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Abstract 14 
High-speed railways are expanding rapidly over the world, providing fast, convenient, and comfortable transport. 15 
It is therefore important to ensure that people are not excluded from high-speed railway use due to relatively high 16 
ticket prices. We aim to develop a railway timetable according to passenger requirements that explicitly considers 17 
social equity by applying variable ticket prices to trains. Specifically, we want to optimize ticket prices for trains 18 
operating during off-peak hours to improve accessibility for low-income passengers to improve social justice. A 19 
mixed integer linear programming model is formulated to solve our problem. In this timetabling-based model, we 20 
not only minimize the total general travel cost from a passenger perspective but also ensure that the revenue of 21 
the train company is no less than a specified value and that social equity is maintained at a specific level. To do 22 
this, we consider the social equity constraint and the minimum revenue requirement constraint, in addition to the 23 
traditional passenger-centric (-oriented) train timetabling-related constraints. Finally, we test our model on both a 24 
hypothetical high-speed railway network and the Guangzhou–Nanning and Guangzhou–Guilin high-speed 25 
railway network in China. The results demonstrate that the proposed optimization framework can provide a 26 
convenient timetable for passengers, adequate revenue for train companies and enhance social equity to meet 27 
government targets. 28 
 29 
Keywords: High-speed railway, train timetabling, ticket pricing, social equity  30 
 31 
1. Introduction 32 

High-speed railway (HSR) networks have expanded rapidly throughout the world over the past ten years, 33 
especially in China. According to the “Mid- to Long-term Railway Network Plan (Version 2016)” , the total length 34 
of China’s HSR will reach 30,000 km by 2020, and most cities with a population greater than 0.5 million will be 35 
served by a HSR. HSRs are very attractive due to their high speed, high frequency, travel-time reliability, and 36 
relatively low fare (compared with flights). They significantly improve the social economy, standard of living, 37 
and several other aspects of society, including tourism (Pagliara et al., 2015; Yin et al., 2019) and labour migration 38 
(Guirao et al., 2017, 2018). Although building a new HSR is expensive and unlikely to be economically profitable 39 
when put into operation, the social profitability is significant (Albalate and Bel, 2012). HSRs may shape the social 40 
economic landscape (Martin, 1997; Laurino et al., 2015) and reduce the regional development gaps within a 41 
country (Hu et al., 2015). Therefore, it is important to build high-speed railways, especially in large, highly 42 
populated countries, e.g., China. To date (Figure 1), China’s relatively large HSR network is more than 28,000 43 
km long, which is greater than the total length of all HSR lines in all other countries in the world. The mainland 44 
portion of this network is shown in Figure 1. 45 

mailto:hhecwsc@hku.hk
mailto:bcsmli@cityu.edu.hk


2 

 

Harbin

Shenyang

DalianBeijing

Tianjin

Jinan Qingdao

Xuzhou
Bengbu Nanjing

Hefei

Shijiazhuang

Wuhan

Zhengzhou

Xi an

Lanzhou

Chongqing

Chengdu

Changsha

Guangzhou

Shenzhen

Kunming

Guiyang

NingboHangzhou
Nanchang

Fuzhou

Xiamen

Xining

Urumqi 

Nanning

Shanghai

Taiyuan

Red line—highest speed: 300-350km/h
Green line—highest speed: 200-250km/h

Guangyuan

0 500 1,000 1,500 2,000 km

 1 
Figure 1 The HSR network of mainland China.  2 

 3 
Although a large HSR network can improve social economic levels and peoples’ standard of living, it may 4 

also bring some problems, such as social inequity. The term “transportation equity” refers to the fair or just 5 
distribution of transportation costs and benefits among current (and future) members of society (Litman, 2002). 6 
As HSRs in China (as in some other countries) are fully or partly financed by central and local government, they 7 
are a public transport mode that should be focused on social equity at both the planning (Camporeale et al., 2019; 8 
Behbahani et al., 2019) and the operating stages. However, social equity is ignored by decision makers in practice 9 
(Manaugh et al., 2015; Bills et al., 2017). From the Chinese HSR network shown in Figure 1, we can see that most 10 
HSR lines are located in the eastern and middle parts of China, whereas HSR lines in the west are rare. This spatial 11 
inequity is likely to further increase the economic gap between the rich regions (i.e., eastern and southern coastal 12 
areas) and the poor regions (i.e., western areas) of China, although the connectivity–accessibility of Chinese HSRs 13 
will become spatially balanced by 2030 (Xu et al., 2018). The labor market is highly affected by the HSR, as 14 
residents served by the HSR have better access to the labor center than those are not served, which causes equity 15 
issues for these residents (Guirao et al., 2017, 2018). Some may argue that this spatial inequity is due to passenger 16 
demand for faster and more comfortable service being higher in richer and more populous regions. However, this 17 
should not be an excuse for policymakers to exclude residents in western regions from optimal social justice. 18 

In addition to spatial inequity in the accessibility to HSRs, we also need to consider vertical equity, that is, 19 
the distribution of transportation effects among sub-populations that differ in ability and need, such as different 20 
social and economic classes, age groups, and disabled or special needs groups (Bills et al., 2017). Based on a case 21 
study of a HSR in Spain, Pagliara et al. (2016) pointed out that many factors that cause the social exclusion of a 22 
HSR, of which economic exclusion has a significant impact in limiting users. The high cost of tickets for HSRs 23 
is the main obstacle to use for low-income peoples. The per capita expenditure of urban and rural residents in 24 
transport and communication in China from 2013 to 2017 is shown in Table 1 (China Statistical Yearbook 2018). 25 
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We can see that the average available money for transport for Chinese people is still low, especially for rural 1 
residents. If we divide the money in Table 1 into two equal parts, one for transport and the other for communication, 2 
the average expenditure of a rural resident in 2017 (754.6 yuan) is insufficient to fund a two-way trip between 3 
Beijing and Shanghai by HSR (1106 yuan for second-class seats). Therefore, railway planners and managers 4 
should pay more attention to people with low incomes to improve their access to HSRs from an equity perspective. 5 

Table 1.  Per capita expenditure of urban and rural residents in transport and communication in China. 6 

Year 2013 2014 2015 2016 2017 
Rural residents (yuan) 874.9 1012.6 1163.1 1359.9 1509.1 
Urban residents (yuan) 2317.8 2637.3 2895.4 3173.9 3321.5 

 7 
In this study, we aim to improve the equity of high-speed railways by creating a new HSR timetable based 8 

on the existing HSR infrastructure that is convenient for passengers, especially low-income passengers. The ticket 9 
price for a train using a segment is a dynamic variable, which can help reduce the cost of some trains for low-10 
income passengers. A mixed-integer linear programming model is developed for social equity-based passenger-11 
centric timetabling and ticket pricing. The three key objectives influencing train-timetabling are that: passengers 12 
want to minimize their travel cost, train companies want to improve their revenue, and the government needs to 13 
maintain social equity. These three objectives are not usually consistent, and thus trade-offs are needed to optimize 14 
the timetabling outcome. In our model, we minimize the total general passenger travel cost, including the in-15 
vehicle time cost, waiting-time cost, transfer cost, deviation-time cost, and travel-fare cost from a passenger’s 16 
perspective. We ensure that the revenue of the train companies is larger than a required value, and that the equity 17 
between different passenger classes is no less than a required level that is expected by the government. These 18 
criteria are managed by adding certain constraints to the model, similar to the 𝜀𝜀-constraints used in many previous 19 
studies. We test our model on both a hypothetical HSR network and a real-world Chinese HSR network to 20 
determine how considering equity affects timetable construction and subsequent passenger-choice behavior. 21 

Our research makes three contributions to the study of railway timetabling. First, we introduce the equity as 22 
a consideration in the train-timetabling problem, which is a novel inclusion in railway-timetabling study. To do 23 
so, we develop a method to quantitatively evaluate the equity problem in timetabling. Second, we develop a 24 
mixed-integer linear programming model to solve the social equity-based HSR timetabling and ticket-pricing 25 
problem. Finally, we test our model on a real-world HSR network in China to investigate the influence of social 26 
equity on the timetable and on passenger-choice behavior. 27 

The remainder of this paper is organized as follows. Section 2 reviews the related literature. In Section 3, we 28 
briefly introduce the demand model, the equity evaluation in train timetabling, and the revenue analysis. Section 29 
4 describes our problem. Section 5 presents the computational results. Finally, we conclude this study and discuss 30 
some future research directions in Section 6.  31 

 32 
2. Literature review 33 
    Because the aim of this study was to introduce the equity issue in passenger-centric train timetabling with 34 
dynamic ticket pricing, our literature review focuses on social equity in transportation, passenger-centric train 35 
timetabling, and ticket pricing. Therefore, we discuss some equity issues in transportation problems in Section 2.1 36 
and review some research on the passenger-centric train-timetabling problem in Section 2.2. Finally, in Section 37 
2.3 we discuss how the pricing strategy is used in railway transportation. 38 
 39 
2.1. Social equity in transportation 40 
    Equity (also called justice and fairness) refers to the distribution of positive and negative impacts (i.e., 41 
benefits and costs) and whether that distribution can be considered fair and appropriate (Litman, 2002). Based on 42 
this definition, transportation equity refers to the fair or just distribution of transportation costs and benefits among 43 
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current and future members of society. Transportation-planning decisions can have significant and diverse equity 1 
impacts (Litman, 2002). Therefore, considering the equity issue in transportation planning is necessary and 2 
important. However, transportation planning is usually done to improve efficiency by minimizing the travel time 3 
or maximizing profit; the equity issue is usually ignored because transportation equity analysis is more challenging 4 
than efficiency analysis. There are different types of equity, each with numerous impacts and ways to be measured, 5 
and various ways in which people can be grouped for equity analysis (Litman, 2002). The two main aspects of 6 
equity considered in transportation planning are horizontal equity and vertical equity (Litman, 2002; Camporeale 7 
et al., 2019). Horizontal equity refers to the distribution of the effects of an action among individuals, groups or 8 
geographic areas considered equal in capability and requirements. Based on this definition, public policies should 9 
avoid favoring one person or group over others, but this definition fails to consider existing social inequalities. 10 
Vertical equity refers to the distribution of benefits among groups with different requirements, where a distribution 11 
is regarded as fair if it provides more resources to disadvantaged individuals or groups than they would otherwise 12 
receive (Krumholz and Forester, 1990). A particular policy may be equitable in terms of horizontal equity but 13 
inequitable in terms of vertical equity (Camporeale et al., 2019).  14 
     Incorporating equity principles in the development of transportation systems has attracted increasing 15 
attention from transportation planners and decision-makers, especially in the last few decades (Bertolaccini, 2013). 16 
Cost-benefit analyses (CBA) are usually used in ex ante evaluations of transport policy options, but these are not 17 
suitable for evaluating policies aimed at countering social-exclusion (van Wee and Geurs, 2011; Levinson, 2002). 18 
The Gini coefficient (Gini, 1912) was originally used to describe the inequality of income or wealth distribution 19 
among a nation’s residents, and has since been revised to evaluate other aspects of equity. Delbosc and Currie 20 
(2011) used a Gini coefficient-based method to measure how well transit supply meets transit demand in 21 
Melbourne, Australia. In similar examples, a Gini coefficient-based method was also used to evaluate travel-time 22 
reliability by Lee et al. (2017), to model horizontal and vertical equity in public transport design or distribution 23 
problems by Camporeale et al. (2019) and Tierra et al. (2017), and to analyze the equity of transit commuters’ 24 
accessibility by Ben-Elia and Benenson (2019).  25 
    In most of the above studies, the Gini coefficient was applied to evaluate the equity level of an existing 26 
transport system. However, it is more desirable to integrate the equity issue in the designing or planning stage by 27 
using Gini coefficient-based methods. Ruiz et al. (2017) used this method to improve bus-service levels and social 28 
equity by optimizing bus frequency. This method was also used in hazmat facility location and routing by Romero 29 
et al. (2016) and in transit network design by Meng and Yang (2002). When grouping people for vertical equity 30 
analysis, income level is a critical variable. Therefore, adapting transit fares to make them affordable to residents 31 
with varying incomes is a good way to improve equity. Zhou et al. (2019) investigated how transit fare influences 32 
equity, and they applied their method to analyze the transport system in Brisbane, Australia. Recently, Gallo (2018) 33 
tried to improve the equity of an urban transport system by applying a taxi fare-based strategy. Briefly, an urban 34 
transit system is not evenly distributed in a city, and therefore it is inequitable if all taxi fares are charged the same 35 
way. Therefore, lowering taxi fares for services on origin–destination (OD) pairs that are not connected at all or 36 
that are connected with a low-quality transit service can help rebalance accessibility between zones of a city.   37 
 When it comes to high-speed railways (HSRs), little attention has been paid to equity issues. HSRs are 38 
constructed first in densely populated areas with high economic development levels. Because the HSR is a 39 
relatively expensive transport model, it is mainly used for labor and tourism purposes. The labor market of cities 40 
along an HSR changes before and after HSR operation (Uren�a et al., 2009, Guirao et al., 2017, 2018). Accordingly, 41 
the migration and commuting of residents between small cities and metropolis may change. For example, more 42 
people might choose to live in small cities and work in the metropolis because of low housing fares and fast HSR 43 
transit (Haas and Osland, 2014). This labour market migration affects the issue of social equity. Residents in cities 44 
who are not served by HSRs may be disadvantaged because of less access to labour centers in the metropolis than 45 
those in cities served by HSRs. This kind of spatial equity of HSRs in South Korea and China was analyzed in 46 
Kim and Sultana (2015) and Xu et al. (2018), respectively. In addition, the influence of operating a new HSR line 47 
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in Europe, in terms of economic potential and daily accessibility, was investigated by Gutiérrez (2001), and the 1 
impact of HSRs on regional income inequality in China and Korea was analyzed by Jiang and Kim (2016). 2 
However, to the best of our knowledge, no research has been performed on equity issues in HSR designing and 3 
planning.    4 
  5 
2.2. Passenger-centric train timetabling 6 

A train timetable is the most important document for guiding daily train operations, as it specifies the detailed 7 
departure and arrival times of each train at each station. Numerical studies have investigated the train timetabling 8 
problem. We refer interested readers to Cacchiani and Toth (2012) for discussions of comprehensive nominal and 9 
robust train timetabling and to Parbo et al. (2016) for coverage of different aspects of operator- and passenger-10 
based models for timetabling. In this section, we focus on passenger-centric train timetabling, which is closely 11 
related to our research. As mentioned by Robenek et al. (2016), studies on non-periodic timetabling have focused 12 
more on the operational aspects of the problem than on finding the most suitable departure times for passengers. 13 

Compared to operation-oriented train timetabling, passenger-centric train timetabling lays more emphasis on 14 
passenger convenience, such as by minimizing the passenger waiting time or the total passenger travel-cost. In 15 
some studies, the waiting time for passengers was minimized based on the assumption that the paths for passengers 16 

are known in advance (Nachtigall, 1996; Peeters, 2003; Liebchen, 2008; Groβmann et al., 2012). However, in 17 
practice, passengers tend to choose their paths based on the supply. Nachtigall et al. (1998) dedicated a chapter to 18 
a periodic timetabling model with integrated passenger routing. Recently, some studies have been based on the 19 
assumption that passengers choose the shortest path when they plan their journey, and thus integrated train 20 
timetabling and passenger routing [see Schmidt and Schöbel (2015), Robenek et al. (2016), and Binder et al. 21 
(2017)]. Aside from Robenek et al. (2016) and Binder et al. (2017), all previous passenger-oriented train 22 
timetabling studies used a deterministic demand as an input. However, demand depends on supply, and a discrete-23 
choice model is usually applied to estimate the number of passengers for various timetables, whereby the model 24 
with the highest number of passengers using trains is selected (Cordone and Redaelli, 2011). Robenek et al. (2016) 25 
and Binder et al. (2017) assumed that passengers choose the path with the highest utility, and thus considered the 26 
in-vehicle time, waiting time, number of transfers, and arrival deviation in the utility function. Sato et al. (2013) 27 
maximized passenger satisfaction for train timetabling, and their elements in the satisfaction function were similar 28 
to those used in the utility function by Robenek et al. (2016). These elements were further extended to include 29 
congestion by Kanai et al. (2011). 30 

However, if we can ignore a passenger’s convenience or the service cost, a more balanced timetable should 31 
be obtainable the perspective of train companies and the government. In Robenek et al. (2016, 2018) and Binder 32 
et al. (2017), both the passenger travel cost from a passenger’s perspective and the operating cost from the train 33 
company’s perspective were minimized in a passenger-centric timetabling and rescheduling approach. Chow and 34 
Pavlides (2018) also analyzed several objectives in timetabling, including train running-time, passenger waiting-35 
time, punctuality of train service, and crowdedness of trains. To the best of our knowledge, however, social equity 36 
from the government’s perspective has not been considered in train timetabling.  37 

 38 
2.3. Revenue management and pricing 39 

Given a potential number of passengers and a train timetable, a train company wants to maximize its revenue 40 
while optimizing the ticket price to attract custom. An appropriate ticket-pricing strategy can not only attract more 41 
passengers to travel by train but also improve revenue. It also can help improve social equity, as mentioned 42 
previously. However, revenue management is ignored by railway companies, unlike by airlines. This is due to the 43 
greater flexibility inherent to traveling by train because it involves no check-in procedures and the fact that 44 
segments of the journey cannot be considered independent as many journeys are composed of multiple adjacent 45 
segments (Armstrong and Meissner, 2010). Recently, because of competition with other transport modes, e.g., 46 
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airlines and buses, railway companies have paid more attention to revenue management by reducing their 1 
operating cost and improving ticket income. Railway companies in some European countries tried to apply low-2 
cost-airline pricing strategies to European railways to improve their revenue (Sauter-Servaes and Nash, 2007). Si 3 
et al. (2009) developed a bi-level programming model to optimize both the train service level (including the price) 4 
and passenger travel cost, by considering the competition of an intercity railway line in China with buses and cars 5 
for custom. The influence of MTR’s entering the Swedish passenger railway market on train-ticket price was 6 
analyzed in Vigren (2017), and it was found that the average price had steadily declined since the entry of MTR. 7 

To improve railway revenue, railway passenger choice behavior was analyzed by Nuzzolo et al. (2000). They 8 
used a nested-logit choice model to simulate the effects of variations in medium–long-distance railway service 9 
parameters (e.g., timetable, travel time, and prices). This passenger-choice behavior was found to be closely 10 
related to the ticket price. For example, one of the important strategies for pricing is to use different prices for 11 
peak periods and off-peak periods, which can not only improve the revenue but also flatten large passenger 12 
demand in the peak period. Chinese HSRs have tried using discount off-season train tickets on some lines since 13 
2012, the impacts of which were analyzed in Chen and Liu (2013) and Zheng and Liu (2016). In addition to the 14 
effects of a discount, Qin et al. (2019) investigated the effect of increasing the ticket price in peak periods. A 15 
similar study of the effects of pricing policies and demand elasticity on service choice was conducted for the 16 
Dutch railway system (van Vuuren, 2002); it was found that increasing the price in peak periods was more efficient 17 
than reducing the price in off-peak periods. In addition, the manner in which ticket price and allocation affected 18 
the overall demand in an overcrowded condition was analyzed by Whelan and Johnson (2003) and Bharill and 19 
Rangaraj (2008). Similarly, a multinomial logit model and latent class model were applied by Hetrakul and Cirillo 20 
(2014) to analyze the effect of ticket-purchase timing decisions on ticket pricing and seat allocation.  21 

All the above mentioned railway pricing studies focused on revenue management or passenger service-22 
choice. Recently, Robenek et al. (2018) analyzed the integration of ticket pricing with railway timetabling in the 23 
planning stage to improve revenue. However, the pricing problem may cause equity problems, which was not 24 
considered by Robenek et al. (2018).          25 

 26 
3. Models for demand, social equity, and revenue 27 
3.1. A demand model 28 

Passenger travel-choice can be hierarchically divided into mode choice and route choice. As discussed in 29 
Robenek et al. (2018), we assume that the mode choice is fixed. Therefore, we can predict the railway market 30 
share, and that the railway company wants to maximize its profit within the given maximum potential demand. In 31 
practice, the maximum demand is not exactly known, and it is normally predicted by the railway research institute 32 
or the railway company. We assume that the maximum demand is given. However, potential railway passengers 33 
might choose different modes of transport, such as a bus, or they may decide against traveling if the railway 34 
service is not convenient for them. We focus on HSRs with high ticket fees, which are normally higher than bus 35 
tickets for the same OD pair. Some low-income passengers are likely to choose buses because they care more 36 
about saving money (i.e., the ticket price) than about saving some travel time. Thus, it is necessary to take low-37 
income passengers into account to encourage more potential railway passengers to travel by train. We introduce 38 
two possible strategies to achieve this: improving the quality of the train timetable to make it more convenient for 39 
passengers, and the reducing the ticket price of some trains to attract more low-income passengers. 40 

The demand for HSRs has an unbalanced temporal distribution. We denote high-demand periods as peak 41 
periods and relatively low-demand periods as off-peak periods. Usually, early mornings and late evenings are off-42 
peak periods for high-speed trains because it is not convenient for passengers to travel by train at those times. For 43 
example, passengers prefer to take a train departing at 10:00 a.m. than one departing at 07:00 a.m. if they can 44 
arrive at their destination no later than the desired time and the ticket price is the same. During off-peak periods, 45 
the train occupancies are quite low. For example, 13% of trains on the Beijing–Shanghai HSR line in 2014 had a 46 
load factor < 65% during off-peak periods (Zheng and Liu, 2016), that is, a large number of seats were empty 47 
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during this period, which equates to a loss for the railway company. Inspired by the pricing strategy used in road 1 
transport and air transport to adapt to temporal demand, we can also use an appropriate pricing strategy to adapt 2 
railway passenger demand in a temporal dimension. Specifically, properly reducing ticket price in the off-peak 3 
period can not only increase seat occupancy but also increase the revenue of a railway company. Besides, raising 4 
the ticket price appropriately in the peak period can also increase the revenue of the railway company and adjust 5 
the highly passenger demand.    6 

The demand can be divided according to passenger groups, and according to the OD pair and the desired 7 
arrival time. A passenger group is denoted by (𝑖𝑖, 𝑡𝑡), where 𝑖𝑖 ∈ 𝐼𝐼 is the OD pair and 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖 is the desired arrival 8 
time. In this study, we consider heterogeneous passengers because passengers in the same group (𝑖𝑖, 𝑡𝑡)  with 9 
different characteristics may have different choice behaviors. Income is the most critical characteristic, and we 10 
thus focus on social equity for different classes of passengers. Accordingly, we further divide the passenger group 11 
(𝑖𝑖, 𝑡𝑡)  into several further groups, according to passengers’ income level. We introduce parameter 𝜏𝜏 ∈ 𝛱𝛱  to 12 
denote the income level of passengers, where 𝛱𝛱  consists of all the possible income levels of passengers in 13 
group (𝑖𝑖, 𝑡𝑡). Therefore, a passenger group is denoted by (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) in this research. The total number of passengers 14 
in a group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) is 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖. We assume that all passengers in a group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) use the same path and take the same 15 
trains during their journey, i.e., passenger-group splitting is not allowed. If a passenger group cannot travel by the 16 
same path due to a capacity limitation or a low path-utility, it will give up traveling by high-speed train and use 17 
other modes, such as buses, with a certain utility 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜  (general travel cost 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 ). Normally, the speed of a bus is 18 
slower than that of a high-speed train, but the ticket price for a bus is lower. High-income travelers therefore prefer 19 
high-speed trains, whereas more low-income travelers choose buses. 20 

As timetabling follows line planning, we assume that the train lines and their frequencies of use are known 21 
to the railway operator when the timetable is being compiled. A line (𝑙𝑙 ∈ 𝐿𝐿) is from a specific origin to a specific 22 

destination consisting of a certain number of stations and segments �𝑠𝑠 ∈ 𝑆𝑆𝑙𝑙� between two stations, where 𝐿𝐿 is 23 

the line set and 𝑆𝑆𝑙𝑙 is the segment set of line 𝑙𝑙. A certain number of trains operate on each line 𝑙𝑙, and we number 24 
these trains according to their sequence of departure from the first station of the line. All trains of line 𝑙𝑙 comprise 25 
a train set 𝑉𝑉𝑙𝑙, 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙. Thus, train 𝑣𝑣 belonging to line 𝑙𝑙 is denoted by a combination of indices (𝑙𝑙, 𝑣𝑣).  26 

For each OD pair 𝑖𝑖 ∈ 𝐼𝐼, a set of paths 𝑃𝑃𝑖𝑖 connects the origin to the destination. A path may include one line 27 
or several lines. Here, 𝑃𝑃𝑖𝑖 is the set of all physical paths of OD pair 𝑖𝑖. The available path for a specific passenger 28 
group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) is time dependent, i.e., it is determined by the physical path 𝑃𝑃𝑖𝑖 and the time (timetable). Therefore, 29 
the path set 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) corresponds to the specific trains used by passengers in this group. 30 
Overall, 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖  is determined by both the connectivity of the train lines and the schedule of trains on the 31 
corresponding lines.   32 

A passenger chooses how to travel on an HSR from his/her origin to his/her destination based on his/her 33 
required time of arrival at the destination. Thus, the so-called passenger route-choice problem can be expressed 34 
as: if the timetable for an HSR network is given, how can one determine the trains that are taken by a passenger? 35 
A widely used method to predict passenger route-choice is discrete choice analysis (Ben-Akiva and Lerman, 1985), 36 
which operates on the basis that each passenger acts to maximize his/her own utility function. That is, a passenger 37 
chooses the available option that has the highest utility. The utility function of each option has several attributes, 38 
such as the travel time and cost and the characteristics of a passenger, e.g., income, age, or travel purpose. For 39 
each passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) using path 𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖 to travel from his/her origin to his/her destination, we define 40 

the utility as 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 . In this study, we consider the following attributes (below) in the utility function, which are 41 

similar to those used by Robenek et al. (2016). For a more detailed explanation of each attribute, we refer the 42 
reader to Robenek et al. (2016). 43 
 In-vehicle-time: total time (minutes) that passengers spend within the various trains along their path. 44 
 Waiting time: time (minutes) that passengers spend waiting for a transfer train at a transfer station during 45 

their journey. 46 



8 

 Number of transfers: the total number of times that passengers transfer from one train to another during 1 
their journey. 2 

 Early-arrival time: number of minutes before their preferred arrival time that passengers arrive at their 3 
destination. If passengers arrive at their destination on time or late, this value is zero. 4 

 Late-arrival time: number of minutes after their preferred arrival time that passengers arrive at their 5 
destination. If passengers arrive at their destination on time or earlier, this value is zero. 6 

 Travel fee: the total money (yuan) that passengers spend to buy train tickets, where yuan is the Chinese unit 7 
of currency (1 yuan is ~0.14 USD). 8 
As we consider both travel time and travel cost, we need to either convert time into money or vice versa to 9 

ensure consistency in the utility function. We recall our considering that heterogeneous passengers in each OD 10 
pair and the same path can have different utilities for different passengers, e.g., for high-income passengers and 11 
low-income passengers. Then, given that our goal is to encourage low-income passengers to travel by high-speed 12 
trains, their utility of a selected path is lower if we convert the travel cost into time because their value of time is 13 
lower than that of high-income passengers. Therefore, we convert the travel cost into time in the utility function. 14 
The utility function of path 𝑝𝑝 for passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) is thus defined as follows (Equation (1)): 15 

 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 = −(𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 + 𝛽𝛽1 × 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 + 𝛽𝛽2 × 𝑢𝑢𝑝𝑝 + 𝛽𝛽3 × 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 + 𝛽𝛽4 × ∆𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 + 𝛽𝛽5 × 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 )  [min]               (1) 16 

In Equation (1), the notations 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 , 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 , 𝑢𝑢𝑝𝑝, 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 , ∆𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 , and 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝  denote the in-vehicle time, waiting time, 17 

number of transfers, early arrival, late arrival, and travel cost of a passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏)  using path 𝑝𝑝 , 18 
respectively. These notations are explained in Table 8 in Appendix A. Parameters 𝛽𝛽1~𝛽𝛽5 convert the waiting 19 
time, transfer cost, early-arrival time, late-arrival time, and travel cost into the in-vehicle time cost. The values of 20 
parameters 𝛽𝛽1~𝛽𝛽4  are determined from previous studies, which will be explained later. Parameter 𝛽𝛽5 21 
corresponds to the Value-Of-Time (VOT), i.e., the willingness-to-pay for a travel-time saving. Note that we 22 
consider passengers of different income levels in a passenger OD. Thus, the VOT differs for passengers of 23 

different incomes. We assume that a passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) chooses path 𝑝𝑝 that has the highest utility 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝  24 

under the capacity limit. The utility function can also be expressed as the total general travel cost, which is shown 25 
in Equation (1a), below. From Equations (1) and (1a), we can see that high utility equates to a low general travel 26 
cost. 27 

  𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 = 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 + 𝛽𝛽1 × 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 + 𝛽𝛽2 × 𝑢𝑢𝑝𝑝 + 𝛽𝛽3 × 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 + 𝛽𝛽4 × ∆𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 + 𝛽𝛽5 × 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝   [min]                  (1a) 28 

 29 
3.2. A social equity model 30 

We aim to devise a railway timetable that incorporates consideration of the social equity issue, which, to the 31 
best of our knowledge, has not been addressed in previous studies of HSRs, which have been conducted either 32 
from the operator’s perspective, to minimize the operational cost, or from the passenger’s perspective, to improve 33 
passenger convenience or minimize their travel cost. Thus, the equity aspect has been neglected but remains 34 
important to address. Because HSR as public transport is financed mainly by central or local government, it should 35 
be available for all residents, especially low-income people without private vehicles. Our goal is to create a 36 
timetable and ticket-pricing strategy to keep the utility of low-, medium-, and high-income passengers at a similar 37 
level so that more low-income passengers will use high-speed trains.   38 

No direct answer on how to model the social equity for HSR timetabling can be found from previous research, 39 
but relevant ideas can be borrowed from other research domains. Many previous studies have modeled social 40 
equity using a Gini coefficient-based method, and the Gini coefficient of concentration and the Lorenz curve have 41 
historically been used to measure equality in the distribution of good. They can be used not only to measure 42 
income distribution but also other kinds of equity, by altering what is shown on the vertical axis (Levinson, 2002). 43 
For example, a revised version was used to assess equity in hazmat facility location and routing by Romero et al. 44 
(2016), where their goal was to ensure an equal per capita burden of exposure to hazmat across different income 45 
groups. Similarly, Meng and Yang (2002) considered the equity issue in road-network design by limiting the 46 
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travel-cost improvement of any passenger OD in any design scenario to a given level. Inspired by Romero et al. 1 
(2016) and Meng and Yang (2002), we adopt the following method to formulate the equity constraint in HSR 2 
timetabling and pricing. 3 

 For each passenger OD pair with the same desired arrival time (𝑖𝑖, 𝑡𝑡), we ensure that the general travel cost 4 
(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖) of any passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) cannot exceed the average general travel cost of all the passenger groups 5 
belonging to the same OD pair (𝑖𝑖, 𝑡𝑡). As mentioned previously, we divide the passengers belonging to the same 6 
(𝑖𝑖, 𝑡𝑡)  into several passenger groups based on their income levels, and the general travel cost of a passenger 7 

group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) consisting of high-income passengers is lower than that of a passenger group �𝑖𝑖, 𝑡𝑡, 𝜏𝜏′� consisting 8 

of low-income passengers. Therefore, we propose to restrict the general travel cost of low-income passengers to 9 
a low level to improve their ability to access high-speed trains. The equity is modeled by Inequality (2) and 10 
Equation (3). 11 

max
𝜏𝜏∈𝛱𝛱

 {𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖
𝐶𝐶𝑖̅𝑖𝑖𝑖

} ≤ 𝜀𝜀       ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖                                                      (2) 12 

𝐶𝐶𝑖̅𝑖𝑖𝑖 = ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝜏𝜏∈𝛱𝛱
|𝛱𝛱|

         ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖                                                      (3) 13 

In Inequality (2), 𝜀𝜀 is a parameter indicating the equity level for passenger groups within each OD pair 14 
with the same desired arrival time (𝑖𝑖, 𝑡𝑡). The exact value of 𝜀𝜀 can be properly set by the government and railway 15 
manager according to common practice. This inequality means that the general travel cost 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 of any passenger 16 
group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) cannot exceed the average general travel cost 𝐶𝐶𝑖̅𝑖𝑖𝑖 of all the passenger groups with the same origin, 17 
destination, and desired arrival time, i.e., all passenger groups belonging to the same (𝑖𝑖, 𝑡𝑡). Therefore, it ensures 18 
that the general travel cost of the passenger group consisting of low-income people is at an acceptable level. As 19 
mentioned previously, the general travel cost of low-income travelers is higher than that of high-income travelers 20 
within the same (𝑖𝑖, 𝑡𝑡) because their VOT is smaller. Equation (3) can be used to calculate the average general 21 

travel cost of all the passenger groups within the same (𝑖𝑖, 𝑡𝑡). 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 is not restricted to a specific path 𝑝𝑝 as is  𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝  22 

(defined previously) because we do not know which path 𝑝𝑝 the passenger group actually chooses. Similarly, 23 
different passenger groups with the same (𝑖𝑖, 𝑡𝑡)  may use different paths. Thus, 𝐶𝐶𝑖̅𝑖𝑖𝑖  does not correspond to a 24 
specific path 𝑝𝑝.  25 

 26 
3.3. The revenue analysis  27 

High-speed trains are operated by many train companies, and each company must be able to afford the 28 
operating costs, such as the cost of multiple train units (rolling stock) and the cost of train drivers. Although the 29 
cost of constructing HSRs is borne mostly by central or local governments, the daily operating cost is borne by 30 
the train company. A train company wants to maximize its revenue by operating trains, where this revenue is the 31 
money that is obtained by selling tickets, minus the railway operating cost. The operating cost is assumed to be 32 
fixed with a given line plan, and thus the train company aims to maximize the ticket revenue as follows (Equation 33 
(4)): 34 

max  ∑ ∑ ∑ ∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝

𝑝𝑝∈𝑃𝑃𝑖𝑖 × 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝜏𝜏∈𝛱𝛱𝑡𝑡∈𝑇𝑇𝑖𝑖𝑖𝑖∈𝐼𝐼                                                   (4) 35 

where 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝  is the ticket price for passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) using path 𝑝𝑝 and 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 is the volume of passenger 36 

group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏). We have modeled the revenue of railway companies globally in formula (4), which is suitable for 37 
situations in which all of the involved railway companies are public. This is the case for the Chinese HSR. To 38 
maintain the revenue at a required value, we model it as a constraint, as follows (Equation (4a)):  39 

∑ ∑ ∑ ∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝

𝑝𝑝∈𝑃𝑃𝑖𝑖 × 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑅𝑅𝜏𝜏∈𝛱𝛱𝑡𝑡∈𝑇𝑇𝑖𝑖𝑖𝑖∈𝐼𝐼                                                   (4a) 40 

where 𝑅𝑅 is the minimum required revenue for a train company, which should be greater than the total operating 41 
cost. For example, if 𝑅𝑅 is 15% greater than the total operating cost, this means that the profit is 15%. 42 
 43 
4. Problem description 44 
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 We focus on the passenger-centric train-timetabling and ticket-pricing problem while also explicitly 1 
considering social equity. The train-timetabling problem is not new and has been extensively investigated 2 
(Cacchiani and Toth, 2012; Parbo et al., 2016). The core of the problem is to determine the proper departure and 3 
arrival times of each train at each station to prevent conflict, so that either the total travel time or the travel cost is 4 
minimized. If we take dynamic passenger demand into account at the timetabling stage, we can obtain a passenger-5 
centric timetable in which the passenger travel cost is minimized, or the passenger’s convenience is maximized. 6 
Normally, the ticket price for paths of the same OD is constant. Therefore, the travel cost is not considered at the 7 
timetabling stage. However, motivated by competition with air transport, fluctuating ticket prices may help either 8 
flatten demand, increase revenue, or attract more passengers. Thus, in this study, the ticket price is not kept 9 
constant but rather is set as a decision variable, meaning that we also have to determine the appropriate ticket 10 
price for a train traveling on a given segment. By reducing the ticket price for some trains, it is possible that the 11 
fare of some train paths will be reduced, as will the general travel-cost of these paths. In this context, the ability 12 
of low-income passenger groups to access HSR increases. That is, more low-income passengers will be able to 13 
afford to travel by high-speed trains by choosing lower-price trains. The social equity of HSRs is thus improved, 14 
to some extent. Therefore, by considering the variable ticket price and the social equity level in passenger-centric 15 
timetabling, the problem to be resolved becomes social equity-based passenger-centric train timetabling and ticket 16 
pricing.  17 

A train corresponds to a line 𝑙𝑙 ∈ 𝐿𝐿, where the running segments and the stations either for dwelling or passing 18 
are given by the line plan. Many trains may operate on the same line. Therefore, trains belonging to the same line 19 
are ordered according to their departure time from the origin of the line, and the specific train of a line is denoted 20 
by the combined indices of train line and train order (𝑙𝑙, 𝑣𝑣), where 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 is the order of the train within line 𝑙𝑙. 21 
Similar to Robenek et al. (2016), we assume the running time of a train in a segment and the dwell time of a train 22 
at a station are constant and known. However, the stopping patterns of trains within the same line differ in Chinese 23 
railways. To this end, the running time for different trains from the same origin to the same destination can be 24 

different, i.e., it is train specific. This is different from Robenek et al. (2016). Therefore, the travel time 𝑟̅𝑟𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 of 25 

OD pair 𝑖𝑖 on path 𝑝𝑝 using train (𝑙𝑙, 𝑣𝑣) consisting of the running times between stations and the dwell times at 26 
stations are deterministic (i.e., a given value), and we only need to determine the departure time of each train from 27 
its origin 𝑑𝑑𝑙𝑙,𝑣𝑣 in the train-timetabling problem. The departure and arrival times of a train (𝑙𝑙, 𝑣𝑣) at other stations 28 

can be calculated by 𝑑𝑑𝑙𝑙,𝑣𝑣 and 𝑟̅𝑟𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝, respectively. A line is unidirectional in this study, i.e., trains in the opposite 29 

direction serve a different line. Note that the conflicts among trains are not considered in this research because the 30 
timetabling problem is well-solved in many previous studies, and thus conflicts are not our main focus. Instead, 31 
we aim to devise a passenger-centric timetable for train companies, and we leave the train-conflict solution to 32 
railway infrastructure managers, as examined by Robenek et al. (2016, 2018). 33 

A train path consists of one or several lines and is served by one or several trains. As the line plan is given, 34 
the set of path 𝑃𝑃𝑖𝑖 for passenger OD 𝑖𝑖 ∈ 𝐼𝐼 is known. The possible path set 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 for passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) is 35 
related to the actual timetable. If path 𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 includes several trains, the connection between two consecutive 36 
trains must be reasonable, i.e., the arrival time of the previous train at the transfer station must be at least 𝑚𝑚 37 
minutes before the departure time of the successor train from the same station, where 𝑚𝑚 is the minimum transfer 38 
time. We can remove all of the unreasonable paths from the path set to reduce the problem size. Each passenger 39 
group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) is assumed to use the path with the highest utility, if possible, and the utility function is defined in 40 
Section 3.1 by Equation (1). Because each train has a limited capacity, the total number of passengers on a train 41 
in each segment cannot exceed the capacity. If the spare capacity of a train is insufficient to accommodate all the 42 
passengers in a passenger group, no-one in the passenger group can board the train because the passenger group 43 
is not allowed to be split. If a passenger group cannot choose any path due to limited train capacity or if the utilities 44 
of all possible paths for the group are too low, the group gives up traveling by train and chooses other options.  45 

Our objective is to minimize the total general passenger travel cost (maximize the total utility). To improve 46 
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the equity of HSRs, we use a variable ticket fare. The total ticket fare 𝑓𝑓𝑝𝑝 of path 𝑝𝑝 is calculated by adding up the 1 

fare of each train (𝑙𝑙, 𝑣𝑣) on path 𝑝𝑝 using each segment 𝑠𝑠, 𝑓𝑓𝑠𝑠𝑙𝑙𝑙𝑙. One can also use other structures to calculate the 2 
ticket fare. We are interested in attracting low-income passengers to high-speed trains by adapting the ticket price 3 
when the revenue of the train companies is at a required level. The equity of HSR access is considered by ensuring 4 
that the utility of low-income passengers is not smaller than that of high- and medium-income passengers by a 5 
given, known amount. Therefore, more high-speed trains are available for low-income passengers. We formulate 6 
our problem by a mixed-integer linear programming model partly based on the model in Robenek et al. (2016). 7 
The notations used and the detailed model are given in Appendix A. 8 

 9 
5. Case study 10 

In this section, we describe the experimental results from using our approach on a hypothetical railway 11 
network and on part of a real-world Chinese HSR network: the Guangzhou–Nanning and Guangzhou–Guilin HSR 12 
network. The model was coded in Optimization Programing Language, and IBM ILOG CPLEX 12.8 was utilized 13 
as the solver, with CPLEX parameters set to their default values. All our experiments were run on an Intel Core 14 
i7-7700 processor CPU5 @3.60GHz (i.e., 3.60GHz, 16.0GB RAM desktop). 15 

 16 
5.1. A small case study 17 

We first tested our model on a small hypothetical railway network consisting of two HSR lines, one having 18 
stations 1, 2 and 3 and the other having stations 2 and 4, meaning that the lines share station 2. There were three 19 
segments between two of these four stations, as seen in Figure 2. In the figure, stations are denoted by circles with 20 
the station number inside the circle, and a segment is denoted by a line connecting two stations with a segment 21 
number beside the line. We assumed that four trains run on line 1 (from station 1 to station 3) and that three trains 22 
run on line 2 (from station 2 to station 4) in our planning horizon. Thus, there were seven trains in total, and each 23 
train stopped at each station that it visited. We also assumed that the running time of each train in each segment 24 
was 30 minutes (min) and that the dwell time for each train at each visited station was 5 min. The passenger OD 25 
information is shown in Table 2. There were three OD pairs—one from station 1 to station 3 on line 1, another 26 
from station 1 to station 2 on line 1, which then crosses to station 4 on line 2, and the third from station 2 to station 27 
4 on line 2. These OD pairs are shown in the “Route” column in Table 2. Each OD pair was further divided into 28 
several time-dependent OD pairs based on their desired arrival time at the destination, shown in the “Desired 29 
arrival time” column of Table 2. For each time-dependent OD pair, passengers were divided into high-, medium-, 30 
and low-income groups; the volume of each type of passenger is given by the “Passenger volume” column of 31 
Table 2. Therefore, we had 30 passenger groups in total, classified according to their origin, destination, desired 32 
arrival time, and income class. 33 

1 2

4

3
1 2

3
Station

Segment
 34 

Figure 2 A small railway network. 35 
Table 2 Passenger information 36 

OD pairs Time-dependent  
OD pairs  

Route Desired arrival time 
 (min) 

Passenger volume 
High  Medium Low 

1 1 1—2—3 70 10 10 20 
2 1—2—3 80 30 20 10 
3 1—2—3 90 30 25 15 
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4 1—2—3 100 20 30 20 
2 5 1—2—4 70 5 5 5 

6 1—2—4 85 10 5 5 
7 1—2—4 95 10 10 5 

3 8 2—4 90 10 20 15 
9 2—4 105 25 20 10 
10 2—4 120 30 20 10 

 1 
The minimum departure headway (ℎ) was 5 min, and the minimum transfer time (𝑚𝑚) was also 5 min. The 2 

values of 𝛽𝛽1 − 𝛽𝛽4 in the utility function, obtained according to the previous study of Robenek et al. (2016), were 3 
2.5, 10, 0.5, and 1, respectively. However, 𝛽𝛽5 is related to the VOT for the various passengers, as mentioned 4 
previously. Therefore, each class of passenger had its own VOT. In this case, we assumed that the values of 𝛽𝛽5 5 
for the three types of passengers were 0.5, 1.0, and 1.5, respectively. The value of 𝜀𝜀 reflects the equity level of 6 
passengers, which we set as 1.2. However, we also changed the value of 𝜀𝜀  to see the results obtained with 7 
different equity levels. The capacity of a train was assumed to be 80 passengers (𝜇𝜇𝑣𝑣𝑙𝑙 × 𝑞𝑞 = 80). If a passenger 8 
group could not travel by any train, the general cost was assumed to be 300 min for passengers in OD pairs 1 and 9 
2 and 200 min for passengers in OD pair 3. Finally, the value of 𝑀𝑀 was 500. The ticket price for a train running 10 

on segment 𝑠𝑠 was between 32 (𝑓𝑓𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚) and 46 (𝑓𝑓𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚) yuan. 11 
 12 

5.1.1. The influence of ticket revenue 13 
As train operation has to consider both the revenue from the train company’s perspective and the general 14 

travel cost from the passengers’ perspective, we first investigated the possible trade-off between these two 15 
requirements. Our goal was to maximize the total utility (minimize the total general travel cost) of all the 16 
passengers while keeping the revenue of the train company at a reasonable level. Therefore, we changed the 17 
minimum revenue that a company requires to see how this would influence the general passenger travel cost. The 18 
values of minimum revenue were 15,000, 20,000, 25,000, 30,000, and 32,000 yuan. We set the largest revenue to 19 
32,000 yuan instead of 35,000 yuan because no feasible solution existed under our given ticket price interval for 20 
each segment when 35,000 yuan was used. In this test, the equity constraints were not considered. The results are 21 
given in Table 3. 22 

Table 3. Various ticket revenues for different ticket prices. 23 

Revenue (yuan) Objective (min) Ticket price (yuan) Time (s) Gap (%) 
15,000 48457 32;32;32;32;32;32;32;32;32;32;32 82 0 
20,000 48457 32;32;32;32;32;32;32;32;32;32;32 117 0 
25,000 48875 32;32;35;46;32;32;32;32;32;32;32 128 0 
30,000 52812 32;32;46;46;46;46;32;32;32;46;46 300 0.11 
32,000 54901 32;32;46;46;46;46;43.9;32;46;46;46 300 0.75 

 24 
In Table 3, the first column is the minimum ticket revenue and the second column shows the objective values 25 

(i.e., the total general passenger travel cost). The third column gives the optimal ticket fare (𝑓𝑓𝑠𝑠𝑙𝑙𝑙𝑙) for each train in 26 
each segment. We assumed that there were four trains running on line 1 from station 1 to station 3 using segments 27 
1 and 2. Thus, the first eight numbers show the ticket price of these four trains on segments 1 and 2. In addition, 28 
we had three trains running from station 2 to station 4 using segment 3. Therefore, the last three numbers in the 29 
third column are the ticket prices for these three trains using segment 3. The fourth column is the computation 30 
time, which we limited to 300 s (5 min), and the last column is the optimality gap between the best upper bound 31 
and the best lower bound within 5 min. 32 

We can see that when the revenue is no more than 20,000 yuan, the objective value remained at 48457, and 33 
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the ticket price for each segment equaled the minimum allowed value (32 yuan). This occurred because the 1 
passenger’s travel cost is low when the required revenue is low, i.e., all passengers can use the path at the lowest 2 
general travel cost. However, with increasing required revenue, the total general travel cost also increased, and 3 
the ticket price for some trains in some segments increased to ensure that the higher revenue could be achieved. 4 
The relationship between revenue and total passenger general travel cost is shown in Figure 3. When we increased 5 
the minimum required revenue further, to 35,000 yuan, no feasible solution existed because we limited the 6 
maximum ticket price for trains in each segment. Figure 3 shows that when the required revenue is less than 7 
25,000 yuan, the total passenger travel cost increases slowly with increasing revenue. However, when the revenue 8 
is higher than 25,000 yuan, the total travel cost increases dramatically with increasing revenue. The is because, in 9 
the former case, most passengers can use a short path with a low ticket price, whereas when the revenue is more 10 
than 25,000 yuan (i.e., 30,000 or 32,000 yuan), the ticket price for most trains must rise and the total passenger 11 
travel costs increase accordingly. It is clear that a trade-off exists between the revenue required by the train 12 
company and the total general travel cost able to be borne by passengers. The government and the railway 13 
company must therefore find a balance between these two key variables. We also found that the computation time 14 
increased with increased minimum required revenue. However, all the test cases were solved within 300 s (5 min) 15 
with a gap smaller than 1%.  16 
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Figure 3. The relationship between total passenger travel cost and revenue. 18 

 19 
5.1.2. Social equity analysis 20 

To consider social equity when making an HSR timetable, we introduced an equity constraint (14) in our 21 
model. In this subsection, we describe how the equity constraint affected the solutions. We tested our model on a 22 
small case with various equity levels (𝜀𝜀). We set the value of 𝜀𝜀 to a number from 1.0 to 1.5 in intervals of 0.1. 23 
The values of all other parameters remained the same as those explained previously. We wanted to determine the 24 
relationship between total general passenger travel cost and social equity levels under fixed minimum required 25 
train company revenues, i.e., 25,000 and 30,000 yuan. The results are given in Table 4. Except for the first and 26 
second columns, the meaning of other columns is similar to those in Table 3. 27 

Table 4. Solutions with different social equity levels. 28 

Revenue 
 (yuan) 

Equity level 
(𝜀𝜀) 

Objective  
(min) 

Ticket price 
(yuan) 

Time  
(s) 

Gap 
 (%) 

 1.0 62142 32;32;32;43.3;32;32;32;32;32;32;32 4 0 
 1.1 55073 32;32;32;46;32;32;32;32;32;32;32 5 0 
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25,000 1.2 50228 32;32;46;32.6;32;32;32;32;32;32;32 51 0 
 1.3 48900 32;32;35.3;46;32;32;32;32;32;32;32 167 0 
 1.4 48875 32;32;35.3;46;32;32;32;32;32;32;32 241 0 
 1.5 48875 32;32;35.3;46;32;32;32;32;32;32;32 126 0 
 1.0 63239 46;46;32;32;46;46;33.9;32;32;32;46 66 0 
 1.1 56269 46;46;32;32;46;46;35.9;32;32;32;46 140 0 
30,000 1.2 53212 32;32;46;46;46;46;32;32.2;46;32;46 300 1.63 
 1.3 52831 32;32;46;46;46;46;32;32;32.1;46;46 300 1.05 
 1.4 52812 32;32;46;46;46;46;32;32;32;46;46 300 1.22 
 1.5 52984 32;32;46;46;32;32;46;46;46;32;46 300 1.13 

 1 
It can be seen that the equity level affected the total general passenger travel cost. When the government 2 

wants to improve the equity of an HSR, the travel cost for high-income passengers may increase because special 3 
attention is paid to low-income passengers. When 𝜀𝜀  equals 1, it means that the travel cost for low-income 4 
passengers is not higher than that of medium- or high-income passengers in the same OD pair. In such a scenario, 5 
we would say that the equity is perfect. However, with increasing 𝜀𝜀 , the general travel cost of low-income 6 
passengers becomes higher than that of medium- or high-income passengers. Thus, we say the equity of an HSR 7 
worsens under these conditions. Overall, when the value of 𝜀𝜀 increases, the equity level of an HSR decreases. 8 
From Table 4 and Figure 4, we can see that the total general passenger travel cost decreases significantly when 9 
the value of 𝜀𝜀 increases from 1.0 to 1.3, and it remains stable when the value of 𝜀𝜀 increases from 1.3 to 1.5 with 10 
a minimum required revenue of either 25,000 or 30,000.  11 

Although the total general passenger travel cost increases with increasing equity level, such an increase might 12 
be beneficial to low-income passengers. We show the relationship between the general passenger travel costs of 13 
low-, medium-, and high-income passengers and the social equity level in Figures 5 and 6 with minimum revenues 14 
of 25,000 and 30,000, respectively. We take ODs 5, 6, 7, and 8 as an example in Figure 5, and ODs 2, 5, 6, and 15 
10 as an example in Figure 6. We can see that the general travel costs for the low-, medium-, and high-income 16 
passenger group of the same OD were the same when 𝜀𝜀 is 1.0. With increasing 𝜀𝜀, the difference among the 17 
general travel costs of the low-, medium-, and high-income passenger group of the same OD increased. 18 
Specifically, the general travel cost for the low-income passenger group increases and those for the medium-19 
income and high-income passenger groups decreased. Therefore, a higher equity level can help reduce the general 20 
travel cost of low-income passengers and encourage more low-income passengers to travel by high-speed train. 21 
There is a trade-off between the total general passenger travel cost and social equity. If a higher equity level is 22 
required, the total general passenger travel cost tends to be higher, but the difference of general travel cost for 23 
low-, medium-, and high-income passengers decreases. The government and train company can choose a 24 
reasonable value of 𝜀𝜀 to achieve a balance. 25 
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Figure 4. The total general passenger travel cost at various equity levels with a given minimum operation cost. 2 
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Figure 5. The general travel cost for passengers at different equity levels with a minimum operating cost of 7 

25,000 yuan. 8 
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Figure 6. The general travel cost for passengers at different equity levels with a minimum operation cost of 4 

30,000 yuan. 5 
 6 
5.1.3. Social equity and pricing 7 

We also investigated ticket pricing for passengers of different income levels with various social equity levels, 8 
again on the small case with the same parameter values as described in the previous two subsections. The 9 
minimum required revenue was set to 30,000 yuan. To obtain good solutions for all cases, we did not limit the 10 
computation time to 5 min but allowed it to run longer until the relative gap was less than 1%. The results are 11 
given in Table 5. The first three columns are the same as those in Table 4. The fourth column shows the total ticket 12 
revenue for high-, medium-, and low-income passengers. The last column shows the average ticket price per 13 
person per running minute for high-, medium-, and low-income passengers. The detailed ticket prices for high-, 14 
medium-, and low-income passengers are shown in Figure 7. 15 

 16 
 17 
 18 
 19 
 20 

Table 5. Ticket prices with different social equity levels. 21 

Revenue Equity level Objective Ticket revenue (yuan)  Ticket price [yuan/(person × min)]  
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 (yuan) (𝜀𝜀) (min) High Medium Low  High Medium Low 
 1.0 63239 13187 10535 6277  1.49 1.30 1.07 
 1.1 56269 12998 10684 6317  1.47 1.32 1.08 
30,000 1.2 53212 13435 10325 6240  1.52 1.27 1.07 
 1.3 52831 12848 10597 6553  1.45 1.31 1.12 
 1.4 52812 13223 10044 6732  1.49 1.24 1.15 
 1.5 52984 13105 10140 6755  1.48 1.25 1.15 

 1 
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Figure 7. The average ticket price for high-, medium-, and low-income passengers at various equity levels. 3 

 4 
From Table 5 and Figure 7, we can see that low-income passengers prefer to choose trains with a lower ticket 5 

price, whereas high-income passengers prefer to choose trains with a higher ticket price. This is because high-6 
income passengers do not care about the high ticket price and choose the most convenient trains for them, which 7 
is consistent with what we expected. The average ticket prices of medium- and low-income passengers are 86% 8 
and 75% of those of high-income passengers. With increasing 𝜀𝜀 , the ticket price for low-income passengers 9 
increases, but the influence is not very obvious in the small case used herein. 10 

 11 
5.2. A large case study 12 
5.2.1. A description of the railway network and passenger demand 13 
    We tested our model on a part of a Chinese HSR network: the Guangzhou–Nanning and Guangzhou-Guilin 14 
HSR network (Figure 8). This railway network consists of two double-track HSR lines: the Guangzhou–Nanning 15 
HSR line and the Guangzhou–Guilin HSR line. The former is 563 km long and has 14 stations from Guangzhou 16 
South Station to Nanning East Station, whereas the latter is 438 km long consisting of 11 stations from Guangzhou 17 
South Station to Guilin North Station. Therefore, there are 21 stations in total and 20 segments between any two 18 
consecutive stations on this HSR network with a total length of 1001 km. Note that we do not consider the Guilin 19 
West Station on the Guangzhou –Guilin HSR line. The trains to Guilin West Station are assumed to end at Guilin 20 
North. Each station is shown by a circle in the figure, and terminal stations are denoted by double circles. The 21 
length of each segment is given beside it in the figure. The network consists of two bidirectional lines. Therefore, 22 
we have four unidirectional train lines, numbered from 1 to 4 in Figure 8. For more information about this network, 23 
we refer to the Chinese railway official website www.12306.cn. 24 

   25 

http://www.12306.cn/
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Figure 8. A part of south China HSR network. 2 

 3 
According to the timetable of March 2020, 56 trains run from Guangzhou South to Nanning East (or 4 

Nanning), 55 trains run from Nanning East (or Nanning) to Guangzhou South, 61 trains run from Guangzhou 5 
South to Guilin North (or Guilin West), and 61 trains run from Guilin North (or Guilin West) to Guangzhou South 6 
per day. Therefore, there are 233 trains operating on this railway network during a single day. In this study, we 7 
considered a planning period of three hours from 06:00 a.m. to 09:00 a.m., which includes the morning peak 8 
period. The information for trains in our considered period is shown in Table 6. As the timetable is usually made 9 
separately for each direction, we only considered trains running in one direction of these two lines, from 10 
Guangzhou South to Nanning East and from Guangzhou South to Guilin North. Our model can handle trains in 11 
both directions simultaneously, but it would require a longer computation time. The maximum design speed of 12 
Nanning-Guangzhou HSR line is 250 km/h and that of Guilin-Guangzhou HSR line is 300 km/h. However, the 13 
daily operating speeds of both lines are 250 km/h. From the timetable given in Table 6, we can see that it is a non-14 
periodic timetable, where lines are busy during some periods but not in others. Based on the actual timetable, we 15 
calculated the running time of each segment according to the length of the segment and the running speed of trains; 16 
the results are given in Table 7. The required dwell time in each stop station was assumed to be 2 min, and if a 17 
train stopped at an intermediate station, the additional acceleration and deceleration times were both taken as 2 18 
min. As the timetable for Chinese HSRs is non-cyclic, the stopping pattern of trains in the same line can be 19 
different. The train-stopping pattern is determined at the line planning stage, and we used the same stopping 20 
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pattern for each train as that in the actual timetable. Therefore, the values of parameters 𝑏𝑏𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑟̅𝑟𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝  were 1 

calculated by the running time, the dwell time (also the additional acceleration and deceleration times), and the 2 
stopping pattern of trains. 3 

Table 6. The train lines of the studied HSR network. 4 

Train lines From To Trains Departure time 
1 Guangzhou South Nanning East 9 06:52  07:36  07:42  07:56  

08:06  08:22  08:27  08:32  
08:47  

2 Guangzhou South Guilin North (West) 10 06:57  07:02  07:07  07:13 
07:23  07:53  08:05  08:17  
08:42  08:47  

 5 
Table 7. The running time in each segment between two stations. 6 

ID Segment Run time 
(min) 

ID Segment Run time 
(min) 

1 Guangzhou South–Foshan West 8 11 Guiping– Guigang 14 
2 Foshan West –Sanshui South 5 12 Guigang–Binyang 14 
3 Sanshui South–Zhaoqing East 6 13 Binyang–Nanning East 20 
4 Zhaoqing East–Yunfu East 15 14 Zhaoqing East–Guangning 12 
5 Yunfu East–Nanjiang Kou 10 15 Guangning–Huaiji 12 
6 Nanjiang Kou–Yunan 10 16 Huaiji–Hezhou 22 
7 Yunan–Wuzhou South 8 17 Hezhou–Zhongshan West 6 
8 Wuzhou South–Tengxian 6 18  Zhongshan West–Gongcheng 15 
9 Tengxian–Pingnan South 15 19 Gongcheng–Yangshuo 9 
10 Pingnan South–Guiping 9 20  Yangshuo–Guilin North  15 

 7 
As mentioned previously, the timetable for a Chinese HSR is non-periodic, and the frequency of trains is 8 

determined by passenger demand. Passenger demand is normally obtained by a passenger survey or forecast, 9 
whereas detailed passenger OD information is difficult to determine. In this study, we generated the passenger 10 
OD demand based on the actual train timetable (e.g., train frequency and train-stopping pattern) and the scale of 11 
each city (e.g., the population of the city) where a station was located. The details of how we generated the 12 
passenger OD are given in Appendix B. We generated 531 passenger groups in total, which included high-, 13 
medium-, and low-income passenger groups.  14 

Because the stopping pattern of each train is different, if a passenger group wants to use a train, this train 15 
must stop at the passengers’ boarding and alighting stations. Thus, we did not allow passengers to choose a train 16 
without stops at their boarding or alighting station. The ticket price was determined based on the length of a 17 
segment. According to actual practice, the ticket fare of each segment was about 1.25 times the running time (see 18 
the running time in Table 7) for our considered HSR network. Therefore, in this study, we allowed the ticket price 19 
for a segment to vary between 0.65 times the segment running time (𝑓𝑓𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚) and 1.85 times the segment running 20 
time (𝑓𝑓𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚), which are approximately 50% down and up the practical value. We assumed that the values of 𝛽𝛽1 −21 
𝛽𝛽4 were 2.5, 10, 0.5, and 1, respectively, and that 𝛽𝛽5 for the three types of passengers was 0.5, 1.0, and 1.5, 22 
which are the same values as those used in the small case study. In this situation, high-income passengers’ salary 23 
is three times as that of low-income passengers, which is reasonable for residents living along these two lines. 24 
The capacity of each train was 630 (𝜇𝜇𝑣𝑣𝑙𝑙 × 𝑞𝑞 = 630). In practice, some long trains with 16 carriages consisted of 25 
two short trains also operate on this network, but we do not know the detail information. Therefore, we assume 26 
all the trains have the same capacity 630 here, which can be adapted if the detailed information is available. The 27 
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value of 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜  for a passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) that cannot use any train was set to 750 min and the value of 𝑀𝑀 1 
was 1,000. 2 

 3 
5.2.2. Test results. 4 

Based on the case and parameter settings, we tested our model on this large-scale railway network. We tested 5 
with different revenue requirements, where the minimum required revenue was set to either 900,000 or 950,000 6 
yuan. The computation time-limit was 6 h. We allowed the value of 𝜀𝜀 to vary from 1.0 to 1.5 with an interval of 7 
0.1 to see the influence of equity levels, and we obtained near-optimal solutions within the time limit for all cases. 8 

First, we found that the total general passenger travel cost decreased with increasing 𝜀𝜀, which means that if 9 
we want to improve the equity for passengers of different income levels, the total general passenger cost must 10 
increase. This can be regarded as the cost required to achieve a better equity level. The relationship between total 11 
general passenger travel cost and the equity level under revenues of 900,000 and 950,000 yuan are shown by 12 
subfigures (a) and (b), respectively, in Figure 9. In subfigures (a), a small increase is existed when 𝜀𝜀 = 1.4 13 
because of a larger optimality gap within the given time limit. Second, we investigated the impact of equity levels 14 
on the travel cost for passengers of various incomes. We found that when 𝜀𝜀 is 1.0, the average general travel cost 15 
per person for passengers of different incomes was approximately the same. However, with increasing 𝜀𝜀 , the 16 
difference in the average general travel cost for high-, medium-, and low-income passengers increased (Figure 17 
10). Specifically, the general travel cost for high-income and medium-income passengers decreased when we did 18 
not emphasize on the equity issue, and both groups used paths with high utility.  19 
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Figure 9. The total general passenger travel cost with various equity levels for revenues of (a) 900,000 and 22 
(b) 950,000 yuan. 23 
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Figure 10. The general travel cost per person for different income passengers with various equity levels for 3 
revenues of (a) 900,000 and (b) 950,000 yuan. 4 

We also investigated the ticket prices for passengers of different income levels. To do so, we specified the 5 
same passenger volumes of different income-levels. Then, we decreased the passenger OD volumes of high- and 6 
medium-income passengers that travel between large stations from 30 to 20, increased the passenger OD volume 7 
of low-income passengers that travel between large stations and medium stations from 10 to 15, and decreased 8 
the passenger OD volume of low-income passengers that travel between medium stations from 20 to 10 as shown 9 
in Table 10. Therefore, the volumes of passengers for high-income, medium-income and low-income passengers 10 
in each OD pair remained the same. In this case, if the ticket prices for passengers of different income levels are 11 
the same, the total ticket revenue should be identical. The minimum required revenue is set to 900,000. 12 

All of the other parameters maintained the same values as before, and the computational time was limited to 13 
6 h. We obtained the total ticket revenues for passengers of different income levels. For comparison purpose, we 14 
calculated the average ticket price per person per kilometer for different income-class passengers. The results 15 
were shown in Figure 11. We could see that the average ticket price for low-income passengers was much lower 16 
than that of high-income and medium-income passengers. The average ticket price for high-income passengers 17 
was the highest. Specifically, the average ticket prices for low- and medium-income passengers are 79% and 87% 18 
of those of high-income passengers in this case. This was because low-income passengers were more concerned 19 
about the ticket price than high-income passengers. There is no obvious regulation for the average ticket price 20 
affected by the equity level. The average ticket price fluctuated with the increase of the value of 𝜀𝜀 for all the 21 
three types of passengers. 22 
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Figure 11 The average ticket price per person per kilometer for different income passengers 2 

 3 
6. Conclusions 4 

In this study we considered the equity issue in HSR planning. Specifically, we aimed to generate a passenger-5 
centric train timetable while explicitly considering the equity of passengers of different income levels. Three 6 
aspects were considered: minimizing the general travel cost for passengers from the passengers’ perspective, 7 
maximizing the revenue from the train companies’ perspective, and improving social equity from the 8 
government’s perspective. By including these last two aspects in the constraints, we obtained a mixed-integer 9 
linear programming model having a single objective. The influences of revenue for train operation companies and 10 
social equity required by the government on passenger travel cost were investigated. It was found that trade-offs 11 
among these three aspects could be achieved by selecting appropriate revenue and equity parameters. A dynamic 12 
ticket-pricing strategy was applied to alter the social equity by reducing the general travel cost for low-income 13 
passengers. 14 

Our model was tested on both a hypothetical railway network and the Guangzhou–Nanning and Guangzhou–15 
Guilin HSR network in China. The results for the hypothetical railway network showed that minimizing the 16 
general passenger travel-cost and maximizing the revenue of train operation companies are in conflict, and if the 17 
revenue is less than 25,000 yuan, the total general travel-cost for passengers is low. In addition, the social equity 18 
level significantly affects the general passenger travel cost. Specifically, if we want to achieve a better social 19 
equity level, the total general passenger travel cost must be increased, but the differences between the general 20 
travel costs for high-, medium-, and low-income passengers must decrease. A higher equity level means a 21 
relatively lower travel cost for low-income passengers. Also, low-income passengers tend to choose trains with 22 
lower prices, whereas high-income passengers do not. Our test with a real-world HSR network demonstrated that 23 
our model can solve an actual problem within a reasonable length of computation time. The results also showed 24 
that our equity-based timetabling model can help reduce the differences among passengers of various income 25 
classes.  26 

Our equity-based timetabling model is complicated. Although we considered the detailed passenger route 27 
choice and the equity issue in the model, the conflicts among trains were not considered. Therefore, it will be 28 
necessary to take train conflict-prevention into account in future studies to ensure that our timetable is also useful 29 
for railway infrastructure managers. In addition, more efficient algorithms are necessary for larger-scale problems. 30 
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Finally, it is interesting to consider other external costs from a societal perspective beyond equity, such as 1 
environmental costs, by extending our model in future research. 2 
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 12 
Appendix A. Notations and model formulation. 13 

Table 8. Notations used in the model. 14 

Notations Description Type 
𝐿𝐿 Set of train lines given by line plan, 𝑙𝑙 ∈ 𝐿𝐿 Set 
𝐿𝐿𝑝𝑝 Set of train lines used by path 𝑝𝑝, 𝐿𝐿𝑝𝑝 ⊂ 𝐿𝐿 Set 
𝑉𝑉𝑙𝑙 Set of available trains for line 𝑙𝑙 Set 

(𝑙𝑙, 𝑣𝑣) The 𝑣𝑣th train serving line 𝑙𝑙 Index 
𝐼𝐼 Set of passenger OD pair, 𝑖𝑖 ∈ 𝐼𝐼 Set 
𝑇𝑇𝑖𝑖 Set of desired arrival time of OD pair 𝑖𝑖, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖 Set 
𝛱𝛱 Set of passenger income levels for passengers in the same OD pair with the same 

desired arrival time, 𝜏𝜏 ∈ 𝛱𝛱 
Set 

(𝑖𝑖, 𝑡𝑡, 𝜏𝜏) A passenger group in OD pair 𝑖𝑖 with a desired arrival time 𝑡𝑡 having an income 
level 𝜏𝜏  

Index 

𝑃𝑃𝑖𝑖 Set of possible paths of OD pair 𝑖𝑖, 𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖 Set 
𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 Set of available paths of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) Set 
𝑆𝑆 Set of segments of HSR network, 𝑠𝑠 ∈ 𝑆𝑆 Set 
𝑆𝑆𝑙𝑙 Set of segments used by line 𝑙𝑙, 𝑆𝑆𝑙𝑙 ⊂ 𝑆𝑆 Set 
𝑆𝑆𝑙𝑙𝑙𝑙 Set of segments used by line 𝑙𝑙 on path 𝑝𝑝, 𝑆𝑆𝑙𝑙𝑙𝑙 ⊂ 𝑆𝑆 Set 
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 Number of passengers in group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) Parameter 
𝑎𝑎�𝑖𝑖𝑖𝑖𝑖𝑖 Desired arrival time of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) Parameter 

𝑏𝑏𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 Time to travel from the origin station of line 𝑙𝑙 using train (𝑙𝑙, 𝑣𝑣) on path 𝑝𝑝 to a 

boarding station of passenger traveling between OD pair 𝑖𝑖 
Parameter 

𝑟̅𝑟𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 Time on board of train (𝑙𝑙, 𝑣𝑣) for OD pair 𝑖𝑖 along path 𝑝𝑝   Parameter 

𝜇𝜇𝑣𝑣𝑙𝑙  The number of carriage units used by train (𝑙𝑙, 𝑣𝑣) Parameter 
𝜀𝜀   The amount by which the general travel cost of low-income passengers cannot 

exceed the average general travel cost of all passenger groups of the same (𝑖𝑖, 𝑡𝑡) 
Parameter 

𝑞𝑞 The capacity of each carriage Parameter 
ℎ The minimum train departure headway Parameter 
𝑚𝑚 The minimum transfer time Parameter 

    𝑓𝑓𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 The minimum fare of segment 𝑠𝑠 Parameter 
    𝑓𝑓𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 The maximum fare of segment 𝑠𝑠 Parameter 
𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜  (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 ) The utility (general travel cost) of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) if it cannot use any path 

𝑝𝑝 
Parameter 
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𝑀𝑀 A large positive number Parameter 
𝑑𝑑𝑙𝑙,𝑣𝑣 The time train 𝑣𝑣 of line 𝑙𝑙 departs from the first station Decision 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝  Whether passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) chooses path 𝑝𝑝; 1 = yes, 0 = otherwise Decision 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 Whether passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) take train 𝑣𝑣 on line 𝑙𝑙 when choosing path 𝑝𝑝; 

1 = yes, 0 = otherwise 
Decision 

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Whether passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏)  take train 𝑣𝑣  on line 𝑙𝑙  pass segment 𝑠𝑠  when 

choosing path 𝑝𝑝; 1 = yes, 0 = otherwise 
Decision 

𝑜𝑜𝑠𝑠𝑙𝑙𝑙𝑙 Occupation of train 𝑣𝑣 on line 𝑙𝑙 in segment 𝑠𝑠 Decision 
𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝  Waiting time of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) using path 𝑝𝑝 Decision 

𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′𝑣𝑣′ Waiting time of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) using path 𝑝𝑝 to transfer from train (𝑙𝑙, 𝑣𝑣) 

on line 𝑙𝑙 to train (𝑙𝑙′,𝑣𝑣′) on line 𝑙𝑙′ 

Decision 

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝  The in-vehicle time of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) using path 𝑝𝑝   

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝  The earliness of arrival of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) using path 𝑝𝑝 Decision 

∆𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝  The lateness of arrival of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) using path 𝑝𝑝 Decision 

𝑓𝑓𝑠𝑠𝑙𝑙𝑙𝑙 The ticket cost of train 𝑣𝑣 of line 𝑙𝑙 traveling on segment 𝑠𝑠 Decision 

𝑓𝑓𝑖̅𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 The ticket cost for passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) using train (𝑙𝑙, 𝑣𝑣) on path 𝑝𝑝 passing 

segment 𝑠𝑠 
Decision 

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝  The ticket cost of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) using path 𝑝𝑝 Decision 

 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝  (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 ) The utility (general travel cost) of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) using path 𝑝𝑝 Decision 
𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖) The utility (general travel cost) of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏)  Decision 
𝑈𝑈�𝑖𝑖𝑖𝑖  (𝐶𝐶𝑖̅𝑖𝑖𝑖) The average utility (general travel cost) of all passenger groups in OD pair 𝑖𝑖 with 

desired arrival time 𝑡𝑡 
Decision 

 1 
Our goal is to create a good timetable for both passengers and train operators while explicitly considering 2 

social equity. As railway timetabling follows railway line planning, we assume the railway line plan is given. 3 
Therefore, the train lines, the train frequency within each line, and the stopping pattern are known when we create 4 
the train timetable. When creating the timetable, we need to consider different aspects. First, the general travel 5 
cost for passengers should be minimized from the passengers’ perspective. Second, the train operation companies 6 
aim to maximize their revenue. Third, social equity must be considered from the government’s point of view. 7 
These three aspects are usually in conflict and cannot be fulfilled simultaneously. In this study, we minimize the 8 
total general travel cost for passengers in the objective function of our model and include the revenue and the 9 
social equity in the constraints. Therefore, our model can be formulated as follows: 10 

min∑ ∑ ∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝∈𝑃𝑃𝑖𝑖 × 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝜏𝜏∈𝛱𝛱𝑡𝑡∈𝑇𝑇𝑖𝑖𝑖𝑖∈𝐼𝐼                                                      (5)     11 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 ≥  𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 − 𝑀𝑀�1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 �      ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱, 𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖                                    (6) 12 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 �1− ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝

𝑝𝑝∈𝑃𝑃𝑖𝑖 �      ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱                                        (7)  13 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝

𝑝𝑝∈𝑃𝑃𝑖𝑖 ≤ 1     ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱                                                     (8) 14 

 ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝

𝑣𝑣∈𝑉𝑉𝑙𝑙 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝      ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱, 𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖, 𝑙𝑙 ∈ 𝐿𝐿𝑝𝑝                                      (9) 15 

𝑜𝑜𝑠𝑠𝑙𝑙𝑙𝑙 = ∑ ∑ ∑ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝∈𝑃𝑃𝑖𝑖𝜏𝜏∈𝛱𝛱𝑡𝑡∈𝑇𝑇𝑖𝑖𝑖𝑖∈𝐼𝐼     ∀𝑙𝑙 ∈ 𝐿𝐿,   𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙, 𝑠𝑠 ∈ 𝑆𝑆𝑙𝑙                              (10) 16 

𝜇𝜇𝑣𝑣𝑙𝑙 × 𝑞𝑞 ≥ 𝑜𝑜𝑠𝑠𝑙𝑙𝑙𝑙    ∀𝑙𝑙 ∈ 𝐿𝐿,   𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 , 𝑠𝑠 ∈ 𝑆𝑆𝑙𝑙                                                   (11) 17 

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 = ∑ ∑ ∑ 𝑓𝑓𝑖̅𝑖𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑠𝑠∈𝑆𝑆𝑙𝑙𝑙𝑙𝑣𝑣∈𝑉𝑉𝑙𝑙𝑙𝑙∈𝐿𝐿𝑝𝑝      ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱, ∀𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖                             (12) 18 

𝑑𝑑𝑙𝑙,𝑣𝑣 ≤ 𝑑𝑑𝑙𝑙,𝑣𝑣+1 − ℎ      ∀𝑙𝑙 ∈ 𝐿𝐿,   𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙:𝑣𝑣 < |𝑉𝑉𝑙𝑙|                                             (13) 19 
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖′𝜏𝜏′∈𝛱𝛱 /|𝛱𝛱| ≤ 𝜀𝜀      ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱                                               (14) 20 

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝      ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖 , 𝜏𝜏 ∈ 𝛱𝛱,𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖, 𝑙𝑙 ∈ 𝐿𝐿𝑝𝑝 , 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙, 𝑠𝑠 ∈ 𝑆𝑆𝑙𝑙𝑙𝑙                           (15) 21 
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𝑓𝑓𝑠𝑠𝑙𝑙𝑙𝑙 − 𝑀𝑀 × �1 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝� ≤ 𝑓𝑓𝑖̅𝑖𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≤ 𝑓𝑓𝑠𝑠𝑙𝑙𝑙𝑙    ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱,∀𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖 , 𝑙𝑙 ∈ 𝐿𝐿𝑝𝑝 , 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 , 𝑠𝑠 ∈ 𝑆𝑆𝑙𝑙𝑙𝑙       (16) 1 

𝑓𝑓𝑖̅𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≤ 𝑀𝑀 × 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝   ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖 , 𝜏𝜏 ∈ 𝛱𝛱,∀𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖, 𝑙𝑙 ∈ 𝐿𝐿𝑝𝑝, 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 , 𝑠𝑠 ∈ 𝑆𝑆𝑙𝑙𝑙𝑙                       (17) 2 

∑ ∑ ∑ ∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝

𝑝𝑝∈𝑃𝑃𝑖𝑖 × 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑅𝑅𝜏𝜏∈𝛱𝛱𝑡𝑡∈𝑇𝑇𝑖𝑖𝑖𝑖∈𝐼𝐼                                                    (18) 3 

𝑓𝑓𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑓𝑓𝑠𝑠𝑙𝑙𝑙𝑙 ≤ 𝑓𝑓𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚     ∀𝑙𝑙 ∈ 𝐿𝐿, 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 , 𝑠𝑠 ∈ 𝑆𝑆𝑙𝑙                                             (19) 4 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 ∈ {0,1}       ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖 , 𝜏𝜏 ∈ 𝛱𝛱,𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖                                              (20) 5 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 ∈ {0,1}    ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱,𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖 , 𝑙𝑙 ∈ 𝐿𝐿𝑝𝑝,   𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙                                   (21) 6 

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈ {0,1}         ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖 , 𝜏𝜏 ∈ 𝛱𝛱,𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖, 𝑙𝑙 ∈ 𝐿𝐿𝑝𝑝 , 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 , 𝑠𝑠 ∈ 𝑆𝑆𝑙𝑙𝑙𝑙                          (22) 7 

𝑑𝑑𝑙𝑙,𝑣𝑣 ≥ 0       ∀𝑙𝑙 ∈ 𝐿𝐿,   𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙                                                           (23) 8 

𝑜𝑜𝑠𝑠𝑙𝑙𝑙𝑙 ≥ 0       ∀𝑙𝑙 ∈ 𝐿𝐿,   𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 , 𝑠𝑠 ∈ 𝑆𝑆𝑙𝑙                                                       (24) 9 
𝑓𝑓𝑠𝑠𝑙𝑙𝑙𝑙 ≥ 0       ∀𝑙𝑙 ∈ 𝐿𝐿,   𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 , 𝑠𝑠 ∈ 𝑆𝑆𝑙𝑙                                                     (25) 10 

𝑓𝑓𝑖̅𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 0    ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖 , 𝜏𝜏 ∈ 𝛱𝛱,∀𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖, 𝑙𝑙 ∈ 𝐿𝐿𝑝𝑝, 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 , 𝑠𝑠 ∈ 𝑆𝑆𝑙𝑙𝑙𝑙                             (26)  11 

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 , 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 ≥ 0  ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖 , 𝜏𝜏 ∈ 𝛱𝛱,𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖                                                (27) 12 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0   ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱                                                         (28) 13 
Objective function (5) minimizes the total general passenger travel cost, which is denoted as the cost 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 of 14 

each passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏)  multiplied by the number of passengers 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖  of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) . 15 
Constraint (6) ensures that each passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) chooses the path with the lowest general travel cost. 16 
Constraint (7) indicates that if a passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) cannot use any path to travel by railway due to limited 17 
train capacity, its general cost is given as that of an alternative (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 ), e.g., the cost of traveling by bus. Constraint 18 
(8) denotes that each passenger group can choose at most one path to travel from its origin to its destination. 19 
Constraint (9) means that if a passenger group uses a path 𝑝𝑝, it must use a certain train (𝑙𝑙, 𝑣𝑣) on line 𝑙𝑙 of path 𝑝𝑝. 20 
Constraint (10) is used to calculates the occupation of each segment 𝑠𝑠, and constraint (11) ensures that the total 21 
number of passengers on train (𝑙𝑙, 𝑣𝑣) in segment 𝑠𝑠 cannot exceed the capacity of the train. Constraint (12) is used 22 
to calculate the ticket fare of a passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) using path 𝑝𝑝 by adding the fare for each segment of 23 

path 𝑝𝑝. In constraint (13), |𝑉𝑉𝑙𝑙| denotes the last train on line 𝑙𝑙. This constraint removes the symmetrical solution 24 
and ensures that the departure headway between two trains of the same line in the origin cannot be smaller than 25 
the minimum headway ℎ. Constraint (14) is the social equity constraint, which ensures that the general travel cost 26 
of a passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) consisting of low-income passengers cannot exceed the average general travel cost 27 
of all the passenger groups with the same origin, destination, and expected arrival time by 𝜀𝜀 times. Constraint 28 

(15) builds the relationship between variables 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝 . Constraints (16) and (17) ensure that 𝑓𝑓𝑖̅𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 29 

receives the correct value. Specifically, if passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) uses train (𝑙𝑙, 𝑣𝑣) of path 𝑝𝑝 (𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 = 1), its 30 

fare should be 𝑓𝑓𝑠𝑠𝑙𝑙𝑙𝑙; otherwise, it is 0. Constraint (18) ensures that the revenue will be larger than a given value (𝑅𝑅). 31 
Constraint (19) specifies the proper value of variable 𝑓𝑓𝑠𝑠𝑙𝑙𝑙𝑙, which must be within a given interval. Constraints (20)–32 
(28) show the domain of variables.   33 

Additional constraints to model some of the attributes used in the utility function are as follows:  34 

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 = ∑ ∑ 𝑟̅𝑟𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝

𝑣𝑣∈𝑉𝑉𝑙𝑙𝑙𝑙∈𝐿𝐿𝑝𝑝         ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱,𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖                                  (29) 35 

𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 = ∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′𝑣𝑣′
𝑣𝑣∈𝑉𝑉𝑙𝑙,𝑣𝑣′∈𝑉𝑉𝑙𝑙′       𝑙𝑙,𝑙𝑙′∈𝐿𝐿𝑝𝑝:𝑙𝑙′>1 ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱,𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖                             36 

(30)            37 

 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′𝑣𝑣′ ≥ �𝑑𝑑𝑙𝑙′𝑣𝑣′ + 𝑏𝑏𝑖𝑖

𝑝𝑝𝑝𝑝′𝑣𝑣′� − �𝑑𝑑𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟̅𝑟𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚� −𝑀𝑀�1 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝� − 𝑀𝑀 �1 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝′𝑣𝑣′�                 38 

 ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱, 𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖, 𝑙𝑙, 𝑙𝑙′ ∈ 𝐿𝐿𝑝𝑝: 𝑙𝑙′ > 1, 𝑙𝑙 = 𝑙𝑙′− 1, 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 ,𝑣𝑣′ ∈ 𝑉𝑉𝑙𝑙′     (31) 39 

 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′𝑣𝑣′ ≤ �𝑑𝑑

𝑙𝑙′𝑣𝑣′
+ 𝑏𝑏𝑖𝑖

𝑝𝑝𝑙𝑙′𝑣𝑣′� − �𝑑𝑑𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟̅𝑟𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚� + 𝑀𝑀�1 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝�+ 𝑀𝑀�1 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝′𝑣𝑣′�              40 

 ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱, 𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖, 𝑙𝑙, 𝑙𝑙′ ∈ 𝐿𝐿𝑝𝑝: 𝑙𝑙′ > 1, 𝑙𝑙 = 𝑙𝑙′− 1, 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 ,𝑣𝑣′ ∈ 𝑉𝑉𝑙𝑙′     (32) 41 



26 

∆𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 ≥ �𝑑𝑑|𝐿𝐿𝑝𝑝|,𝑣𝑣 + 𝑏𝑏𝑖𝑖

𝑝𝑝|𝐿𝐿𝑝𝑝|𝑣𝑣 + 𝑟̅𝑟𝑖𝑖
𝑝𝑝|𝐿𝐿𝑝𝑝|𝑣𝑣� − 𝑎𝑎�𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑀𝑀 �1 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝|𝐿𝐿𝑝𝑝|𝑣𝑣�  ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱,𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖 , 𝑣𝑣 ∈ 𝑉𝑉|𝐿𝐿𝑝𝑝|   (33) 1 

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 ≥ �𝑎𝑎�𝑖𝑖𝑖𝑖𝑖𝑖 − �𝑑𝑑|𝐿𝐿𝑝𝑝|,𝑣𝑣 + 𝑏𝑏𝑖𝑖

𝑝𝑝|𝐿𝐿𝑝𝑝|𝑣𝑣 + 𝑟̅𝑟𝑖𝑖
𝑝𝑝|𝐿𝐿𝑝𝑝|𝑣𝑣�� − 𝑀𝑀 �1 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝|𝐿𝐿𝑝𝑝|𝑣𝑣� ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱, 𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖, 𝑣𝑣 ∈ 𝑉𝑉|𝐿𝐿𝑝𝑝|  (34)    2 

 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 = �𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 + 𝛽𝛽1 × 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 + 𝛽𝛽2 × (|𝐿𝐿𝑝𝑝|−1) × 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 + 𝛽𝛽3 × 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 + 𝛽𝛽4 × ∆𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 + 𝛽𝛽5 × 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 �  3 

∀𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱,𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖   (35) 4 

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 ,𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 ,∆𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝 , 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝 ≥ 0    ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱,𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖                                           (36) 5 

𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′𝑣𝑣′ ≥ 0      ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝜏𝜏 ∈ 𝛱𝛱,𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖, 𝑙𝑙, 𝑙𝑙′ ∈ 𝐿𝐿𝑝𝑝: 𝑙𝑙′ > 1, 𝑙𝑙 = 𝑙𝑙′− 1, 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙, 𝑣𝑣′ ∈ 𝑉𝑉𝑙𝑙′               6 

(37)         7 
Equations (29) and (30) are used to calculate the in-vehicle time and waiting time of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) 8 

on path 𝑝𝑝, respectively. Inequities (31) and (32) are used to calculate the transfer waiting time between two trains 9 

(𝑙𝑙, 𝑣𝑣) and (𝑙𝑙′,𝑣𝑣′) of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) along path 𝑝𝑝. Inequities (33) and (34) specify the arrival delay 10 

and earliness of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) on path 𝑝𝑝. Here, |𝐿𝐿𝑝𝑝| denotes the last line of path 𝑝𝑝. Equation (35) 11 
calculates the general travel cost of passenger group (𝑖𝑖, 𝑡𝑡, 𝜏𝜏) using path 𝑝𝑝. Constraints (36) and (37) show the 12 
domain of variables. 13 
 14 
Appendix B. Passenger demand generation 15 

To model passenger demand, we defined passenger groups according their origin, destination, the desired 16 
arrival time, and income level. Generally, passenger travel demand is related to the number of inhabitants in a city. 17 
Therefore, we classified all the stations of the considered railway network into three levels based on passenger 18 
demand: large stations, medium stations, and small stations. From Figure 8, we can see there are 21 stations in 19 
total, which were classified into the three types shown in Table 9. 20 

Table 9. Different classes of stations on the considered HSR network. 21 

ID Station type Stations 
1 Large stations Guang-zhou South, Zhao-qing East, Wu-zhou South, Nan-ning East, Gui-lin North 
2 Medium stations Fo-shan West, Gui-ping, Gui-gang, He-zhou, Yang-shuo 
3 Small stations All other stations 

Most trains stop only at large stations and medium stations; only a few trains stop at small stations. In addition, 22 
the period from 07:00 a.m. to 09:00 a.m. is the morning peak period and that from 06:00 a.m. to 07:00 a.m. is the 23 
off-peak hour. Thus, we generated three passenger OD demands for each hour between any two large stations 24 
during the peak period, which were assumed to be evenly distributed. As passengers of the same OD can be further 25 
divided into three groups based on their income levels, we obtained nine passenger OD groups between any two 26 
large stations within one hour of the peak period. For the off-peak period, passenger demand is lower, and we 27 
generated two demands between any two large stations for an hour. Therefore, we obtained six passenger groups 28 
between any two large stations in the period from 07:00 a.m. to 09:00 a.m. In total, we obtained 192 passenger 29 
groups among large stations for both the peak period and the off-peak period. Similarly, we generated two 30 
passenger ODs for each hour of the peak period and one OD for each hour of the off-peak period between any 31 
large station and medium station. Therefore, we obtained 285 passenger groups between a large station and a 32 
medium station. The demand between two medium stations is small. As a result, we generated one passenger OD 33 
for each hour between any two medium stations, which resulted in six passenger ODs and 54 passenger groups in 34 
total. We did not consider passenger demand between any two small stations because this demand is quite small.  35 

For the passenger volume of each passenger group, we assumed that each high-income or medium-income 36 
passenger group between two large stations had 30 passengers, whereas the low-income passenger group had 20 37 
passengers. In addition, the passenger volume of any high-income or medium-income passenger group between 38 
a large station and a medium station was 15 passengers and that of a low-income passenger group was also 10 39 
passengers. Finally, the passenger volume of any high-income or medium-income passenger group between any 40 
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two medium stations was 10 passengers and that of a low-income passenger group was 20 passengers. Because 1 
high-income inhabitants prefer to live in large cities in China, the proportion of low-income passengers in large 2 
cities is smaller than that in relatively small cities. Detailed passenger information is given in Table 10. 3 

Table 10. Passenger OD information. 4 

OD types Income levels No. of passenger groups Volume 
From large station to large station High income 64 30 

Medium income 64 30 
Low income 64 20 

From large station to medium station or 
from medium station to large station 
 

High income 95 15 
Medium income 95 15 
Low income 95 10 

From medium station to medium station High income 18 10 
Medium income 18 10 
Low income 18 20 

In total 531 9,640 
 5 
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