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Abstract

We use principal component analysis on 55 bilateral exchange rates of 11 developed currencies

to identify two important global risk sources in FX markets. The risk sources are related to Carry

and Dollar but are not spanned by these factors. We estimate the market prices associated with

the two risk sources in the cross-section of FX market returns and construct FX market implied

country-specific SDFs. The SDF volatilities are related to interest rates and expected carry

trade returns in the cross-section. The SDFs price international stock returns and are related to

important financial stress indicators and macroeconomic fundamentals. The first principal risk

is associated with the TED spread, quantities measuring volatility, tail and contagion risks and

future economic growth. It earns a relatively small implied Sharpe ratio. The second principal

risk is associated with the default and term spreads and quantities capturing volatility and

illiquidity risks. It further correlates with future changes in the long term interest rate and

earns a large implied Sharpe ratio.
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1 Introduction

Understanding risks and their pricing implications in foreign exchange (FX) markets is important.

We use principal component analysis (PCA) on 55 bilateral exchange rate growths of 11 developed

currencies to identify the major risk sources. We focus on the first two principal components (PCs)

as risk sources since they capture the most important common variation in all bilateral exchange

rates according to the Eigenvalue and Growth Ratio criterions by Ahn and Horenstein (2013). We

find that our identified risk sources have some overlap with the Carry and Dollar factors, but the

relation to the Dollar is weaker.1 Moreover, our risk sources are not fully spanned by the Carry

and Dollar factors.

In a second step, we employ the fundamental economic identity that an exchange rate is equal

to the ratio of its corresponding country-specific stochastic discount factors (SDFs) and take ex-

pectations to derive a cross-sectional relationship between expected FX market returns and market

prices of our identified risk sources. This allows us to estimate market prices of risk and con-

struct FX market implied country-specific SDFs. The theoretical identity between exchange rates

and SDFs naturally arises in frictionless, fully integrated and arbitrage free international financial

markets (e.g. Brandt et al. (2006), Maurer and Tran (2017a,b)). Moreover, a nice feature of this

relationship is that every shock in FX markets must be a shock to (at least one) SDF and is priced.

This is in stark contrast to other asset classes, such as stock markets for instance, where shocks

can be priced or idiosyncratic.

Most FX market research focuses on risk pricing in USD. However, setting the USD as the

base currency implicitly biases the analysis towards risks which are specifically important to a US

investor but not necessarily to investors in other countries or from a global perspective. That is,

these risks may be compensated by potentially insignificant market prices in a global context. For

instance, Lustig et al. (2011) use PCA on exchange rates quoted against the USD and find that

the market price of risk of the first PC (also known as the Dollar factor) is small. That is, while

the first PC captures most of the time-series variation in exchange rates it does not explain the

cross-section of expected returns, which confirms our concern.

We argue that global risks are better identified if we use all bilateral exchange rates (i.e., not

only quoted against one base currency) in the PCA. Of course, the set of exchange rates quoted

1Lustig et al. (2011) define the Dollar as the strategy of borrowing in USD and equally lending in all other
currencies, and the Carry as borrowing in low and lending in high interest rate currencies.
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against the USD implies all bilateral exchange rates. However, the PCA strongly focuses on USD

specific shocks when only exchange rates quoted against the USD are used, while the PCA on all

bilateral exchange rates is impartial in weighting shocks across all exchange rates, which balances

the impact of shocks specific to any one country and highlights global risks.2

Our estimated SDFs have several interseting implications. We find that the implied SDFs in-

crease during historically bad times such as the Asian financial crisis, Russian sovereign default and

the bailout of Long-Term Capital Management, the default of Lehman Brothers and the financial

crisis, and the bailouts of Greece and the European sovereign debt crisis. Moreover, we show that

currencies with lower interest rates have more volatile SDFs, and the carry trade of borrowing

currencies associated with more volatile SDFs and lending currencies associated with less volatile

SDFs is profitable.

We further use the non-parametric approach of Christensen (2017) to decompose our estimated

SDFs into permanent and transitory components and show that these components satisfy the

theoretical bounds derived by Alvarez and Jermann (2005). This approach also provides us with a

non-parametric estimate of long term bond yields for each country. We find that these estimated

yields are close to the data, which is interesting because our estimation did not use any information

about long term bonds (but only exchange rates and short term bonds). Moreover, we estimate

a theoretical relationship provided by Lustig et al. (2017) between long term bond excess returns

and entropies of the permanent SDF components across countries and find that this relationship

holds in our estimated model.

In additional out of sample tests, we show that our estimated SDFs price international stock

returns. In particular, we show that our first two PCs from FX market data capture only about 10%

of the time-series variation in international stock returns (when denominated in local currency) but

explain about 30% of the historical equity premia across countries. Moreover, the cross-sectional

correlation between the risk premia implied by our SDFs and historical premia is 67%. We further

use Fama and MacBeth (1973) regressions to estimate the market prices of risk of our first two

FX market PCs in the cross-section of international stock returns. The estimated market prices

are large and highly significant even after controlling for popular pricing factors such as the world

2Note that for N +1 currencies only N out of all N(N−1)
2

bilateral exchange rates are linearly independent. Thus,
PCA delivers only N PCs with non-zero eigenvalues. These N PCs span the same space as the N PCs of N exchange
rates quoted against a single base currency (e.g. USD). But in general, the first K < N PCs of all N(N−1)

2
bilateral

exchange rates will not span the same space as the first K PCs of the N exchange rates quoted against a single base
currency.
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market portfolio, the five global Fama and French (2015) factors, global momentum and the Dollar

and Carry factors. The market prices estimated in the cross-section of stock returns are comparable

to the ones estimated in the cross-section of FX returns. We further find that the second PC is

more important as a pricing factor than the first PC.

Furthermore, we document that our estimated SDF in the USA correlates with a broad set of

US specific financial stress indicators. We also document that the first FX market PC is related

to the TED spread and variables that quantify volatility, tail and contagion risk. In contrast,

the second PC is associated with the default and term spreads and stress indicators that measure

volatility and illiquidity.

Finally we test the relationship between our estimated SDFs and macroeconomic fundamentals.

We confirm our economic intuition that an increase in the SDF (bad shock) has a negative effect on

several measures of economic growth, a negative effect on short and long term interest rates, and a

positive effect on unemployment. We further document that the first FX market PC is associated

with a broad set of macroeconomic fundamentals which mostly capture economic growth. The

second PC is weakly related to most macroeconomic quantities but has a significant association

with changes in the long term interest rate.

Related Literature

The framework connecting moments of SDF growths to exchange rates is for instance suggested

by Bekaert and Hodrick (1992), Bekaert (1996) and Backus et al. (2001). Lustig and Verdelhan

(2007, 2011) and Burnside (2011, 2012) discuss the connection between carry trade returns and ag-

gregate consumption growth (CCAPM) and other popular asset pricing factors, which are known

to explain the cross-section of stock returns. Recently, a large literature has emerged introducing

new currency risk factors: carry factor (Lustig et al., 2011), global volatility factor (Menkhoff et al.,

2012a,b), global currency skewness factor (Rafferty, 2012), FX correlation risk factor (Mueller et al.,

2013), Dollar factor (Lustig et al., 2014; Verdelhan, 2015), Euro factor (Greenaway-McGrevy et al.,

2016), downside beta risk factor (Dobrynskaya, 2014; Lettau et al., 2014; Galsband and Nitschka,

2013), FX liquidity risk factor (Mancini et al., 2013), economic size factor (Hassan, 2013), surplus-

consumption risk factor (Riddiough, 2014). Some recent papers link some of these factors to macroe-

conomic conditions and explore what conditions are associated with “safe haven” properties of

currencies (e.g., Habib and Stracca (2012), Cenedese (2012), Dobrynskaya (2015), Berg and Mark
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(2016) and Dahlquis and Hasseltoft (2017) to name a few). Daniel et al. (2014) shows that Dollar-

neutral carry trades and strategies with a Dollar exposure are different and the aforementioned

factors appear to explain only Dollar-neutral returns. Bekaert and Panayotov (2016) show that

excluding the Australian dollar, Japanese Yen, and Norwegian Krone from the asset universe sub-

stantially improves the Sharpe ratio and lowers the downside risk of carry trade strategies.

Another literature employs and examines statistical approaches to build factors. Meese and Rogoff

(1983) challenge structural models for exchange rates and show that these models are unable to

outperform a simple random walk model. Bakshi and Panayotov (2013) show that time-series pre-

dictability of carry trades is significant for dynamic currency portfolios (while being absent in fixed

currency pairs). Koedij and Schotman (1989) use PCA to build groups of currencies with simi-

lar characteristics and single out four leading currencies: US dollar (USD), Yen (JPY), Deutsche

Mark (DM), British Pound (GBP). Similarly, Greenaway-McGrevy et al. (2012) show that the

JPY/USD, Euro/USD and GBP/USD exchange rates capture most of the variation in 23 exchange

rates. Engel et al. (2007) estimate a factor model which is able to predict exchange rates at long

horizons in the sample after 1999 but not in earlier samples. Sarno et al. (2012) estimate an affine

multi-currency model with four latent variables which explains exchange rate fluctuations. Dong

(2006) estimates a VAR model and finds that inflation and output gap are important to exchange

rate dynamics. Rapach and Wohar (2006) and Maasoumi and Bulut (2012) test several exchange

rate factor models and conclude that it is hard to consistently outperform a simple random walk

model.3,4

We use PCA on all bilateral exchange rates to identify major risk sources and a cross-sectional

regression of FX market returns to construct country-specific SDFs. An advantage of our approach

over other empirical factor models is that we are able to provide a clear theoretical set-up to identify

risk sources using the theoretical relationship between exchange rates and SDFs. As a comparison

we focus on the well-known and dominant Dollar and Carry factors as a benchmark. We show

that our factors and estimated SDFs capture important risks not spanned by the Dollar-Carry

two factor model. Moreover, we related our PCs to financial stress indicators and macroeconomic

fundamentals. We show that the first PC is related to the TED spread and quantities which

3See Maasoumi and Bulut (2012) for additional references on structural exchange rate models.
4Yet another literature uses option prices to quantify risks of currency crashes and peso events and explain carry

trade returns (e.g. Brunnermeier et al. 2008; Burnside et al. 2011; Farhi et al. 2014; Chernov et al. 2013 and Jurek
2014; see Chernov et al. 2013 for a comprehensive literature review on exchange rate crash risks). We focus on
diffusion risks in our analysis.
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measure volatility and contagion risk and economic growth, while the second PC is related to the

default and term spreads and variables which measure volatility and illiquidity and to changes in

the long term interest rate.

Our paper is also related to the literature which links FX markets and stock returns. Solnik

(1974) was arguably the first to theoretically show that a FX market factor is important in an

international CAPM. Dumas and Solnik (1995) estimate market prices of a four factor model (world

stock market portfolio and three exchange rates). Bekaert and Hodrick (1992) analyze predictable

components in FX and stock returns and estimate a VAR model. Patro et al. (2002) introduce a

two factor model (world stock index and a currency basket) to explain stock market returns across

developed countries. Fama and French (2015) test an international five factor model (based on size

and valuation ratios). Brusa et al. (2015) introduce an international CAPM model with one global

stock market factor and two currency factors (Dollar and Carry), which does a better job pricing a

broad set of international assets than other international factor models. We show that our first two

PCs of 55 bilateral exchange rates are important to price stocks and earn large market prices in

the cross-section of stock returns, even after controlling for the world market, global Fama-French,

global momentum, Dollar and Carry factors.

Finally, based on our estimation approach Maurer et al. (2017) construct a dynamic trading

strategy and find that the strategy earns a large Sharpe ratio out-of-sample and outperforms many

popular currency trading strategies across various performance measures and sub-samples.

Our paper is structured as follows. Section 2 presents our estimation approach to construct

SDFs from priced risks in FX markets. Section 3 implements the approach in the data and inves-

tigates model implications and in-sample evidence. Section 4 investigates out-of-sample evidence

supporting the validity of our estimation. Section 5 concludes. The appendices provide additional

results, list details on data sources and provide derivations for theoretical results in the paper.

2 SDF Estimation from FX Market Data

In this section we present key steps to estimate country-specific SDFs from FX data and the princi-

pal component analysis. We then relate our estimation procedure to the standard Fama and MacBeth

(1973) regression of factor pricing models.
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2.1 Setup

We model N + 1 countries (or currencies) indexed by I ∈ {1, . . . , N + 1}. We focus on diffusion

risks. We employ the standard filtered probability space {Ω,F , {Ft}t≥0,P}, wherein {Ft}t≥0 is

the natural filtration associated with the n-dimensional standard Brownian motion Zt as diffusion

risks in the market. Our specification assumptions for the diffusion model of FX market risks

are: (A1) no-arbitrage, (A2) complete and frictionless financial markets, (A3) diffusion processes

of exchange rates (A4) sufficient stationarity in the exchange rate processes (for the time windows

of our study).5 The market completeness and the continuous-time setting (i.e., the diffusion risk

specification) are convenient assumptions, and can be relaxed by replacing SDFs by their respective

projectors.6

The risk pricing in country I’s currency is characterized by the country-specific SDF MI ,

dMt,I

Mt,I
= −rIdt− ηTI dZt, ∀I, t. (1)

The drift and volatility of SDF growths are country I’s instantaneously risk-free rate rI ∈ R and

the prices of n diffusion risks ηI ∈ Rn respectively. Let the exchange rate EXt,J/I be the number

of units of currency J that buys one unit of currency I at time t. Market completeness implies that

the exchange rate equals the ratio of SDFs, EXt,J/I =
Mt,I

Mt,J
, ∀I, J . From this follows the exchange

rate growths,

dEXt,J/I

EXt,J/I
=
î
rJ − rI + ηTJ∆ηJ/I

ó
dt+∆ηTJ/IdZt, where ∆ηJ/I ≡ ηJ − ηI . (2)

To see how exchange rate risks are priced in asset markets, we consider a typical net-zero carry

trade strategy from the perspective of currency denomination I, which we take as USD in this

paper. At time t, the strategy borrows currency B (paying interest rate rB) and lends currency

L (paying interest rate rL). At t + dt, liquidating all positions and converting the payoff to the

denomination currency I yields the realized excess return CT I
t+dt,−B/+L and the expected value

5We provide empirical evidence to justify this stationarity assumption in Appendix A.
6Such a replacement is fully adequate as long as risks are not entangled in FX markets, see Maurer and Tran

(2017a).
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ECT I
−B/+L,

CT I
t+dt,−B/+L = ηTI ∆ηB/Ldt+∆ηTB/LdZt,

ECT I
−B/+L = ηTI ∆ηB/Ldt, ∆ηB/L ≡ ηB − ηL.

(3)

We observe that the innovation structures in exchange rates (2) and realized carry trade returns (3)

are identical, as both are driven by the differential prices of risks of the form ∆ηt,C/D ≡ ηt,C −ηt,D.
Motivated by this oservation, we apply the PCA directly on the denomination-free exchange rate

covariance matrix (as opposed to the covariance matrix of carry trade returns) to identify important

risk factors in FX markets in our construction of SDFs below.

2.2 SDF Estimation Approach

Our procedure to estimate country-specific SDFs MI (1) has two stages. The first stage employs

a principal component analysis (PCA) to extract important and identifiable risk factors in FX

markets. The second stage employs a cross-sectional regression of mean carry trade returns on

factor loadings (obtained in the first stage) to reconstruct SDFs in FX markets. In essence, PCA

organizes exchange rate risks into identifiable components. Because carry trade strategies load on

these risks, their expected returns shed light on the pricing of these principal risks, which then

help us to estimate SDFs as the pricing kernels. By construction, our estimated SDF is the SDF

projected onto the FX market risk space.

First Stage: Identifying Principal FX Risk Factors

To identify and organize the risk structure in FX markets, we apply a principal component analysis

on the exchange rate growths of currency pairs, which share identical risks with carry trade returns

(2), (3). We briefly describe the main analysis here and relegate technical details and notations to

Appendix F.2.

Let P denote the set of P currency pairs in the analysis, P ≡ dim(P), and X the matrix

of innovations in exchange rate growths (2). Specifically, each column of matrix X denotes the

demeaned exchange rate growth time series of a currency pair in P (see (26)). The PCA starts

with the diagonalization of the exchange rate sample covariance matrix XTX,

W T
î
XTX

ó
W = Diag[λ1; . . . ;λP ],
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where λ’s are eigenvalues, and W is a P × P orthogonal matrix whose elements are referred to as

loadings in the PCA. For convenience, we work with rescaled and standardized quantities,

∆η ≡ ∆ηW Diag
[

1√
λ1
; . . . ; 1√

λP

]
, ∆ηT∆η = 1P×P ,

Π ≡ XWDiag
[

1√
λ1
; . . . ; 1√

λP

]
, Π

T
Π = 1P×P ,

W ≡WDiag
î√
λ1; . . . ;

√
λP
ó
, W

T
W = Diag [λ1; . . . ;λP ] ,

(4)

where each of the P columns of matrix ∆η denotes a differential price-of-risk vector ∆ηC/D, and each

of the P columns of matrix Π denotes a (rescaled) principal component (see (3) and (26)). When

eigenvalues {λ1; . . . ;λP } are sorted in descending order, the K-th column of matrix Π represents

the K-th observable (rescaled) principal component (as a time series),

Πt,K =
1√
λK

∑

C/D∈P
Xt,C/DWC/D,K =

1√
λK

∑

C/D∈P
WC/D,K∆ηTC/DdZt = ∆ηTKdZt, (5)

where the sum runs over all currency pairs C/D ∈ P in the analysis, and K denotes any such pair.7

The last equality has employed (4), with ∆ηK denoting the K-th column of matrix ∆η (4), (26).

Note that while we neither observe differential prices of risks ∆η (nor ∆η) nor the original diffusion

dZt, the PCA in this first stage identifies the observable loadings W , principal components Π and

eigenvalues λ.

Second Stage: Cross-Sectional Regression

We aim to construct an estimate M̂t,I of SDF Mt,I (1) by projecting country I’s prices of risk in

the space spanned by the PCA rescaled prices of risks (4) as follows,

η̂I =
∑

C/D∈P
γIC/D∆ηC/D, (6)

where n × 1 (rescaled) differential price of risk vector ∆ηC/D is defined in (4) and (26), and η̂I is

also a n×1 column vector. Coefficients γ in the above projection are factor prices (associated with

(rescaled) principal factors Πt,K , ∀K ∈ P) and can be estimated via a cross-sectional regression on

7In matrix (discrete) notation (26) of Appendix F.2, n×1 diffusion innovation vector dZt is the t-th row of matrix
dZ, and n× 1 differential price of risk vector ∆ηC/D ≡ ηC − ηD is the C/D-th column of matrix ∆η.
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carry trade returns as we explain next.

First, observe that as a result of the definitions in (4), the element WB/L,K of matrix W is the

loading of the carry trade return CT I
t+dt,−B/+L (3) on the K-th (rescaled) principal components

Πt,K , ∀K ∈ P.8 Second, under the linear specification (6), expected carry trade returns (3) become,

1

dt
ECT I

−B/+L =
∑

C/D∈P
γIC/D∆η

T
C/D∆ηB/L =

∑

C/D∈P
γIC/DWB/L,C/D, ∀B/L ∈ P, (7)

where in the last equality we have used rescaling and orthogonality relationships (4). Combining

the two observations above indeed implies that the coefficient γIK in (6) is the factor price (in

currency I) of the K-th principal risk factor Πt,K , for each K ∈ P.

Furthermore, because we observe the loadings W and eigenvalues λ’s from PCA, equation (7)

suggests that coefficients γ in (6) can be estimated from a cross-sectional regression of the mean

carry trade returns (varying currency pairs B/L, while fixing denomination currency I) on the

rescaled scores W (4). As a result, we obtain the estimates (stacked in P × 1 column vector γ̂I , see

(27), Appendix F.2 for notation),

γ̂I =
1

dt

(
W

T
W
)−1

W
T
ECT I . (8)

These coefficients then generate an estimate for country I’s prices of risks (6), and in turn, for

country I’s SDF,
dM̂t,I

M̂t,I

= −rIdt− η̂TI dZt = −rIdt−
∑

K∈P
Πt,K γ̂IK , ∀I, (9)

where the last equality is derived using (5). Clearly, γ̂I are factor prices (in currency I) associ-

ated with principal factors Πt,K . Furthermore, our estimated SDF is fully identified because it is

expressed in observable principal components Π and estimated γ̂I determined in (8).

2.3 Discussion

Several important observations concerning the estimation of SDFs from FX data are in order.

First, all risks in FX markets must be priced by at least one country’s SDF. This is because an

8To see this, note that relationships in (4) imply ΠW
T

= ΠDiag
[√

λ1; . . . ;
√
λP

]
W T = ΠW T = X. As noted

below (3), because innovations in exchange rate growths X (2), (26) equal innovations in realized carry trade returns

(3), the previous identity ΠW
T
= X implies CT I

t+dt,−B/+L =
∑

Πt,KWB/L,K for all currency pairs B/L ∈ P . Then

indeed, WB/L,K is the loading of the carry trade return CT I
t+dt,−B/+L on the K-th principal components Πt,K .
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exchange rate equals the ratio of the involved SDFs, hence any shock to an exchange rate must be

a shock to at least one SDF. This feature makes FX markets a desirable setting to estimate SDFs

as opposed to other asset markets, parts of which are idiosyncratic and not priced. Second, any

residual risk inherent in ηI but not priced in the carry trade returns (3) must both (i) carry same

prices in all currencies, and (ii) be orthogonal to the risks revealed by exchange rate fluctuations.9

Our estimated SDF from FX data do not price these residual risks. It is an empirical question

as to how important these residual risks are and we address this quesiton in subsequent sections

on empirical tests. Third, the PCA in the first stage organizes FX risks in descending order of

co-variations. It therefore systematically informs us on selecting and retaining only principal risks

while dropping risks of minor statistical significance. Such a selection is highly desirable, e.g., to

eliminate portfolio strategies of spuriously high Sharpe ratios (Ross, 1976; Kozak et al., 2015).

Finally, we observe that formally, our two-stage estimate of the SDF may also be cast as a

Fama and MacBeth (1973) two-stage regression. Practically, however, our estimate differs from

Fama-MacBeth regressions in the implementation of the first stage. Therein, we exploit the fact

that all exchange rate risks are necessarily priced by SDFs to implement the PCA directly on the

exchange rate covariance matrix (as opposed to running time-series regressions as in the Fama-

MacBeth first stage). To see this connection, we consider principal components as risk factors and

carry trades as test assets. The Fama-MacBeth first stage is the (time-series) regression of realized

carry trade returns (3) on rescaled principal components (4). For a specific strategy (of borrowing

B and lending L, from the perspective of denomination currency I), this first-stage regression is

the following linear decomposition,

CT I
t+dt,−B/+L =

∑

K∈P
bIK,B/LΠt,K + ǫIt,B/L.

We can stack these regressions for all strategies B/L ∈ P, yielding matrix equation (28), from

which the OLS estimate follows,

b̂I =
(
Π

T
Π
)−1

Π
T
CT I = Π

T
X =W

T
, (10)

where the last equality follows from relationships (4). Clearly, these Fama-MacBeth first-stage

estimates are the transpose of (rescaled) loadings from the PCA. The Fama-MacBeth second stage

9Condition (i) implies that the residual risks are canceled and do not affect exchange rate fluctuations. Condition
(ii) implies that expected carry trade returns have no information to estimate the residual risks.

10



is the (cross-sectional) regression of the mean carry trade returns on the first-stage factor estimates

b̂ (28). Then indeed the Fama-MacBeth regression approach yields price of risk estimates (29)

identical to those obtained from our second-stage regression (7) (since the loadings
Ä
b̂I
äT

=W (10)

in the first stage are the same in the two approaches).

3 Estimation and Model Implied Results

We apply the methodology introduced in the previous section to the data to estimate the proposed

diffusion model and country-specific SDFs in FX markets and present in- and out-of-sample evidence

to examine the validity of our approach. We show that our estimated SDFs are consistent with

important empirical patterns in the data.

3.1 FX Market Data

We use daily exchange rates between 11 developed countries: Australia, Canada, Denmark, Eu-

rozone10, Japan, New Zealand, Norway, Sweden, Switzerland, UK and USA. FX markets in these

developed currencies are typically more liquid, feature a higher trading volume, lower transaction

costs, less capital controls and markets are more likely to be fully integrated, frictionless and free

of arbitrage in comparison to emerging countries.11 Since our theoretical model assumes fully in-

tegrated, frictionless and arbitrage free markets with completely disentangled risks12, our set of

developed countries fits our theoretical model better than a larger set of developed and emerging

countries.

Spot and forward exchange rates against the US dollar are provided by Barclays Capital and

WM/Reuters (WMR). In cases where data for one currency is available from both sources, the

longer series is used. We check the discrepancies between the two sources and they are negligible.

We use data from 1984 to 2014. Exchange rates of all currencies except for the Euro are available

for the entire sample period. The inception of the Euro was in 1999 when 15 developed countries

in Europe formed the Eurozone. Germany is one of the largest economies in the Eurozone and we

10For simplicity we refer to the Eurozone simply as Euro or EU, although not all countries in the EU use the Euro.
11There are several recent papers that discuss the possibility of arbitrage due to a failure in the covered interest

rate parity (CIP) in the last decade (Borio et al., 2016; Cenedese et al., 2016; Du et al., 2017; Rime et al., 2016).
Overall, these papers suggest that possible (if any) arbitrage opportunities are small and only accessible by very few
large financial institutions.

12Complete risk disentanglement is a sufficient and necessary condition for the equality between exchange rates
and ratios of (projected) country-specific SDFs to hold (Maurer and Tran, 2017a,b).
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use the German Mark to extend the data of the Euro from 1999 back to 1984. This helps us to

keep our panel of data balanced.

Data for the US short term interest rate is from the Center for Research in Security Prices

(CRSP) US Treasury Databases, series “CRSP Monthly Treasury - Fama Risk Free Rates”. This

series contains 1-month risk free rates. We use the midpoint between bid and ask rates. We use

the forward and spot exchange rates to construct interest rate differentials of short term bonds

between currencies (based on the covered interest rate parity).

3.2 Principal Component Analysis

We use demeaned daily exchange rate growths of all P = 55 bilateral exchange rates between our 11

currencies for the PCA. To determine the number of common factors we use the Eigenvalue Ratio

and Growth Ratio estimators proposed by Ahn and Horenstein (2013). They show that these two

estimators perform better in small samples and are more robust than alternative estimators. The

Eigenvalue Ratio is defined as ER(k) = λk
λk+1

, where λj is the eigenvalue associated with the jth

PCs. The Growth Ratio is GR(k) = ln(1+λk/V (k))
ln(1+λk+1/V (k+1)) with V (j) =

∑P
i=j+1 λi. The Eigenvalue

Ratio and Growth Ratio estimators choose k∗ER and k∗GR to maximize ER(k) and GR(k), i.e.,

k∗ER = argmax1≤k≤kmax{ER(k)} and k∗GR = argmax1≤k≤kmax{GR(k)} where kmax = P
10 . We find

k∗ER = k∗GR = 2, i.e., the Eigenvalue and Growth Ratio estimators of Ahn and Horenstein (2013)

both suggest that the first two PCs capture the common variation of the 55 bilateral exchange rates

of our 11 currencies (see Table B.1 for the values of ER(k) and GR(k) ∀k ∈ {1, . . . , kmax}). The

first (rescaled) PC Πt,1 captures 33% and the second Πt,2 21% of the total variation of all exchange

rate growths. In the following we construct country-specific SDFs MJ as described in (9) based on

only the first two PCs Πt,1 and Πt,2.

Lustig et al. (2011) work with exchange rates quoted against the USD, sort currencies according

to interest rates into quintiles and construct five equally weighted currency portfolios. From the

return time-series of these five portfolios, they then construct PCs. They find that the first two

PCs explain almost all the variation in returns of the five portfolios. Moreover, the first component

has a correlation of 99% with the Dollar factor, which borrows USD and equally lends in all other

currencies. Similarly, the second PC has a correlation of 94% with the Carry factor, which sells the

bottom and buys the top interest rate quintile portfolios.

An important difference between Lustig et al. (2011) and our analysis is the set of exchange
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rates, i.e., using only exchange rates against the USD versus all bilateral exchange rates. Of course,

the set of exchange rates quoted against the USD implies all bilateral exchange rates. However, the

PCA strongly focuses on USD specific shocks when only exchange rates quoted against the USD are

used, while the PCA on all bilateral exchange rates puts more balanced weights on shocks across

all currencies and emphasizes shocks common to multiple currencies. Intuitively, if every country

is exposed to i.i.d. country-specific shocks, then the US specific-shock affects every exchange rate

in the set of exchange rates quoted against the USD, while other country-specific shocks only affect

one exchange rate in that set. Thus, one of the first few PCs is likely to load on the US specific shock

even though it may not necessarily be an important global risk or may not be important from the

perspective of investors outside the US. In contrast, using all bilateral exchange rates reduces the

emphasis on any country-specific shock (including the US). Thus, the use of all bilateral exchange

rates is better suited to capture dominant global risks in international FX markets without focusing

on a particular investor or currency denomination.

Lustig et al. (2011) use PCA on exchange rates quoted against the USD and find that the

market price of risk of the first PC (or also known as the Dollar factor) is small. The price of

risk of the Dollar factor is also found to be statistically insignificant in other studies (for instance

Menkhoff et al. (2012a) or Maurer et al. (2017) among many others). That is, while the first PC (or

Dollar) captures most of the time-series variation in exchange rates (quoted against the USD) it does

not explain the cross-section of expected returns. Hence, this empirical finding confirms our concern

of using only exchange rates quoted against one base currency in the PCA. In contrast, we show

below that the PCs which we construct from all bilateral exchange rates all have substantial market

prices and are thus important to capture both the time-series variation in changes in exchange rates

and explain the cross-section of expected FX returns.

Empirically, if we use only exchange rates quoted against the USD in the PCA, we confirm the

result of Lustig et al. (2011) that the first two PCs contain the same information as the Dollar and

Carry factors. In particular, the correlation between the first PC and the Dollar is 99.6%, and

the one between the second PC and the Carry is 96.6%. Moreover, regressing the first (second)

PC on the Dollar and Carry factors yields an R-squared of 99.3% (93.5%). In contrast, we find

that the relation between the first two PCs Πt,1, Πt,2 and the Dollar and Carry factors is weaker

when we use all bilateral exchange rates. Πt,1 has correlations of -30.3% and 88.9% with the

Dollar and Carry. The regression R-squared when regressing Πt,1 on the two factors is 88.1%. The

corresponding correlations for Πt,2 are -66.5% and -40.4%, and the regression R-squared is 60.8%.
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It is not surprising that there is some overlap between Πt,1 and Πt,2 of all bilateral exchange rates

and the first two PCs of exchange rates defined against the USD (or the Dollar and Carry factors),

but clearly significant differences remain. To conclude, we emphasize that these differences arise

due to the strong USD focus of the PCA which only uses exchange rates quoted against the USD,

while the PCA which uses all bilateral exchange rates attempts to focus less on country-specific

and more on global risks.

We also investigate and visualize the decomposition of the first two PCs Πt,1 and Πt,2. By

construction, each PC loads on all 55 bilateral exchange rates. However, any exchange rate J/I

can be expressed in terms of the two exchange rates J/USD and I/USD against the USD. Thus,

we can re-write the original loadings of each PC on the 55 bilateral exchange rates, as linear

combinations of only 10 exchange rates against the USD. These loadings of Πt,1 and Πt,2 on the

10 exchange rates J/USD are reported in the first two columns in Table 1 (first to second-to-last

rows). In the last row indicated by USA we report 1 minus the sum of all loadings on the 10

exchange rates J/USD. Thus, the sum of the entire column adds up to 1 and can be interpreted

as a portfolio of short term bonds in the 11 countries.13 Columns 6 in Table 1 provides information

on the average interest rate in each country relative to the US. The discussion of all other columns

is deferred until later.

Πt,1 invests in AUD, NZD, USD and CAD. The weights on AUD and NZD are almost identical,

1.727 and 1.792, and the investments in USD and CAD are slightly lower with weights 1.428 and

0.876. It borrows in all other currencies, predominantly in CHF, EUR and DKK with weights -1.161,

-0.884 and -0.828. The exposure to JPY is somewhat lower with a weight of -0.682. In comparison

Carry borrows equally in CHF and JPY (currencies with lowest interest rates) and lends equally in

AUD and NZD (currencies with highest interest rates). While there is some overlap with Carry (i.e.,

CHF and JPY are still funding and AUD and NZD are investment currencies), the investments of

Πt,1 are clearly different. Particularly interesting is that Πt,1 assigns large negative weights to EUR

and DKK and a large positive weight to USD although their interest rates are almost identical.

Moreover, the JPY does not have an important role as a funding currency as CHF, EUR and DKK,

but it is the most important funding currency in Carry. The weights of Πt,1 are very different from

the Dollar factor, which borrows 100% in USD and lends 10% in each of the other 10 currencies.

13Note that the two PCs Πt,1 and Πt,2 are denominated in USD. However, for the initial construction we have used
all bilateral exchange rates in the PCA which we argue shifts the focus away from the USD and more to globally
important risks.
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Table 1: SDF Estimations and Country-Specific Characteristics

(1) (2) (3) (4) (5) (6) (7)
Country J First PC Πt,1 Second PC Πt,2 Market Price Market Price Volatility Average Interest Sharpe Ratio of

loading on loading on γ̂J1 of Πt,1 γ̂J2 of Πt,2 of SDF M̂t,J Rate Differential borrowing USD
Currency J Currency J J minus US and lending J

Australia 1.727 -0.468 -0.087 0.307 0.319 0.030 0.041
Canada 0.876 0.598 -0.124 0.343 0.364 0.007 0.016
Denmark -0.828 -0.608 -0.196 0.302 0.360 0.008 0.038
Euro -0.884 -0.469 -0.198 0.307 0.365 -0.004 0.027
Japan -0.682 2.365 -0.190 0.402 0.445 -0.024 0.010
New Zealand 1.792 -0.525 -0.085 0.305 0.317 0.041 0.068
Norway -0.541 -0.984 -0.184 0.290 0.343 0.022 0.041
Sweden -0.460 -0.994 -0.180 0.289 0.341 0.016 0.032
Switzerland -1.161 -0.285 -0.210 0.313 0.377 -0.016 0.026
United Kingdom -0.266 -0.018 -0.172 0.322 0.365 0.019 0.036
USA 1.428 2.388 -0.143 0.369 0.396 N/A N/A

Notes: Columns 1 & 2: decomposition of first and second PC into linear combination of exchange rates J/USD; last row (denoted USA) reports 1

minus the sum of all weights in the above rows. Columns 3 & 4: estimated market prices of risk of first two PCs across countries according to (8).

Column 5: volatilities of estimated SDFs across countries according to (11). Column 6: time series average of difference between interest rates in

country J and US. Column 7: Sharpe ratio of carry trade return of borrowing USD and lending in currency J from the perspective of a US investor.
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Πt,2 lends in JPY, USD and CAD, and borrows predominantly in NOK and SEK. Interest rates

are on average larger in Norway and Sweden than in Japan, the US and Canada. Thus, Πt,2 has

some exposure to a long-short strategy based on interest rate differentials but the relation to Carry

is relatively weak. The weights of Πt,2 also do not appear to align with the composition of the

Dollar factor.

To sum up, the first two PCs Πt,1 and Πt,2 constructed from the set of all 55 bilateral exchange

rates display some overlap with the Carry (or the second PC of the 10 exchange rates quoted

against the USD) and the Dollar factor (or the first PC of the 10 exchange rates quoted against

the USD) but there are significant differences. Most notably, the Dollar factor is less prevalent

in our analysis than in Lustig et al. (2011) because by construction country-specific risks in our

PCA on all bilateral exchange rates get less attention and the focus is directed towards global risks

(i.e., independent of a base currency) compared to an analysis based on exchange rates only quoted

against the USD. In the following we provide additional estimation results and tests to demonstrate

that our risk factors are distinct from Dollar and Carry in several other important dimensions.

3.3 Estimation of Country-Specific SDFs

Given the first two PCs Πt,1 and Πt,2 as new risk sources, we use the regression proposed in equation

(7) to estimate the corresponding market prices of risk γ̂J1 and γ̂J2 specified in (8), and construct

country J ’s SDF M̂t,J according to (9).

Columns 3 and 4 in Table 1 show market prices of risk (or risk loadings of SDFs) γ̂J1 and γ̂J2 on

the first two PCs Πt,1 and Πt,2 according to (8). Column 5 reports the estimated annual volatilities

of country-specific SDFs,

V ol

(
dM̂t,J

M̂t,J

)
= ‖γ̂J‖ =

»
γ̂J

T
γ̂J . (11)

Columns 6 and 7 further report for each country J the average annual interest rate differential

between country J and the US and the annual Sharpe ratio of the bilateral carry trade of borrowing

USD and lending currency J .

The risk loadings in columns 3 and 4 do not differ a lot across countries which is consistent with

the strong cross-country correlation of SDFs. For every country γ̂J1 is between -0.21 and -0.085,

and γ̂J2 is between 0.289 and 0.402. Negative (positive) market prices γ̂J1 (γ̂J2 ) imply that Πt,1
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(Πt,2) is positively (negatively) related to the SDF growth
d“Mt,J

“Mt,J

and a positive realization in Πt,1

(Πt,2) is bad (good) news for marginal investors (see equation (9)). Market prices γ̂J2 for the second

PC Πt,2 are larger in magnitude than γ̂J1 for the first PC Πt,1, which is interesting because Πt,2

is less correlated to the Carry factor (correlation of -40%) than Πt,1 (correlation of 88.9%). Thus,

our estimation suggests that the Carry factor may not capture the most important priced risks in

FX markets. This is an important contribution because identifying and quantifying the dominant

priced risk sources is the first step to understand FX markets. To emphasize the importance of the

first two PCs in our analysis we demonstrate in the tests in Section 4 that they are also essential

risk sources in the context of equity markets and are related to financial stress indicators and

macroeconomic fundamentals.

The variation in SDF volatilities across countries is economically large: SDF volatilities range

from 31.7% and 31.9% in Australia and New Zealand to 40.2% in Japan. Moreover, the cross-

country variation in SDF volatilities is strongly associated with average interest rates. Figure 1 plots

average interest rate differentials in column 6 in Table 1 against SDF volatilities in column 5 and

documents a striking negative relationship with a correlation of -89%. Column 1 in Table 2 provides

statistical properties and confirms that the negative relationship is highly statistically significant

with a t-statistic of 6.10 (Panel A) or 2.05 after controlling for inflation (Panel B). A common

economic intuition is that volatility in the SDF is positively associated with precautionary savings.

Based on this perception a large (small) SDF volatility indeed implies much (little) precautionary

savings and a relatively low (high) interest rate in equilibrium. Though, such an argument requires

additional assumptions on preferences and the risk sources in the economy than what we are

assuming in the current paper.

Our finding differs from Gavazzoni et al. (2013) who show, in an affine diffusion model, that

interest rates and market prices of risk are positively associated. In particular, they show that

under certain parametric assumptions the volatility of the SDF is proportional to the volatility

of the interest rate. They further document empirically that high interest rates tend to be more

volatile, and therefore, are associated with more volatile SDFs under their modeling assumptions.

In contrast, our estimates imply a negative relation between interest rates and SDF volatilities.

The difference arises because our estimation is non-parametric and does not make any assumptions

(such as an affine structure) on the relationship between interest rates and market prices of risks.14

14In light of Gavazzoni et al. (2013), we can conclude that our estimated SDFs do not fit into the parametric
restrictions imposed on their affine risk setting. For instance, it is important in Gavazzoni et al. (2013) that interest
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Interest Rates and SDF Volatilities
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Figure 1: Cross-Sectional relationship between (time-series average of) interest rates and volatilities of
country-specific SDFs as defined in equation (11).

We further investigate the relationship between the SDF volatility in country J and carry trade

returns of borrowing USD and lending currency J , CTUS
t+dt,−US/+J . Expected carry trade returns

ECTUS
−US/+J (i.e., the time-series average of CTUS

t+dt,−US/+J) vary substantially across countries J

while the variances of CTUS
t+dt,−US/+J hardly change as illustrated in Figure 2. Given this empirical

pattern we can show in the context of a diffusion model that there must be a strong relationship

between the expected carry trade return ECTUS
−US/+J and the volatility of country J ’s SDF. Indeed,

‖γ̂J‖2 = ‖γ̂US‖2 − 2
Ä
γ̂US − γ̂J

äT
γ̂US + ‖γ̂US − γ̂J‖2

= ‖γ̂US‖2 − 2

dt
ECTUS

−US/+J +
1

dt
V ar

î
CTUS

t+dt,−US/+J

ó
.

It is apparent from Figure 2 that the cross-country variation of V ar
î
CTUS

t+dt,−US/+I

ó
is almost zero.

We get the approximate empirical relationship,

‖γ̂I‖2 − ‖γ̂J‖2 ≈ 2

dt

î
ECTUS

−US/+J − ECTUS
−US/+I

ó
=

2

dt
ECTUS

−I/+J . (12)

rate volatilities sort monotonically with SDF volatilities in the cross section – which relies on the affine setting and
parametric assumptions in their paper. Our procedure aims to estimate SDF volatilities from asset prices, and makes
no assumption on the pattern of the cross-sectional variation of interest rate volatilities a priori.
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Table 2: Cross-Sectional Regressions on SDF Volatilities and Interest Rate Differentials

(1) (2) (3) (4) (5)
Ave Interest Average Sharpe Ratio Average Sharpe Ratio
Rate Diff CT -US/+J CT -US/+J CT -US/+J CT -US/+J
rJ − rUS to US investor to US investor to US investor to US investor

Panel A:

V ol

Å
d“Mt,J

“Mt,J

ã
−0.48∗∗∗ −0.40∗∗∗ −3.31∗∗∗

(−6.10) (−4.14) (−4.21)
rJ − rUS 0.72∗∗∗ 5.95∗∗∗

(3.91) (3.93)
R2 79% 63% 64% 61% 61%

Panel B:

V ol

Å
d“Mt,J

“Mt,J

ã
−0.20∗ −0.55∗∗∗ −4.59∗∗∗

(−2.05) (−3.33) (−3.41)
rJ − rUS 1.77∗∗∗ 14.47∗∗∗

(5.09) (5.06)
iJ − iUS 1.39∗∗∗ −0.76 −6.37 −2.51∗∗∗ −20.52∗∗∗

(3.44) (−1.11) (−1.14) (−3.24) (−3.21)
R2 90% 67% 68% 81% 81%

Panel C:

V ol

Å
d“Mt,J

“Mt,J

ã
−0.29∗∗ −2.42∗∗

(−2.34) (−2.44)
rJ − rUS 1.34∗∗∗ 10.89∗∗∗

(4.04) (4.03)
iJ − iUS −2.62∗∗∗ −21.45∗∗∗

(−4.19) (−4.22)
R2 88% 88%

Notes: Cross-country OLS regressions YJ = α+
∑
βhXh + ǫJ with explanatory variables X : estimated

SDF volatility V ol

Å
d“Mt,J

“Mt,J

ã
in country J (11), average interest rate differential rJ − rUS , average infla-

tion differential iJ − iUS . Dependent variable Y : average interest rate differential rJ − rUS (Column

1), average carry trade return CTUS
−US/+J (Column 2 & 4), Sharpe ratio of CTUS

−US/+J (Column 3 & 5).

Panel A and B are separate regression results. Values in parentheses below each regression coefficient

are t-statistics. We have 11 observations. 10%, 5%, 1% significance levels of two sided t-statistics are

indicated by ∗, ∗∗ and ∗∗∗, respectively.
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Figure 2: Carry trade strategies of borrowing USD and lending currency J from the perspective of a US
investor. Left vertical axis–black crosses: Cross-sectional variation in 2× average carry trade returns. Right
axis–red circles: Cross-sectional variation in the variance of carry trade returns.

While relationship (12) appears similar to equation (4) in Verdelhan (2010)15, there are some

key differences. Verdelhan (2010) derives his equation (4) for the expected log-return instead of the

expected (continuously compounded) return an investor earns. While co-variations between SDFs

across countries are not the focus in his analysis, they are a conceptually important piece when

modeling risks in FX markets. A version of Verdelhan (2010)’s equation (4) can be recovered if

we assume that SDFs across countries feature a correlation close to one, which is indeed what we

estimate as we will show in the next section (Figure 4).

The left plot in Figure 3 shows that our estimated model matches the relationship in equation

(12) very well. The cross-country correlation between ECTUS
−US/+J and the SDF volatility in country

J is -79%. Column 2 in Panel A in Table 2 shows that the relationship is highly statistically

significant with a t-statistic of 4.14. The relationship is robust to controlling for inflation (t-statistic

of 3.33, column 2 in Panel B) and for inflation and interest rates (t-statistic of 2.34, column 2 in

Panel C). Indeed, regression (7) in our estimation approach by construction implies this strong

relationship, provided that the model matches exchange rate volatilities and average carry trade

15Verdelhan (2010) uses the definition of the interest rate in currency J rt,J = − lnEt [Mt+1,J ] = −Et [mt+1,J ]−
1
2
V art [mt+1,J ] with SDFMt+1,J and log-SDFmt+1,J = lnMt+1,J and defines exchange rate growths as the differences

in log-SDFs. The expected log carry trade return is E
[
lnCTt+dt,−I/+J

]
= rt,J − rt,I + Et [mt+1,J ]− Et [mt+1,I ] =

1
2
V art [mt+1,I ]− 1

2
V art [mt+1,J ].
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Carry Trade Premia vs SDF Volatilities
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Figure 3: Left: Cross-country relationship between estimated SDF volatility in country J and average
carry trade return of borrowing USD and lending currency J earned by US investor. Right: Cross-country
relationship between average interest rate differential between country J and USA and average carry trade
return of borrowing USD and lending in currency J earned by an investor in country J .

returns in the data. Thus, the strong empirical relationship in Figure 3 can be viewed as a check

of the goodness of the fit and the suitability of our estimation approach. Since the variance of

CTUS
t+dt,−US/+J is basically constant across countries J , we also find the same relationship between

the Sharpe ratio of the carry trade CTUS
t+dt,−US/+J and the SDF volatility in country J (column 3

in Panel A, B and C in Table 2).

The plot on the right in Figure 3 and columns 4 and 5 (Panels A and B) in Table 2 show the well-

known strong positive relationship between expected carry trade returns ECTUS
−US/+J and Sharpe

ratio and the average interest rate differential between country J and the US. The relationship

between carry trade returns and interest rates is similarly strong as the relationship between the

carry trade returns and the estimated SDF volatilities. Both relationships are highly statistically

significant and the cross-sectional regression fit is more than 60% in all specifications. Finally,

columns 2 and 3 in Panel C suggest that the SDF volatility, interest rate and inflation all add

information to explain the cross-section of expected carry trade returns and Sharpe ratio (i.e., the

slope coefficients on all three variables are significant).
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4 Out-of-Sample Results

In the following we investigate the time-series of our estimated SDFs M̂t,J (Section 4.1), decom-

pose them into permanent and transitory components and check the out-of-sample validity of our

estimates using stock and long term bond prices (Section 4.2). We further study the importance of

the identified risks (Πt,1 and Πt,2) and SDFs M̂t,J to price the cross-section of international stock

returns (Section 4.3) and the relationship to financial stress indicators and macroeconomic funda-

mentals (Section 4.4). Since all these tests use data that were not used as inputs in the estimation

of our FX risks and SDFs, these tests are out-of-sample.

4.1 Times-Series of SDFs

Figure 4 plots the time series of the natural logarithm of all 11 country-specific SDFs, ln(M̂t,J ).
16

In our model ln(M̂t,J ) follows a random walk with drift, where the permanent shocks are given by

the changes in the n-dimensional Brownian motion dZt multiplied by the negative of the market

price of risk vector ηJ and the drift is equal to the negative of the interest rate rJdt. Empirically,

augmented Dickey-Fuller tests suggest that the log SDF (levels) ln(M̂t,J ) are integrated of order 1,

which is consistent with the model setup. That is, across all 11 countries the augmented Dickey-

Fuller test statistics for ln(M̂t,J) are always larger than -2.543 (p-values are above 32%) suggesting

that we cannot reject the Null hypothesis that ln(M̂t,J ) is non-stationary. Moreover, the same test

statistics for the SDF growths
d“Mt,J

“Mt,J

≈ ln(M̂t+dt,J )− ln(M̂t,J) are highly statistically significant and

always below -86.398 (p-values are below 0.1%), suggesting that we reject the Null hypothesis that

SDF growths are non-stationary.17

There is a strong co-movement between the SDFs across all countries. We estimate correlations

of daily growths of the SDFs between any country pair I and J , Corr

Å
d“Mt,I

“Mt,I

,
d“Mt,J

“Mt,J

ã
in our sample

and find that all estimates are above 95%. An almost perfect correlation implies that the market

price of risk vectors are very similar across countries. However, in our model shocks (changes in

Brownian motion dZt) have a permanent effect on SDFs, and as long as market price of risk vectors

are not exactly identical, SDFs are not cointegrated, i.e., any linear combination of two SDFs is

non-stationary. Empirically, we test for a cointegration relationship between ln(M̂t,J ) in country

J and ln(M̂t,US) in the USA. Therefore, we regress ln(M̂t,J ) on a constant and ln(M̂t,US) and

16Note that we are plotting levels ln(“Mt,J), not the growths
dM̂t,J

M̂t,J

≈ ln(“Mt+dt,J)− ln(“Mt,J ).

17See Table C.2 in the Appendix for details.

22



investigate whether the regression errors have a unit root (Engle and Granger, 1987). Augmented

Dickey-Fuller tests reveal that for 6 out of 10 regressions the Null hypothesis that the errors are

non-stationary cannot be rejected on the 10% level (test statistics larger than -2.704), i.e., we

cannot reject the hypothesis that these SDFs are not cointegrated with the SDF in the USA. In

contrast, for Australia, Eurozone, New Zealand and Switzerland we find significant Dickey-Fuller

statistics (on the 1% level), suggesting that these SDFs are cointegrated with the SDF in the USA.

In summary, consistent with the theoretical diffusion model the estimated SDFs are integrated of

order one (i.e. SDF growths are stationary). For the questions whether the SDFs are cointegrated,

the empirical evidence is mixed. Our theoretical model assumes that SDFs are not cointegrated, but

if market prices of risk vectors across countries are similar (i.e. SDF growth are highly correlated

across countries), then it is difficult to distinguish a model with versus without a cointegration

relationship.

The observation of highly correlated SDFs is consistent with the finding of Brandt et al. (2006),

who conclude that since the exchange rate is equal to the ratio of (projected) country-specific SDFs18

the correlation between the (projected) SDFs has to be close to one to match the smooth exchange

rate process in the data. Remember that since we estimate SDFs from FX market returns, our

constructed SDFs are always in the space spanned by asset returns, i.e., they are SDFs projected

onto the FX market risk space.

The 5 largest quarterly increases in the estimated SDFs across the world are in the last quarter

of 1998, third and fourth quarter of 2008, second quarter of 2010 and third quarter of 2011. The

large increase in SDFs in the last quarter of 1998 is subsequent to the Asian financial crisis in

the second half of 1997 and the Russian sovereign default and the bailout of Long-Term Capital

Management in 1998. The surge in the SDFs in the second half of 2008 coincides with the collapse

of Lehman Brothers and the concurrent turmoil in financial markets. The increases in 2010 and

2011 can be explained by the first two bailouts of Greece during the European sovereign debt crisis.

The time-series of SDFs further shows a substantial and steady increase in the late 1990s and early

2000s, which relates to the burst of the of the Dot-com bubble in the early 2000s. Although we do

not have a formal test to analyze these events and the time series pattern, we interpret it as first

suggestive evidence in favor of our estimates.

18If markets are fully integrated and free of arbitrage Maurer and Tran (2017a,b) prove that the ratio of projected
country-specific SDFs is always equal to the exchange rate in a diffusion setting (as considered in our paper). They
further prove that risk entanglement in FX markets is a necessary and sufficient condition to break this strong relation
and possibly allow for a low correlation between projected SDFs while still ensuring a smooth exchange rate process.
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Time Series of Country-Specific log SDFs, ln(M̂t,J )
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Figure 4: Time Series of the ln of country-specific SDFs, ln(M̂J,t) of 11 developed countries estimated
according to (9).

4.2 Decomposition of SDFs into Permanent and Transitory Components

Alvarez and Jermann (2005) and Hansen and Scheinkman (2009) show how a SDF M̂t,J can be

decomposed into a permanent (martingale) component M̂P
t,J and a transitory component M̂T

t,J ,

M̂t,J = M̂P
t,JM̂

T
t,J . We decompose our estimated SDFs into permanent and transitory components

following Christensen (2017) who proposes a non-parametric approach to solve the Perron-Frobenius

eigenfunction problem in Hansen and Scheinkman (2009) given a time-series of state variables and

the SDF. We use the two PCs Πt,1 and Πt,2, which are proxies for changes in Brownian motion

dZt in our model, as state variables in our decomposition. Details of the decomposition procedure

are provided in Appendix D. An alternative approach to decompose the SDF is to use the fact

that the transitory component is equal to the return of a bond with infinite maturity (for instance

Sandulescu et al. (2017) choose this approach). An advantage of using the non-parametric approach

of Christensen (2017) is that we can use out-of-sample tests using stock and bond return data to

validate our estimated SDFs and permanent and transitory components since these estimations are

based on only FX market data.
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Volatility Bound Tests

In our theoretical model changes in the diffusion dZt are always permanent shocks to the SDF.

However, in the data our estimated SDFs may still feature some transitory changes due to the time

variation in the interest rate (drift of the SDF) or due to an autocorrelation in our constructed

PCs Πt,1 and Πt,2. We find that the standard deviation of the permanent component
d“MP

t,J

“MP
t,J

is

roughly seven times larger than the standard deviation of the transitory component
d“MT

t,J

“MT
t,J

across

all countries J . The annualized standard deviation of the estimated permanent component
d“MP

t,J

“MP
t,J

ranges between 32% (New Zealand) and 45% (Japan) across countries with an average of 37%.

In contrast, the annualized standard deviation of the transitory component
d“MT

t,J

“MT
t,J

ranges between

4.4% (New Zealand) and 6.2% (Japan) across countries with an average of 5.1%. We find a slightly

negative correlation between permanent and transitory components. The correlation coefficient

ranges between -0.23 and -0.21 with an average -0.22.

Alvarez and Jermann (2005) derive bounds (from observable stock and long term bond returns)

on the variation of the two components and show that the permanent component is very volatile

while the transitory component is much less important. In particular, they construct the following

three bounds:

Lt

(
MP

t+dt,J

MP
t,J

)
≥ Et [ln(Rt+dt,J )]− Et [ln(Rt+dt,∞,J)] (13)

L

Å
MP

t+dt,J

MP
t,J

ã

L
(
Mt+dt,J

Mt,J

) ≥ min



1,

E
[
ln
(
Rt+dt,J

1+rt,J

)]
− E

[
ln
(
Rt+dt,∞,J

1+rt,J

)]

E
[
ln
(
Rt+dt,J

1+rt,J

)]
+ L

(
1

1+rt,J

)



 (14)

L

Å
MT

t+dt,J

MT
t,J

ã

L
(
Mt+dt,J

Mt,J

) ≤
L
(

1
Rt+dt,∞,J

)

E
[
ln
(
Rt+dt,J

1+rt,J

)]
+ L

(
1

1+rt,J

) , (15)

where Rt+dt,J is the [t, t + dt] holding period gross return of the stock market index in country

J , Rt+dt,∞,J is the [t, t+ dt] holding period gross return of the (default free) long term bond with

infinite maturity in country J , rt,J is the risk-free short rate (rate of return) at time t in country

J , and Lt(x) = ln (Et [x])− Et [ln (x)] is the entropy of random variable x.19

We compute bounds (13), (14) and (15) using stock and bond data for all 11 countries in our

analysis and check whether they hold for our estimated SDFs M̂t,J and permanent and transitory

19Entropy is a risk measure and if x is log-normally distributed then L(x) = 1
2
V ar(x).
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components M̂P
t,J and M̂T

t,J .
20 Remember that our estimates only use spot and forward exchange

rate data and the time series of the US short term interest rate. Thus, the bound tests (using stock

and long term bond data) are out-of-sample tests. We use monthly data from 1984-2014 (to match

our FX data) of the MSCI total return indices to proxy stock market returns Rt+dt,J . We follow

Lustig et al. (2017) and approximate the long term bond returns Rt+dt,∞,J (with infinite maturity)

using the total return indices of 10-year government bonds provided by Global Financial Data.

They show that this approximation is reasonable in the context of popular affine term structure

models. All returns are denominated in local currency. Details about the data are provided in

Tables E.4 and E.5 in the Appendix.

Table 3: SDF Volatility Bound Tests

Bound (13) Bound (14) Bound (15)
(1) (2) (3) (4) (5) (6)

Country Lt

Ç “MP
t+dt,J

“MP
t,J

å
Lower
Bound

L

Å
M̂P

t+dt,J

M̂P
t,J

ã

L

Å
M̂t+dt,J

M̂t,J

ã Lower
Bound

L

Å
M̂T

t+dt,J

M̂T
t,J

ã

L

Å
M̂t+dt,J

M̂t,J

ã Upper
Bound

Australia 0.0535 0.0058 1.0469 0.0815 0.0204 0.0446
Canada 0.0698 0.0128 1.0460 0.2020 0.0207 0.0368
Denmark 0.0681 0.0232 1.0425 0.2468 0.0210 0.0243
Euro 0.0701 0.0086 1.0427 0.1107 0.0210 0.0166
Japan 0.1041 0.0492 1.0458 0.4654 0.0211 0.0276
New Zealand 0.0527 -0.0069 1.0471 -0.1686 0.0205 0.0664
Norway 0.0617 -0.0131 1.0421 -0.4859 0.0211 0.0737
Sweden 0.0610 0.0230 1.0423 0.2681 0.0211 0.0193
Switzerland 0.0747 0.0955 1.0429 0.6401 0.0211 0.0038
UK 0.0700 0.0169 1.0434 0.2739 0.0210 0.0450
USA 0.0825 0.0393 1.0461 0.4558 0.0209 0.0379

Notes: The table reports the entropies of the estimated SDFs and their permanent and transitory com-

ponents as well as the lower and upper bounds of Alvarez and Jermann (2005) estimated from stock and

bond return data for all 11 countries in our analysis. Columns 1 and 2 report values for the bound in

(13), 3 and 4 the values for the bound in (14), and 5 and 6 the values for the bound in (15). All reported

quantities are annualized.

Table 3 reports the results. The odd columns provide estimates of the entropies on the left

hand side of the conditions (13), (14) and (15), while the even columns report the lower and upper

20Note that we compute the unconditional version of (13), which is less tight than the theoretical conditional bound
that has to hold at every point in time.

26



bounds estimated from stock and bond returns. The first lower bound (13) on the entropy of the

estimated permanent component Lt

Ç “MP
t+dt,J

“MP
t,J

å
holds in all countries except for Switzerland, which

appears to be due to the exceptionally large average excess return of the Swiss stock market index

between 1984 and 2014 and may be attributed to noise in the estimation of the expected return.

The second lower bound (14) on the entropy of the estimated permanent component relative to the

entropy of the SDF

L

Å
M̂P

t+dt,J

M̂P
t,J

ã

L

Å
M̂t+dt,J

M̂t,J

ã holds in all 11 countries. The entropy of the permanent component

is always larger than the entropy of the SDF, which is consistent with the fact that the permanent

and transitory components are negatively correlated. Finally, the upper bound (15) on the entropy

of the transitory component relative to the entropy of the SDF

L

Å
M̂T

t+dt,J

M̂T
t,J

ã

L

Å
M̂t+dt,J

M̂t,J

ã holds for 8 of our 11

countries but is violated in case of Europe, Sweden and Switzerland.

Long Term Bond Yields

In the SDF decomposition we obtain an estimate of the eigenvalue ρ in the Perron-Frobenius

eigenfunction problem. − ln(ρ) may be interpreted as the yield on a long term bond with infinite

maturity (Christensen, 2017). We use these implied yields from our decomposition of the SDFs

and compare them to the average yields (in local currency) of the 10-year government bonds across

all countries. The 10-year bond yield data is again from Global Financial Data. Since our SDFs

are estimated from FX market data and do not use any information about long term bonds, our

comparison is an out-of-sample validation of our SDF estimation.

Figure 5 shows a striking positive cross-country relationship with a correlation of 91% between

the average (annualized) 10-year bond yields and the (annualized) yields extracted from our esti-

mated SDFs. The slope in a regression of the data on the implied yields is 0.74, which is statistically

different from 0 with a t-statistic of 9.35.21 The R2 of the regression is 91% suggesting that the

SDFs estimated from FX market data are able to explain a large fraction of the cross-country

variation in long term bond yields. This is strong out-of-sample evidence in favor of our estimated

SDFs.

21The constant term in the regression is 0.029 and significantly different from 0.
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Average 10-year Bond Yields vs Implied Yields
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Figure 5: Plot of average 10-year government bond yields (in local currency) against implied yields
− ln(ρ) (in local currency) obtained from the SDF decomposition of Christensen (2017) (red points).
The black line in the Figure is the regression fit when regressing (20).

Long Term Bond Excess Returns and Permanent Components in SDFs

Lustig et al. (2017) derive an identity (Proposition 1 in their paper) between long term bond excess

returns across different countries (denominated in USD) and entropies of the permanent components

of these countries’ SDFs,

Et

î
rxUS

t+dt,∞,J

ó
= Et [rxt+dt,∞,US ] + Lt

(
MP

t+dt,US

MP
t,US

)
− Lt

(
MP

t+dt,J

MP
t,J

)
, (16)

with rxUS
t+dt,∞,J = ln

(
Rt+dt,∞,J

1+rt,J

)
+ ln

Ä
CTUS

t+dt,−US/+J

ä
and rxt+dt,∞,US = ln

(
Rt+dt,∞,US

1+rt,US

)
. The left

hand side (LHS) is the expected log excess return of the long term bond (with infinite maturity) in

country J denominated in USD.22 The right hand side (RHS) is the the expected log excess return

of the long term bond in the USA (denominated in USD) plus the difference in the entropies of the

permanent components of the SDFs in the USA versus country J .

Lustig et al. (2017) do not have estimates of the entropies of the permanent SDF components

and thus cannot directly test their theoretical relationship (16). Instead they use it as a bound on

22Note that adding the carry trade premium to the expected log excess return of the long term bond denominated
in local currency changes the denomination to USD.
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Long Term Bond Excess Returns and Permanent Components in SDFs
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Figure 6: Plot of LHS = E
î
rxUS

t+dt,10,J

ó
against RHS = Et [rxt+dt,10,US ] + Lt

Ç “MP
t+dt,US

“MP
t,US

å
−

Lt

Ç “MP
t+dt,J

“MP
t,J

å
(red points) and fitted regression line LHS = a + b ∗ RHS + ǫJ (black line), where

E
î
rxUS

t+dt,10,J

ó
is the average excess return of the 10-year bond in country J denominated in USD,

E [rxt+dt,10,USD] is the 10-year bond in the USA, Lt

Ç “MP
t+dt,J

“MP
t,J

å
is the entropy of the estimated

permanent component of the SDF in country J .
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how much entropies of the permanent SDF components may differ across countries and investigate

which models in the literature satisfy this bound.

In contrast, we have estimates of the entropies of the permanent components across countries

and can test the relationship directly. We use again the 10-year bond return data from Global

Financial Data and the permanent components from the decomposition of our estimated SDFs.

We directly test relationship (16) using the cross-sectional regression,

E
î
rxUS

t+dt,10,J

ó
= a+ b


Et [rxt+dt,10,US ] + Lt

Ñ
M̂P

t+dt,US

M̂P
t,US

é

− Lt

Ñ
M̂P

t+dt,J

M̂P
t,J

é
+ ǫJ , (17)

where the excess returns of the 10-year government bonds rxUS
t+dt,10,J and rxt+dt,10,US are again

approximations of the excess returns of the long term bonds with infinite maturity (as discussed

earlier). If (16) holds, then we should find constant a = 0 and slope b = 1.23 Figure 6 visualizes

regression (17) and shows a striking positive relationship between the RHS and LHS of equation

(16). We estimate the constant term a equal to 0.019 and not statistically significantly different

from 0 (t-statistic of 1.39). The slope coefficient b is equal to 0.97, statistically significantly different

from 0 (t-statistic of 3.38) but not different from 1 (t-statistic of 0.12). Thus, we conclude that

the theoretical equation (16) of Lustig et al. (2017) holds for the permanent components extracted

from our estimated SDFs. This is strong out-of-sample evidence in favor of our estimation.

4.3 International Stock Returns

In our first set of tests we take market prices of PC risks γ̂J1 and γ̂J2 estimated from the FX data as

given and estimate implied equity premia from covariations between stock returns and PCs Πt,1 and

Πt,2. In the second set of tests we use Fama and MacBeth (1973) regressions to estimate market

prices of PC risk from international stock returns.

Pricing Stocks using Market Prices of PC Risks Estimated from FX Data

We use again the monthly MSCI stock market return indices denominated in local currency (as

in section 4.2). We assume that country J ’s stock market excess return denominated in its local

23Note that if the hypothesis that E
[
rxUS

t+dt,∞,J

]
= E [rxt+dt,∞,US] was true and differences in average excess

returns of 10-year bonds are just noise, then we should not find any significant relationship in our regression. We
deem it unlikely that the noise in average excess returns is correlated with the differences in entropies of the permanent
components because our estimated SDFs and the constructed permanent components do not use any long term bond
data.
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currency J is described by a diffusion process,

Rt+dt,J = (µJ − rJ) dt+ σTJ dZt, (18)

where Rt+dt,J is the realized stock market excess return of country J in local currency, µJ − rJ is

the equity premium, σJ is the exposure to Brownian motion risk sources dZt. We estimate stock

market J ’s exposures σ1,J and σ2,J to FX market risks Πt,1 and Πt,2 using the time-series regression,

Rt+dt,J = αJ +
2∑

k=1

σk,JΠt,k + ǫt,J , (19)

where αJ equals the average stock excess return and ǫt,J captures all the risk not spanned by Πt,1

and Πt,2.

The implied annualized expected excess return on J ’s stock market (i.e., implied equity pre-

mium) measured in its home currency J is,

ERJ = µJ − rJ = − 1

dt
Covt

(
dM̂J,t

M̂t,J

, Rt+dt,J

)
=

2∑

k=1

γ̂Jk σk,J . (20)

Thus, we estimate the implied ERJ using the market prices γ̂J1 and γ̂J2 estimated in FX markets (8)

and the stock market loadings σ1,J and σ1,J on Πt,1 and Πt,2 obtained from the time-series regression

(19). Hence, (20) presents an expression for the equity premium implied by our estimated SDFs

M̂t,J in FX markets. Column 3 in Panel A in Table 4 reports these estimates. Column 4 reports the

percentage of the variance of Rt+dt,J explained by the first two PCs Πt,1 and Πt,2 in the time-series

regression (19), and columns 1 and 2 report averages and volatilities of stock market excess returns

in the data.

Stock markets across all countries negatively covary with the SDFs and the FX market implied

equity premia ERJ are positive. The implied premia have on average a magnitude of 30% of the

average realized excess returns. This is a substantial amount considering that the FX market risks

Πt,1 and Πt,2 capture only slightly more than 10% of the total stock market return variation in the

time series. Moreover, the correlation between the cross-country variation in implied premia ERJ

and the average of realized excess returns Rt+dt,J is 67%. Figure 7 illustrates the strong positive

cross-country relationship. Regressing average realized excess returns Rt+dt,J on the implied premia

ERJ yields a statistically significant regression coefficient of 3.35 with a t-statistic of 2.89. We
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Table 4: Country-Specific Stock Markets and SDFs

Panel A: Stock Market Returns in Country J and MJ

(1) (2) (3) (4)
Country Average Stock Volatility of Implied Equity Percentage of

Excess Return Excess Return Premium ERJ Variance Explained
Australia 0.062 0.177 0.014 8.5
Canada 0.062 0.164 0.019 12.3
Denmark 0.090 0.201 0.027 17.1
Euro 0.073 0.219 0.027 11.5
Japan 0.103 0.245 0.030 7.3
New Zealand 0.037 0.200 0.017 14.1
Norway 0.026 0.185 0.015 5.8
Sweden 0.078 0.251 0.031 14.6
Switzerland 0.144 0.247 0.026 9.5
UK 0.059 0.185 0.018 9.6
USA 0.085 0.165 0.022 12.6

Panel B: Stock Market Returns in Country J and first two PCs
(1) (2) (3) (4)

Country Premium Earned Premium Earned % of Variance Exp- % of Variance Exp-
from Risk of Πt,1 from Risk of Πt,2 lained by Πt,1 lained by Πt,2

Australia 0.004 0.010 4.9 3.5
Canada 0.006 0.013 6.9 5.2
Denmark 0.014 0.013 12.0 4.8
Euro 0.011 0.015 5.9 5.3
Japan 0.008 0.021 2.4 4.8
New Zealand 0.006 0.011 10.3 3.6
Norway 0.006 0.009 2.3 3.3
Sweden 0.014 0.018 8.1 6.3
Switzerland 0.014 0.012 6.9 2.5
United Kingdom 0.009 0.009 7.2 2.2
USA 0.006 0.015 6.4 6.1

Notes: Country-specific OLS time-series regression Rt,J = αJ +
∑2

K=1 βJ,KΠt,K + ǫt,J to examine the effects

of exchange rate risks captured by the first two PCs Πt,1, Πt,2 on country J ’s stock market excess returns Rt,J .

Panel A reports the average and volatility of country J ’s stock market excess returns (denominated in local

currency; column 1 & 2), the implied equity premium in (20) (column 3), and the regression R2 or percentage

of stock market return variance explained by the two PCs combined (column 4). Panel B reports the impact

of each PC separately, i.e., the implied equity premia due to exposure to the first and second PC (columns

1 & 2), and the percentage of stock market return variance explained by the first and second PC (column 3

& 4). Excess stock returns are computed from monthly country-specific MSCI Total Return Index series. All

reported returns and volatilities are annualized.
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Average Excess Returns vs Implied Equity Premia

Implied Equity Premium
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Figure 7: Plot of average stock market excess returns (in local currency) against implied risk
premia (in local currency) according to (20) (red points). The black line shows the regression fit
when regressing average excess returns on the implied premia.

conclude that while FX market risks Πt,1 and Πt,2 only capture a small part of the time-series

variation in stock returns, they are able to explain a substantial amount of priced stock market

risks, i.e., a substantial part of international equity premia. These estimates lend support to the

validity of our construction of country-specific SDFs from FX market returns and demonstrate that

FX market risks are important for pricing stocks.

To investigate the importance of the individual PCs Panel B in Table 4 decomposes the SDFs

and columns 1 and 2 report the implied premia stock market J earns due to exposure to Πt,1

and Πt,2, i.e., γ̂
J
1 σ1,J and γ̂J2 σ2,J . Columns 3 and 4 report the percentage of stock market return

variance captured by Πt,1 and Πt,2. All stock markets load negatively on Πt,1 and positively on Πt,2.

Remember that the market price γ̂J1 (γ̂J2 ) of Πt,1 (Πt,2) is negative (positive) and thus an increase

(decrease) in Πt,1 (Πt,2) is bad news to the marginal investor. Hence, stocks are risky and earn a

positive premium for an exposure to the two PCs. Though, we find that Πt,1 generally explains

more of the time-series variation in stock returns than Πt,2, the premia paid due to risk exposure is

slightly larger for Πt,2. This is because the market price of risk γ̂J2 is estimated to be substantially

larger than γ̂J1 in the FX market data (Table 1).

Next, we repeat the above analysis (i.e., estimation of (19) and (20)) for the US only and
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Table 5: US Stock Market and SDF

Historical data (1984-2014):
Average US Stock Market Excess Return 0.085
Volatility of US Stock Market Excess Return 0.165

(1) (2) (3) (4) (5) (6)
Horizon Implied Equity Premium Earned Premium Earned Percentage of % of Variance Exp- % of Variance Exp-

Premium from PC 1 from PC 2 Variance Explained lained by PC 1 lained by PC 2
1-day Return 0.016 0.005 0.012 4.9 3.5 3.4
5-day Return 0.023 0.007 0.016 10.0 7.5 6.6
10-day Return 0.023 0.007 0.016 10.0 8.0 6.1
20-day Return 0.023 0.008 0.015 11.1 9.6 5.7
60-day Return 0.024 0.009 0.015 15.0 13.5 6.6
125-day Return 0.024 0.010 0.015 15.9 14.2 7.1

Notes: US stock return OLS time-series regression RUS,t = αUS +
∑2

K=1 βUS,KΠt,K + ǫUS,t to examine the effects of exchange rate risks captured by

the first two PCs Πt,1, Πt,2 on US stock market excess returns RUS,t over diverse holding periods (1, 5, 10, 20, 60, 125 days). Columns 1-3 report the

equity premia implied by both PCs together and each PC separately. Columns 4-6 report the percentage of stock market return variance explained by

both PCs together and each PC separately. We use daily returns of a value-weighted US stock market portfolio including all stocks in CRSP. Reported

results are for overlapping windows. All reported returns and volatilities are annualized.
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investigate how our results are affected by changes in the data frequency from monthly to 1, 5,

10, 20, 60 and 125 trading day holding periods.24 We use the daily value-weighted-index from

CRSP. Table 5 reports for the diverse holding periods the implied US equity premium (column

1), the premia earned due to exposure to Πt,1 and Πt,2 (columns 2 and 3), the percentage of US

stock market return variance explained by the US SDF M̂t,US (column 4), and the percentage of

stock return variance captured by Πt,1 and Πt,2 (columns 5 and 6). The percentage of stock return

variance explained by our estimated SDF is only 4.9% at the daily frequency, roughly 10% at 5-,

10- and 20-trading day frequencies, and increases to slightly more than 15% at 60- and 125-trading

day frequencies. Πt,1 explains slightly more of the time-series variation than Πt,2, and the difference

increases at longer horizons. Except for the daily frequency, the implied premia are quite stable

across the diverse data frequencies. The implied (annualized) premium by the overall SDF is 1.6%

at the daily frequency and 2.3%-2.4% for frequencies between 5 and 125 trading days, which is

about 30% of the average realized stock market excess return in the US. The premium earned due

to risk exposure to Πt,1 is slightly less than 1% and about 1.5% for Πt,2. Thus, Πt,1 is slightly

more important to explain the time-series of returns but Πt,2 is more important to price the US

stock market. Overall, the data frequency does not seem to matter much as long as we use a lower

frequency than daily data. As shown above, Πt,1 is somewhat similar to the Carry factor while Πt,2

captures a more distinct risk. Thus, similar to the discussion in section 3.2, it is interesting that

Πt,2, which is less studied in the literature, appears more important for pricing.

Pricing Stocks using Market Prices of PC Risks Estimated from Stock Data

The test assets for the following Fama and MacBeth (1973) regressions are the 220 international

stock portfolios provided by Kenneth French25 from 1984-2014 (to match our FX data). The

data covers the following 22 countries: Austria, Australia, Belgium, Canada, Denmark, Finland,

France, Germany, Hong Kong, Ireland, Italy, Japan, Malaysia, Netherlands, New Zealand, Norway,

Singapore, Spain, Sweden, Switzerland, UK and USA. For each country we have 10 portfolios:

one value weighted stock market index, four high and four low valuation ratio portfolios (using

the ratios book-market, earnings-price, cash earnings-price, dividend yield), and one zero-dividend

portfolio. We take the perspective of a US investor in our estimations and thus, denominate all

test assets in USD.

24This roughly corresponds to daily, weekly, bi-weekly, monthly, quarterly and semi-annual returns.
25http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Table 6: Time-Series Regressions of International Stock Markets on US SDF

Unconditional 60-Month Rolling Windows
(1) (2) (3) (4) (5)
βJ R2 Mean(βJ,t) Std(βJ,t) Mean(R2)

Austria −0.120∗∗∗ 23% −0.090 0.097 21%
Australia −0.136∗∗∗ 31% −0.104 0.083 26%
Belgium −0.087∗∗∗ 17% −0.068 0.076 18%
Canada −0.083∗∗∗ 18% −0.062 0.066 14%
Denmark −0.084∗∗∗ 18% −0.062 0.075 16%
Finland −0.104∗∗∗ 11% −0.077 0.080 14%
France −0.091∗∗∗ 17% −0.069 0.072 18%
Germany −0.101∗∗∗ 19% −0.080 0.065 18%
Hong Kong −0.082∗∗∗ 9% −0.059 0.070 13%
Ireland −0.115∗∗∗ 24% −0.085 0.089 17%
Italy −0.098∗∗∗ 13% −0.075 0.075 18%
Japan −0.001 0% 0.022 0.065 11%
Malaysia 0.015 0% 0.016 0.006 0%
Netherlands −0.096∗∗∗ 21% −0.070 0.082 17%
New Zealand −0.103∗∗∗ 19% −0.085 0.071 25%
Norway −0.128∗∗∗ 22% −0.100 0.084 18%
Singapore −0.090∗∗∗ 11% −0.066 0.078 14%
Spain −0.099∗∗∗ 15% −0.069 0.069 14%
Sweden −0.115∗∗∗ 19% −0.092 0.081 18%
Switzerland −0.070∗∗∗ 15% −0.051 0.051 17%
UK −0.082∗∗∗ 19% −0.058 0.060 18%
USA −0.054∗∗∗ 11% −0.037 0.049 12%

Mean −0.088 16% −0.065 0.070 16%

Notes: Monthly OLS time-series regressions of each country J ’s stock market excess return

Rt,J (denominated in USD) on the US SDF M̂US estimated according to (9) (and re-scaled

to set its variance equal to 1), Rt,J = αJ + βJ
1

‖γ̂J‖2

d“Mt,US

“Mt,US

+ εt,J . αJ is a constant, εt,J is

an error, βJ measures the exposure of stock market J to the US SDF. Columns 2 and 3

report slope coefficient βJ and regression R2 for unconditional regressions (i.e., one regres-

sion per country for entire time-series). Columns 3, 4 and 5 report the averages and stan-

dard deviations of the slope coefficients βJ,t and the average regression R2 of regressions

of 60-month rolling windows for each country J . We use Monthly data from 1984 to 2014.

Significance of the slope coefficients in column 1 at the 1%, 5% and 10% level are indicated

by ∗∗∗, ∗∗ and ∗. Robust standard errors are estimated following Newey and West (1987).
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We estimate market prices of risk for our estimated US SDF M̂t,US and other popular factors.26

Following Fama and French (2015) we use their five global factors, which include a world stock mar-

ket (WMkt), size (SMB), book-market (HML), operating profitability (RMW ) and investment

(CMA) factor. Moreover, we also include global momentum (MOM). Data for SMB, HML,

RMW and CMA, MOM is only available starting in July 1990. Thus, all estimations cover the

time period 1984-2014, except when we work with the global Fama-French and momentum factors

our sample period shortens to 1990-2014. Following Brusa et al. (2015) we further control for the

Dollar (DOL) and Carry (CAR) factors. We normalize all factors so that they have an annual

variance of 1. This normalization is non-material but useful to compare the magnitude of estimated

market prices across factors in the second stage regression.

In the first stage we estimate for each test asset j the month t conditional factor loadings βt,i,j

using time-series regression over the past 60 months,

Rτ,j = αt,j +
∑

i

βt,i,jFτ,i + ετ,j, (21)

where Rτ,j denotes the realized excess return of asset j, Fτ,i the return of factor i, τ ∈ {t−61, . . . , t−
1}, αt,j is the time-series abnormal return and ετ,j an error. Using rolling windows allows us to take

into account time variations in factor loadings. In the second stage we then estimate the month t

conditional market prices γt,i of factors i using the cross-sectional regression,

Rt,j =
∑

i

βt,i,jγt,i + α∗
t,j , (22)

where α∗
t,j is the cross-section abnormal return. Finally, we take the time-series average of γt,i as

an estimate of the market price of risk of factor i.

Table 6 reports factor loadings of the 22 stock market portfolios estimated in the first stage

regression (21) for a model with only the estimated US SDF M̂t,US as a pricing factor. To save

space we only report factor loadings for the 22 stock markets and omit the other 198 portfolios

(Tables for the other 198 test assets are available on request). Notice that in the regressions in Table

6 all stock market returns are denominated in USD and the pricing factor is the US SDF, which

is different to the analysis in Table 4 where we investigate the relationship between stock market

returns denominated in local currencies and local SDFs. Thus, factor loadings and regression fits

26This test of estimating the market prices of risk of the US SDF “Mt,US can be understood similarly to tests of
the market portfolio when testing the CAPM.
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differ between Tables 4 and 6. Column 1 in Table 6 reports estimates of βi,j in an unconditional

regression, i.e., one time-series regression for each test asset instead of rolling windows, and column

2 the corresponding regression fit. Column 3 and 4 report the average and standard deviation

of conditional factor loadings βt,i,j from estimations in rolling windows as described in (21), and

column 5 reports the average regression fit in the rolling window estimations.

Every country’s stock market has a strong negative exposure to the US SDF, except for the

Japanese and Malaysian stock markets, which appear orthogonal to the SDF. Remember that an

increase in the SDF indicates bad times, i.e., the market price of risk in the SDF is by definition

negative and the SDF is counter-cyclical. A negative exposure means that these stock markets

drop in bad times. Thus, they are risky and will be compensated with a positive premium.

Notice that the Japanese stock market denominated in JPY loads negatively on the Japanese

SDF (Table 4) and earns a positive premium. But the loading of the JPY/USD exchange rate

(i.e., the currency exposure of the Japanese stock market when denominated in USD) is opposite

(i.e., CTUS
t+dt,−US/+JP earns a negative premium) and offsets the exposure of the local market to

the priced risk. In contrast, the currency and the stock market exposures to priced risk are the

same for other countries and thus, the regression fit increases in Table 6 compared to the analysis

in Table 4. Regression fits in the rolling window estimations (column 5) are similar to the ones in

the unconditional regressions. While column 3 in Table 6 shows that the average factor loadings in

the rolling window regressions are similar to the loadings in the unconditional regressions, column

4 displays substantial variations in the conditional loadings. This finding is consistent with the

estimations in Brusa et al. (2015), albeit their pricing factors differ from ours.

Table 7 reports the market prices γi estimated in the second stage cross-sectional regressions

(i.e., averages of conditional market prices γt,i in regression (22)). The regression includes all 220

test assets. The first row reports estimated market prices of the US SDF M̂t,US across several model

specifications: model with M̂t,US as single factor (column 1), M̂t,US , DOL and CAR (column 2),

M̂t,US andWMkt (column 3), M̂t,US ,DOL, CAR,WMkt (column 4), M̂t,US , 5 global Fama-French

factors and MOM (column 5), and all nine factors combined (column 6). As aforementioned all

factors are normalized to have an annual volatility of 1. Hence, the estimated market price γi is

theoretically equal to the Sharpe ratio of an asset which perfectly negatively correlates with the

pricing factor (i.e., a factor mimicking asset). This normalization makes the interpretation of the

magnitudes of the estimated market prices and comparisons across pricing factors more convenient.
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Table 7: Cross-Sectional Regressions of International Stock Markets on US SDF

(1) (2) (3) (4) (5) (6)

γM −0.80∗∗ −0.64∗∗ −0.71∗∗∗ −0.64∗∗∗ −0.40∗∗ −0.42∗∗

(2.24) (2.12) (3.50) (3.22) (2.00) (2.04)
γDOL 0.59∗ 0.44∗∗ 0.31

(1.81) (2.02) (1.39)
γCAR 0.79∗∗∗ 0.76∗∗∗ 0.78∗∗∗

(2.66) (3.27) (3.37)
γWMkt 0.37∗ 0.37∗ 0.37 0.42∗

(1.81) (1.76) (1.57) (1.76)
γSMB 0.13 0.06

(0.53) (0.25)
γHML 0.35 0.33

(1.59) (1.49)
γRMW 0.55∗∗ 0.57∗∗

(2.39) (2.50)
γCMA −0.07 −0.11

(0.27) (0.47)
γMOM −0.07 −0.10

(0.33) (0.50)

N Assets 220 220 220 220 220 220

# significant α∗:
1% level 10 5 8 8 8 5
5% level 27 24 23 25 11 13
10% level 42 36 40 41 15 26

MAPE 5.14 4.48 4.65 4.25 3.25 3.16
RMSE 7.32 6.10 6.91 6.21 5.00 4.86

Notes: Fama and MacBeth (1973) cross-sectional regressionsRt,j =
∑

i βt,i,jγt,i+α
∗
t,j at each time t.

Conditional factor loadings βt,i,j are estimated in time-series regressions Rτ,j = αt,j+
∑

i βt,i,jFτ,i+

ετ,j for τ ∈ {t− 61, . . . , t − 1} using 60-month rolling windows. We test the following factors Ft,i:

US SDF (M̂t,US), Dollar (DOL), carry (CAR), world stock market portfolio (WMkt), 4 global

Fama and French (1992) factors (SMB,HML,RMW,CMA) and global momentum (MOM). We

normalize all factors such that the annual volatility is 1. α∗
t,j is the abnormal return of asset j in

the cross-sectional regression. The reported market prices γi are annualized time-series averages of

γt,i. Significance of the market prices at the 1%, 5% and 10% level are indicated by ∗∗∗, ∗∗ and ∗.

N Assets indicates the number of test assets j. For each of 22 countries we have 10 portfolios: one

country-specific stock market portfolio, two Book/Market, two Earnings/Price, two Cashflow/Price

and 3 Dividend Yield sorted portfolios. Monthly returns (from 1984 to 2014) are provided by Ken-

neth French on his website. # significant α∗ reports the number of test assets with significant aver-

age abnormal returns at the 1%, 5%, 10% level according to the pricing model under consideration.

MAPE is the annualized mean absolute pricing error (α∗) in percentage. RMSE is the annual-

ized root mean square pricing error (α∗) in percentage. FOr columns 1-4 we have data from 1984

to 2014. The global Fama-French factors in columns 5 and 6 are only available since July 1990.
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The market price γM of the US SDF is statistically significant and economically large across

all six model specifications. It is negative as expected, i.e., an asset which positively (negatively)

correlates with the SDF is considered a hedge (risk) and is compensated with a negative (positive)

premium. The magnitude decreases after controlling for various other factors. In particular, in the

single factor model (column 1) the market price of the SDF is -0.80 and it adjusts to (still a large

value of) -0.42 after controlling for all other factors. Interestingly, the adjustment is not very large

after controlling for DOL and CAR, i.e., it is still -0.64. This further illustrates and enforces the

discussion in Section 3.2 that important dimensions of the SDF we estimate from FX data are not

in the space spanned by DOL and CAR. Besides the SDF, CAR and RMW remain important

factors with statistically and economically significant market prices. The market price of WMkt

is only significant on the 10% level. All other factors do not earn a significant risk premium in the

cross-section of international stock returns. The fact that the SDF estimated from FX data does

not crowed out all other factors means that there are some important risks which our PCs do not

pick up. On the upside, the risks of our FX market PCs appear important outside of FX markets,

besides several prominent factors described in the literature.

Overall, we conclude that the US SDF M̂t,US is an important pricing factor in the cross-section

of international stock returns but it does not explain all the priced risks. In particular, CAR and

RMW (andWMkt) appear to carry important pricing information (for international stock returns)

in addition to the priced risks captured by the SDF estimated from FX data.

Next, we decompose the SDF and investigate the pricing implications of the first two PCs Πt,1

and Πt,2 of exchange rate growths separately. As above we use the two stage Fama and MacBeth

(1973) regressions (21) and (22) but remove the US SDF M̂t,US and instead use the two PCs Πt,1

and Πt,2 as new pricing factors. Notice that the SDF is a linear combination of the two PCs, and

thus, if the relative market prices γΠt,1
and γΠt,2

estimated in the cross-section of stock returns is

the same as γ̂US
1 and γ̂US

2 in FX markets, then the regressions using the US SDF or the two PCs

are identical. Empirically, the analysis involving the two PCs allows for more flexibility than the

regression using the US SDF.

Table 8 reports the factor loadings of each of our 22 stock markets (denominated in USD) on the

two PCs.27 In columns 1 and 2 are factor loadings in unconditional regressions, i.e., one regression

for each country’s stock market (analogous to column 1 in Table 6). Columns 3-6 report time-series

27To save space we only report the results for the 22 market portfolios. Tables for all other 198 portfolios are
available upon request.
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Table 8: Time-Series Regressions of International Stock Markets on first two PCs

Unconditional 60-Month Rolling Windows
(1) (2) (3) (4) (5) (6)
β1,J β2,J Mean(β1,J,t) Std(β1,J,t) Mean(β2,J,t) Std(β2,J,t)

Austria −0.018 0.101∗∗∗ −0.011 0.018 0.089 0.090
Australia −0.102∗∗∗ 0.089∗∗∗ −0.097 0.032 0.079 0.069
Belgium 0.007 0.080∗∗∗ 0.006 0.028 0.072 0.071
Canada −0.062∗∗∗ 0.054∗∗∗ −0.068 0.029 0.041 0.051
Denmark −0.008 0.071∗∗∗ −0.005 0.032 0.060 0.073
Finland −0.061∗∗∗ 0.076∗∗∗ −0.054 0.050 0.070 0.080
France −0.007 0.079∗∗∗ −0.016 0.047 0.068 0.072
Germany −0.008 0.087∗∗∗ −0.017 0.059 0.080 0.062
Hong Kong −0.068∗∗∗ 0.051∗∗∗ −0.074 0.032 0.039 0.066
Ireland −0.033∗∗ 0.092∗∗∗ −0.028 0.026 0.078 0.081
Italy −0.016 0.082∗∗∗ −0.025 0.041 0.074 0.075
Japan 0.008 0.003 0.011 0.072 −0.033 0.063
Malaysia −0.087∗ −0.043∗∗ −0.127 0.028 −0.056 0.007
Netherlands −0.015 0.081∗∗∗ −0.014 0.040 0.067 0.079
New Zealand −0.081∗∗∗ 0.069∗∗∗ −0.079 0.032 0.067 0.056
Norway −0.040∗∗∗ 0.101∗∗∗ −0.041 0.025 0.093 0.079
Singapore −0.072∗∗∗ 0.057∗∗∗ −0.074 0.056 0.041 0.070
Spain −0.012 0.084∗∗∗ −0.013 0.045 0.072 0.079
Sweden −0.044∗∗∗ 0.088∗∗∗ −0.052 0.047 0.081 0.076
Switzerland 0.006 0.064∗∗∗ 0.008 0.035 0.053 0.051
UK −0.018∗ 0.068∗∗∗ −0.019 0.036 0.050 0.055
USA −0.042∗∗∗ 0.035∗∗∗ −0.044 0.032 0.023 0.045

Mean −0.035 0.067 −0.038 0.038 0.055 0.066

Notes: Monthly OLS time-series regressions of each country J ’s stock market excess return Rt,J (denomi-

nated in USD) on the first two PCs Πt,1 and Πt,2, Rt,J = αJ + β1,JΠt,1 + β2,JΠt,2 + εt,J . αJ is a constant,

εt,J is the error, β1,J and β2,J measure the exposures of stock market J to Πt,1 and Πt,2. Columns 1 and 2

report slope coefficient β1,J and β2,J for unconditional regressions (i.e., one regression per country for entire

time-series). Columns 3-6 report the averages and standard deviations of the slope coefficients βt,1,J and

βt,2,J of regressions of 60-month rolling windows for each country J . We use Monthly data from 1984 to

2014. Significance of the slope coefficients in column 1 at the 1%, 5% and 10% level are indicated by ∗∗∗, ∗∗

and ∗. Robust standard errors are estimated following Newey and West (1987).
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averages and standard deviations of conditional factor loading in regressions of 60-month rolling

windows (analogous to columns 3 and 4 in Table 6). We observe that all stock markets (with the

exception of the Japanese and the Malaysian markets) have a significant positive exposure to the

second PC. Our analysis in section 3.2 suggests that the market price of the second PC is positive

and thus, it is negatively related to the SDF, i.e., the second PC is pro-cyclical. In turn, this means

that an asset that is positively exposed to the second PC is risky and is compensated by a positive

premium, which is what we generally expect about stock markets. Exposures to the first PC are

mostly negative but they are significant for only half of the investigated stock markets. The first

PC’s market price is negative when estimated in FX markets, which implies a positive relationship

with the SDF and the first PC is counter-cyclical. In turn, an asset which negatively correlates

with the first PC is risky and earns a positive premium, which is again what we generally expect

for stock markets. We further observe that average conditional loadings are similar to that of

the unconditional estimates and there is a large time-series variation in conditional factor loadings

(columns 2-6).

Table 9 is analogous to Table 7 and reports the estimated market prices γi in the cross-section

of international stock returns. As expected the market price of Πt,1 is negative and the one of

Πt,2 is positive across all model specifications. This is in line with the estimates of market prices

from FX market data in Table 1, i.e., Πt,1 (Πt,2) positively (negatively) affects the SDF and an

asset that loads negatively (positively) on Πt,1 (Πt,2) is risky and is compensated with a positive

premium. Though the sign is consistent for both PCs, the estimated price of risk is only statistically

significant for Πt,2. The estimated price of risk γΠt,1
is between -0.25 and -0.08 across the diverse

model specifications. The magnitude of the price of risk γΠt,2
decreases from 0.74 in a model with

only the two PCs as pricing factors to (still a large value of) 0.41 after controlling for all other

pricing factors. These values are comparable to (and not statistically significantly different from)

the estimated market prices from FX data in Table 1, i.e., -0.143 for Πt,1 and 0.369 for Πt,2. Thus,

the two PCs are priced similarly in stock and FX markets. Consistent with the analysis using the

US SDF M̂t,US , we find again that CAR and RMW (andWMkt) are important factors in addition

to the two PCs from exchange rate growths.
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Table 9: Cross-Sectional Regressions of International Stock Markets on first two PCs

(1) (2) (3) (4) (5) (6)

γΠt,1
−0.12 −0.06 −0.25 −0.17 −0.08 −0.24

(0.38) (0.25) (1.02) (0.70) (0.31) (0.89)
γΠt,2

0.74∗∗ 0.65∗∗ 0.65∗∗∗ 0.59∗∗∗ 0.38∗ 0.41∗

(2.39) (2.41) (3.18) (2.92) (1.85) (1.97)
γDOL 0.62∗∗ 0.41∗ 0.26

(2.10) (1.95) (1.17)
γCAR 0.72∗∗ 0.73∗∗∗ 0.80∗∗∗

(2.56) (3.17) (3.55)
γWMkt 0.36∗ 0.38∗ 0.40∗ 0.43∗

(1.74) (1.82) (1.68) (1.81)
γSMB 0.18 0.12

(0.77) (0.53)
γHML 0.33 0.36

(1.50) (1.63)
γRMW 0.56∗∗ 0.55∗∗

(2.44) (2.41)
γCMA −0.14 −0.17

(0.57) (0.69)
γMOM −0.04 −0.09

(0.18) (0.47)

N Assets 220 220 220 220 220 220

# significant α∗:
1% level 9 10 7 8 7 4
5% level 21 27 22 20 12 14
10% level 42 43 42 35 19 29

MAPE 5.17 4.49 4.55 4.08 3.22 3.14
RMSE 7.64 6.20 6.77 6.02 4.93 4.78

Notes: Fama and MacBeth (1973) cross-sectional regressionsRj,t =
∑

i βi,j,tγi,t+α
∗
j,t at each time t.

Conditional factor loadings βi,j,t are estimated in time-series regressions Rj,τ = αj,t+
∑

i βi,j,tFi,τ +

εj,τ for τ ∈ {t− 61, t− 1} using 60-month rolling windows. We test the following factors Fi: first

two PCs (Π1,Π2), Dollar (DOL), carry (CAR), world stock market portfolio (WMkt), 4 global

Fama and French (1992) factors (SMB,HML,RMW,CMA) and global momentum (MOM). We

normalize all factors such that the annual volatility is 1. α∗
t,j is the abnormal return of asset j in

the cross-sectional regression. The reported market prices γi are annualized time-series averages of

γt,i. Significance of the market prices at the 1%, 5% and 10% level are indicated by ∗∗∗, ∗∗ and ∗.

N Assets indicates the number of test assets Rj . For each of 22 countries we have 10 portfolios: one

country-specific stock market portfolio, two Book/Market, two Earnings/Price, two Cashflow/Price

and 3 Dividend Yield sorted portfolios. Monthly returns (from 1984 to 2014) are provided by Ken-

neth French on his website. # significant α∗ reports the number of test assets with significant aver-

age abnormal returns at the 1%, 5%, 10% level according to the pricing model under consideration.

MAPE is the annualized mean absolute pricing error (α∗) in percentage. RMSE is the annual-

ized root mean square pricing error (α∗) in percentage. For columns 1-4 we have data from 1984 to

2014. The global Fama-French factors in columns 5 and 6 are only available since July 1990.
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4.4 Financial Stress Indicators and Macroeconomic Fundamentals

We now analyze the correlation of various financial stress indicators with our estimated SDF growths

d“Mt,US

“Mt,US

in the USA and the first two PCs Πt,1 and Πt,2. All our financial stress data is specific to

the USA and thus we restrict our analysis to the US SDF.

Our first set of financial stress variables are the Chicago Federal Reserve Bank Financial Con-

dition Index and its four sub-indices: Risk, Credit, Leverage, and Non-Financial Leverage.28 We

use monthly changes in these indices in our analysis.

Our second set of stress variables proxy for volatility. Following Menkhoff et al. (2012a), we

construct a monthly FX market volatility measure as the average of absolute daily exchange rate

changes within a month and across currencies. We denote monthly changes in the FX market

volatility by ∆FX Volatility. We download monthly data for the S&P 500 Volatility Index (VIX)

from the CBOE.29 ∆VIX indicates monthly changes in the VIX. He et al. (2016) provide data on

the capital ratio of primary dealers and use this variable as a proxy for risk in an intermediary asset

pricing model. ∆Intermediary Capital Ratio denotes monthly changes of their measure. Finally,

we use six volatility measures provided by Giglio et al. (2016), who aggregate risk measures of the

top 20 financial institutions. ∆Volatility (Top 20 Fin) is the monthly change in the average return

volatility of the top 20 financial institutions. ∆Turbulence (Top 20 Fin) is the monthly change in

the average of the returns’ recent covariance relative to a longer-term covariance (Kritzman and Li,

2010). ∆Size Concentration (Top 100 Fin) is the monthly change in the Herfindal index of the size

distribution among the top 100 financial institutions.

Our third set of variables is measuring tail risk. We use three measures provided by Giglio et al.

(2016). ∆CatFin (Top 20 Fin) is the monthly change in the cross-sectional value-at-risk measure of

Allen et al. (2012). Note that while standard value-at-risk measures typically use a time series of

returns (of a firm or an index) to estimate a potential loss, CatFin uses the cross-section of returns

at a point in time, and thus, estimates systemic risk instead of individual firm risk. ∆Book and

∆Market Leverage (Top 20 Fin) are monthly changes in average book and market leverage.

Fourth, we look at two illiquidity risk measures. ∆FX Illiquidity is the monthly change in the

FX market illiquidity measure of Karnaukh et al. (2015), which is constructed from high frequency

28We have also tested Financial Condition Indices from the St. Louis Fed and Kansas City Fed and the results are
almost the same. We do not report these estimates for brevity.

29VIX data is only available starting in January 1990.
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exchange rates against the USD.30 Moreover, we use ∆Amihud which is the monthly change in the

average stock illiquidity of the top 20 financial institutions using the measure of Amihud (2002).

Fifth, we look at credit risk measures. ∆Defaut Spread is the monthly change in the difference

between BAA and AAA corporate bond yields. ∆TED Spread is the monthly change in the

difference between the 3-month LIBOR and T-Bill interest rates. ∆Term Spread is the monthly

change in the difference between the 10-year and 3-month US Treasury yields.

Finally, we look at contagion risks within the financial industry and use five measures provided

by Giglio et al. (2016). ∆Absorption (Top 20 Fin) is the monthly change in the fraction of return

variance of the top 20 financial institution explained by the first 3 PCs (of the 20 return time-

series) (Kritzman et al., 2010). ∆CoVaR (Top 20 Fin) is the monthly change in the average CoVaR

measure by Adrian and Brunnermeier (2016). CoVaR measures systemic risk as the value-at-risk

of the financial system conditional on an institution being in distress. ∆Dynamic Causality Idx

(Top 20 Fin) is the monthly change in the fraction of significant Granger-causality relationships

among the returns of the top 20 financial institutions (Billio et al., 2012). ∆International Spillover

is the monthly change in the index of Diebold and Yilmaz (2009), which measures comovement

in macroeconomic quantities across countries. ∆MES (Top 20 Fin) is the monthly change in the

average of the top 20 financial institutions’ expected returns conditional on the financial system

being in its lower tail (Acharya et al., 2017).

With the exception of ∆Intermediary Capital Ratio and ∆Term Spread, all these financial

stress measures are counter-cyclical, i.e., an increase (or a positive change) indicates bad times.

∆Intermediary Capital Ratio is pro-cyclical, i.e., a positive realization is good news because an

increase in the capital ratio of intermediaries relaxes constraints in an intermediary asset pricing

model (He et al., 2016). Moreover, an increase in the slope of the yield curve (i.e., a positive value

for ∆Term Spread) predicts increases in future GDP growth and it is pro-cyclical (Ang et al., 2006).

Remember that the SDF is counter-cyclical, i.e., an increase (or a positive realization in
d“Mt,US

“Mt,US

)

indicates bad times. Moreover, the first (second) PC carries a negative (positive) market price of

risk and thus is positively (negatively) related to the SDF and counter-cyclical (pro-cyclical) (see

Table 1). Thus, a positive realization in the first PC indicates bad times, while a positive realization

in the second PC indicates good times.

Table 10 shows that the sign of the correlation coefficients is consistent with our interpretation of

30The FX illiquidity data is only available starting in January 1991.
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Table 10: Financial Stress Indicators

(1) (2) (3)

M̂US Π1 Π2

Federal Reserve Bank Indicators:
∆Chicago Fed Fin Con Idx 0.35∗∗∗ 0.29∗∗∗ -0.26∗∗∗

∆Chicago Fed Fin Con Idx (Risk) 0.33∗∗∗ 0.24∗∗∗ -0.26∗∗∗

∆Chicago Fed Fin Con Idx (Credit) 0.34∗∗∗ 0.31∗∗∗ -0.24∗∗∗

∆Chicago Fed Fin Con Idx (Leverage) 0.27∗∗∗ 0.17∗∗∗ -0.22∗∗∗

∆Chicago Fed Fin Con Idx (Non-Fin Leverage) -0.00 0.05 0.02

Volatility:
∆FX Volatility 0.28∗∗∗ 0.19∗∗∗ -0.22∗∗∗

∆VIX 0.38∗∗∗ 0.31∗∗∗ -0.30∗∗∗

∆Volatility (Top 20 Fin) 0.21∗∗∗ 0.26∗∗∗ -0.12∗∗

∆Turbulence (Top 20 Fin) 0.06 0.08 -0.03
∆Intermediary Capital Ratio -0.25∗∗∗ -0.30∗∗∗ 0.15∗∗∗

∆Size Concentration (Top 100 Fin) 0.17∗∗∗ 0.03 -0.17∗∗∗

Tail Risk:
∆CatFin (Top 20 Fin) 0.15∗∗∗ 0.21∗∗∗ -0.08
∆Book Leverage (Top 20 Fin) 0.03 -0.11∗ -0.07
∆Market Leverage (Top 20 Fin) 0.16∗∗∗ 0.16∗∗∗ -0.10∗

Illiquidity:
∆FX Illiquidity 0.32∗∗∗ 0.12∗ -0.29∗∗∗

∆Amihud (Top 20 Fin) 0.11∗ 0.05 -0.09∗

Credit:
∆Default Spread 0.21∗∗∗ 0.10∗ -0.18∗∗∗

∆TED Spread 0.11∗∗ 0.11∗∗ -0.08
∆Term Spread -0.12∗∗ -0.03 0.11∗∗

Contagion:
∆Absorption (Top 20 Fin) 0.06 0.12∗∗ -0.02
∆CoVaR (Top 20 Fin) 0.22∗∗∗ 0.24∗∗∗ -0.14∗∗

∆Dynamic Causality Idx (Top 20 Fin) 0.10∗ 0.15∗∗∗ -0.05
∆International Spillover 0.04 -0.01 -0.05
∆MES (Top 20 Fin) 0.18∗∗∗ 0.15∗∗∗ -0.13∗∗

Notes: Monthly correlations between changes in financial stress indicators and the SDF growth

in the USA and the first two PCs. Significance of the correlation coefficients at the 1%, 5% and

10% level are indicated by ∗∗∗, ∗∗ and ∗. Details of all financial stress indicators are in the main

text.
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the variables. The US SDF positively correlates with all stress indicators except for ∆Intermediary

Capital Ratio and ∆Term Spread, for which the correlation coefficient is negative. 15 out of 24

correlation coefficients are significant on the 1% level and 4 coefficients are significant on the 10%

level (but not on the 1% level). The SDF is strongly positively correlated to changes in the Chicago

Fed Financial Conditions Index and its risk, credit and leverage sub-indices (correlation coefficients

ranging between 27% and 35%). It is however orthogonal to the sub-index capturing non-financial

leverage. We find similarly strong correlations between these indices and the first and the second

PC. Note that the correlation for the first PC is positive and for the second it is negative, which is

consistent with the interpretation that an increase in the first (second) PC is bad (good) news. Since

the Chicago Fed Index is a combination of 105 financial activity variables, we further investigate

some of its components.

The estimated SDF is positively related to changes in the FX market volatility, the VIX, the

average volatility of the top 20 financial institutions and the size concentration in the financial

industry. The SDF is negatively correlated to changes in the intermediary capital ratio. We find

no significant relationship between our SDF and changes in turbulence (which captures the the

current covariance between returns compared to the long run) and book leverage. We conclude

that our SDF captures important volatility dimensions. While both PCs are related to the volatility

variables, the first PC is more exposed to changes in the intermediary capital ratio and the second

PC is stronger related to changes in the size concentration in the financial industry.

The SDF is also positively related to changes in the tail risk variables CatFin index and market

leverage of the top 20 financial firms. There is no significant relationship between the SDF and the

book leverage. Thus, our SDF captures important tail risks in the financial industry. Interestingly,

only the first PC is significantly related to these tail risk variables.

Our SDF is further related to changes in FX market illiquidity and average illiquidity of the

top 20 financial firms. The correlations are positive as expected. Thus, the SDF is strongly related

to measures of illiquidity. We find that the first PC is only weakly related to changes in FX market

illiquidity and not significantly related to changes in illiquidity of financial firms. In contrast, these

correlations are stronger and significant for the second PC.

The SDF is positively correlated to default and TED spreads and negatively correlated to the

term spread, which is consistent with our expectation. Interestingly, the first PC significantly

correlates with changes in the TED spread, but the correlation to changes in the default spread is
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weak and the correlation to changes in the term spread is insignificant. In contrast, the second PC

has a stronger and significant correlation with both changes in the default and term spread while

its correlation with the TED spread is insignificant.

Finally, we find that our SDF is significantly correlated with changes in the CoVaR and the

MES indices on the 1% level and the Dynamic Causality Index on the 10% level. It appears

unrelated to changes in the Absorption and International Spillover measures. Thus, there is some

evidence that the SDF is related to contagion measures. The first PC is stronger correlated to

most contagion measures than the second PC. Both PCs are seem unrelated to changes in the

International Spillover measure.

In summary, our SDF estimated from FX market data correlates with a broad set of financial

stress indicators, capturing volatility, tail risk, illiquidity, credit and contagion risk in financial

markets. While several stress indicators correlate similarly with the first and the second PC, there

are some differences. The first PC is associated with the TED spread and quantities that measure

volatility, tail and contagion risks. The second PC is associated the default and term spreads and

quantities that measure volatility and illiquidity.

Next, we explore the relationship between our country-specific SDFs and PCs and macroe-

conomic fundamentals. We consider the following 10 quantities: GDP growth (∆GDP ), change

in output gap (∆OutputGap), consumption growth (∆Consumption), capital formation growth

(∆CapitalFormation), industrial production growth (∆IndProduction), manufacturing growth

(∆Manufacturing), construction growth (∆Construction), change in the unemployment rate

(∆Unemployment), change in the overnight rate (∆OvernightRate), and change in the 10-year

government bond rate (∆Long − TermRate). All variables are per capita (except unemployment

and interest rates) and adjusted for inflation (except unemployment). Output gap is estimated as

the difference between GDP and its smooth trend using a Hodrick and Prescott (1997) filter with

a smoothing factor of 1600 as suggested for quarterly data. The data for all 11 countries, for which

we have estimated country-specific SDFs, is provided by the OECD and is available on a quarterly

frequency for our entire time horizon, 1984-2014.

Remember that the SDF is counter-cyclical, i.e., an increase in country J ’s SDF is a bad

shock for country J . Following a bad shock we expect GDP, output gap, consumption, capital

formation, industrial production manufacturing and construction to drop in country J , i.e., a

negative correlation to the local SDF. Similarly, following a bad shock growth prospects are lower
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and we expect short and long term interest rates to drop, implying a negative correlation as well.

The exception is unemployment, which we expect to increase in response to a bad shock, implying

a positive correlation to the SDF.

We use lead-lag within panel regressions to investigate the effect of a change in a country-

specific SDF M̂t,J from quarter t − 1 to t on future changes in macroeconomic quantities in the

corresponding country from quarter t to t+ h,

Yt,t+h,J = cJ + θ
M̂t,J − M̂t−1,J

M̂t−1,J

+
4∑

k=1

δkYt−k,t−k+1,J + εt,t+h,J , (23)

where Yt,t+h,J is the change or growth of a macroeconomic quantity in country J over h quarters

from t to t + h, cJ is a country-specific constant,
“Mt,J−“Mt−1,J

“Mt−1,J

is the growth rate of the SDF in

country J over the quarter t− 1 to t estimated according to (9), Yt−k,t−k+1,J are past realizations

of the macroeconomic quantity to control for potential auto-correlation in YJ , εt,J is the regression

error. Some of the macroeconomic quantities are persistent and we find that four quarterly lags

are sufficient to remove all auto-correlation (in most cases less than 4 lags are sufficient). Since we

work with overlapping observations we estimate standard errors following the approach of Hodrick

(1992). We further cluster errors within time to account for correlation across countries. Column

1 in Table 11 reports the slope coefficient estimate θ, column 2 the corresponding t−statistics,

and column 3 the goodness of the regression fit. Table 11 has four panels reporting results for

regressions with h = {1, 2, 3, 4}.

We observe that the sign of the regression coefficient θ is in all regressions as expected, i.e.,

implying a negative correlation between the SDF and all quantities except for unemployment.

However, there is a lot of noise and only the coefficient on the change in the long-term interest rate

is statistically significant when h = 1. For longer horizons of 2, 3 or 4 quarters (h = {2, 3, 4}), several
of the regression coefficients become statistically significant at the 5% or 10% level. Overall, we take

this as evidence that our estimated SDFs from FX data reflect future changes in macroeconomic

fundamentals.

Finally, we investigate the effects of the two PCs Πt,1 and Πt,2 separately on macroeconomic

quantities. We use similar within panel regressions as in (23) but replace the SDF by the two PCs
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and control for the exchange rate between J and the US,

Yt,t+h,J = cJ +
2∑

K=1

θKΠt−1,t,K + ϑ
EXt,J/US −EXt−1,J/US

EXt−1,J/US
+

4∑

k=1

δkYt−k,t−k+1,J + εt,t+h,J . (24)

While the SDF in the regressions (23) was country-specific, the PCs in (24) are not. Thus, control-

ling for exchange rates addresses this issue. Though this is conceptually important, empirically the

results are qualitatively the same (and quantitatively very similar) whether we control for exchange

rates or not. The estimations of market prices of risk of the two PC from either FX or stock returns

(sections 3.2 and 4.3) suggest that an increase (decrease) in Πt,1 (Πt,2) is a bad shock. Thus, we

expected negative (positive) regression coefficients θ1 (θ2) for all macroeconomic variables except

for unemployment, for which we expect the opposite.

Table 12 shows that our intuition is confirmed in the data and the sign on all regression coeffi-

cient is as expected. None of the regression coefficients on Πt,2 is statistically significant except for

the coefficients on the change in the long-term interest rate at short horizons h = {1, 2}, which are

significant on the 5% level. In contrast, we find that most of the coefficients on Πt,1 are highly sta-

tistically significant (on the 1% level). Moreover, the relationship appears much stronger at longer

horizons, i.e., coefficients are more significant for h = {3, 4}. This is an interesting finding. First, it

appears that some of the results in regressions (23) (Table 11) are relatively modest because Πt,2 is

not strongly associated with most macroeconomic fundamentals (except for the long term interest

rate) and the SDF puts a larger weight on Πt,2 than Πt,1. Second, while Πt,2 is more important

for pricing FX and stock market returns (i.e., estimated market prices are larger in magnitude for

Πt,2), Πt,1 is much stronger associated with a broad set of macroeconomic quantities. Third, the

results for Πt,1 suggest that it captures news about economic growth, especially at a horizons of

3 to 4 quarters. In contrast, Πt,2 seems to capture short term (1 to 2 quarters) changes in bond

markets (long term interest rate) but the association with quantities that capture economic growth

are insignificant.

Overall, we conclude that the country-specific SDFs M̂t,J estimated from FX market data

according to (9) are related to fundamentals, which is important out-of-sample evidence in favor of

our estimation approach. The first PC Πt,1 of exchange rate growths is strongly associated with a

broad set of fundamentals and appears to capture economic growth at a horizon of 2 to 4 quarters.

The second PC Πt,2 is related to short term changes in the long term interest rate.
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Table 11: Macroeconomic Panel Regressions: SDFs

1 Quarter ahead (h = 1)

(1) (2) (3)
Coefficient (t−stat) R2 (in %)

∆ GDP -0.00808 (-1.25) 4.43
∆ Output Gap -0.00766 (-1.47) 3.95
∆ Consumption -0.00562 (-1.53) 11.30
∆ Capital Formation -0.01939 (-1.19) 3.16
∆ Ind Production -0.02155 (-1.18) 8.36
∆ Manufacturing -0.02431 (-1.09) 7.16
∆ Construction -0.01608 (-1.25) 3.43
∆ Unemployment 0.03413 (1.06) 11.02
∆ Overnight Rate -0.57474 (-1.58) 1.25
∆ Long-Term Rate -0.45161∗∗ (-2.53) 9.55

2 Quarters ahead (h = 2)

(1) (2) (3)
Coefficient (t−stat) R2 (in %)

∆ GDP -0.01432 (-1.47) 5.82
∆ Output Gap -0.01432∗ (-1.84) 7.32
∆ Consumption -0.00807∗ (-1.69) 11.91
∆ Capital Formation -0.03752 (-1.41) 5.87
∆ Ind Production -0.04019 (-1.41) 7.68
∆ Manufacturing -0.04777 (-1.38) 8.37
∆ Construction -0.02442 (-1.14) 4.88
∆ Unemployment 0.07862 (1.47) 13.41
∆ Overnight Rate -0.92907∗ (-1.91) 2.08
∆ Long-Term Rate -0.65821∗∗∗ (-2.77) 10.85

3 Quarters ahead (h = 3)

(1) (2) (3)
Coefficient (t−stat) R2 (in %)

∆ GDP -0.01574∗ (-1.70) 5.06
∆ Output Gap -0.01454∗∗ (-2.00) 9.02
∆ Consumption -0.00968∗∗ (-2.02) 13.70
∆ Capital Formation -0.04759∗ (-1.77) 6.85
∆ Ind Production -0.03925 (-1.47) 5.85
∆ Manufacturing -0.04785 (-1.49) 6.55
∆ Construction -0.03017 (-1.40) 5.91
∆ Unemployment 0.09377∗ (1.66) 11.60
∆ Overnight Rate -0.93429∗ (-1.84) 2.14
∆ Long-Term Rate -0.52517∗ (-1.70) 9.62

Continued on next page
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Table 11 – continued from previous page

4 Quarters ahead (h = 4)

(1) (2) (3)
Coefficient (t−stat) R2 (in %)

∆ GDP -0.01644 (-1.63) 4.24
∆ Output Gap -0.01549∗ (-1.93) 10.08
∆ Consumption -0.00917∗ (-1.76) 13.91
∆ Capital Formation -0.04974∗ (-1.77) 6.62
∆ Ind Production -0.03751 (-1.29) 4.59
∆ Manufacturing -0.04319 (-1.24) 5.02
∆ Construction -0.03262 (-1.42) 6.09
∆ Unemployment 0.10713∗ (1.84) 10.35
∆ Overnight Rate -0.96566∗ (-1.80) 2.72
∆ Long-Term Rate -0.36099 (-1.03) 7.31

Notes: Quarterly within panel regressions Yt,t+h,J = cJ + θ
“Mt,J−“Mt−1,J

“Mt−1,J

+
∑4

k=1 δkYt−k,t−k+1,J +

εt,t+h,J , where Yt,t+h,J is the change or growth of a macroeconomic quantity in country J over

h quarters from t to t + h, cJ is a country-specific constant,
“Mt,J−“Mt−1,J

“Mt−1,J

is the growth rate of

the SDF in country J over quarter t − 1 to t estimated according to (9), Yt−k,t−k+1,J are past

realizations of the macroeconomic quantity which captures the persistence in YJ , εt,t+h,J is the re-

gression error. Column 1 reports the slope coefficient estimate θ, 2 the t−statistics of θ, and 3 the

regression R2 in percentage points. Significance of the slope coefficients at the 1%, 5% and 10%

level are indicated by ∗∗∗, ∗∗ and ∗. Errors are clustered within time and adjusted for overlapping

observations according to Hodrick (1992).

Table 12: Macroeconomic Panel Regressions: PCs

1 Quarter ahead (h = 1)

(1) (2) (3) (4) (5)
Πt−1,t,1 (t−stat) Πt−1,t,2 (t−stat) R2 (in %)

∆ GDP -0.00187 (-1.49) 0.00210 (1.01) 4.79
∆ Output Gap -0.00183∗ (-1.71) 0.00189 (1.09) 4.85
∆ Consumption -0.00131 (-1.41) 0.00141 (1.21) 11.94
∆ Capital Formation -0.00527 (-1.31) 0.00390 (0.76) 3.64
∆ Ind Production -0.00541∗ (-1.75) 0.00511 (0.83) 8.63
∆ Manufacturing -0.00648∗ (-1.66) 0.00560 (0.77) 7.64
∆ Construction -0.00467 (-1.46) 0.00374 (0.93) 3.59
∆ Unemployment 0.00876 (1.16) -0.00769 (-0.76) 11.74
∆ Overnight Rate -0.02542 (-0.21) 0.18245 (1.52) 2.79
∆ Long-Term Rate -0.11646∗ (-1.67) 0.12785∗∗ (2.02) 10.72

2 Quarters ahead (h = 2)

Continued on next page
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Table 12 – continued from previous page

(1) (2) (3) (4) (5)
Πt−1,t,1 (t−stat) Πt−1,t,2 (t−stat) R2 (in %)

∆ GDP -0.00390∗∗ (-2.26) 0.00343 (1.10) 6.25
∆ Output Gap -0.00380∗∗∗ (-3.03) 0.00341 (1.32) 8.24
∆ Consumption -0.00259∗∗ (-2.32) 0.00160 (1.07) 12.97
∆ Capital Formation -0.01425∗∗∗ (-2.67) 0.00622 (0.76) 7.49
∆ Ind Production -0.01039∗∗ (-2.44) 0.00988 (1.04) 7.77
∆ Manufacturing -0.01264∗∗ (-2.34) 0.01173 (1.05) 8.79
∆ Construction -0.00829∗ (-1.88) 0.00389 (0.56) 6.17
∆ Unemployment 0.01959∗ (1.86) -0.01781 (-1.09) 14.48
∆ Overnight Rate -0.19167 (-1.53) 0.23971 (1.62) 2.63
∆ Long-Term Rate -0.14375∗ (-1.85) 0.20071∗∗ (2.29) 11.23

3 Quarters ahead (h = 3)

(1) (2) (3) (4) (5)
Πt−1,t,1 (t−stat) Πt−1,t,2 (t−stat) R2 (in %)

∆ GDP -0.00618∗∗∗ (-3.25) 0.00295 (1.03) 6.18
∆ Output Gap -0.00501∗∗∗ (-3.62) 0.00294 (1.24) 10.14
∆ Consumption -0.00462∗∗∗ (-3.35) 0.00125 (0.85) 15.10
∆ Capital Formation -0.02097∗∗∗ (-3.59) 0.00663 (0.82) 9.21
∆ Ind Production -0.01409∗∗∗ (-3.08) 0.00775 (0.91) 6.70
∆ Manufacturing -0.01713∗∗∗ (-3.04) 0.00978 (0.98) 7.68
∆ Construction -0.01208∗∗ (-2.48) 0.00413 (0.59) 7.48
∆ Unemployment 0.03398∗∗∗ (3.10) -0.01676 (-0.99) 12.83
∆ Overnight Rate -0.23713 (-1.52) 0.21221 (1.43) 2.77
∆ Long-Term Rate -0.13554 (-1.45) 0.16768 (1.37) 9.89

4 Quarters ahead (h = 4)

(1) (2) (3) (4) (5)
Πt−1,t,1 (t−stat) Πt−1,t,2 (t−stat) R2 (in %)

∆ GDP -0.00771∗∗∗ (-3.12) 0.00272 (0.86) 5.77
∆ Output Gap -0.00640∗∗∗ (-3.63) 0.00282 (1.07) 11.60
∆ Consumption -0.00478∗∗∗ (-2.83) 0.00115 (0.70) 14.84
∆ Capital Formation -0.02216∗∗∗ (-2.96) 0.00684 (0.83) 8.34
∆ Ind Production -0.01691∗∗∗ (-2.85) 0.00609 (0.66) 5.90
∆ Manufacturing -0.01996∗∗∗ (-2.67) 0.00695 (0.65) 6.62
∆ Construction -0.01451∗∗ (-2.31) 0.00417 (0.57) 7.51
∆ Unemployment 0.05070∗∗∗ (3.47) -0.01487 (-0.87) 12.14
∆ Overnight Rate -0.39396∗ (-1.92) 0.14097 (0.91) 3.73
∆ Long-Term Rate -0.18872∗∗ (-2.01) 0.08231 (0.63) 7.95

Continued on next page
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Table 12 – continued from previous page

Notes: Quarterly within panel regressions Yt,t+h,J = cJ +
∑2

K=1 θKΠt−1,t,K + ϑ
EXt,J/US−EXt−1,J/US

EXt−1,J/US
+

∑4
k=1 δkYt−k,t−k+1,J + εt,t+h,J , where Yt,t+h,J is the change or growth of a macroeconomic quantity in coun-

try J over h quarters from t to t + h, cJ is a country-specific constant, Πt−1,t,K is the change in PC K over

quarter t − 1 to t,
EXt,J/US−EXt−1,J/US

EXt−1,J/US
is the exchange rate growth over quarter t − 1 to t, Yt−k,t−k+1,J are

past realizations of the macroeconomic quantity which captures the persistence in YJ , εt,t+h,J is the regres-

sion error. Columns 1 and 3 report the slope coefficient estimates θ1 and θ2, 2 and 4 the t−statistics of θ1 and

θ2, and 5 the regression R2 in percentage points. Significance of the slope coefficients at the 1%, 5% and 10%

level are indicated by ∗∗∗, ∗∗ and ∗. Errors are clustered within time and adjusted for overlapping observations

according to Hodrick (1992).

5 Conclusion

We use PCA on 55 bilateral exchange rates of 11 developed currencies to identify two major risk

sources in FX markets. Including all bilateral exchange rates is important because it focuses the

PCA on global risks. In contrast, if only exchange rates quoted against some base currency (e.g.,

the USD) are used, then the PCA is biased towards risks specific to the base currency, even though

such risks may not necessarily be important from a global or other countries’ perspectives. We

find that our identified risk sources (i.e., first two PCs of all bilateral exchange rate growths) have

some overlap with the Carry and Dollar factors but the relation to the Dollar is weaker. We

use a cross-sectional regression of FX returns to estimate market prices of our risk sources and

construct FX market implied country-specific SDFs. We show that currencies with lower interest

rates have more volatile SDFs, and the carry trade of borrowing currencies with more volatile

SDFs and lending currencies with less volatile SDFs is profitable. Furthermore, we decompose

our SDFs into permanent and transitory components and show that the theoretical bounds of

Alvarez and Jermann (2005) are generally satisfied. We further document that model implied

long term bond yields line up well with yields observed in the data. In addition, the theoretical

relationship derived by Lustig et al. (2017) between long term bond excess returns and entropies

of permanent SDF components across countries holds in our estimated model. Moreover, we show

that our FX market implied SDFs are able to price international stock returns and are related to

important financial stress indicators and macroeconomic fundamentals. Finally, we find that the

second PC is more important to price risks in both FX and stock markets than the first PC but the

first PC is stronger associated with a broad set of macroeconomic fundamentals than the second

PC. Moreover, the first PC is associated with the TED spread and quantities that capture current

volatility, tail risk and contagion risk as well as future economic growth. In contrast, the second PC
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is associated with the default and term spreads and variables measuring volatility and illiquidity.

The second PC is mostly unrelated to future economic growth but has a significant association

with short term changes in the long term interest rate.
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Pricing Risks across Currency Denominations

Online Appendices

Thomas A. Maurer Thuy-Duong Tô Ngoc-Khanh Tran

A Stationarity

In our model we assume (A4) sufficient stationarity in the exchange rate processes. In particular,

the assumption is that the composition of the PCs and the market prices of risks are constant

through time. We validate this assumption using bootstrapping. We resample (with replacements)

our monthly exchange rate growth data and construct the first two PCs and estimate the market

price of risks. We repeat this 10,000 times and construct the distributions of the loadings of the

first two PCs Πt,1 and Πt,2 on our 11 currencies and the FX market implied market prices γ̂J1 and

γ̂J2 associated with the two PCs.

We first analyze the stationarity of the decomposition of the first two PCs. Figure 8 reports

the averages and the intervals spanned by the 5 and 95 percentiles of the loadings of the first two

PCs Πt,1 and Πt,2 on our 10 exchange rates J/USD and (denoted by US) 1 minus the sum of

the loadings on the 10 exchange rates. The 90% confidence interval is small indicating that the

composition of the first two PCs does not vary much across the bootstrap samples.

Next, we analyze the distribution of the market prices of risks of the first two PCs. Figure 9

reports the averages and the intervals spanned by the 5 and 95 percentiles of γ̂J1 and γ̂J2 . Although

the confidence intervals are wider than in the case of the PC decompositions, the variation of

estimated market prices across bootstrap samples is relatively small. The standard deviations

across bootstrap samples are more than one order of magnitude smaller than the averages of γ̂J1

and γ̂J2 . This indicates that the estimated market prices are relatively stable across bootstrap

samples. Moreover, Figure 10 further characterizes the distribution of γ̂US
1 and γ̂US

2 from a US

perspective in more detail. Figure 10 confirms that the estimates across bootstrap samples are very

much concentrated around the mean.

To sum up, the decomposition of our two PCs and the estimated market prices do not vary much

across the bootstrap samples. We interpret this in favor of our assumption (A4) which requires
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Decomposition of the First Two Principal Components
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Figure 8: Averages (indicated by x) and intervals spanned by the 5 and 95 percentiles of the loadings of
the first PC Πt,1 (left) and second PC Πt,2 (right) on the 10 exchange rates J/USD and (denoted by US)
1 minus the sum of the loadings on the 10 exchange rates. Averages and percentiles are constructed from
10,000 bootstrap samples.

sufficient stationarity to estimate our proposed model.
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Market Prices of the First Two Principal Components
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Figure 9: Averages (indicated by x) and intervals spanned by the 5 and 95 percentiles of the market prices
γ̂J1 (left) and γ̂J2 (right) for 11 developed countries J . Averages and percentiles are constructed from 10,000
bootstrap samples.
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Figure 10: Distribution of US market prices γ̂US
1 (left) and γ̂US

2 (right) constructed from 10,000 bootstrap
samples.
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B Eigenvalue and Growth Ratios

Table B.1 provides values of the Eigenvalue Ratio ER(k) and the Growth Ratio GR(k) for k ∈
{1, . . . , kmax} (with kmax = 6) in our PCA on 55 bilateral exchange rate growths. ER(k) and

GR(k) both reach the maximum at k = 2.

Table B.1: Eigenvalue and Growth Ratios

k ER(k) = λk
λk+1

GR(k) = ln(1+λk/V (k))
ln(1+λk+1/V (k+1))

1 1.587 1.050

2 1.713 1.151

3 1.430 1.040

4 1.189 0.896

5 1.205 0.871

6 1.588 1.040

Notes: The Table provides the value of the Eigenvalue Ratio ER(k) = λk

λk+1

and the Growth Ratio GR(k) = ln(1+λk/V (k))
ln(1+λk+1/V (k+1)) for the first kmax = 6 PCs of

the P = 55 bilateral exchange rate growths of 11 developed currencies, where

V (j) =
∑P

i=j+1 λi and λj is the eigenvalue associated with the jth PCs.

C Time-Series of SDFs

Table C.2 provides augmented Dickey-Fuller test statistics for the time series ln
Ä
M̂t,J

ä
, ln

Å “Mt+dt,J

“Mt,J

ã

and the errors et,J from the Engle and Granger (1987) regression ln
Ä
M̂t,J

ä
= a + b ln

Ä
M̂t,US

ä
+

et,J .
31 All tests include a constant and linear time trend.

31The table reports critical values for a Dickey-Fuller test including a constant and a linear trend. The critical values
are very similar to the values from surface response functions provided by MacKinnon (1996) and our conclusions are
unaffected, whether we use the standard Dicky-Fuller or the critical values of MacKinnon (1996). The critical values
provided by MacKinnon (1996) are -3.9638, -3.4126 and -3.1279 for significance on the 1%, 5% and 10% levels.
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Table C.2: Dickey-Fuller Tests

Country ln
Ä
M̂t,J

ä
(p-value) ln

Å “Mt+dt,J

“Mt,J

ã
(p-value) et,J (p-value)

Australia -2.024 (0.581) -86.406∗∗∗ (0.000) -4.200∗∗∗ (0.005)

Canada -2.171 (0.508) -86.476∗∗∗ (0.000) -2.618 (0.287)

Denmark -2.543 (0.324) -86.551∗∗∗ (0.000) -2.297 (0.446)

Euro -2.474 (0.358) -86.552∗∗∗ (0.000) -4.499∗∗∗ (0.002)

Japan -2.104 (0.542) -86.537∗∗∗ (0.000) -2.704 (0.244)

New Zealand -2.052 (0.567) -86.398∗∗∗ (0.000) -5.859∗∗∗ (0.001)

Norway -2.427 (0.381) -86.553∗∗∗ (0.000) -1.914 (0.636)

Sweden -2.521 (0.335) -86.554∗∗∗ (0.000) -1.900 (0.642)

Switzerland -2.443 (0.373) -86.547∗∗∗ (0.000) -4.840∗∗∗ (0.001)

UK -2.364 (0.412) -86.553∗∗∗ (0.000) -1.687 (0.748)

USA -2.142 (0.523) -86.494∗∗∗ (0.000)

Notes: provides augmented Dickey-Fuller test statistics for the time series ln
Ä
M̂t,J

ä
,

ln

Å
“Mt+dt,J

“Mt,J

ã
and the errors et,J from the Engle and Granger (1987) regression ln

Ä
M̂t,J

ä
=

a+ b ln
Ä
M̂t,US

ä
+ et,J . All tests include a constant and linear time trend. Significance of the

slope coefficients at the 1%, 5% and 10% level are indicated by ∗∗∗, ∗∗ and ∗.

D Non-Parametric Decomposition of the SDF

In this seciton we describe the non-parametric approach of Christensen (2017) to decompose a

SDF into a permanent and transitory component. We keep the our description brief and refer to

Christensen (2017) and his references for details.

Alvarez and Jermann (2005) introduce a decomposition of SDFMt into a permanent component

MP
t and a transitory component MT

t such that Mt =MP
t M

T
t or in terms of growths,

Mt+τ

Mt
=
MP

t+τ

MP
t

MT
t+τ

MT
t

.
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Let the n-dimensional state variable X be a time-homogeneous, strictly stationary, and ergodic

Markov process. M is a one-period pricing operator such that the price at time t of an asset with

payoff ψ(Xt+1) at time t+ 1 is

Mψ(x) = E

ñ
Mt+1(Xt+1)

Mt(Xt)
ψ(Xt+1)

∣∣∣∣∣Xt = x

ô
.

Hansen and Scheinkman (2009) provide conditions such that solving the Perron-Frobenius eigen-

function problem Mφ(x) = ρφ(x), (where the eigenvalue ρ is a positive scalar and the eigenfunction

φ is positive) yields the decomposition

MP
t+τ

MP
t

= ρ−τMt+τ

Mt

φ(Xt+τ )

φ(Xt)
,

MT
t+τ

MT
t

= ρτ
φ(Xt)

φ(Xt+τ )
.

The permanent component MP
t = Et

î
MP

t+τ

ó
is a martingale and − ln(ρ) may be interpreted as the

yield on a long term bond (with infinite maturity).

Christensen (2017) proposes a sieve approach to reduce the infinite-dimensional eigenfunction

problem to a low-dimensional eigenvector problem. In particular, he defines the basis functions

bk1, . . . , bkk to approximate the state space spanned by X. The projection of the eigenfunction

problem onto the linear subspace spanned by bk1, . . . , bkk is

G−1
k Mkck = ρkck

Gk = E[bk(Xt)b
k(X ′

t)]

Mk = E[bk(Xt)
Mt+1(Xt+1)

Mt(Xt)
bk(Xt+1)

′],

where ρk is the largest real eigenvalue and ck the associated eigenvector of matrix G−1
k Mk. ρk and

φk(X) = bk(X)′ck with vector bk(x) = (bk1(x), bk2(x), . . . , bkk(x))
′ are the approximate solution of

the eigenvalue ρ and eigenfunction φ solving the Perron-Frobenius problem.

In our application we use the first two PCs Πt,1 and Πt,2 as the 2-dimensional state variable

X. We choose Hermite polynomials of degree five as basis functions for each PC, then construct

a tensor product basis from the univariate bases and discard tensor product polynomials whose

total degree is order six or higher. The resulting sparse basis bk1, . . . , bkk has dimension k = 15.
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Following Christensen (2017), the sample estimators of matrices Gk and Mk are

“G =
1

T

T−1∑

t=0

bk(Xt)b
k(Xt)

′,

M̂ =
1

T

T−1∑

t=0

bk(Xt)
M̂t+1

M̂t

bk(Xt+1)
′.

E Data Sources

Table E.3: Spot and Forward Exchange Rate Datastream Tickers

Country Abbr. Source Spot Rate Forward Rate

Australia AU Barclays BBAUDSP(ER) BBAUD1F(ER)
Canada CA Barclays BBCADSP(ER) BBCAD1F(ER)
Denmark DK Barclays BBDKKSP(ER) BBDKK1F(ER)
Eurozone EU WMR EUDOLLR(ER) EUDOL1F(ER)
Germany DE WMR DMARKE$(ER) USDEM1F(ER)
Japan JP Barclays BBJPYSP(ER) BBJPY1F(ER)
New Zealand NZ Barclays BBNZDSP(ER) BBNZD1F(ER)
Norway NO Barclays BBNOKSP(ER) BBNOK1F(ER)
Sweden SE Barclays BBSEKSP(ER) BBSEK1F(ER)
Switzerland CH Barclays BBCHFSP(ER) BBCHF1F(ER)
United Kingdom UK WMR UKDOLLR(ER) UKUSD1F(ER)

Table E.4: MSCI Total Stock Market Return Index Datastream Tickers

Country Total Return Country Total Return

Australia MSAUSTL(MSRI) New Zealand MSNZEAL(MSRI)
Canada MSCNDAL(MSRI) Norway MSNWAYL(MSRI)
Denmark MSDNMKL(MSRI) Sweden MSSWDNL(MSRI)
Eurozone MSEMUIE(MSRI) Switzerland MSSWITL(MSRI)
Germany MSGERML(MSRI) United Kingdom MSUTDKL(MSRI)
Japan MSJPANL(MSRI) United States MSUSAML(MSRI)

7



Table E.5: Global Financial Data Total Return Index Tickers

Country Total Return Yield Country Total Return Yield

Australia TRAUSGVM IGAUS10D New Zealand TRNZLGVD IGNZL10D
Canada TRCANGVM IGCAN10D Norway TRNORGVM IGNOR10D
Denmark TRDNKGVM IGDNK10D Sweden RXTBD IGSWE10D
Eurozone TREURGVM IGEUR10D Switzerland SDGTD IGCHE10D
Germany TRDEUGVM IGDEU10D United Kingdom TRGBRGVM IGGBR10D
Japan IGJPN10D TRJPNGVM United States TRUSG10M IGUSA10D

F Technical Details and Proofs

F.1 Diffusion Risk Model of FX Markets

Exchange rates: Consider a random and traded payoff Yt+dt to be realized at t+dt (Yt+dt ∈ Ft+dt)

in units of currency I. Let the exchange rate EXt,J/I be the number of units of currency J which

buys one unit of currency I at time t. Then time-t value Yt of payoff Yt+dt can either be computed

directly in currency I (using I’s SDF MI), or in currency J (using J ’s SDF MJ) and exchanged

back to currency I. That is,

Et

ñ
Mt+dt,I

Mt,I
Yt+dt

ô
= Yt =

1

EXt,J/I
Et

ñ
Mt+dt,J

Mt,J

Ä
EXt+dt,J/IYt+dt

äô
.

Assuming complete financial markets so that SDFs M are unique, and the above pricing equa-

tions hold for a complete set of traded (Arrow-Debreu) assets Y . As a result, the exchange rate

unambiguously is the ratio of the two SDFs, EXt,J/I =
Mt,I

Mt,J
, ∀t, which is (2).

Realized carry trade excess returns: Consider the following net-zero strategy denominated

in currency I: (i) at time t, borrow
Mt,I

Mt,B
units of currency B (worth one unit of currency I)

paying interest rate rB, and simultaneously lend
Mt,I

Mt,L
units of currency L (also worth one unit of

currency I) earning interest rate rL, (ii) at time t+ dt, close all positions and convert the proceeds

to denomination currency I. The realized excess return of the strategy is, after using differential

representation (1) and applying Ito’s lemma,

CT I
t+dt,−B/+L =

Mt,I

Mt,L
(1 + rLdt)

Mt+dt,L

Mt+dt,I
− Mt,I

Mt,B
(1 + rBdt)

Mt+dt,B

Mt+dt,I

8



=
Mt,I

Mt+dt,I
×
ñ
Mt+dt,L

Mt,L
(1 + rLdt)−

Mt+dt,B

Mt,B
(1 + rBdt)

ô

=
1

1− rIdt− ηTI dZt
×
î
(1− rLdt− ηTLdZt)(1 + rLdt)− (1− rBdt− ηTBdZt)(1 + rBdt)

ó

=
î
1 + (rI + ||ηI ||2)dt+ ηTI dZt

ó
×
î
ηTBdZt − ηTLdZt

ó
= ηTI (ηB − ηL) dt+

Ä
ηTB − ηTL

ä
dZt,

which yields (3).

F.2 Details on PCA and the FX-Based SDF Estimates

We begin with the mean-zero innovations Xt,J/I ≡
Ä
ηTJ − ηTI

ä
dZt of exchange rate growths, (2),

Xt,J/I =
n∑

i

dZt,i(ηJ,i − ηI,i) =
n∑

i

dZt,iηJ/I,i; t ∈ [0, s]; ∀J/I ∈ P, (25)

where: ηJ/I ≡ (ηJ − ηI) ∈ Rn; ∀J/I ∈ P.

Above, dZt,i is a normally distributed random variable with mean zero and variance dt, index

i ∈ {1, . . . , n} denotes n such independent risks in the setting, and P denotes the set of P ≡ dimP
bilateral exchange rates (i.e., currency pair {J/I}) in the data (see (26) below). For each J/I ∈ P,

let s× 1 column vector XJ/I denote the demeaned exchange rate growth time series (25), where s

is the number of observations in each time series. We arrange these P time series into P columns

of s×P matrix X = [X1; . . . ;XP ] (26). Hence,
1
dt is the number of observations for each exchange

rate time series per year, and s× dt is the length of each time series in years. Similarly, for country

each currency pair J/I ∈ P, let n × 1 column vector ∆ηJ/I denote the differential prices of prices

of n risks across the two respective currencies (3), ∆ηk,J/I ≡ ηk,J − ηk,I , k ∈ {1, . . . , n}. Finally,

for each t ∈ {1, . . . , s}, let 1× n row vector dZt ≡ [dZt,1, . . . , dZt,n] denote the n contemporaneous

9



innovations. Therefore, we have explicitly,

X ≡




X1,1 X1,J/I X1,P

...
...

...

Xt,1 . . . Xt,J/I . . . Xt,P

...
...

...

Xs,1 Xs,J/I Xs,P




=




dZ1,1 dZ1,k dZ1,n

...
...

...

dZt,1 . . . dZt,k . . . dZt,n

...
...

...

dZs,1 dZs,k dZs,n




×




∆η1,1 ∆η1,J/I ∆η1,P
...

...
...

∆ηk,1 . . . ∆ηk,J/I . . . ∆ηk,P
...

...
...

∆ηn,1 ∆ηn,J/I ∆ηn,P




≡ dZ ×∆η. (26)

Since the sum of each column of X is zero (the law of large numbers), the symmetric matrix XTX

is proportional to the empirical (i.e., sample) covariance matrix of the exchange rate fluctuations.

In the PCA, we solve for the eigenvalues and eigenstates of this P × P empirical covariance

matrix XTX to identify and sort out the most important risks in FX markets. Because XTX is

symmetric, it can be diagonalized by an P × P orthogonal matrix W (that is W TW = WW T =

1P×P ): W
T
î
XTX

ó
W = Diag[λ1; . . . ;λP ]. Note that because dZTdZ = s × dt × 1n×n, then by

virtue of (26), the same orthogonal matrix W also diagonalizes ∆ηT∆η (that is, W T∆ηT∆ηW =

s × dt× Diag[λ1; . . . ;λP ]). We can also define n× P score matrix Π ≡ XW , which then satisfies,

ΠTΠ = Diag[λ1; . . . ;λP ], or columns of matrix Π are pairwise orthogonal.

In PCA literature, elements and columns of orthogonal matrix W are respectively referred to as

loadings and loading vectors, and columns of Π are P principal components when (without loss of

generality) eigenvalues are arrange in descending order of magnitudes λ1 ≥ . . . ≥ λP (which we also

do here). For the notational convenience in our asset pricing tests, however, we work with rescaled

P × P loading matrix W ≡ WDiag
î√
λ1; . . . ;

√
λP
ó
(so that W

T
W = Diag[λ1; . . . ;λP ]), rescaled

n × P score matrix Π ≡ ΠDiag
[

1√
λ1
; . . . ; 1√

λP

]
(so that Π

T
Π = 1P×P ), and rescaled differential

price of risk matrix ∆η ≡ ∆ηWDiag
[

1√
λ1
; . . . ; 1√

λP

]
(so that ∆ηT∆η = 1P×P ), which explain

the definitions in (4). In the paper, we refer to K-th column of matrix Π as the K-th (rescaled)

principal component.

Employing matrix (stacking) notation, the linear system determining principal factor prices γ’s
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(7) can be written as,




ECT I
1

...

ECT I
−B/+L
...

ECT I
P




=




W 1,1 . . . W 1,C/D . . . W 1,P

... . . .
... . . .

...

WB/L,1 . . . WB/L,C/D . . . WB/L,P

... . . .
... . . .

...

WP,1 . . . WP,C/D . . . WP,P







γI1
...

γIC/D
...

γIP




(27)

From this follow the OLS estimates (8).

Similar to (27), we can also stack the (time series) regression equations in the Fama-MacBeth

first stage into, 


CT I
1,1 . . . CT I

1,−B/+L . . . CT I
1,P

... . . .
... . . .

...

CT I
t,1 . . . CT I

t,−B/+L . . . CT I
t,P

... . . .
... . . .

...

CT I
s,1 . . . CT I

s,−B/+L . . . CT I
s,P




=




Π1,1 . . . Π1,K . . . Π1,P

... . . .
... . . .

...

Πt,1 . . . Πt,K . . . Πt,P

... . . .
... . . .

...

Πs,1 . . . Πs,K . . . Πs,P




︸ ︷︷ ︸
≡Π

×




bI1,1 . . . bI1,B/L . . . bI1,P
... . . .

... . . .
...

bIK,1 . . . bIK,B/L . . . bIK,P

... . . .
... . . .

...

bIP,1 . . . bIP,B/L . . . bIP,P




︸ ︷︷ ︸
≡bI

(28)

Clearly, B/L-th column of matrix bI denotes the P loadings of the carry trade strategy CT I
t,−B/+L

(borrowing B, lending L, denominated in I) on P respective principal factors (i.e., P columns of the

score matrix Π). Therefore, if γIK , K ∈ P denote the factor prices of the respective principal factors

(nominated in currency I), and b̂I ’s denote the estimates of factor loadings bI ’s, the expected carry

trade return reads,

ECT I
−B/+L =

∑

K∈P
b̂IB/L,Kγ

I
K .
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We can stack these strategies for all currency pairs in the set P and obtain in the matrix form,




ECT I
1

...

ECT I
−B/+L
...

ECT I
P




=




b̂I1,1 . . . b̂I1,K . . . b̂IP,1
... . . .

... . . .
...

b̂IB/L,1 . . . b̂IB/L,K . . . b̂IB/L,K
... . . .

... . . .
...

b̂I1,P . . . b̂IK,P . . . b̂IP,P




︸ ︷︷ ︸
b̂I,T

×




γI1
...

γIK
...

γIP




︸ ︷︷ ︸
γI

=
Ä
b̂I
äT
γI . (29)

This is the basis for the cross-sectional regressions in the Fama-MacBeth second stage on expected

carry trade returns ECT on factor loading estimates b̂I ’s. From this follow the OLS principal

factor price estimates, γ̂I = (b̂I b̂I,T )−1 b̂I ECT I , which is identical to our PCA-based estimates

(W
T
W )−1W

T
ECT I (8) (because of the identity (10) b̂I =W

T
).
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