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Quantum transport in magnetic topological insulators reveals a strong interplay between magnetism and
topology of electronic band structures. A recent experiment on magnetically doped topological insulator
Bi2Se3 thin films showed the anomalous temperature dependence of the magnetoconductivity while their
field dependence presents a clear signature of weak antilocalization [Tkac et al., Phys. Rev. Lett. 123,
036406 (2019)]. Here, we demonstrate that the tiny mass of the surface electrons induced by the bulk
magnetization leads to a temperature-dependent correction to the π Berry phase and generates a
decoherence mechanism to the phase coherence length of the surface electrons. As a consequence, the
quantum correction to conductivity can exhibit nonmonotonic behavior by decreasing the temperature.
This effect is attributed to the close relation of the Berry phase and quantum interference of the topological
surface electrons in quantum topological materials.
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Introduction.—Three-dimensional (3D) topological
insulators (TIs) have stimulated intensive theoretical and
experimental study in the past decade [1–6]. In the quantum
diffusive regime, owing to the nontrivial π Berry’s phase,
the topological surface states are expected to experience a
destructive quantum interference in the scattering process
[7–10]. Accordingly, the magnetoconductivity shows a
negative notch in a weak magnetic field (B) and is called
weak antilocalization (WAL), which has been regarded as a
significant transport signature for the topological surface
states of TIs [11–16]. Besides, one anticipates that the
conductivity correction from the WAL effect should
decrease with increasing the temperature. However, the
temperature dependence of conductivity usually shows an
opposite tendency in experiments [17–22]. Such a dilemma
in some pristine TIs can be resolved by further considering
the electron-electron interaction effect at low temperatures
[23–25]. Recently, Tkac et al. reported that the contra-
dictory tendency between the temperature- and magnetic-
field-dependent conductivity remains even after subtracting
the interaction effect in the Mn-doped Bi2Se3 thin films
[26]. As shown in Fig. 1, the magnetoconductivity δσðBÞ
exhibits a monotonic temperature dependence for a non-
doped Bi2Se3 sample, a typical behavior of WAL as
expected theoretically, and a nonmonotonic temperature
dependence for the doped (xMn ¼ 4% and xMn ¼ 8%)
samples, respectively, where δσðBÞ ¼ σðT; BÞ − σðT; 0Þ
with σðT; BÞ the temperature-dependent conductivity at a
finite magnetic field B. At low temperatures, the doped and
nondoped samples show opposite temperature dependence.
Meanwhile, the magnetoconductivity for those samples
always exhibit WAL correction as shown in Fig. 2 in
Ref. [26]. The simple assumption of the monotonic temper-
ature dependence of coherence length due to the electron-
electron interaction effect [23,24,27] cannot account for

these observations. Actually, the surface state in the
magnetically doped TIs acquires a finite mass due to the
time-reversal symmetry breaking accompanied with a small
correction to the π Berry phase [28–32]. The nearly π Berry
phase is capable of accounting for the WAL behavior for
the magnetoconductivity but fails to explain the anomalous
behavior.
In this Letter, we resolve the puzzle of the anomalous

temperature dependence of quantum correction. The role of
the magnetic doping is assumed to produce a finite gap for
the surface states. Then, a magnetoconductivity formula of
quantum interference is derived for massive Dirac fer-
mions, which is simply characterized by the spin polari-
zation η. The quantity is also associated to the correction to
the π Berry phase of surface electrons. The nearly π Berry
phase accounts for the WAL behavior for the magneto-
conductivity. However, the temperature dependence of η
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FIG. 1. Magnetoconductivity as a function of the temperature at
different magnetic field strengths for two Mn-doped Bi2Se3 thin
films of Mn-doped concentration (a) xMn ¼ 0%, (b) xMn ¼ 4%,
and (c) xMn ¼ 8%. The open squares are the experimental data
extracted from Ref. [26]. The solid red lines are the fitting results
at different magnetic fields B by using the formula in Eq. (6).
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leads to a nonmonotonic behavior of the quantum correc-
tion to the conductivity at low temperatures due to the
quantum decoherence effect caused by the deviation from
the π Berry phase. The good coincidence between our
theory and experimental data suggests that the anomalous
temperature dependence can be ascribed to the temper-
ature-dependent correction to the π Berry phase of the
surface states.
Model Hamiltonian and spin polarization.—Because of

the hybridization of the top and bottom surface states or the
time-reversal symmetry breaking caused by the magnetic
doping, the surface electrons in the TI thin films can
acquire a finite mass [28,33–35]; thus, it is proper to treat
the surface states as massive Dirac fermions. Besides, in a
TI thin film, the 3D bulk band is quantized into two-
dimensional (2D) subbands owing to the quantum confine-
ment effect. The 2D subbands have a similar low-energy
Hamiltonian as the surface one but with a relatively large
band gap [36]. We begin with the modified model of 2D
massive Dirac fermions [5,34]:

H ¼ vℏðσxkx þ σykyÞ þmðkÞσz; ð1Þ

where v is the effective velocity, ℏ is the reduced Planck
constant, σx;y;z are the Pauli matrices, k ¼ ðkx; kyÞ is the
wave vector,mðkÞ ¼ mv2 − bℏ2ðk2x þ k2yÞ is the mass term,
and m and b are the coefficients. The mass term gives the
spin polarization η ¼ hσzi ¼ mðkFÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ℏ2k2F þ ½mðkFÞ�2

p
at the Fermi radii kF, which is directly related to the Berry
phase for Dirac fermions. As shown in Fig. 2, the spin lies
in the plane of the Fermi circle for η ¼ 0 and is titled to the
out of plane for η ≠ 0. After the spin vector travels along
the Fermi circle adiabatically, a Berry phase is acquired,
ϕb ¼ 1

2

R
π
0

R arccos η
0 sin θdθdϕ ¼ πð1 − ηÞ. Furthermore, we

mark the spin and momentum orientation in the trajectory
of backscattering and corresponding time-reversal trajec-
tory. For η ¼ 0, the spins of incoming (k) and outgoing
(−k) electrons are antiparallel to each other. The scattering
sequences are accompanied by the coherent spin rotation
which yields the WAL due to the π Berry phase. For η ≠ 0,
the spin of the (k, −k) electron pair is partially titled to the
z direction, and the spin-singlet and -triplet pairings mix
together. Consequently, the accumulating Berry phase
deviates from π, and, after taking the average of all the
possible trajectories with different winding numbers, a new
decoherence mechanism is introduced. When η → 1, the
spin is along the z direction. The incoming and outgoing
electrons form a triplet pairing and give rise to a WL
correction.
Cooperon gaps and weighting factors.—The quantum

correction to the conductivity is evaluated by using the
Feynman diagrammatic technique [37–42]. In the present
calculation, we keep the matrix form for Green’s functions
and treat all possible Cooperon channels, correlators in the
particle-particle pairing channels in electric conductivity

of nonsuperconducting metals, on the same footing [43].
In the diffusion approximation, it is found that three
out of four possible Cooperon channels contribute to the
conductivity:

σqi ¼ −
4e2

h

X
i

X
q

wi

l−2
i þ q2

; ð2Þ

where i ¼ s; tþ; t− is the Cooperon channel index and l−2
i

and wi are the corresponding Cooperon gap and weighting
factors, respectively. The expressions for l−2

i and wi are
listed in Table I.
The channels i ¼ t� contribute to the WL correction,

and the channel s contributes to the WAL correction
according to the signs of their weighting factors wt� > 0

and ws < 0. The original Cooperon structure factor ΓðqÞ is
in the basis of fj↑↑i; j↑↓i; j↓↑i; j↓↓ig. To diagonalize
ΓðqÞ, we rotated the basis into the spin-singlet and -triplet
basis js; szi, where js; szi labels the total spin sð¼ 0; 1Þ and
its z component sz. The channels i ¼ t� correspond to two
triplet pairings (s ¼ 1) and result in the WL correction,
while the channel i ¼ s is the singlet pairing (s ¼ 0) and
gives out the WAL correction. l−2

i and wi are plotted in
Fig. 3. When η ¼ 0 and ϕb ¼ π, one finds a pure WAL
correction from the channel s, which is consistent with the
Hikami-Larkin-Nagaoka formula for the strong spin-orbit
scattering [38]. When η ¼ 1 ðη ¼ −1Þ and ϕb ¼ 0 (2π), the
channel tþðt−Þ gives a pure WL correction as the conven-
tional electron gas.
Temperature dependence of conductivity correction.—

The integration over q in Eq. (2) is logarithmically
divergent in both the ultraviolet and infrared limit. To
avoid the divergence, the two cutoffs have to be introduced
to restrict l−1

ϕ ≤ q ≤ l−1
e , where le ¼

ffiffiffiffiffiffiffiffi
D0τ

p
is the mean

free path and lϕ is the coherence length caused by the

FIG. 2. Schematic diagram of the band structure and spin
orientation for (a) massless and (b) massive Dirac fermions. The
spin vectors at a certain Fermi energy are depicted by the red
arrows. (c) and (d) show the corresponding Berry phase as the
solid angle traced out the spin vectors on the Bloch sphere for (a)
and (b), respectively. (e) and (f) show the trajectory of back-
scattering (solid line) and corresponding time-reversal trajectory
(dashed line) for massless and massive Dirac fermions, respec-
tively. The black arrow represent the momentum direction, and
the red arrow denotes the spin orientation.
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inelastic scattering [23,24,27]. Consequently, Eq. (2) gives
the quantum correction to the conductivity:

σqiðB ¼ 0; TÞ ¼ e2

πh

X
i

wi ln
l−2
ϕ þ l−2

i

l−2
e þ l−2

i
: ð3Þ

To investigate the temperature dependence of σqiðTÞ, we
assume lϕ ¼ l0

ϕðT=T0Þ−p=2, where p ¼ 1 for electron-
electron interaction and p ¼ 3 for electron-phonon inter-
action in 2D systems and l0

ϕ is the coherence length at
T ¼ T0 [23,24]. The characteristic parameter of the temper-
ature-dependent conductivity is [25]

κðnÞqi ≡ πh
e2

∂σqiðB ¼ 0; TÞ
∂ lnT ¼

X
i

wip
1þ l2

ϕ=l
2
i

ð4Þ

if η and le are insensitive to the temperature. In this case,
the presence of nonzero Cooperon gap l−2

i is highly
nontrivial. As shown in Fig. 4(a), when η ¼ 0, the
conductivity correction is always logarithmically divergent

and κðnÞqi ¼ −p=2. However, once 0 < η ≪ 1;l−2
i ≠ 0, the

conductivity correction saturates at lower temperatures, and

κðnÞqi would increase from some value ∈ ð−p=2; 0Þ to 0
gradually. In another limit of η ∼ 1, as shown in Fig. 4(b),

κðnÞqi ¼ p=2 for η ¼ 1, and κðnÞqi decreases from some value

∈ ð0; p=2Þ to 0 by lowering the temperature. Hence, the
finite Cooperon gap leads to the saturation behavior of
σqið0Þ at low temperatures.
In the magnetic TIs, the mass term is related to the

magnetization; hence, η is also a function of the temper-
ature. Consequently, the slope κqi has a correction term
from ∂η=∂ lnT:

κðmÞ
qi ¼

X
i

�
gi

∂η
∂ lnT þ wip

1þ l2
ϕ=l

2
i

�
ð5Þ

with gi ≡ ∂
∂η fwi ln½ðl−2

ϕ þ l−2
i Þ=ðl−2

e þ l−2
i Þ�g. Here, we

still assume that le is insensitive to the temperature. We can
have a qualitative analysis for the sign of κqi for the case

of η ∼ 0. When η ∼ 0, κðmÞ
qi ≈ −½l−2

e ∂η2=∂ lnT þ l−2
ϕ p�=

½2ðl−2
ϕ þ l−2

i¼sÞ�. If ð∂η=∂ lnTÞ ≥ 0 and κqi ≤ 0, the zero-
field conductivity always decreases with increasing the
temperature, indicating a WAL tendency as usual.
However, if ð∂η=∂ lnTÞ < 0, l−2

e ð∂η2=∂ lnTÞ < 0 and
l−2
ϕ p > 0. κqi may experience a sign change while decreas-

ing the temperature, which implies an anomalous

TABLE I. The components of four Cooperon channels i ¼ s, t0;� in the basis of spin-triplet and -singlet js; szi, the
Cooperon gap l−2

i in units of the mean free path l−2
e and the weighting factors wi.

i Cooperon in js; szi wi l−2
i =l−2

e

s j0; 0i −½ð1 − η2Þ2�=½2ð1þ 3η2Þ2� ½ð1 − η2Þη2�=½ð1þ η2Þ2�
tþ j1; 1i ½4η2ð1þ η2Þ�=½ð1þ 3η2Þ2� ½4ð1 − ηÞ2η2�=½ð1þ 3η2Þð1þ ηÞ2�
t0 j1; 0i 0 ∞
t− j1;−1i ½4η2ð1þ η2Þ�=½ð1þ 3η2Þ2� ½4ð1þ ηÞ2η2�=½ð1þ 3η2Þð1 − ηÞ2�

i

(a) (b)

FIG. 3. (a) The Cooperon gap l−2
i in units of square of the mean

free path l−2
e and (b) the weighting factors as functions of spin

polarization η, where t0;� and s represent the WL and WAL
channels, respectively. The weighting factors for tþ and t−
channels are equal.

(b)

(d)(c)

(a)

FIG. 4. Zero-field conductivity correction and slope κðnÞqi as a
function of the ratio of the mean free path to the coherence length
le=lϕ for (a) WAL of spin polarization η ∼ 0 and (b)WL of η ∼ 1.
Magnetoconductivity at different values of le=lϕ for (c) η ¼ 0.01
and (d) η ¼ 0.9. The calculation parameter le ¼ 10 nm.
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temperature dependence even in the case of the WAL
correction. A similar analysis holds for η ∼ 1.
Magnetoconductivity.—Experimentally, the effect of

quantum interference can be detected by measuring the
variation of the conductivity in an external magnetic field.
When the magnetic field is along the z direction, qx and qy
are quantized into a series of Landau levels as q2x þ q2y →

ðnþ 1
2
Þl−2

B with lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=4eB

p
the magnetic length and n

a non-negative integer. Consequently, the magnetoconduc-
tivity reads [43]

δσqiðBÞ ¼
X
i¼s;t�

wiF
�
l2
B

l2
ϕ

þ l2
B

l2
i

�
; ð6Þ

where F ðxÞ≡ ðe2=πhÞ½ψðxþ 1
2
Þ − ln x� with ψðxÞ the

digamma function. Comparing with the previous theories,
only one Cooperon channel was taken into account in the
Hikami-Lukin-Nagaoka formula [38], which is valid only
in two limits (η ¼ 0 and η ¼ 1). In the Lu-Shen formula,
the two Cooperon channels of triple pairing i ¼ t� were
approximately treated as one for WL, which forms a
competition against the Cooperon channel of singlet pair-
ing (i ¼ s) for WAL [25].
When η ≪ 1, Eq. (6) is simplified as δσqiðBÞ ≈

− 1
2
F ðl2

B=l
2
ϕsÞ with an effective coherence length lϕs:

1=l2
ϕs ≃ η2=l2

e þ 1=l2
ϕ. The presence of η2=l2

e means a
new decoherence mechanism for the coherence length
besides the interaction effect. It is closely related to the
correction to the π Berry phase and becomes dominant at
lower temperatures as 1=l2

ϕ → 0. When η is independent of
the temperature, as shown in Fig. 4(c), the δσqiðBÞ
gradually saturates when le=lϕ → 0, as the effective
coherence length is approximately determined by lϕs ¼
le=η instead of lϕ at low temperatures. Hence, even a small
η can generate an observable effect. When 0 < 1 − η ≪ 1,
Eq. (6) is simplified as δσqiðBÞ ≈ 1

2
F ðl2

B=l
2
ϕtþÞ with

1=l2
ϕtþ ¼ð1−ηÞ2=4l2

eþ1=l2
ϕ, where the new decoherence

term ð1 − ηÞ2=4l2
e leads to the saturation of δσqiðBÞ when

le=lϕ → 0 [see Fig. 4(d)].
This decoherence mechanism corresponds to the

decaying Berry phase of multiple scattering trajectories.
The Berry phase contributes to the return probability as a
phase factor eiθ ¼ eiϕbð1þ2nÞ after n times of revolutions
[44]. For η ≪ 1, after averaging over n, we have
heiθi ∼ −e−η2t=τ, where the minus sign stems from the π
Berry phase (eiπð1þ2nÞ ¼ −1) and gives a WAL correction
when ϕb ∼ π. The decaying factor can reproduce the
effective coherence length lϕs in the magnetoconductivity
formula for WAL [43]. Furthermore, in the magnetic TIs, η
can be a function of the temperature. lϕs or lϕtþ can be a
nonmonotonic function of the temperature and further
leads to a nonmonotonic temperature dependence of

magnetoconductivity. In addition, δσqiðBÞ is still a mon-
otonic function of the magnetic field. Thus, a temperature-
dependent η can produce different temperatures and mag-
netic field dependences of magnetoconductivity.
Fitting the experiment.—Armed with the formula of

magnetoconductivity in Eq. (6), we are now ready to
address the puzzle of the anomalous temperature depend-
ence of the conductivity. In Fig. 1, the experimental data
labeled by open squares are extracted from the temperature-
dependent conductivity at a finite B field in Figs. 4(a)–4(c)
in Ref. [26]. Since the conductivity correction from the
interaction effect is insensitive to the external magnetic
field, the magnetoconductivity δσðBÞ can exclude the
correction from the interaction effect and is mainly deter-
mined by the quantum interference effect: δσðBÞ ≈ δσqiðBÞ.
For the pristine Bi2Se3 of xMn ¼ 0%, the Fermi level
intersects with both the surface band and bulk bands as
clearly shown in the ARPES data in Ref. [26], the δσ data at
different magnetic fields can be well fitted by considering
one gapless surface states and two gapped bulk subbands
[solid red lines in Fig. 1(a)] [36,41,48], and the fitting
details can be found in Ref. [43].
The magnetoconductivities of the samples of xMn ¼ 4%

and xMn ¼ 8% are similar and turn to increase with a
decreasing temperature at low temperatures. The anoma-
lous Hall resistivity in a ferromagnetic conductor has an
empirical relation with the magnetic field B and magneti-
zation M: ρxy ¼ R0Bþ RAM [49]. The magnetization is a
function of the temperature below the Curie temperature
TC. Nonzero magnetization makes the surface states open a
tiny gap. For the sample of xMn ¼ 8%, from the data of the
anomalous Hall resistivity, it is found thatM is proportional
to 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
T=TC

p
below the Curie temperature TC ¼ 11.45 K

[50]. η is assumed to obey the same behavior: ηðTÞ ¼
η0½1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
T=TC

p �ΘðTC − TÞ (see Sec. SIII.B in Ref. [43]),
where η0 is the spin polarization at the zero temperature and

(a) (b)

4 K

3 K

5 K

20 K

7 K
10 K

FIG. 5. (a) Magnetoconductivity at different temperatures for
the Cr-doped Bi2Se3 thin film of x ¼ 0.23. The open squares are
the experimental data extracted from Fig. 2(j) of Ref. [31]. The
solid red lines are the fitting results. (b) The temperature
dependence of the fitted phase coherence length lϕ (open
squares). The red line indicates lϕ ∝ T−1.14.
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ΘðxÞ is the Heaviside step function. Besides, the mean free
path is estimated as le ≈ 14 nm at T ¼ 2 K and le ≈
13.6 nm at T ¼ 40 K from the mobility and carrier density
data, respectively. le is insensitive to the temperature and is
fixed as 14 nm to reduce the number of fitting parameters.
We further assume lϕ ¼ l0

ϕT
−δ=2, where l0

ϕ and δ are the
fitting parameters and T in units of Kelvin. In Fig. 1(c), the
fitting curves show a good agreement with the experimental
data for B ¼ 0.1, 0.2, 0.5, and 1 T. The corresponding
fitting parameters are listed in Table SII in Ref. [43]. As the
fitting parameter η ≃ 0.2, the weighting factors wi¼t� ≃ 4η2

and wi¼s ≃ − 1
2
ð1 − 8η2Þ. Thus, the Cooperon channel of

i ¼ s is dominant. Its effective phase coherence length
lϕ;i¼s has a nonmonotonic temperature dependence, which
is similar to the one given by Tkac et al. [26]. A similar
analysis has been applied to the sample of xMn ¼ 4% in
Ref. [43], and the fitting curves show a good agreement with
the experimental data for B ¼ 0.2, 0.5, 1, and 2 T, as
displayed in Fig. 1(b). The good coincidence between the
theory and the experiment implies that the anomalous
temperature dependence of δσ in the magnetic TIs can be
ascribed to the temperature-dependent η or the Berry phase.
Furthermore, we also applied the formula in Eq. (6) to fit

the temperature-dependent magnetoconductivity in Cr-
doped Bi2Se3 ultrathin films in an early measurement
[31] by considering two topological surface states and
two gapped bulk subbands. It was found that the measured
crossover from WL to WAL by increasing the temperature
can be well understood by taking into account the temper-
ature dependence of magnetization of the topological surface
states and quantum interference effect of multiple Cooperon
channels. Figure 5(a) shows an excellent agreement between
the experimental data and fitting curves, and the correspond-
ing fitting parameters are also consistent at different temper-
atures. The extracted phase coherence length follows the
power law lϕ ∝ T−1.14 [see Fig. 5(b)]. For more details,
readers are referred to Sec. SIV in Ref. [43].
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