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Abstract
In practical decoy-state quantumkey distribution, the raw key length isfinite. Thus, deviation of the
estimated single photon yield and single photon error rate from their respective true values due to
finite sample size can seriously lower the provably secure key rateR. Currentmethod to obtain a lower
bound ofR follows an indirect path byfirst bounding the yields and error rates both conditioned on
the type of decoy used. These bounds are then used to deduce the single photon yield and error rate,
which in turn are used to calculate a lower bound of the key rateR. Herewe report an improved
version ofMcDiarmid inequality in statistics and showhowuse it to directly compute a lower bound
ofR via the so-called centering sequence. A novelty in this work is the optimization of the bound
through the freedomof choosing possible centering sequences. The provably secure key rate of
realistic 100 km long quantumchannel obtained by ourmethod is at least twice that of the state-of-
the-art procedurewhen the raw key lengthℓraw is≈105–106. In fact, ourmethod can improve the key
rate significantly over awide range of raw key length from about 105 to 1011.More importantly, it is
achieved by pure theoretical analysis without altering the experimental setup or the post-processing
method. In a boarder context, this work introduces powerful concentration inequality techniques in
statistics to tackle physics problembeyond straightforward statistical data analysis especially when the
data are correlated so that tools like the central limit theorem are not applicable.

1. Introduction

Quantumkey distribution (QKD) enables two trusted parties Alice and Bob to share a provably secure secret key
by preparing andmeasuring quantum states that are transmitted through a noisy channel controlled by an
eavesdropper Eve.One of themajor challenges tomakeQKDpractical is to increase the number of secure bits
generated per second [1]. That is whymostQKD experiments to date use photons as the quantum information
carriers; and these photons come fromphase randomize Poissonian distributed sources instead of themuch less
efficient single photon sources. In addition, decoy statemethod is used to combat Eve’s photon-number-
splitting attack onmultiple photon events emitted from the Poissonian sources [2, 3]. From the theoretical point
of view, amore convenient figure ofmerit is the key rate, namely, the number of provably secure secret bits per
average number of photon pulses prepared byAlice. This is because key ratemeasures the intrinsic performance
of aQKDprotocol (in otherwords, the software issue)without taking the frequency of the pulse (which is a
hardware issue) into account. This is analogous to the use of time complexitymeasure rather than the actual
runtime to gauge the performance of an algorithm in theoretical computer science.

Surely, provably secure lower bound of key rateR (whichwe simply call the key rate fromnowon) of aQKD
scheme depends on various photon yields aswell as error rates of those detected photons to be precisely defined
in equations (1) and(2) below. The problem is that Alice andBob can only transmit afinite number of photons
in practice. Consequently, the yield and error rates estimated by any sampling techniquemay differ from their
actual values. If Alice and Bob ignore these deviations, the actual number of bits of secret key they get could be
smaller than that computed by the key rateR, posing a security threat.
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Various key rate formulaewhich take the abovefinite-size statisticalfluctuations into account for a few
(decoy-state-based)QKD schemes had been reported in literature. For instance, Lim et al [4] computed the key
rates of a certain implementation of the BB84QKD scheme [5]using three types of decoy; recently, Chau [6]
extended it to the case of usingmore than three types of decoys. Hayashi andNakayama investigated the key rate
for the BB84 scheme [7]. Brádler et al showed the key rate for a qudit-basedQKD scheme using up to three
mutually unbiased preparation andmeasurement bases [8]. AndWang et al proved that errors and fluctuations
in the decoy photon intensities only haveminor errors on the final key rate [9]. In brief, the provably secure key
rate of aQKD scheme so far is found using the following three-step strategy. First, the yields B mQ , n

and error rates

B mE , n
conditioned on the preparation andmeasurement basis B aswell as the photon intensity parameterμn used

are determined by comparing the relevant Bob’smeasurement outcomes, if any, withAlice’s preparation states.
The second step is to deduce yields and error rates conditioned on the number of photons emitted by the source.
For a phase randomized Poissonian photon source,
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Here,μ1>μ2>L>μk�0 are the photon intensities used in the decoymethodwith k 2.Moreover, BY m,

is the probability of photon detection byBob given that the photon pulse sent byAlice containsmphotons and

Be m, is the bit error rate formphoton emission events prepared in the B basis [2, 3, 10]. The key rateR depends
on B BY Y,,0 ,1 and Be ,1 [2–4, 10]. Nevertheless, the later quantities cannot be determined precisely because
equations (1) and(2) are under-determined systems of equations given B mQ , n

ʼs and B mE , n
ʼs provided that the

number of photon intensities used k isfinite. Tomake thingsworse, in thefinite-raw-key-length (FRKL)
situation, themeasured values of B mQ , n

ʼs and B mE , n
ʼs deviate from their true values due tofinite sampling.

Fortunately, effective lower bounds of BY ,0 and BY ,1 aswell as upper bound of Be ,1 are available [2–4, 6, 10, 11]. In
the FRKL situation, these bounds can be deducedwith the help ofHoeffding’s inequality [12]. (See, for example
[4, 6], for details. Note that herewe cannot assume themeasurement outcomes are statistically independent and
thus usemore familiar tools such as central limit theorembecause Evemay launch a coherent attack to all the
photon pulses. In fact, we do not even knowwhat kind of statistical distributions do B mQ , n

ʼs and B mE , n
ʼs follow.)

The third step is to deduceR from these bounds [2–4, 8, 10].
Computing lower bound ofR using this indirect strategy is not satisfactory in the FRKL situation because it is

unlikely for each of the finite-size fluctuations in B mQ , n
ʼs and B mE , n

ʼs to decrease the value of the provably secure
key rate. In fact, for a given security parameter, theworst case bounds on BY ,0 and BY ,1 cannot be not attained
simultaneously if the raw key length is finite. (This is evident, say, from the bounds of BY ,0 and BY ,1 given by
inequalities(2) and(3) in [4] or inequalities(12a) and(12b) in [6]. Note that there is a typo in inequality(12b)
—the B

⟪ ⟫
m
-Q k i

, i

0 there should be B
⟪ ⟫
m
- +Q k i

,
1

i

0 . In all cases, thefinite-size statisticalfluctuation that leads to the
saturation of lower bound for BY ,0 does not cause the saturation of the lower bound for BY ,1 and vice versa.)

It ismore effective if one could directly investigate the influence offinite-key-length on the key rate. To do
so, one has to go beyond the use ofHoeffding’s inequality to bound the statistical fluctuation, which onlyworks
for equally weighted sumof random variables that are either statistical independent or drawn froma finite
populationwithout replacement [12]. Herewe use the computation of the key rate of a specific BB84QKD
protocol [5] that generates the raw key solely from X basismeasurement results as an example to illustrate how
to directly tackle statistical fluctuation in the FRKL situation bymeans ofMcDiarmid-type inequality [13] in
statistics. The technique used here can be easily adapted to compute the key rates of otherQKD schemes using
finite-dimensional qudits in the FRKL situation.Ourwork here is based on an earlier preprint by one of the us
[14]. Herewe greatly extend and improve the original proposal byfirst proving a new and slightly extended
McDiarmid-type of inequality on so-called centering sequences. (See definition 1 for the precise definition of a
centering sequence.)Thenwe apply it through four differentmethods, each giving a separate provably secure key
rate.We also optimize the provably secure key rateR by exploiting our freedom to pick the centering sequences.
To our knowledge, this is the first time such an optimization is performed. In contrast, this type of optimization
is not possible in previous approach thatmakes use of a less general inequality known asHoeffding’s inequality.
It turns out that eachmethodworks best in different situations; and the best provably secure key rate among the
fourmethods in realistic practical situation is at least about 10%better than the state-of-the-artmethod before
[14].Moreover, for raw key length ℓ » 10raw

5–107, this work almost double the secure key rate of the original
proposal in [14]when four different photon intensities are used. From a broader perspective, the techniquewe
introduce here is also applicable to bound the conclusion of a general physics experiment in the formof a real
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number due tofinite-size statistical fluctuations ofmore than one type ofmeasurement outcomes that are
possibly statistically dependent.

2. TheQKDscheme byChau in [6] and the assumptions of the security proof

To illustrate howMcDiarmid-type of inequality can be used to give a better key rate, we consider theQKD
Scheme studied byChauwhose details can be found in [6]. Note that this scheme is a slight variation of the one
studied by Lim et al in [4]. The only difference is that they use three different photon intensities while we
consider the slightlymore general case of using k�2 different photon intensities. In essence, the Scheme in [6]
is a decoy-state BB84 schemewith one-way classical communication using the X-basismeasurement results as
the raw key and theZ-basismeasurement results for phase error estimation.

We assume that the light source is Poissonian distributedwith intensitiesμ1>μ2>...>μk�0with
k�2. Using the result in [9], we simply our discussion by assuming that these photon intensities are accurately
determined andfixed throughout the experiment. This isfine becausefluctuation of photon intensity of a laser
source is negligible in practice. Since our aim is to demonstrate our technique of usingMcDiarmid-type
inequality in the simplest possibleQKD implementation, we do not consider twin-field [15] ormeasurement
device independent [16] setups although adaptation to these situations is straightforward though tedious. The
measurement is performed using threshold photon detectors with randombit assignment in the event of
multiple detector click. Last but not least, we assume bothAlice and Bob have access to their own private perfect
randomnumber generators when choosing their preparation andmeasurement bases.

3. Finite-size decoy-state key rate

Recall that the error rate for this particular variation of the decoy-state BB84QKD scheme using one-way
classical communication is lower-bounded by [4, 6]
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being the probability for Alice to use photon intensity parameterμn.

Furthermore, ( ) ( ) ( )º - - - -H x x x x xlog 1 log 12 2 2 is the binary entropy function, ep is the phase error
rate of the single photon events in the raw key, andΛEC is the actual number of bits of information that leaks to
Eve as Alice and Bob perform error correction on their raw bits. It is given by

X X( ) ( )L = á ñm mQ H E 4EC , 2 ,

if they use themost efficient (classical) error correcting code to do the job. In addition,ℓraw is the raw sifted key
lengthmeasured in bits, òcor is the upper bound of the chance that the final secret keys shared betweenAlice and
Bob are different, and ( ) r r= - - Ä p U1 2sec abort AE A E 1 . Here pabort is the chance that the scheme aborts
without generating a key, ρAE is the classical-quantum state describing the joint state of Alice and Eve,UA is the
uniformmixture of all the possible raw keys created byAlice, ρE is the reduced densitymatrix of Eve, and · 1 is
the trace norm [17–19]. Thus, Eve’s information on thefinal key is atmost òsec. Last but not least,χ is aQKD
scheme specific factor which depends on the detailed security analysis used. In general,χmay also depend on
other factors used in theQKD scheme such as the number of photon intensities k [4, 6].

For BB84, Ze ep ,1 as ℓ  +¥raw .More importantly, the best known bound on the difference between ep
and Ze ,1due tofinite sample size correction using properties of the hypergeometric distribution reported in
given by [6, 20]
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and Bs is the number of bits that are prepared andmeasured in B basis. Clearly, X ℓ=s raw and
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,

2
, . (Note that ḡ becomes complex if a c d, , are too large. This is because in

this case no Ze ep ,1 exists with failure probability a.We carefully picked parameters here so that ḡ is real.)
In the infinite-key-length limit, statisticalfluctuations of B mQ , n

and B mE , n
can be ignored. Then based on the

analysis in [6]with typos corrected, one has
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addition, ˆ m m m= å
- -

Sn t t tk k1 2 0 1
where the double primed sum is over < < < - - k t t t kk k0 1 2 10

with
¼ ¹- -t t t n, , , k k1 2 10

. (In otherwords, = =a a 001 21 if k is odd and =a 011 if k is even.)Note that in our
subsequent analysis, we also need the following two inequalities, which can be proven using the samemethod as
in inequality(7b):
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Substituting inequalities(5) and(7) into expression(3) gives the following lower bound of the key rate
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provided that X X >Y Y, 0,0 ,1 . (The cases of XY ,0 or X =Y 0,1 can be dealt with in the sameway by changing the
definition of bn accordingly. But these cases are not interesting for they likely implyR= 0 in realistic channels.)

Note that theworst case key rate corresponds to the situation that the spin flip and phase shift errors in the
raw key are uncorrelated so that Alice and Bob cannot use the correlation information to increase the efficiency
of entanglement distillation. Thus, wemay separately consider statisticalfluctuations in X mQ , n

ʼs and Ze ,1 in the
FRKL situation.

4. An improved version ofMcDiarmid inequality

Wenowprove an improved version of a deepmathematical statistics result before applying it to improve the key
rateR. Our inslight is that statistical fluctuations in X mQ , n

ʼs and Ze ,1 can be bounded usingMcDiarmid-type
inequality. Actually, the first inequality of this typewas proven for the case of statistically independent random
variables usingmartingale technique in [13]. The inequality we need here is a straightforward extension of
theorem6.7 in [13] and theorem2.3 in [21] for statistically dependent randomvariables. (See also a closely
related version in [22].)

Wefirst introduce the concept of a centering sequence [21]. The definition below is written in amore
apparentmanner to physicists.

Definition 1. Let ( )= ¼W W WW , , , t1 2 be a random real vector whose components Wi ʼs are possibly
statistically dependent randomvariables each taking values in the seti. Let fm be a real-valued bounded
function of W . Set ( )∣=V f Wm m Bm where Bm denotes the conditions =W wj j for = ¼ -j m1, 2, , 1. Then,
the sequence of randomvariable { } =Vm m

t
1 is said to be centering if [ ∣ ] [ ∣ ]= º - =- - -E U V v E V V V vm m m m m1 1 1

is a decreasing functions of v for all = ¼m t1, 2, , . (Herewe use the convention that =V 00 and assume that all
conditional expectation values [·∣·]E exist.)
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Note that centering property implicitly depends on the distribution of W through the conditional
expectation value ofUm.Moreover, { }Vm is centering if { }Vm is amartingale.

Theorem1.Using notations in definition 1, for a fixed = ¼i t1, 2, , , let Î wm m and set

ˆ ( ) { [ ( )∣ ]} { [ ( )∣ ]}
( ) ( ) ( )

¼ = = - = ¢

º ¼ - ¼
- Î ¢ Î

- -

 r w w E U W w E U W w

b w w a w w

W W, , esssup essinf

, , , , . 10
m m m m m w m m m w

m m m m

1 1

1 1 1 1

m m m m

Here the symbols esssup and essinf denote the essential supremumand infimum, respectively. Further set
ˆ ˆ ( ) ˆº ¼ = å- =r r w w r, , t m

t
m

2 2
1 1 1

2 . Then ( ) ( )º ¼f f w w ww , , ,t t t1 2 obeys

⎡
⎣⎢

⎤
⎦⎥( ( ) [ ( )] )

ˆ ( )
( )d

d
-

-
¼ -

 f E f
r w w

aw WPr exp
2

, ,
11t t

t

2

2
1 1

and

⎡
⎣⎢

⎤
⎦⎥( ( ) [ ( )] )

ˆ ( )
( )d

d
- -

-
¼ -

 f E f
r w w

bw WPr exp
2

, ,
11t t

t

2

2
1 1

for any d > 0, where (·)Pr denotes the occurrence probability of the argument.

Remark 1.This version ofMcDiarmid inequality is slightly stronger than the one reported in [13] aswe also
utilize information of w in obtaining r̂ whereas the original version in [13]made use of theworst case w . The
proof of this theorem is based on that of theorem2.2 in [21].
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for any >h 0. The rhs of inequality(14) isminimized by setting ˆd=h r4 ;2 andwith this h, inequality(14)
becomes inequality(11a).

Finally, by applying the same argument to-fmʼs instead of fmʼs, we get inequality(11b). This completes our
proof. ,
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Corollary 1. Let ( )= ¼W WW , , t1 be a random vector such thatWm takes on value from the same bounded set of
real numbers { }a= = j j

k
1 for all = ¼m t1, 2, , . Suppose further thatWm’s aremultivariate hypergeometrically

distributed. Let ( ) = å =f WWm i
m

i1 for all = ¼m t1, 2, , . Then, the sequence of random variables { } =Vm m
t

1 defined
in definition 1 is centering provided that [ ∣ ]- =- -E V V V vm m m1 1 is well-defined for all v. Besides, theorem 1 holds
with ˆ ( )= r t Width , where ( ) º -  Width esssup essinf .

Proof.This proof is adapted from example1 in [21]. Fromdefinition 1, it suffices to show that
[ ∣ ] [ ∣ ]u uå = = å ==

-
=
-E U W E W Wm i

m
i m i

m
i1

1
1

1 is a decreasing function of υ. SupposeWiʼs are drawn from a
collection ofM objects out of whichMj of them take the value aj for all j. Suppose further that amongWiʼs with

< i m1 , there aremj of them taking the value of aj for all j. Then, the probability that a=Wm j is

( ) ( )- - +M m M m 1j j .Moreover, the condition uå ==
- Wi

m
i1

1 means that a uå =mj j . As a result,

[ ∣ ] ( ) ( ) ( ) ( )u a a uå = = å - - + = å - - +=
-E W W M m M m M M m1 1m i

m
i j j j j j j j1

1 , which is a

decreasing function of υwhenever uå ==
- Wi

m
i1

1 . Hence, { }Vm is a centering sequence.
By applying theorem1 to { }Um , we have { ∣ } { ∣ }u u= = - = =- -r W V W Vesssup essinfm m m m m1 1

( )- =  esssup essinf Width for allm and -Vm 1. Hence, it is proved. ,

Remark 2.The above corollarywas first proven byHoeffding in [12]without using the concept of centering
sequence. Actually, corollary 1 ismore often referred to as theHoeffding’s inequality. In fact,Hoeffding’s
inequality has been used to compute the provably secure key rate R when the raw key length ℓraw isfinite in
previousworks [4, 6–8]. In section 5 below,we use the above corollary to bound Ze ,1 inMethodsA andB.

Corollary 2. Let ( )= ¼W WW , , t1 be a random vector where eachWm takes on value from a bounded set of real
numbers { }a= = j j

k
1. SupposeWm’s aremultivariate hypergeometrically distributed in the sense that they are

chosenwithout replacement from a collection of M objects out of which Mj of them take the value of aj for all j. Let
[ ]Î  x essinf , esssup and >y 0 be two fixed numbers. Let { } { }¼ ¼P t t: 1, 2, , 1, 2, , be an arbitrary

but fixed permutation. Suppose

( )( )å+ > -
=

  y W esssup essinf 0. 15
i

t

P i
1

Define

( )
( )

( )
( )

( )

( )

å
å

=
- +

+ - +
=

=

f
t m x W

y t m x W
W 16m

i

m
P i

i

m
P i

1

1

for = ¼m t1, 2, , . Then, the sequence { } =Vm m
t

1 is centering provided that

( )
( )å åa d- + -

- - +=

= =
-

x
M W y

M t m
min

2 sup

2 1
17

m

t j

k
j j i

m
P i

1

1 1

1

where d is a small correlation term of the order of ( ) ( )+ y txWidth 2. Furthermore, by picking x to be the rhs of
inequality(17), then inequality(11) is true with

⎧
⎨⎪
⎩⎪ ⎡⎣ ⎤⎦

⎫
⎬⎪
⎭⎪

ˆ ( )

( ) ][ ( )

( )

( ) ( )
å

å å
=

+ - + + + - + +=
=
-

=
-



 
r

y

y t m x w y t m x w

Width

esssup essinf
,

18

m

t

i

m
P i i

m
P i

2

1
1

1

1

1

2

where { }( )wP i is a decreasing sequence.

Proof. Since ( )( ) ( ) ( )¼W W W, , ,P P P t1 2 is also amultivariate hypergeometrically distributed randomvector, we
only need to prove the case when P is an identity operator as the general case can be proven in the sameway.
From equation (15), fm has a positive denominator and is an increasing function ofWm. So to prove that { }Vm

is centering, it suffices to show that [ ∣ ( ) ]å = -=
-E U W m w1m i

m
i1

1 is a decreasing function of ( )- =m w1

aå = mj
k

j j1 for all non-negative integersmjʼs obeying å = -= m m 1j
k

j1 . Since ajʼs are fixed, the onlyway to
changew is to changemjʼs but at the same time keeping å = mj

n
j1 fixed. Clearly,w can only be changed if m 3.

More importantly, asmjʼs are integers, any such change can be expressed as a composition of a series of
elementary changes, each increases a certain m j1

by one and decreasing a certain m j2
by one

with ¹ j j k1 1 2 .
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Observe that

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦
⎥⎥
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( )
{ ( ) ( ) }{ ( ) ( ) }
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a
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a
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=
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= - =
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-
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-
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E
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M m D

M m x
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1

1 1 1

1

1 1 1 1

1
. 19

m
i

m

i
j

k

j j

m

m

i

m

i
j

k

j j

j

k
j j j

j

j

k
j j j

j

1

1

1

1

1

1

1

1

Moreover, after the elementary change,  a a+ - º + Dw w w wj j1 2
. From inequality(15), ∣ ∣a> -D xj .

So by Taylor’s theorem,

⎪

⎪

⎪

⎪

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎫
⎬
⎭

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥
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=
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-
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+
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=
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-
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+

-
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-
D

- + + D + - + D + -
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-

=

=

-

=
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=
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x
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1
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1
20

m
i

m

i
j

k

j j

m
i

m

i j j
j

k

j j

j

k
j j j j j

j

j

j

j

j

k

j j

j

n
j j j j

j j

1

1

1

1

1

1

1
1

2

2
1

1
2

1

2

1 2

1

1

2

2

1 2

with [ ]x Î 0, 11 . As [ ]Î  x essinf , esssup , we conclude that ( )( )å a- - M m x0
j j j j

2

( ) ( )- + M m 1 Width 2 almost surely. Frominequality(15),wemay expand ( ) (+ D + D +D w D w1 , 1
)a - xj1
and ( )a+ D + -D w x1 j2

as series ofDw viaTaylor’s theorem. In thisway, the rhsof equation (20) can
be expressed in the form [ ∣ ( ) ]aå = - = å + D +=

-
=E U W m w m g w g1m i

m
i j

k
j j1

1
1 1 2 with

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬⎪
⎭⎪

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

( )

( ) ( )

( ) ( ) ( )( )

( )

( ) ( )

( ) ( ) ( ) ( )

å

å

å

a

x a x a a

a

=-
- +

- - + - -

+ -
-

-
-

-
- -

-
- +

- - + - -

+ - -
- +

=

=

=

 



g
y

M m D

M M m x m w

D

x

D

x

D

M m x

D

y

M m D

M M m x m w

D

D

M m

D

1

2 1 1

1 1
3

1

2 1 1

1
Width 3 1 Width

, 21

j

k
j j

j j j

k
j j j

j

k
j j

1 2

1

2 3 1
2

2

2

1

2 2

2

1 2

where [ ]x x Î, 0, 12 3 . And the correlation term g2 obeys ∣ ∣ [ ( ) ( ) ]( )aå - - + - - Dg y M M m x m w w3 1 1j j j2
2

[( ) ]- +M m D1 4 .
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A sufficient condition for { }Vm to be centering is D + g w g 01 2 for allm andw.Moreover, this condition is
satisfied if

( )
( )

å a d- - + -

- - +
=x

M m w y

M t m

2 1

2 1
22

j

k
j j1

for all = ¼m t1, , and for all ( )- = å =
-m w W1 i

m
i1

1 ,where the correlation term ∣ ∣ ( )d D + + g w 2Width2
( ) ( )- + M m D3 3 2 Width 2 . (Note that inequality (22) is consistentwith the constraint that

  xessinf esssup because this inequality is trivially satisfiedwhen = x essinf .)Hence,{ }Vm is
centering if inequality(17)holds.

We now switch back to consider the situation of an arbitrary butfixed permutation P. To optimize the
bound in theorem 1,we use the freedom to pick a suitable permutation P tominimize r̂ . From theorem1,
ˆ ( ) {[ ( ) ][ ( ) ]}( ) ( )= + - + + å + - + + å=

-
=
-  r y y t m x w y t m x wWidth esssup essinfm i

m
P i i

m
P i1

1
1

1 ,
which is a decreasing function of both x andw. Hence, the optimal situation occurs whenwe pick the
permutation so that ( )wP i is a decreasing function of i. In this case, ( )å = w mi

m
P i1 is a decreasing function ofm. In

this way, we arrive at r̂ 2 in equation (18). ,

Remark 3.The ability to optimize r̂ bymeans of picking the best possible permutation P and hence the best
possible centering sequence is a novel feature ofMcDiarmid inequality. As far aswe know, this feature has not
been exploited before. In contrast, from the proof of corollary 1, it is clear that the value of r̂ obtained from the
Hoeffding’s inequality does not depend on the choice of P . In section 5 below, we fully exploit this freedomof
picking P to bound Ze ,1 inMethodD.Note however that the above corollary requires the knowledge ofMjʼs. In
addition, r̂ 2 is written as a rather involved sum. Let us replace every ( )wP i in equation (18) by the average observed
value, namely, å = w ti

t
i1 . In this way, r̂ would increase by a factor of ( ( ) )t DO Width . Suppose thatwe fix

= å º á ñ=x w t wi
t

i1 aswell (without caring whether inequality (17) holds or not). Then r̂ would change by a
factor of ( ( ) ) D tO Width most of the time due to statistical fluctuation. Thus, in practice, wemay replace r̂
in equation (18) by the followingmore convenient and useful expression

ˆ ( )
[ ( ) ][ ( ) ]

( )=
+ - á ñ + + - á ñ +


 

r
t y

y t w y t w

Width

1 essinf 1 esssup
, 23

which does not depend on the knowledge ofMjʼs. This expression for r̂ shall be used to bound Ze ,1 inMethodC
to be reported in section 5.

5. Application of the improvedMcDiarmid inequality infinding the key rate

There is a subtlety in applying theorem1 to study the statistical fluctuation of Ze ,1. A naiveway to do so is to use

inequalities(5) and(7) to obtain the bound Z Z Z Z( ) ( )å åm m m= =e a Q E a Qn
k

n n
k

n,1 1 2 , , 1 1 ,n n n
. Then one could

regard Z mQ , n
ʼs and Z Zm mQ E, ,n n

ʼs as random variables and directly apply theorem 1 and definition 1 to the rhs of
the above inequality. Nonetheless, it does not work for the rhs of this inequality need not be bounded. Besides,
the bound obtained is not strong enough even if we ignore the boundedness problem.

To proceed, wefirst write Z Z˜ ˜= åm mQ W sj nj, ,n n
where Z̃ ms , n

is the number of photon pulses that Alice
prepares using photon intensityμn and that Alice prepares and Bob tries tomeasure (butmay ormay not have
detection) inZbasis. In addition, W̃nj denotes the possibly correlated randomvariable whose value is 1 (0) if the
jth photon pulse among the Z̃ ms , n

photon pulses is (not) detected by Bob. Clearly, Z Z˜ »m ms Tp p,
2

n n
withT being the

total number of photon pulses sent by Alice and Z X= -p p1 is the probability for Alice (Bob) to prepare
(measure) in theZbasis. Since Z Z Z» á ñms Tp Q2

, , I arrive at

Z Z
Z

Z

Z

Z
Z

Z⎪

⎪

⎪

⎪

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭

⎞

⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

˜ ( )å å å å=
á ñ

=
á ñ

m
m

m

m

= = =

Y a Q
Q

s

a

p
W

Q

s
W amax 0, max 0, max 0, . 24

n

k

n
n

k
n

j
nj

i

s

i,1
1

1 ,
,

1

1 ,

1
,n

n

Here ZW i, is the randomvariable that takes the value ma pn1
n
if the ith photon pulse that are prepared byAlice and

then successfullymeasured by Bob both in theZbasis is in fact prepared using photon intensityμn. Recall that
Eve knows the number of photons in each pulse andmay act accordingly. However, she does not know the
photon intensity parameter used in each pulse and the preparation basis until the pulse ismeasured by Bob.
Hence, ZW n, ʼsmay be correlated. Actually, themost general situation is that ZW n, ʼs are drawn from a larger
populationwithout replacement. That is to say, these randomvariables obey themultivariate hypergeometric
distribution. By the same argument, inequalities(7c) and(7d) gives
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Z Z
Z

Z Z
Z Z

Z
Z

Z⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )å å=

á ñ
m m

m

= =

Y e
Y

a Q E
Y Q

s
W bmin

2
, min

2
, 24
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k
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i,1 ,1
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1
2 , ,
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1
,

e
n n

e

and

Z Z Z Z
Z

Z
Z
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⎞
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⎞
⎠
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¯

å å=
á ñ

m m
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= =

Y e a Q E
Q

s
W cmax 0, max 0, , 24

n
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n
i

s

i
e

,1 ,1
1

1 , ,
,

1
,n n

e

where Z Z Z Z Z= á ñ á ñm m ms s Q E Qe
, , , and Z Z Z Z Z¯¯ = á ñ á ñm m ms s Q E Qe

, , , ) are the number of bits that are prepared and
successfullymeasured in theZbasis such that the preparation byAlice andmeasurement result by Bob are
unequal and equal, respectively.Moreover, ZW i,

e ʼs ( Z
¯W i,
e ʼs) aremultivariate hypergeometrically distributed

randomvariables taking values in the set { }m =a pn n
k

2 1n
({ }m =a pn n

k
1 1n

).
From inequalities(24a) –(24c), Ze ,1obeys

Z
Z

Z

Z

Z

⎛

⎝
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e
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i
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1 ,

e
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e
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e

e

e e

Interestingly, these two inequalities can be used to give four different bounds on thefinite-size statistical
fluctuations in Ze ,1.More importantly, these four bounds are

A.Use an upper bound of Z
Zå = Wi

s
i1 ,

e
e

and a lower bound of ZZå = Wj
s

j1 , to deduce an upper bound of Ze ,1.

Specifically, from corollary 1, we conclude that the true value of ZZå = Wj
s

j1 , is less than the observed value by

Z Z[ ( ) ] ({ } )m =s a pln 1 2 Width n n
k1 2

1 1n
with probability atmost Z . (Recall that ( )Width of a bounded

set of real numbers is defined as - esssup essinf .)And the true value of Z
Zå = Wi

s
i1 ,

e
e

is greater

than its observed value by Z Z[ ( ) ]s ln 1 2e e 1 2 ({ } )m =a pWidth n n
k

2 1n
= Z Z Z Z Z[ ( ) ]á ñ á ñm m ms Q E Qln 1 2, ,

e
,

1 2

({ } )m =a pWidth n n
k

2 1n
with probability atmost Z

e. Since ZW e
i
and ZW j, are positively correlated, from

inequalities(24a), (24b) and(25a), we have

Z
Z Z Z Z

Z Z
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2
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k
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n

with probability at least Z Z- - 1 e , where

Z Z
Z Z Z Z

Z
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⎪

⎪

⎪

⎡
⎣⎢

⎤
⎦⎥
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⎧
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Width 26n
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⎪
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Width . 26n
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1
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Incidentally, this is themethod reported in the preprint by one of us in [14].Moreover, similar bounds on
statistical fluctuations of BQ n, ʼs and B BQ E,1 ,1have been obtained usingHoeffding’s inequality in [4, 6]. That
method is not as effective as the one reported here since they indirectly deal with finite sampling statistical
fluctuation of ZY ,1 and Z ZY e,1 ,1.

B. Alternatively, we may use inequality(25b) and corollary 1 to bound Ze ,1. Specifically, the true value of

Z
Z ¯¯

å = Wj
s

j1 ,
e

e

is less than the observed value by Z Z Z Z Z[ ¯ ( ) ] ({ } )¯á ñ á ñm m m m =s Q E Q a pln 1 2 Width n n
k

, ,
e

,
1 2

1 1n
with

probability atmost Z
¯ e. Note that ZW j,

e ʼs and Z
¯W j,
e ʼs are statistically independent. Therefore, from

inequalities(24b), (24c) and(25b), we have

9

New J. Phys. 22 (2020) 023011 HFChau andKC JNg



Z
Z Z Z Z

Z Z Z Z Z Z Z Z

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟¯ ¯

( )å
å å

+ D

+ - D + D

m m

m m m m

=

= =

e
a Q E Y e

a Q E a Q E Y e Y e
dmax 0, min

1

2
, 26n

k
n

n

k
n n

k
n

,1
1 2 , , ,1 ,1

1 1 , , 1 2 , , ,1 ,1 ,1 ,1

n n

n n n n

with probability at least Z Z
¯- - 1 e e, where Z ZDY e,1 ,1 is given by equation (26b) and
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provided that inequalities(15) and(17)hold. (See [23] for an alternative proof of this result.)
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which is efficient to compute. (Note that the sum in rhs of equation (18) is a decreasing function of x
and ( )wP i ʼs, the above integral approximation is accurate up to a correction termof atmost
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where r̂ is given by the rhs of inequality(26i).

In reality, we use theminimumof the above fourmethods to upper-bound the value of Ze ,1. To study the
statisticalfluctuation ofR, it remains to consider the fluctuation of X mQ , n

in thefirst term in expression(8).
(Although the second termalso dependson X mQ , n

ʼs implicitly through LEC, statisticalfluctuation is absent from
this term.This is because LEC is the amount of information leaking to Eveduring classical post-processing of the
measured rawbits. Thus, it depends on the observed values of X mQ , n

ʼs and X mE , n
ʼs insteadof their true values.)

Using the same technique as in the estimation of statisticalfluctuation in Ze ,1, thefirst termofExpression(8) can
be rewritten as X XXá ñåm =Q Wi
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where ( )=b b en n p is given by equation (9). Here ep equals the rhs of inequality(5)with Ze ,1 given by
equations (26a), (26d), (26f) or(26j). Note that c = = + +9 4 1 4 forMethods A toC and c = 10 for
MethodD. (Here thefirst number 4 comes from the generalized chain rule for smooth entropy in [4], the
number 1 comes from the finite-size correction of the raw key in equation (B1) of [4], and the last number 4
comes from Xḡ , , Z

e aswell as either Z or Z
¯ e.Moreover,χ forMethodD is larger than the rest by 1 because of

the extra condition on the statistical fluctuation of a lower bound of Z ZY e,1 ,1.) Interestingly, unlike the schemes
used in [4, 6, 7], the numberχ in our scheme is independent on the number of photon intensities k used. This is
becausewe directly tackle thefinite sample statisticalfluctuations of quantities like BY ,1. Note however that even
thoughχ does not depend on k, it does notmean that one could use arbitrarily large number of photon
intensities as decoys (so as to obtain better bounds on quantities like BY ,1)without adversely affecting the key rate
for afixedfinite Xs . The reason is that ({ } }) ({ } })m m= =a p a pWidth , Widthn n

k
n n

k
1 1 2 1n n

and ({ } })m =b pWidth n n
k

1n

diverge as  +¥k due to divergence of a1n, a2n and bn [6] aswell as the decrease in { }m =pmin n
k

1n
. Recall that
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Table 1.Comparison between the state-of-the-art key rate º ´-
-R R 10O

5
O 5 in [6]with the key rates in equation (27) (ormore precisely ( )º ´-

-R Rmax 0, 105
I I 5 ) for the dedicated quantum channel used in [4, 6] viaMethodI. These

rate are optimized using themethod stated in themain text.

k=3 k=4 k=5 k=6

Xs -R 5
O

-R 5
A

-R 5
B

-R 5
C

-R 5
D

-R 5
O

-R 5
A

-R 5
B

-R 5
C

-R 5
D

-R 5
O

-R 5
A

-R 5
B

-R 5
C

-R 5
D

-R 5
O

-R 5
A

-R 5
B

-R 5
C

-R 5
D

105 0.052 0.300 0.326 0.470 0.254 0.027 0.270 0.291 0.487 0.747 0.000 0.152 0.156 0.160 0.142 0.000 0.052 0.076 0.076 0.000

106 0.294 0.743 0.789 0.835 0.637 0.194 0.727 0.763 0.829 1.41 0.100 0.660 0.694 0.516 0.484 0.055 0.404 0.434 0.407 0.966

107 0.687 1.18 1.23 1.22 1.04 0.573 1.27 1.30 1.27 1.84 0.421 1.21 1.20 1.20 1.12 0.259 0.949 1.01 0.823 1.57

108 1.11 1.43 1.48 1.45 1.64 1.04 1.60 1.63 1.59 2.18 0.929 1.66 1.68 1.63 1.81 0.624 1.32 1.34 1.33 2.00

109 1.51 1.70 1.75 1.72 2.05 1.57 1.91 1.94 1.90 2.40 1.46 2.04 2.10 2.06 2.37 1.08 1.74 1.75 1.71 2.38

1010 1.87 1.98 2.02 1.99 2.32 1.97 2.20 2.22 2.19 2.58 1.94 2.40 2.42 2.40 2.72 1.72 2.16 2.18 2.14 2.63

1011 2.20 2.25 2.29 2.26 2.43 2.32 2.46 2.48 2.45 2.81 2.46 2.67 2.69 2.69 2.88 2.18 2.50 2.52 2.48 2.86
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computing a a,n n1 2 and bn is numerically stable andwithminimal lost in precision if m m- +  0.1n n 1 for
= -n k1, 2, ..., 1 [6]. Thismeans the number of photon intensities k used in practice should be10.

6. Performance analysis

Westudy the following quantumchannel, whichmodels a commonlyused 100km longopticalfiber inQKD
experiments, to test the performance of this newkey rate formula in realistic situation. Thefindings here are
generic as the general trend andperformance improvement are also found inother situations including using the
samefiber of different lengths aswell as other randomly generated quantumchannels. The yield and error rate of
that quantumchannel is given by B ( )= +m mQ p d1, ap and B Bm mQ E, , = [ ( )]h m+ - - + mp e p d1 exp 2dc mis ch ap ,

where ( ) ( )h m= - - -md p1 1 2 expdc sys .Herewefix after pulse probability = ´ -p 4 10ap
2, dark count

probability = ´ -p 6 10dc
7, error rate of theoptical system = ´ -e 5 10mis

3. In addition, the transmittance of

the system h h= 0.1sys ch, and the transmittance of thefiber is given by h = -10 L
ch

0.2 10 withL is the length of the
fiber in km.These parameters are obtained fromopticalfiber experiment ona 100km longfiber in [24]; andhave
beenused in [4, 6] to study the performance of decoy-stateQKD in the FRKL situation.Wealso follow [4, 6]by
using the following security parameters: k= = - 10cor

15, where ℓk=sec final with X X Xℓ ( )» á ñmRs p Qfinal
2

, is
the length of thefinal keymeasured inbits.Note thatκ can be interpreted as the secrecy leakage perfinal secret bit.

Table 1 compares the optimized key rates for the state-of-the-artmethod reported recently equation (3) of
[6]with equation (27) for various Xs and k. (This is the best provably secure key rate obtained before the posting
of the original proposal usingMcDiarmid inequality by one of us in [14].)The optimized rates are found by
fixing theminimumphoton intensity to ´ -1 10 6, whilemaximizing over Xp as well as all other photon
intensities mnʼs and all the mp

n
ʼs. This optimization is done byMonteCarlomethod plus simulated annealing

with a sample size of at least 1010 for each data entry in table 1. ForMethodD, the optimized key rate depends on
the actualZ-basismeasurement results. Herewe simply fix ( )n i ʼs to their expectation values.

The table clearly shows that usingMcDiarmid inequality improves the optimized key rates in almost all
cases. It also shows that for anymethod used, the provably secure key rate increases as the raw key length Xs
increases. And they all gradually converge to the same infinite-size key rate. Besides, the asymptotic key rate
generally increases with k. These are natural as longer Xs implies smaller finite-size statisticalfluctuation and
larger number of decoys k used allows better estimation of the bounds of various BY m, ʼs and B BY e,1 ,1ʼs.

Among the fourmethods introduced here,MethodA almost always gives the least provably secure key rate.
This implies that it ismore effective to estimate a lower bound for ZY ,1 via estimating an upper bound for Z ZY e,1 ,1

plus a lower bound for Z Z̄Y e,1 ,1.MethodB is slightly better thanMethodC for large Xs (saywhen108, the
improvement is about a few percent).MethodD is about 5%–15%or so better thanMethodCwhen

X s10 108 11. This is not unexpected for the following reason. AlthoughMethodD ismore aggressive than
MethodC in estimating the statistical fluctuation of Ze ,1 and hence the key rate, it requires an additional
condition for lower-bounding á ñw . Thus the value ofχ forMethodD is 1 greater than that ofMethodC. As a
result, for small raw key length, the improvement in estimating Ze ,1 forMethodDmay not be able to compensate
the need to control the statistical fluctuation of onemore variable. Table 1 also depicts thatMethodD is about
5%–20%better thanMethod Bwhen X s10 108 11. Furthermore, forfixed Zs andκ and a fixedmethod to
compute bound for Ze ,1, the provably secure key rate reaches amaximumat afinite k. This is not unexpected
because even though theχwededuce is independent of the number photon intensities k used, ( )Width
diverges as  +¥k . Last but not least, in the case of k= 4,MethodD always gives the best key rate.We do not
have a good answer to this observation. It is instructive to studywhy in future.

7. Summary and outlook

To summarize, for X » -s 10 105 6, at least one of the fourmethods reported here could produce a provably
secure key rate that is at least twice that of the state-of-the-artmethod. And for X »s 108,MethodD is at least
40%better than the state-of-the-artmethod. These improvements are of great value in practical QKDbecause
the computational and time costs for classical post-processing can be quite highwhen the raw key length Xs is
long.More importantly, theMcDiarmid inequalitymethod reported here is effective to increase the key rate of
real or close to real time on demand generation of the secret key—an application that is possible in near future
with the advancement of laser technology. It is instructive to extend ourMcDiarmid inequalitymethod to
handle the case of FRKLdecoy-statemeasurement-device-independent QKDand compare it with existing
methods in literature, such as the one that uses theChernoff bound [25] and its extension specifically for decoys
with four different intensities [26].

In addition toQKD, powerful concentration inequalities in statistics such asMcDiarmid inequality could
also be used beyond straightforward statistical data analysis. One possibility is to use it to constructmodel
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independent test for physics experiments that involve a large number of parameters butwith relatively few data
points.
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