timestamp — 1/6/2017 12:30:00 AM–1/7/2017 12:00:00 AM Trading interval

2 NSW1 float MW 6298.7–11652.8 New South Wales demand signal

3 QLD1 float MW 4864.0–7728.7 Queensland demand signal

4 SA1 float MW 1002.9–2287.1 South Australia demand signal

5 TAS1 float MW 921.0–1708.6 Tasmania demand signal

6 VIC1 float MW 3795.8–7357.3 Victoria demand signal

Table 12. Regional demand signals dataset summary.

Col. Col. Name Format Units Range Description

1 SETTLEMENTDATE timestamp — 1/6/2017 12:30:00 AM–1/7/2017 12:00:00 AM Trading interval

2–265 (DUID) float MW — DUID dispatch profile

Table 13. DUID dispatch profiles. aColumns correspond to DUIDs.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180203 | DOI: 10.1038/sdata.2018.203 13



generators for both datasets. The largest difference was observed for installed hydro capacity in New South
Wales and Victoria. This is due to Murray power station, a hydro power plant with a registered capacity of
1500MW, being assigned to Victoria in the AEMO generation information dataset, but New South Wales in
the compiled generator dataset. Further investigation revealed that this station is in fact located in New South
Wales, close to the border with Victoria. Following hydro generators, the next largest discrepancy was
associated with installed wind capacity. Differences of 27 and 8% were observed for New South Wales and
South Australia respectively, and are due to DUIDs being assigned to wind farms still under construction. For
the remaining generator types the difference in installed capacity is less than 5%. In aggregate, less than a 1%
difference is observed in installed capacity between datasets, supporting the notion that the compiled generator
dataset comprehensively covers generators within the NEM.
While construction of the generator dataset primarily used database join and merge operations, the

compilation of data from different sources also relied on manually constructed cross-reference tables
mapping DUIDs to foreign keys in NTNDP tables. The template used to create these maps was designed such
that several checks could be carried out when assigning NTNDP keys to DUIDs. Fields including station
name, registered capacity, and fuel-type were added to the template for each DUID, with this additional
information used to ensure that NTNDP keys were being correctly assigned to their corresponding DUID. A
comment field was also added to each table, and used to document assumptions made during the assignment
process.

Network data. An interactive map was created to assess the dataset resulting from the network
construction procedure. Produced using Folium51, an open-source Python package, the map includes
zoom functionality, allowing different sections of the network to be examined in detail. When clicked,
nodes display the names and IDs of network elements (substations and power stations) which were
assigned to them. Similarly, transmission lines when clicked display the line’s name, along with it’s
GeoDataFrame ID. This map provided a useful way in which to visually inspect different network areas,
and assess if any errors had occurred during the network construction process. It also provided a useful
means by which to quickly identify individual nodes within the network, for example those connected to
HVDC links or interconnectors. The interactive map generated by this code can be found within this
project’s GitHub repository42.

Gen. Dataset AEMO Gen. Info. Difference

(MW) (MW) (MW) %

New South Wales

Coal 10240 10160 80 0.78

Hydro 4054 2525 1529 37.72

OCGT/CCGT 2038 2029 9 0.45

Solar 212 211 1 0.47

Wind 655 480 175 26.72

Queensland

Coal 8119 8186 �67 �0.83

Hydro 644 652 �8 �1.30

OCGT/CCGT 3440 3297 143 4.16

South Australia

OCGT/CCGT 2933 2981 �48 �1.64

Wind 1309 1207 102 7.77

Tasmania

Hydro 2171 2170 1 0.04

OCGT/CCGT 371 386 �15 �4.04

Wind 168 168 0 0.00

Victoria

Coal 4690 4630 60 1.28

Hydro 632 2213 �1581 �250.16

OCGT/CCGT 2374 2382 �80 �0.34

Wind 965 965 0 0.00

Total 45015 44643 372 0.83

Table 14. Installed capacity comparison between generator dataset and AEMO generation
information for June 2017.
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Demand data. Owing to a lack of disaggregated demand data it has not been possible to validate
computed values for the proportion of regional electricity demand consumed at each node. Qualitatively,
Fig. 3c demonstrates how the demand allocation procedure results in greater demand within the vicinity
of capital cities. While this pattern of demand follows intuition, it has not been possible to verify
empirically.

Functionality
Assessment of dataset functionality involved the development of two baseline mathematical
representations of the NEM, both seeking to determine dispatch via a linear cost minimisation objective.
The first implements a DCOPF model, based on the formulation presented in52, that makes use of the full
network comprised of 912 nodes, 1406 AC edges and three HVDC links. The second uses a 16 node
transshipment model, with each node corresponding to a NEM zone. This reduced network was
constructed by grouping nodes and generators by the zone to which they were assigned. Links between
zones were found by mapping zones to ‘from’ and ‘to’ nodes in network_edges.csv and
network_hvdc_links.csv, keeping links that connect zones, and dropping duplicates. The ability to
quickly construct a reduced network model can be useful if a less granular model is required. It also
provides a means by which to compare the informational content of the full network representation with
a less detailed model that neglects features such as transmission line electrical parameters and
node voltage angles. For both representations a nominal fee of 5 $/MWh was imposed on absolute
interconnector flows, reflecting the fact that their is economic value associated with using these network
assets. The fee is set lower than the SRMC of hydro generators to avoid this penalty distorting dispatch
decisions, but still discourages unrealistic loop flows between regions. Pyomo53,54 was used to formulate
the baseline models, which were solved for each of the 1440 trading intervals within the
signals_regional_load.csv dataset using Gurobi55 as the solver. Feasible solutions were found for each
trading interval, indicating that supply is sufficient to meet demand in all periods. Having established that
feasible models can be constructed, three scenarios were developed that make use of historic signals for
interconnector flows and generator dispatch in order to assess the ability of the datasets to emulate NEM
operation. These scenarios involved modifying the baseline DCOPF and transshipment models, with each
scenario run using one day’s worth of data (48 trading intervals). While data for the entire month could
be used, the time required to complete simulation runs proved prohibitive. In the case of the baseline
DCOPF model, approximately 10 s was required to obtain a solution for each trading interval, requiring a
runtime of approximately 4 h for each scenario if using data for all available time periods. By using a
single day, the diurnal cycle of load and intermittent power injection profiles can be captured, while
reducing the amount of time required to analyse each scenario. The following sections describe the
different scenarios constructed, and how they have been used to assess the capability of the presented
datasets to emulate NEM operation.

Scenario 1 - Minimise difference between model and observed outcomes
Scenario 1 is based on the network validation procedure used in19, where generator output was adjusted
such that interconnector flows obtained from a power-flow model closely matched observed flows. Data
for historic flows over each of the network’s six interconnectors were obtained from43, providing one
example of an additional table that can be included from AEMO’s MMSDM database. A limitation of the
method used in19 is that it is unknown if the dispatch schedule that minimises interconnector flow
deviations is congruent with reality. In this analysis generator dispatch is known, with these data used to
extend the validation procedure used in19. In addition to minimising the difference between model and
observed interconnector flows for each interconnector, deviations between model and observed dispatch
are also minimised for each generator. Rather than minimising these deviations via manual adjustment,
as in19, a mathematical approach is adopted, whereby the objective function given by equation (2) is
minimised, where g and i denote generators and interconnectors respectively.

min
X

i

:Model flowi � Observed flowi:1 þ
X

g

:Model dispatchg �Observed dispatchg:1 ð2Þ

Large deviations between model and observed interconnector flows could be indicative of incorrectly
specified interconnector limits, transmission line electrical parameters, or demand allocations. Similarly,
large deviations between observed and model dispatch may indicate incorrectly specified generator
parameters.

Scenario 2 - Fixed nodal injections
Scenario 2 complements Scenario 1 by considering the situation where all generator output is fixed to
historic levels. Interconnector flows arising from the model are then compared to observed historic flows.
Unlike Scenario 1 where deviations were minimised by design, this scenario attempts to assess how
interconnector flow limits, tranmissions line electrical parameters, and demand allocations influence
flows throughout the network, and how much these flows deviate from observed outcomes. As historic
data for fixed power injections exceeded total demand (due to losses within the real system), it was
necessary to scale generator output such that total demand and supply balanced. Without this re-
balancing models flows, which do not consider losses, would be infeasible.
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Scenario 3 - Generation cost minimisation
In this scenario generator output was allowed to be variable, with dispatch determined by generator
SRMCs and network constraints. Model dispatch and interconnector flows were compared with observed
values. Assuming the market for power is somewhat competitive, it is expected that the relative costs of
generators will influence their dispatch. By comparing model and observed dispatch, it is possible to
ascertain how well generator SRMCs capture these relative cost differences, and reflect the bidding
behaviour of generators.

As some unit specific parameters included in the generator dataset, such as minimum up times and
startup costs, cannot be analysed using the linear baseline models, an extension is made by formulating a
unit commitment model based on56 which takes these parameters into account. Minimum reserve levels
for each region are also included, and based on data obtained from44. The increased computational
complexity of this formulation resulted in computer memory limitations being encountered when
running the model using the full network. Consequently, results have only been obtained when using the
reduced network. By comparing dispatch results from the linear and non-linear formulations, an
indication is given as to the effect of including these additional parameters.

Scenario results
Results from the assays performed are shown in Figs. 4, 5, and 6. Figure 4 compares model and observed
net aggregate interconnector flows, while Fig. 5 compares model and observed aggregate generator
dispatch for each scenario. A comparison between model and observed dispatch profiles for selected
stations is shown in Fig. 6. Station dispatch was calculated by aggregating DUID output to the station
level. For Fig. 5, these values were further aggregated by computing total energy sent out over the 24 h
interval under investigation. Each marker within this figure corresponds to a station, with its size
indicative of registered capacity. Symmetric log and log-log scales have been used for Figs 4 and 5
respectively to better resolve network flows and generator dispatch values at differing orders of
magnitude. Stations that sent no energy out over the interval were arbitrarily assigned a dispatch value of
1 MWh, allowing them to be resolved on a logarithmic scale. Dashed black lines in Figs 4 and 5 have
slopes of one, and denote the situation where model and observed values exactly correspond.

Interconnector flow results from Scenario 1 are shown in Fig. 4a and e, while dispatch results are
shown in Fig. 5a and d. Strong correspondence is generally observed between model and historic values,
with the exception being net aggregate flow over the Victoria - New South Wales (VIC1-NSW1)
interconnector for the reduced network. It should be noted that this interconnector is defined as the
aggregate flow over several transmission lines, with some entirely residing within New South Wales.
When the reduced network is constructed, these internal lines are lost, which likely explains the under

Figure 4. Comparison between model and observed interconnector flows. (a & e) Scenario 1, minimise

difference between model and observed interconnector flows and generator dispatch using the full and reduced

networks respectively. (b & f) Scenario 2, fixed generator output. (c & g) Scenario 3, variable generator output

using a linear cost minimisation objective. (d) Scenario 3, variable generator output using a non-linear unit

commitment (UC) formulation.
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representation of energy transfer over this interconnector. Results from Scenario 2 are presented in Fig.
4b and f, which compare model and historic interconnector flows for both the full and reduced networks
when generator power injections are fixed. With the exception of VIC1-NSW1 in Fig. 4b and Victoria to
South Australia HVDC flows (V-S-MNSP1) in Fig. 4d, model and observed interconnector flows are in
close agreement. This suggests that transmission line electrical parameters, interconnector flow limits,
and demand allocations are capable of driving network flows that generally correspond well with
observed values. Interconnector flow results from Scenario 3 are presented in Fig. 4c,d and g. Aggregate
flows between New South Wales and Queensland (NSW1-QLD1 and N-Q-MNSP1) in Fig. 4f
corresponded poorly with observed outcomes when using the reduced network and linear cost
minimisation objective. Correspondence increases for N-Q-MNSP1 flows when the full network
representation is used, shown in Fig. 4g, however large deviations still exist for NSW1-QLD1 flows.
Dispatch results for this scenario are shown in Fig. 5b and e. The majority of generators that are observed
to be dispatched, based on historic data, are dispatched by the baseline models; however, it can be seen
that hydro power plants are systematically over utilised. This is likely due to hydro generators having
lower SRMCs relative to thermal power plants, causing the cost minimisation objective functions to
favour output from these stations. This may also explain the discrepancy between model and observed
interconnector flows for this scenario. Fig. 5c provides a final extension to Scenario 3, where a unit
commitment model with ramp-rates, startup-costs, and minimum up and down times is used.
Comparing Fig. 5b and c, the tighter clustering of markers around the dashed black line in Fig. 5c
suggests that including these additional parameters has a positive effect in terms of emulating the NEM’s
operation. Fig. 4h also suggest that the discrepancy between New South Wales and Queensland flows can
be reduced when these additional parameters are included. Finally, a comparison of dispatch profiles for
several power stations is shown in Fig. 6, with these stations selected based on their ability to illustrate the
diversity of outcomes obtained from the benchmark models. For all sub-figures it can be observed that
both full and reduced network representations with linear cost minimisation objectives result in similar
dispatch profiles. In the case of Bayswater power station, shown in Fig. 6a, the incorporation of additional
parameters in the unit commitment formulation reduces the gap between model and observed output. A
similar observation can be made for Eraring power station in Fig. 6b. However, it should be noted that
this station is under-dispatched for the majority of the interval under investigation, and little evidence of
co-movement between model and historic profiles is observed. Co-movements between model and
historic dispatch are more pronounced in Fig. 6c, however considerable deviations exist between these
values for a majority of hours investigated. For Torrens Island power station, shown in Fig. 6d, results
from each scenario suggest the baseline models under dispatch this station between 12 am to 4 pm, but
are able to capture peak output occurring between the hours of 4 pm to 10 pm.

a

d e

b c

Figure 5. Comparison between model and observed aggregate dispatch. (a & d) Scenario 1, minimise

difference between model and observed interconnector flows and generator dispatch using the full and reduced

networks respectively. (b & e) Scenario 3, dispatch when using a linear cost minimisiation objective for the

reduced and full network models respectively. (c) Scenario 3, non-linear UC formulation that takes into

account temporal constraints, using the reduced network.
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Validation summary
In summary, the Technical Validation procedure first checked the completeness and logical consistency
of the generator and network datasets. These procedures revealed that close to all generating capacity that
participates in central dispatch is accounted for. The use of an interactive map also assisted in checking
relationships between network elements. Regarding the functionality of these data, the assays conducted
have demonstrated that feasible models can be constructed. Several scenarios were then developed to
investigate the ability of these data to emulate NEM operation using historic dispatch and interconnector
flow signals as a basis for comparison. Close correspondence between observed and model interconnector
flows and generator dispatch in Scenario 1, with the exception of Victoria - New South Wales
interconnector flows for the reduced network, is a positive sign that these data are capable of emulating
network operation. Deviations between model and observed interconnector flows for the reduced
network also appear to be indicative of a broader trade-off associated with using the reduced network
representation. While dispatch results are generally similar for the scenarios investigated, when the full
network is used interconnector flows agree more closely with observed outcomes. This is a positive
finding, as it suggests the additional information contained within the full network representation is
helpful at emulating network flows. Results from Scenario 2 also suggest that network parameters are able
to cause power-flows across interconnectors to correspond reasonably well with observed outcomes when
power injections are fixed, while dispatch results from Scenario 3 give an indication as to the extent that
the relative marginal costs assigned to each generator are capable of capturing dispatch decisions. Large
thermal generators generally have close correspondence with observed outcomes, however hydro power
plants with relatively low marginal costs are over dispatched, resulting in output from thermal generators
to be displaced. Incorporating temporal constraints and startup costs in a unit commitment formulation
seems to improve correspondence between model and observed dispatch, suggesting that the inclusion of
these parameters is useful with respect to emulating the NEM’s operation. This is further supported by
the dispatch profile results shown in Fig. 6. Without the inclusion of these features, model generator
dispatch is considerably more flexible than reality. Reducing the flexibility of generator output by
including these parameters can help to decrease deviations between model and observed values. The fact
that co-movements between model and historic dispatch series can be observed for some stations is
another positive sign that these data are able to capture temporal variations in output. In summary, the
assays performed demonstrate that feasible models can be constructed from the presented datasets, and
that the parameters therein are well suited to emulating basic economic and operational characteristics of
the NEM.

Figure 6. Dispatch profile comparison. (a) Bayswater power station. (b) Eraring power station. (c) Vales

Point B power station. (d) Torrens Island power station. Green lines denote dispatch from the baseline model

using a linear generation cost minimisation objective and reduced network representation. Dashed blue lines

denote dispatch arising from a DCOPF model using the full network representation and a linear generation

cost minimisation objective. Dashed orange lines denote output from the UC formulation, while dashed red

lines denote historic output.
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Usage Notes
The derived datasets are made available under a CC BY 4.0 license. For the AEMO and ABS data used,
this license is compatible with the AEMO’s copyright permissions57, as well as the ABS’s CC BY 4.0
license58. Data obtained from GA are also made available under a CC BY 4.0 license, and are necessarily
compatible with the licensing approach chosen.

Those seeking to reproduce the results presented are advised to set-up their Python environment using
Anaconda, as doing so can simplify the process of installing required packages. For example, Geopandas,
used extensively when constructing network and generator datasets, has a number of dependencies. It is
convenient to install a Python package, osmnx, via conda-forge as this will handle their installation. A
description of all packages and version numbers used in the project are provided in a requirements.txt file
within this project’s GitHub repository42.

Users seeking more information regarding data available within the MMSDM database are referred
to26, which provides an overview of each MMSDM table and also describes field names. Descriptions of
generator parameters compiled by ACIL Allen, and within the NTNDP database, can be found in59. Both
documents provide a good reference for those wishing to make use of MMSDM and NTNDP data.
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