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Abstract

In practical decoy-state quantum key distribution, the raw key length is finite. Thus, deviation of the
estimated single photon yield and single photon error rate from their respective true values due to
finite sample size can seriously lower the provably secure key rate R. Current method to obtain a lower
bound of R follows an indirect path by first bounding the yields and error rates both conditioned on
the type of decoy used. These bounds are then used to deduce the single photon yield and error rate,
which in turn are used to calculate alower bound of the key rate R. Here we report an improved
version of McDiarmid inequality in statistics and show how use it to directly compute a lower bound
of Rvia the so-called centering sequence. A novelty in this work is the optimization of the bound
through the freedom of choosing possible centering sequences. The provably secure key rate of
realistic 100 km long quantum channel obtained by our method is at least twice that of the state-of-
the-art procedure when the raw key length £, is ~10°~10°. In fact, our method can improve the key
rate significantly over a wide range of raw key length from about 10° to 10'". More importantly, it is
achieved by pure theoretical analysis without altering the experimental setup or the post-processing
method. In a boarder context, this work introduces powerful concentration inequality techniques in
statistics to tackle physics problem beyond straightforward statistical data analysis especially when the
data are correlated so that tools like the central limit theorem are not applicable.

1. Introduction

Quantum key distribution (QKD) enables two trusted parties Alice and Bob to share a provably secure secret key
by preparing and measuring quantum states that are transmitted through a noisy channel controlled by an
eavesdropper Eve. One of the major challenges to make QKD practical is to increase the number of secure bits
generated per second [1]. That is why most QKD experiments to date use photons as the quantum information
carriers; and these photons come from phase randomize Poissonian distributed sources instead of the much less
efficient single photon sources. In addition, decoy state method is used to combat Eve’s photon-number-
splitting attack on multiple photon events emitted from the Poissonian sources [2, 3]. From the theoretical point
of view, a more convenient figure of merit is the key rate, namely, the number of provably secure secret bits per
average number of photon pulses prepared by Alice. This is because key rate measures the intrinsic performance
of a QKD protocol (in other words, the software issue) without taking the frequency of the pulse (which isa
hardware issue) into account. This is analogous to the use of time complexity measure rather than the actual
runtime to gauge the performance of an algorithm in theoretical computer science.

Surely, provably secure lower bound of key rate R (which we simply call the key rate from now on) of a QKD
scheme depends on various photon yields as well as error rates of those detected photons to be precisely defined
in equations (1) and (2) below. The problem is that Alice and Bob can only transmit a finite number of photons
in practice. Consequently, the yield and error rates estimated by any sampling technique may differ from their
actual values. If Alice and Bob ignore these deviations, the actual number of bits of secret key they get could be
smaller than that computed by the key rate R, posing a security threat.
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Various key rate formulae which take the above finite-size statistical fluctuations into account for a few
(decoy-state-based) QKD schemes had been reported in literature. For instance, Lim et al [4] computed the key
rates of a certain implementation of the BB84 QKD scheme [5] using three types of decoy; recently, Chau [6]
extended it to the case of using more than three types of decoys. Hayashi and Nakayama investigated the key rate
for the BB84 scheme [7]. Bradler et al showed the key rate for a qudit-based QKD scheme using up to three
mutually unbiased preparation and measurement bases [8]. And Wang et al proved that errors and fluctuations
in the decoy photon intensities only have minor errors on the final key rate [9]. In brief, the provably secure key
rate of a QKD scheme so far is found using the following three-step strategy. First, the yields Qg ,, and error rates
Eg,,, conditioned on the preparation and measurement basis B as well as the photon intensity parameter 11, used
are determined by comparing the relevant Bob’s measurement outcomes, if any, with Alice’s preparation states.
The second step is to deduce yields and error rates conditioned on the number of photons emitted by the source.
For a phase randomized Poissonian photon source,

400 ,,m
1, Yo,m exp(—p,)
Qs = Z el

: (1)
m=0 m:
and
+00 m
Ky Yo, men,m €xp(—f1,,)
QB,/J,”EB,pn = Z . (2)

m=0 m!
Here, p1; > 15 > --+ > py > 0 are the photon intensities used in the decoy method with k > 2. Moreover, Yz ,,
is the probability of photon detection by Bob given that the photon pulse sent by Alice contains m photons and
es. . 1s the bit error rate for m photon emission events prepared in the B basis [2, 3, 10]. The key rate R depends
on Y o, Y5 1and e 1 [2—4, 10]. Nevertheless, the later quantities cannot be determined precisely because
equations (1) and (2) are under-determined systems of equations given Qg ,, "sand Eg ,, ’s provided that the
number of photon intensities used k is finite. To make things worse, in the finite-raw-key-length (FRKL)
situation, the measured values of Qg ,, sand Eg ,, ’s deviate from their true values due to finite sampling.
Fortunately, effective lower bounds of ¥; o and Y; ; as well as upper bound of g ; are available [2—4, 6, 10, 11]. In
the FRKL situation, these bounds can be deduced with the help of Hoeffding’s inequality [ 12]. (See, for example
[4, 6], for details. Note that here we cannot assume the measurement outcomes are statistically independent and
thus use more familiar tools such as central limit theorem because Eve may launch a coherent attack to all the
photon pulses. In fact, we do not even know what kind of statistical distributions do Qg ,, sand Eg, 1, S follow.)
The third step is to deduce R from these bounds [2—4, 8, 10].

Computing lower bound of R using this indirect strategy is not satisfactory in the FRKL situation because it is
unlikely for each of the finite-size fluctuations in Qg i, sand Eg , s to decrease the value of the provably secure
key rate. In fact, for a given security parameter, the worst case bounds on Y ¢ and Y5 ; cannot be not attained
simultaneously if the raw key length is finite. (This is evident, say, from the bounds of ¥z o and ¥z ; given by
inequalities (2) and (3) in [4] or inequalities (12a) and (12b)in [6]. Note that there is a typo in inequality (12b)
—the Qé{ ’Ln =) there should be Q§fjg‘i+1 ). In all cases, the finite-size statistical fluctuation that leads to the
saturation of lower bound for ¥z ( does not cause the saturation of the lower bound for Yz ; and vice versa.)

Itis more effective if one could directly investigate the influence of finite-key-length on the key rate. To do
s0, one has to go beyond the use of Hoeffding’s inequality to bound the statistical fluctuation, which only works
for equally weighted sum of random variables that are either statistical independent or drawn from a finite
population without replacement [12]. Here we use the computation of the key rate of a specific BB84 QKD
protocol [5] that generates the raw key solely from X basis measurement results as an example to illustrate how
to directly tackle statistical fluctuation in the FRKL situation by means of McDiarmid-type inequality [13] in
statistics. The technique used here can be easily adapted to compute the key rates of other QKD schemes using
finite-dimensional qudits in the FRKL situation. Our work here is based on an earlier preprint by one of the us
[14]. Here we greatly extend and improve the original proposal by first proving a new and slightly extended
McDiarmid-type of inequality on so-called centering sequences. (See definition 1 for the precise definition of a
centering sequence.) Then we apply it through four different methods, each giving a separate provably secure key
rate. We also optimize the provably secure key rate R by exploiting our freedom to pick the centering sequences.
To our knowledge, this is the first time such an optimization is performed. In contrast, this type of optimization
is not possible in previous approach that makes use of a less general inequality known as Hoeffding’s inequality.
It turns out that each method works best in different situations; and the best provably secure key rate among the
four methods in realistic practical situation is at least about 10% better than the state-of-the-art method before
[14]. Moreover, for raw key length £, ~ 10°~107, this work almost double the secure key rate of the original
proposal in [14] when four different photon intensities are used. From a broader perspective, the technique we
introduce here is also applicable to bound the conclusion of a general physics experiment in the form of a real
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number due to finite-size statistical fluctuations of more than one type of measurement outcomes that are
possibly statistically dependent.

2. The QKD scheme by Chau in [6] and the assumptions of the security proof

To illustrate how McDiarmid-type of inequality can be used to give a better key rate, we consider the QKD
Scheme studied by Chau whose details can be found in [6]. Note that this scheme is a slight variation of the one
studied by Lim et alin [4]. The only difference is that they use three different photon intensities while we
consider the slightly more general case of using k > 2 different photon intensities. In essence, the Scheme in [6]
is a decoy-state BB84 scheme with one-way classical communication using the X-basis measurement results as
the raw key and the Z-basis measurement results for phase error estimation.

We assume that the light source is Poissonian distributed with intensities pi; > 1, > ... > g > Owith
k > 2. Usingthe resultin [9], we simply our discussion by assuming that these photon intensities are accurately
determined and fixed throughout the experiment. This is fine because fluctuation of photon intensity of a laser
source is negligible in practice. Since our aim is to demonstrate our technique of using McDiarmid-type
inequality in the simplest possible QKD implementation, we do not consider twin-field [15] or measurement
device independent [ 16] setups although adaptation to these situations is straightforward though tedious. The
measurement is performed using threshold photon detectors with random bit assignment in the event of
multiple detector click. Last but not least, we assume both Alice and Bob have access to their own private perfect
random number generators when choosing their preparation and measurement bases.

3. Finite-size decoy-state key rate

Recall that the error rate for this particular variation of the decoy-state BB84 QKD scheme using one-way
classical communication is lower-bounded by [4, 6]

(Qx,p)

raw

2
p§{<eXp(—u)>Yx,o + (pexp(—p)) Yo 1[1 — Ha(ep)] — Apc — [6longi + log, . ]} (3)

where p, denotes the probability that Alice (Bob) uses X as the preparation (measurement) basis,

(f(u) = Zﬁ: 1D, f () with Py, being the probability for Alice to use photon intensity parameter ,,.
Furthermore, H,(x) = —xlog,x — (1 — x)log,(1 — x) is the binary entropy function, ¢, is the phase error
rate of the single photon events in the raw key, and Agc is the actual number of bits of information that leaks to
Eve as Alice and Bob perform error correction on their raw bits. It is given by

AEC - <QX,;!H2(EX,M)> (4)

if they use the most efficient (classical) error correcting code to do the job. In addition, ., is the raw sifted key
length measured in bits, €., is the upper bound of the chance that the final secret keys shared between Alice and
Bob are different, and e,ec = (1 — pyo;) |24 — Us @ pg i /2. Here papore is the chance that the scheme aborts
without generating a key, pag is the classical-quantum state describing the joint state of Alice and Eve, U, is the
uniform mixture of all the possible raw keys created by Alice, py; is the reduced density matrix of Eve, and ||-||; is
the trace norm [17-19]. Thus, Eve’s information on the final key is at most €. Last but not least, y isa QKD
scheme specific factor which depends on the detailed security analysis used. In general, x may also depend on
other factors used in the QKD scheme such as the number of photon intensities k [4, 6].

For BB84, e, — ez,1as £1aw — +00. More importantly, the best known bound on the difference between e,
and e, ; due to finite sample size correction using properties of the hypergeometric distribution reported in
given by [6, 20]

e < enr + 7(6_ e s2¥ar(pexp(=p)) - sx¥u{p eXP(—u)>) 5)
X <QZ,u> <QX,u>
with probabilityatleast 1 — ¢/, where
- (c+d)(1 —-Db)b c+d
, b0, d) = 1 , 6
7@ b6 d) \/ od n[27rcd(l - b)baZ] ©

and sp is the number of bits that are prepared and measured in B basis. Clearly, sy = ¢, and
sz (1 — py)?sx(Qyp) / ( p; (Qx,))- (Note that 7 becomes complexif a, ¢, d are too large. This is because in
this caseno e, > e; ; exists with failure probability a. We carefully picked parameters here so that 7 is real.)

In the infinite-key-length limit, statistical fluctuations of Qg , and Eg ,, canbeignored. Then based on the
analysis in [6] with typos corrected, one has
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k k _Q . €X [ ] - . .
Ye,0 > maX(O, ZaOnQB,/Ln) = max| 0, z BA;LH Pl H1¢n Hi ) (7a)
n=1 n=ko JL, [e = )
k ko — ex S
Y1 > max (0, ZaanB,#n) = max|0, AQB’N” PLA]Sy (7b)
n=1 n=3=k [[,., [y = 5]

and

(Y & v & Qg By, explp, S
Y; 1801 < mm[%’l, ZazﬂQZ,NHEZ,N”] = min %’ Z ZAH" Z,pt,, CXP LU 190 ) 70)

ko [, [ — ml

n=1

where ky, = 1(2)ifkiseven (odd), and f[jin is over the dummy variable j from kg to k but skipping n. In
addition, S, = Z”utl A T where the double primed sumisover kg < f; < f,< -+ <fr_g,—1 < k with
By 12 ..oy tk_ky—1 #= 1. (Inother words, ag; = a4, = 0ifkisoddand a;; = 0ifkis even.) Note thatin our
subsequent analysis, we also need the following two inequalities, which can be proven using the same method as
in inequality (7b):

k _ koo — E, . ex S,
Y1821 = You(1 — ez0) > max[o, Zaanz,unEz,un) = max(0, Qe P, XPLI) (7d)
i1 n=3—ko Hjin [y — 1)
and
k k _QZ,unEZ,un eXP [//Ln] §n
YZ,leZ,l 2 max 0) ZaanZ,;L”EZ,yn = max 0) E ~ > (76)
n—1 n=s=ko L, [y = ]
where Bz, =1 — E .
Substituting inequalities (5) and (7) into expression (3) gives the following lower bound of the key rate
k
. 2
Z anX,pn — P;{AEC + <Qx;> |:6]ngl + log, —]}, 8)
n=1 fraw Esec €cor
where
by = p {{exp(— )} aos + (pexp(—p))ar,[1 — Ha(ep)]} ©)

provided that Y o, Y1 > 0.(The cases of Yy g or Y ; = 0 can be dealt with in the same way by changing the
definition of b, accordingly. But these cases are not interesting for they likely imply R = 0 in realistic channels.)

Note that the worst case key rate corresponds to the situation that the spin flip and phase shift errors in the
raw key are uncorrelated so that Alice and Bob cannot use the correlation information to increase the efficiency
of entanglement distillation. Thus, we may separately consider statistical fluctuations in Qx ;, *sand e, ; in the
FRKL situation.

4. An improved version of McDiarmid inequality

We now prove an improved version of a deep mathematical statistics result before applying it to improve the key
rate R. Our inslight is that statistical fluctuations in Qx ,, "sand e; , can be bounded using McDiarmid-type
inequality. Actually, the first inequality of this type was proven for the case of statistically independent random
variables using martingale technique in [13]. The inequality we need here is a straightforward extension of
theorem 6.7 in [13] and theorem 2.3 in [21] for statistically dependent random variables. (See also a closely
related version in [22].)

We first introduce the concept of a centering sequence [21]. The definition below is written in a more
apparent manner to physicists.

Definition 1. Let W = (W}, W, ..., W,) be arandom real vector whose components W;’s are possibly
statistically dependent random variables each taking values in the set V). Let f,, be a real-valued bounded
function of W. Set V,,, = f, (W)|p, where B,, denotes the conditions W; = w;for j = 1, 2, ..., m — 1.Then,
the sequence of random variable { V,,,},,,_ , is said to be centeringif E[U,|V;,_1 = v] = E[V,, — Vu_1|Viu_1 = V]
is a decreasing functions of vforallm = 1, 2, ..., t. (Here we use the convention that V; = 0 and assume that all
conditional expectation values E[-|-] exist.)
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Note that centering property implicitly depends on the distribution of W through the conditional
expectation value of U,,,. Moreover, { V,,} is centering if { V,,,} is a martingale.

Theorem 1. Using notations in definition 1, forafixedi = 1, 2, ..., t, let wy, € W, and set
n Wiy o Win—1) = esssup{ E[U,(W) [ Wi, = Wil ey, — essinf{E[U, (W) [W,, = wy 1} e,
= bWy oo W) — AWy ooy Wy 1). (10)

Here the symbols esssup and essinf denote the essential supremum and infimum, respectively. Further set

P2 = P2(Wpy oo, W) = 30— P Then f,(W) = f, (w1, W, ..., w,) obeys
562
Pr(f.(w) — ELf,(W)] > 6) < exp[Az;‘s] (11a)
oWy oo, wi—y)
and
—262
Pr(f,(w) — E[f,(W)] < —¢) < exp[ﬂ—] (11b)
oWy oo, wiy)

forany & > 0, where Pr(-) denotes the occurrence probability of the argument.

Remark 1. This version of McDiarmid inequality is slightly stronger than the one reported in [13] as we also
utilize information of w in obtaining # whereas the original version in [13] made use of the worst case w. The
proof of this theorem is based on that of theorem 2.2 in [21].

Proof. Note that for any h, § > 0,

Pr(V, — E[V/] = 0)

<E[exp{h(V; — E[V;] — §)}] = e "O+EViDE[exp(hV))] (by Bernstein’s inequality)
=e "OTEWDE [exp(hV;_ ) E[exp(hUp) | V;-1]]

ha,
geh(5+E[Vr])E|:exp(hV¢1){(bt — b;[UtW"IDe -
t — a4t

+(E[Ut|Vt—1] — a,)e
bt — dy

hx

(since a; < E[Uy]V;_1] < b; and the line joining
}] (a;, €™ and (by, ") is above the curve y = e
for x € [a;, b;])
(b — E[U]V,_1])eh

by — a,

e—h6+EIVD E[exp(hwl)]{

(by Chebyshev’s sum inequality on centering sequence)

L ELUIV ) = af)ehbf}

by — a;

h
CehE+EV_1]) o= hETU %] (b — E[UJV;_1De™
AN
by — a,

E 1 = hb;
+( LUVl — ane } (by Jensen’s inequality)

b, — a,
(12)
To proceed, we consider the function g(h) = —hx + In{[(b; — x)e" + (x — a,)e"]/(b, — a,)} for
x € lay, by] Ttis straightforward to check that ¢ (0) = dg/dh|,—¢ = 0. Moreover,

d%¢ (b — a)X(b — x)(x — a)e"bta) (b, — a,)?
ge < (13)
dh? [(b — x)eM + (x — a)et ] 4

with the equality holds whenever (b — x)e"® = (x — a)e"”. Therefore, Taylor’s theorem gives
g(h) < h*(b, — a,)?/8forall h > 0. Applying this inequality with x = E[U;|V,_ ] to inequality (12), we have

Pr(f.(w) — E[f,(W)] = &) = Pr(V; — E[V;] > §) < e "C+EViDeh’tbi—an’/8

h? Zt by — am)z} (hz,cz )
= exp

< eXp —(Sh =+ m=1 3 T — 5]’1

(14)

forany h > 0. Therhs of inequality (14) is minimized by setting h = 46 /72 and with this h, inequality (14)
becomes inequality (11a).

Finally, by applying the same argument to —f, ’s instead of f,,,’s, we get inequality (11b). This completes our
proof. O
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Corollary 1. Let W = (W, ..., W) be a random vector such that W,,, takes on value from the same bounded set of
real numbers W = {q; }’]?:1 forallm = 1, 2, ..., t. Suppose further that W,,,’s are multivariate hypergeometrically
distributed. Let f, (W) = 1"\ W, forallm = 1, 2, ..., t. Then, the sequence of random variables { V,,,}, _ defined
in definition 1 is centering provided that E[V,,, — V,,_1|V;,_1 = v]is well-defined for all v. Besides, theorem 1 holds
with 7 = JtWidth(W), where Width(WW) = esssup W — essinf W.

Proof. This proof is adapted from example 1in[21]. From definition 1, it suffices to show that
E [UMZZ’;1 W =v]=E [WMZZ’;I W, = v]isadecreasing function of v. Suppose W;’s are drawn from a
collection of M objects out of which M; of them take the value «; for all j. Suppose further that among W;’s with
1 < i < m, thereare m;of them taking the value of ; for all j. Then, the probability that W, = «; is
(M; — m;)/(M — m + 1). Moreover, the condition Z;”:_ll W, = vmeansthat ) m;a; = v. Asaresult,
E[W,IS7 Wi = 0] = (M — mpay /(M — m + 1) = (; Mjaj — v) /(M — m + 1), whichisa
decreasing function of v whenever Z?’;ll W; = v.Hence, {V,,} is a centering sequence.

By applying theorem 1 to { U, }, we have ,,, = esssup{ W,,|V,,_1 = v} — essinf{W,|V,,_; = v} =
esssupWV — essinf W = Width(W) for all mand V,,_,. Hence, it is proved. O

Remark 2. The above corollary was first proven by Hoeffding in [12] without using the concept of centering
sequence. Actually, corollary 1 is more often referred to as the Hoeffding’s inequality. In fact, Hoeffding’s
inequality has been used to compute the provably secure key rate R when the raw key length £, is finite in
previous works [4, 6-8]. In section 5 below, we use the above corollary to bound e; ; in Methods A and B.

Corollary 2. Let W = (W}, ..., W) be a random vector where each W,, takes on value from a bounded set of real
numbers W = {q; }]j: 1- Suppose W,,,’s are multivariate hypergeometrically distributed in the sense that they are
chosen without replacement from a collection of M objects out of which M; of them take the value of o; for allj. Let
x € [essinf W, esssupW]and y > 0 be two fixed numbers. Let P: {1, 2, ..., t} — {1, 2, ..., t} bean arbitrary
but fixed permutation. Suppose

t
y+ Z Whiy > esssup VW — essinf W > 0. (15)
i=1
Define
t—mx+> " W
£, (W) = Zlflm o (16)
y+ (t — m)x + Zizlwp@
form = 1, 2, ..., t. Then, the sequence { V,,},,_, is centering provided that
k m—1
< mi 20, Mjay —sup D7 Wey +y — 8 (17)
x < min
m=1 M —t—m+ 1

where § is a small correlation term of the order of Width(W) /(y + tx)2. Furthermore, by pickingx to be the rhs of
inequality (17), then inequality (11)is true with

o _ 4 yWidth(W) ’
m=1 [y + (t — m)x + esssupWV + Z::le(i)] [y + (t — m)x + essinf W + ZZZIWPU)]
(18)
where {wp(;} is a decreasing sequence.
Proof. Since (Wp(1y, W2y, -..» Wh()) is also a multivariate hypergeometrically distributed random vector, we

only need to prove the case when Pis an identity operator as the general case can be proven in the same way.
From equation (15), f,,, has a positive denominator and is an increasing function of W,,,. So to prove that { V,,}

is centering, it suffices to show that E [Um|2?’:’11 W: = (m — 1)w]isadecreasing functionof im — )w =
Z?jl m;ja; for all non-negative integers m;’s obeying Z];:1 m; = m — 1.Since o;’s are fixed, the only way to
change wis to change m;’s but at the same time keeping 3_%_, m; fixed. Clearly, w can only be changed if m > 3.
More importantly, as m;’s are integers, any such change can be expressed as a composition of a series of
elementary changes, each increases a certain m; by one and decreasing a certain m; by one

withl <j, = j, < k.
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Observe that

j=1
. y(Wo = %)
O+ (= m+ Dx+ (m = Dwlly + (= m)x + (m — Dw + W)

m—1 k
E[UMZ Wi=(m— Dw= ijaj]
i=1

- Y 3 (M; — mj)(aj — x)
(M—m+1)[y+(t—m+l)x+(m—l)w]j:1y+(t—m)x—|—(m—l)w—i—aj

£ (M — mp (e — x)

_ y
‘XM—m+nDZ% D+aj—x

(19)

Moreover, after the elementary change, w — w + o — aj = w + Aw.Frominequality (15), D > |a; — x|.
So by Taylor’s theorem,

m—1 k
E[Umlz Wi=(m— 1w= ijoz]-]
i=1

j=1

m—1 k
|—>E[Um|z Wi=(m— Dw+ Aw = aj — aj, + ijaj]
i=1 j=1

_ y {zk:(Mj_mj)(aj_x)[l— o — X +£(aj_x)2]
M—m+ 1D+ Aw) | Tl D+ Aw D+ Aw  \D+ Aw
—(aj, — x) N aj, — X }
D+ Aw+a; D+ Aw+ aj
= 4 [Zk:M-a- - M—-—m+ )x—(m— Dw
(M —m+ 1D+ Awp? [ =7

_ Z';:I(MJ' = mp (e — %) +£( aj — x )2
D+ Aw \D+ Aw

7 yAw
M —m+ DD+ Aw + aj — x)(D + Aw + aj, — x)

(20)

with § € [0, 1]. As x € [essinf W, esssup)V], we conclude that 0 < Zj(Mj — my)(a; — x)? <

(M — m + 1)Width(W)? almost surely. From inequality (15), we mayexpand1/(D + Aw), 1/(D + Aw +
aj —x)and1/(D + Aw + «a; — x)asseries of Aw via Taylor’s theorem. In this way, the rhs of equation (20) can
be expressed in the form E[U,,[S7" ' Wi = (m — D)w = E';:I mjcy] + g Aw + g, with

2[2’;:11\/11-04]» —(M—-—m+ Dx— (m — l)w]

g y
! (M — m + 1)D? D
k
N & — x) . §laj, =0 3Zj:1(Mj — mj)(aj — x)?
D D D?
_ y Z[Zl;lejaj —(M—-—m+ Dx— (m — l)w]
S (M —m+ 1)D? D

(e2)

+[L_wmmwa_3m4m+1nmmmwy
D D? ’

where &,, &; € [0, 1]. And the correlation term g, obeys |g,| < 3y My — (M — m + D)x — (m — l)w](Aw)z/
[(M — m + 1)D].
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A sufficient condition for { V,,} to be centeringis g Aw + g, < 0 forall m and w. Moreover, this condition is
satisfied if

k
Zijleozjf(mf Dw+y—§6
X < (22)
IM—t—m+ 1

forallm = 1, ..., tandforall (m — 1)w = >_7",' W, where the correlation term § < |g,] Aw + 2Width(W) +
(BM — 3m + 2)Width(W)?/D. (Note that inequality (22) is consistent with the constraint that
essinf W < x < esssupWV because this inequality is trivially satisfied when x = essinf WV.) Hence, { V,,} is
centering if inequality (17) holds.

We now switch back to consider the situation of an arbitrary but fixed permutation P. To optimize the
bound in theorem 1, we use the freedom to pick a suitable permutation P to minimize 7. From theorem 1,
fn=1y Width(W)/{ [y + (t — m)x + esssup W + Z:'ﬂ:_]l wpplly + (t — m)x + essinf W + Z;-":_ll wpil}s
which is a decreasing function of both x and w. Hence, the optimal situation occurs when we pick the
permutation so that wp; is a decreasing function of i. In this case, > | wp(;) /m is a decreasing function of m. In
this way, we arrive at 72 in equation (18). ]

Remark 3. The ability to optimize # by means of picking the best possible permutation P and hence the best
possible centering sequence is a novel feature of McDiarmid inequality. As far as we know, this feature has not
been exploited before. In contrast, from the proof of corollary 1, it is clear that the value of 7 obtained from the
Hoeffding’s inequality does not depend on the choice of P. In section 5 below, we fully exploit this freedom of
picking Pto bound e; ; in Method D. Note however that the above corollary requires the knowledge of M;’s. In
addition, 72 is written as a rather involved sum. Let us replace every wp; in equation (18) by the average observed
value, namely, 3!_, w; /t. In this way,  would increase by a factor of O(t Width(W) /D). Suppose that we fix

x =3I, w;/t = (w)aswell (without caring whether inequality (17) holds or not). Then 7 would change by a
factor of O(Width(W) /DA/t) most of the time due to statistical fluctuation. Thus, in practice, we may replace 7
in equation (18) by the following more convenient and useful expression

B JtyWidth(W)
B [y + (t — 1){w) + essinf W][y + (¢t — 1){w) + esssup W] ’

>

(23)

which does not depend on the knowledge of M;’s. This expression for 7 shall be used to bound e;,; in Method C
to be reported in section 5.

5. Application of the improved McDiarmid inequality in finding the key rate

There is a subtlety in applying theorem 1 to study the statistical fluctuation of e, ;. A naive way to do so is to use
inequalities (5) and (7) to obtain thebound e, ; < (Zﬁzl a2, Qz,, Ez,p1,) / (Z’;Zl a1,Qz,,,)- Then one could
regard Qz,, sand Qg ,, E ,, s as random variables and directly apply theorem 1 and definition 1 to the rhs of
the above inequality. Nonetheless, it does not work for the rhs of this inequality need not be bounded. Besides,
the bound obtained is not strong enough even if we ignore the boundedness problem.

To proceed, we first write Q; , = >° i Wn]- / $7,1, Where 3, is the number of photon pulses that Alice
prepares using photon intensity 1, and that Alice prepares and Bob tries to measure (but may or may not have
detection) in Z basis. In addition, an denotes the possibly correlated random variable whose value is 1 (0) if the
jth photon pulseamong the 3, , photon pulses is (not) detected by Bob. Clearly, §; , ~ szz Py, with T'being the
total number of photon pulses sent by Aliceand p, = 1 — p,, is the probability for Alice (Bob) to prepare
(measure) in the Z basis. Since s; ~ sz2 (Qqg,p)» Larrive at

k
Y,,2> maX(O, Z“anZ)#n) = max| 0, (Qz) = Z{aln lz Wn]}} = max[ (Qzp) “ ZWZ ,) (24a)

n=1 Sz =1 Py,

Here W; ; is the random variable that takes the value ay, /P if the ith photon pulse that are prepared by Alice and
then successfully measured by Bob both in the Z basis is in fact prepared using photon intensity y,,. Recall that
Eve knows the number of photons in each pulse and may act accordingly. However, she does not know the
photon intensity parameter used in each pulse and the preparation basis until the pulse is measured by Bob.
Hence, W; ,,’s may be correlated. Actually, the most general situation is that W; ,,’s are drawn from a larger
population without replacement. That is to say, these random variables obey the multivariate hypergeometric
distribution. By the same argument, inequalities (7¢) and (7d) gives

8
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Y, & Y, 5
Yoiez1 < min| 21, 3" a,Qz Ezy | = min| 21, (Qz.) SOWES (24b)
P — 2 Sz =1
and
- k = <QZ,#> Sg e
YZ,leZ,l 2 max 0: ZaanZ,unEZ,p" = max 0) B ZWZ,i > (246)
n=1 Z i=1

where s; = 5;(Qz,,Ez,,) /(Qz,,,) and sy = 52(Qz,uE7,,) /(Qz,,.)) are the number of bits that are prepared and
successfully measured in the Z basis such that the preparation by Alice and measurement result by Bob are
unequal and equal, respectively. Moreover, Wy ;’s (W; ;’s) are multivariate hypergeometrically distributed
random variables taking values in the set {a,,, /P, ¥ {au /b, KD

From inequalities (24a)—(24c), e;,; obeys

Sze e
i Wa
ez,1 < max|0, min|— @ (25a)

203 W

and

¢
Sz e
. 1 Zi:]WZJ

ez,1 < max|0, min| —,

5 - - (25b)
Sz, Sz, €
Ei:1WZe>i + Zj:lwzeJ

Interestingly, these two inequalities can be used to give four different bounds on the finite-size statistical
fluctuations in e, ;. More importantly, these four bounds are

A.Use an upper bound of ZfZ: , W ; and a lower bound of 71 Wy,j to deduce an upper bound of ey ).
Specifically, from corollary 1, we conclude that the true value of X%, W jis less than the observed value by

[s;In(1/¢;) /217> Width({ay, i J_ ) with probability at most e,. (Recall that Width(WV) of abounded
set VW of real numbers is defined as esssup)V — essinf WV.) And the true value of Zf;: Wy ;is greater
than its observed value by [s5 In(1/¢5) /212 Width({az, /p,, i—1) = [5(Qz,uEz,) In(1/€5) /2(Qz, 1)1/
Width({a,, / P, J_ ) with probability at most . Since Wy and W, ; are positively correlated, from
inequalities (24a), (24b) and (25a), we have

k
1 ZnZIQZnQZ,#”EZ,#” + AYZ,I‘EZ,I

ez,1 < max|0, min| —, - (26a)
2 anlaanZ>/"n - AYZ,I
with probabilityatleast 1 — ¢, — €5, where
(Qu) (QupiEz ) In(1/e8) T2 o)
AY; ez, [ A z ] Width|<{ =22 (26b)
252 pp,
"rn=1
and
k
1/2
AY;, = <Qz,u>[ln(l/€Z)] Width| 4 2 : (26¢)
ZSZ p:“’n .

Incidentally, this is the method reported in the preprint by one of us in [ 14]. Moreover, similar bounds on
statistical fluctuations of Qg ,,’s and Qg 1E5 ; have been obtained using Hoeffding’s inequality in [4, 6]. That
method is not as effective as the one reported here since they indirectly deal with finite sampling statistical
fluctuation of ¥; ; and Y7 1€, 1.

B. Alternatively, we may use inequality (250) and corollary 1 to bound e, ;. Specifically, the true value of
Z;Z;l W ;is less than the observed value by [s; (Qz, .Ez, ) In(1/€7) /2 (Qg, )12 Width({ ain /P, ¥_ ) with

probability at most 5. Note that Wy ’sand W

j sare statistically independent. Therefore, from
inequalities (24D), (24c) and (25b), we have

9
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k
Zn: 1a2n QZ,,unEZ,un + AYZ,IeZ,l

ez,1 < max| 0, min l, - — - (26d)
anlﬂanz,unEz,pn + Zn:l[ZZnQZ,unEZ,p," — AYy 1851 + AYy 65,
with probability atleast1 — €5 — €5, where AY; e, ; is given by equation (26b) and
- o /2 k
A%y = [<Qz,p,> (QuuEa) 1n(1/ez)] widh {& } | 60
257 pﬂn -

C. An even more interesting way to bound e; ; is to use inequality (25b), corollary 2 and remark 3. Since (w) in
this case is the measured Y; 1e; 1/s;, which is lower-bounded by inequality (7¢), remark 3 gives

k
anl‘lZﬂQz,#nEz,#n
k = k —
Z aanZ,u"EZ,p" + anlaZ"QZ)/"nEZ’/"n - AYZ,leZ,l

n=1

] 1
ez,1 < max| 0, min > + Aey (26f)

with probability atleast 1 — & — ¢, where

k
D (Qz Bz In(1/e) 177 (& _
AeZ,1:[<QZ’I><QZ’l 7,u) I0( /Q)] [ZQMQZ,/L“EZM — AYZ,léz,l]Width {@}
=1

257 Hy

n=1

QZ,uEZ,u> n=1

n=1

~1
+ - <QZ’“>2 mlzlx Son
Sy <QZ,#EZ,N> n=1 p/‘n
(Qz) )

k
X a1n Qg Ezp — AYz ez + |1 —
I:n;l B / SZ<QZ,;LEZ,;1>

-1
2
+ 7<QZ’“> mkin { Do } (269)

k _ <Q > k
|- an s (1 2 S0,
Z

k
Z Dn QZ,/J,” EZ,/J,”

n=1

5Z2 <QZaﬂEZaﬂ> n=1 ppn
provided that inequalities (15) and (17) hold. (See [23] for an alternative proof of this result.)

D. There is an alternative way to apply inequality (25b) and corollary 2 to find Ae;, ; in inequality (26f), which
is quite aggressive. Since >_!_, w; /¢ is an estimate of Y; 1e;,; = (w), we know from corollary 1 and
inequality (7e) that (w) > Z’;: 1010 Qs Bz, — AYy 16,1 with probability atleast 1 — €. In other words,
by fixing t = s, and x = (Zﬁzl 1 Qzp1, By, — AYz 0621 / s5» we conclude that inequality (22) is satisfied
with probability atleast 1 — €. Next, we could upper-bound the rhs of equation (18) by approximating the
sum over m there by an integral. Specifically, set y = Zﬁ:l a1,Qz,, E;, p, — AY 187 1, then

t
P2 Z
e

1
f Y
1Yo |y 4+ (f — m+ 1)x + essinf W + Z?;le(,-) + plwpm — x]

2
- L m—1 d/L
y + (t — m + x + esssup)V + Zi:l wpay + wwpmy — x1
! 1 1
= yz Z - . m—1
m=1 WP@m) — X ¥+ (t —m+ 1)x + essinf W + Zi:l wpay + wWpmy — x]
_ 1
y+ (t —m+ 1)x 4 esssupWV + Z?:llwla(,-) + pwpm — x]
1
2 y+ (@ —m+ 1)x + esssupV + Z:':lle(i) + plwpm — x]

- n — (26h)
Width(W) y+ (@ —m+ Dx + essinf W+ Zi:l wpgy + plwpm — %]

=0

10
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As Wp () s are arranged in descending order and W in our case is the set { (Q, u> a, / ( P Sz) }ﬁzl ofat most k
elements, rhs of the above inequality can be simplified to a big sum of at most k terms To be more explicit,
suppose the descending sequence {wp I, contains n) copies of wl, followed by n® copies of w'?,
and so on until ending with n® copies of w®. Surely, X n® = ¢ = s¢and -5 nOw® /t is the
observed (w). Then, equation (26/1) becomes

k
P2~y ! - - - . NG
W —x oy =30 n? 4 Dx+essinf WA Y nOw® 4 pfw — x]
_ 1
y+ =30 nD 4 Dx 4 esssupV + > nOw® 4 p[w™ — x]
2 yH =0 1D+ Dx+ esssupW + Y nOwd 4 pu[w™ — x]
—+ n . . B )
Width(W) y+ (- Zi<mn(l) + 1)x + essinfV + Zi<mn(z)w(z) + pw™ — x] .
1=
(261)
which is efficient to compute. (Note that the sum in rhs of equation (18) is a decreasing function of x
and wp(;’s, the above integral approximation is accurate up to a correction term of at most
Width(W)? = O(1/s2). Surely, this correction can be safely ignored in practice provided that
t = s; 2 10%) In this way, inequality (26/) holds with probabilityatleast1 — €5 — 2¢5 with
In(1/¢9) 772 ,
Aey, = ?[711( 2/ fz)] , (267)

where 7 is given by the rhs of inequality (261).

In reality, we use the minimum of the above four methods to upper-bound the value of e, ;. To study the
statistical fluctuation of R, it remains to consider the fluctuation of Qy ,, in the first term in expression (8).
(Although the second term also depends on Qy ,, ’s implicitly through Agc, statistical fluctuation is absent from
this term. This is because Agc is the amount of information leaking to Eve during classical post-processing of the
measured raw bits. Thus, it depends on the observed values of Qy , ’sand Ex ,, ’s instead of their true values.)
Using the same technique as in the estimation of statistical fluctuation in e;_j, the first term of Expression (8) can
be rewrittenas (Qy,,,) >ix | Wi, ; where W, ;’s are multivariate hypergeometrically distributed random variables
each taken values in the set { b, / P, }ﬁ: - Here b,, is given by equation (9) with e, equals the R H.S. of inequality (5)
where e; ; is given by any one of the following four equations depending on which of the four methods we use:
equation (26a), (26d), (26f) and (267). Corollary 1 implies that due to statistical fluctuation, the true value of the
first term in Expression (8) is lower than the observed value by (Qx, ,,) [In(1/€x) / (2sx)1" /2 Width({b, / P }ﬁ: D
with probability at most ex. We remark that this way of finding alower bound for -, b, Qx, ,,, is more direct than
the standard one that separately bounds Yx o and Yk 1 [4,6, 8, 11].

Putting everything together and by setting ex = €, = €5 = €5 = €5 = €5ec /X, We conclude that the secret
key rate R satisfies

k
k 1/2
R = Z anX,u” - <QX,u> {M} Wldth {h}
n=1
n=1

_ ZSX pﬂn
‘ 2
_ P§{<QX,,,H2(EX,/[)> + <st,> [6logZEL + log, 6—]}, 27)
X sec cor

where b, = b, (e,) is given by equation (9). Here e, equals the rhs of inequality (5) with e; ; given by

equations (26a), (26d), (26f) or (26j). Notethat x = 9 = 4 + 1 + 4 for Methods Ato Cand x = 10 for
Method D. (Here the first number 4 comes from the generalized chain rule for smooth entropy in [4], the
number 1 comes from the finite-size correction of the raw key in equation (B1) of [4], and the last number 4
comes from 5, €y, €5 as wellas either ¢, or €. Moreover, x for Method D is larger than the rest by 1 because of
the extra condition on the statistical fluctuation of alower bound of Y; se; ;.) Interestingly, unlike the schemes
used in [4, 6, 7], the number x in our scheme is independent on the number of photon intensities k used. This is
because we directly tackle the finite sample statistical fluctuations of quantities like Y5 ;. Note however that even
though x does not depend on k, it does not mean that one could use arbitrarily large number of photon
intensities as decoys (so as to obtain better bounds on quantities like ¥z ;) without adversely affecting the key rate
for a fixed finite sy. The reason is that Width({aln/pun }’,jzl b, Width({azH/pun }’,jzl }) and Width({ b,,/pun}],j:1 1))

diverge as k — o0 due to divergence of a;,,, a,,, and b,, [6] as well as the decrease in min { P }’,jzl. Recall that
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Table 1. Comparison between the state-of-the-art key rate R® = R95 x 107> in [6] with the key rates in equation (27) (or more precisely Rls = max(0, R' x 107?)) for the dedicated quantum channel used in [4, 6] via Method 1. These
rate are optimized using the method stated in the main text.

k=3 k=4 k=5 k=6
sy RS, RA RE; RS RE RS, RA RE RS RES RS, RA RE; RS RE, RS RA RE, RS RS
10° 0.052 0.300 0.326 0.470 0.254 0.027 0.270 0.291 0.487 0.747 0.000 0.152 0.156 0.160 0.142 0.000 0.052 0.076 0.076 0.000
10° 0.294 0.743 0.789 0.835 0.637 0.194 0.727 0.763 0.829 1.41 0.100 0.660 0.694 0.516 0.484 0.055 0.404 0.434 0.407 0.966
107 0.687 1.18 1.23 1.22 1.04 0.573 127 1.30 127 1.84 0.421 121 1.20 1.20 112 0.259 0.949 1.01 0.823 1.57
10 1.11 1.43 1.48 1.45 1.64 1.04 1.60 1.63 1.59 2.18 0.929 1.66 1.68 1.63 1.81 0.624 1.32 1.34 1.33 2.00
10° 1.51 1.70 1.75 1.72 2.05 1.57 1.91 1.94 1.90 2.40 1.46 2.04 2.10 2.06 2.37 1.08 1.74 1.75 1.71 2.38
10" 1.87 1.98 2.02 1.99 2.32 1.97 2.20 2.22 2.19 2.58 1.94 2.40 2.42 2.40 2.72 1.72 2.16 2.18 2.14 2.63
10" 2.20 2.25 2.29 2.26 2.43 2.32 2.46 2.48 2.45 2.81 2.46 2.67 2.69 2.69 2.88 2.18 2.50 2.52 2.48 2.86
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computing a,,,, a4, and b, is numerically stable and with minimal lost in precision if 41, — p,,,, 2 0.1 for
n =1, 2, ..,k — 1[6]. This means the number of photon intensities k used in practice should be <10.

6. Performance analysis

We study the following quantum channel, which models a commonly used 100 km long optical fiber in QKD
experiments, to test the performance of this new key rate formula in realistic situation. The findings here are
generic as the general trend and performance improvement are also found in other situations including using the
same fiber of different lengths as well as other randomly generated quantum channels. The yield and error rate of
that quantum channelis givenby Qg , = (1 + Pap)du and Qg ,E5 = py. + emis[1 — exp(—n4 )] + Py d, /2,
whered,, = 1 — (1 — 2p, ) exp(—1),1). Here we fix after pulse probability Py =4 X 1072, dark count
probability p; = 6 x 1077, error rate of the optical system ey,s = 5 x 10~°. Inaddition, the transmittance of
thesystem ), = 0.17),,, and the transmittance of the fiber is given by 73, = 10~°2/1% with L is the length of the
fiber in km. These parameters are obtained from optical fiber experiment ona 100 km long fiber in [24]; and have
been used in [4, 6] to study the performance of decoy-state QKD in the FRKL situation. We also follow [4, 6] by
using the following security parameters: €., = k = 1071%, where € = Kfina With &hna ~ Rsx / ( p; (Qyx, ) is
the length of the final key measured in bits. Note that x can be interpreted as the secrecy leakage per final secret bit.

Table 1 compares the optimized key rates for the state-of-the-art method reported recently equation (3) of
[6] with equation (27) for various sy and k. (This is the best provably secure key rate obtained before the posting
of the original proposal using McDiarmid inequality by one of us in [14].) The optimized rates are found by
fixing the minimum photon intensity to 1 x 10~%, while maximizing over p, as well as all other photon
intensities 11,’sand all the p, ’s. This optimization is done by Monte Carlo method plus simulated annealing
with a sample size of at least 10'° for each data entry in table 1. For Method D, the optimized key rate depends on
the actual Z-basis measurement results. Here we simply fix n"’s to their expectation values.

The table clearly shows that using McDiarmid inequality improves the optimized key rates in almost all
cases. [t also shows that for any method used, the provably secure key rate increases as the raw key length sy
increases. And they all gradually converge to the same infinite-size key rate. Besides, the asymptotic key rate
generally increases with k. These are natural as longer sy implies smaller finite-size statistical fluctuation and
larger number of decoys k used allows better estimation of the bounds of various Yz ,,’s and Yz 15 ;s.

Among the four methods introduced here, Method A almost always gives the least provably secure key rate.
This implies that it is more effective to estimate a lower bound for ¥; | via estimating an upper bound for Y 1e;
plus alower bound for Y312, ;. Method B is slightly better than Method C for large sy (say when 2103, the
improvement is about a few percent). Method D is about 5%—15% or so better than Method C when
108 < sy < 10!\ This is not unexpected for the following reason. Although Method D is more aggressive than
Method C in estimating the statistical fluctuation of e, ; and hence the key rate, it requires an additional
condition for lower-bounding (w). Thus the value of x for Method D is 1 greater than that of Method C. Asa
result, for small raw key length, the improvement in estimating e, ; for Method D may not be able to compensate
the need to control the statistical fluctuation of one more variable. Table 1 also depicts that Method D is about
5%-—20% better than Method Bwhen 10® < sy < 10'%. Furthermore, for fixed s; and x and a fixed method to
compute bound for e, ;, the provably secure key rate reaches a maximum at a finite k. This is not unexpected
because even though the y we deduce is independent of the number photon intensities k used, Width(W)
diverges as k — +o00. Last but not least, in the case of k = 4, Method D always gives the best key rate. We do not
have a good answer to this observation. It is instructive to study why in future.

7. Summary and outlook

To summarize, for sy ~ 10°> — 106, atleast one of the four methods reported here could produce a provably
secure key rate that is at least twice that of the state-of-the-art method. And for sy ~ 108, Method D is at least
40% better than the state-of-the-art method. These improvements are of great value in practical QKD because
the computational and time costs for classical post-processing can be quite high when the raw key length sy is
long. More importantly, the McDiarmid inequality method reported here is effective to increase the key rate of
real or close to real time on demand generation of the secret key—an application that is possible in near future
with the advancement of laser technology. It is instructive to extend our McDiarmid inequality method to
handle the case of FRKL decoy-state measurement-device-independent QKD and compare it with existing
methods in literature, such as the one that uses the Chernoff bound [25] and its extension specifically for decoys
with four different intensities [26].

In addition to QKD, powerful concentration inequalities in statistics such as McDiarmid inequality could
also be used beyond straightforward statistical data analysis. One possibility is to use it to construct model
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independent test for physics experiments that involve a large number of parameters but with relatively few data
points.
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