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Abstract:  1 

Solar-induced chlorophyll fluorescence (SIF) measured from space has been increasingly used 2 

to quantify plant photosynthesis at regional and global scales. Apparent canopy SIF yield 3 

(SIFyield apparent), determined by fluorescence yield (ΦF) and escaping ratio (fesc), together with 4 

absorbed photosynthetically active radiation (APAR), is crucial in driving spatio-temporal 5 

variability of SIF. While strong linkages between SIFyield apparent and plant physiological 6 

responses and canopy structure have been suggested, spatio-temporal variability of SIFyield 7 

apparent at regional scale remains largely unclear, which limits our understanding of the spatio-8 

temporal variability of SIF and its relationship with photosynthesis. In this study, we utilized 9 

recent SIF data with high spatial resolution from two satellite instruments, OCO-2 and 10 

TROPOMI, together with multiple other datasets. We estimated SIFyield apparent across space, time, 11 

and different vegetation types in the U.S. Midwest during crop growing season (May to 12 

September) from 2015-2018. We found that SIFyield apparent of croplands was larger than non-13 

croplands during peak season (July-August). However, SIFyield apparent between corn (C4 crop) 14 

and soybean (C3 crop) did not show a significant difference. SIFyield apparent of corn, soybean, 15 

forest, and grass/pasture show clear seasonal and spatial patterns. The spatial variability of 16 

precipitation during the growing season could explain the overall spatial pattern of SIFyield apparent. 17 

Further analysis by decomposing SIFyield apparent into ΦF and fesc using near-infrared reflectance 18 

of vegetation (NIRV) suggests that fesc may be the major driver of the observed variability of 19 

SIFyield apparent.  20 

 21 

Keywords: solar-induced chlorophyll fluorescence, OCO-2, TROPOMI, fluorescence yield, 22 

croplands, NIRV, escaping ratio 23 
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 24 

1. Introduction 25 

Accurate and timely estimation of ecosystem photosynthesis measured as gross primary 26 

production (GPP) is crucial for understanding carbon exchange between the biosphere and 27 

atmosphere (Beer et al., 2010). GPP also largely determines vegetation net primary productivity 28 

and crop yield (Guan et al., 2016; Guanter et al., 2014). Satellite measurements of solar-induced 29 

chlorophyll fluorescence (SIF) are increasingly used to approximate GPP variability across 30 

large spatial and temporal scales (Frankenberg et al., 2011; Guan et al., 2016; Joiner et al., 2011; 31 

MacBean et al., 2018; Shiga et al., 2018). A number of studies have shown either linear or 32 

nonlinear relationships between GPP and canopy SIF at different spatial and temporal scales 33 

and from various sensors (Li et al., 2018a; Smith et al., 2018; Verma et al., 2017; Zuromski et 34 

al., 2018; Damm et al., 2015; Zhang et al., 2016). However, fundamental controls of large-scale 35 

variabilities in SIF remain unclear.  36 

The widely-used light use efficiency (LUE)-based GPP model (Monteith, 1972) can be 37 

adapted to express SIF at the top of canopy (Guanter et al., 2014): 38 

𝐺𝑃𝑃 = 𝑃𝐴𝑅 × 𝑓𝑃𝐴𝑅 × 𝐿𝑈𝐸 = 𝐴𝑃𝐴𝑅 × 𝐿𝑈𝐸           (1) 39 

and 40 

𝑆𝐼𝐹 = 𝑃𝐴𝑅 × 𝑓𝑃𝐴𝑅 × 𝑆𝐼𝐹𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑦𝑖𝑒𝑙𝑑 41 

= 𝐴𝑃𝐴𝑅 × 𝑆𝐼𝐹𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑦𝑖𝑒𝑙𝑑 = 𝐴𝑃𝐴𝑅 × Φ𝐹 × 𝑓𝑒𝑠𝑐         (2) 42 

where PAR is photosynthetically active radiation, fPAR is the fraction of absorbed 43 

photosynthetically active radiation, APAR is absorbed PAR and LUE is light use efficiency at 44 

which APAR is used in photosynthesis. Apparent canopy SIF yield (SIFyield apparent) can be 45 
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defined as SIF observed in the direction of the sensor per PAR absorbed by canopies. SIFyield 46 

apparent is jointly determined by fluorescence yield (ΦF) and escaping ratio (fesc, Liu et al., 2018; 47 

Yang and van der Tol, 2018; Zeng et al., 2019; Du et al., 2017). Empirical studies have reported 48 

correlations between LUE and SIFyield apparent (Yang et al., 2017; Yang et al., 2015), and linkage 49 

between SIFyield apparent and plant physiological response (Song et al, 2018). Based on Equation 50 

2, both APAR and SIFyield apparent contribute to overall SIF variability. Although some studies 51 

find a strong dominance of APAR in SIF (e.g. Miao et al., 2018; Yang et al., 2018), SIFyield 52 

apparent variation is what distinguishes SIF from APAR. Significant efforts have been made to 53 

derive PAR and fPAR from satellite remote sensing and ground-based observations (Ryu et al., 54 

2018; Tian, 2004), yet characterization and understanding of SIFyield apparent remain much less 55 

studied. Existing studies have shown that SIFyield apparent can vary with vegetation type, plant age, 56 

growth stage, and growth conditions (Colombo et al., 2018; Miao et al., 2018; Sun et al., 2015). 57 

Additionally, there are indications of considerable spatio-temporal variations of SIFyield apparent 58 

(Joiner et al., 2011; Li et al., 2018b). However, understanding of SIFyield apparent variability over 59 

large spatial and temporal scales is insufficient, and the knowledge gap in SIFyield apparent over 60 

spatio-temporal scales is an outstanding source of uncertainty that limits our current 61 

understanding of SIF variability.  62 

Various satellite-based SIF sensors have emerged in the past decade and derived SIF 63 

products have progressed from coarse resolutions in space and time to finer resolution. The first 64 

global SIF product from Greenhouse Gases Observing Satellite (GOSAT, Frankenberg et al., 65 

2011; Guanter et al., 2012; Joiner et al., 2011), and the subsequent products from Global Ozone 66 

Monitoring Experiment-2 (GOME-2, Joiner et al., 2013; Köhler et al., 2015) and SCanning 67 
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Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY, Joiner et 68 

al., 2012; Köhler et al., 2015) provide an important opportunity to evaluate SIFyield apparent over 69 

large spatio-temporal scales (Joiner et al., 2011). However, due to coarse resolutions of those 70 

SIF products (0.5° or coarser for gridded data) and associated intra-pixel mixing effects, the 71 

accuracy of SIFyield apparent estimation at the vegetation-type level is limited. Launched on July 72 

2, 2014, Orbiting Carbon Observatory-2 (OCO-2) retrieves SIF at a significantly improved 73 

spatial resolution compared with previous SIF products, though the spatial coverage is sparse 74 

(Frankenberg et al., 2014). The spatial resolution of an OCO-2 footprint is approximately 75 

1.3×2.25 km2. Recent studies have compared and validated OCO-2 SIF products with GPP 76 

measurements from eddy covariance (EC) flux towers, given the comparable spatial footprints 77 

between GPP and SIF measurements (Li et al., 2018c; Lu et al., 2018). Additionally, a new SIF 78 

product based on TROPOspheric Monitoring Instrument (TROPOMI) was released in 2018 79 

(Köhler et al., 2018). TROPOMI measures SIF at both high spatial resolution and high temporal 80 

frequency, with a footprint of 3.5×7 km2 at nadir and almost daily coverage. The two high-81 

spatial-resolution SIF datasets, OCO-2 and TROPOMI, have the potential to provide more 82 

accurate assessments of SIFyield apparent for specific vegetation types.  83 

The U.S. Midwest Corn Belt currently produces more than 30% of global corn and 84 

soybean (USDA, 2018), and has been identified as a global SIF hotspot during the boreal 85 

summer (Guanter et al., 2014). Therefore, a better understanding of the controls on SIF would 86 

likely lead to a better quantification of regional carbon budgets and improved prediction of crop 87 

productivity (Guan et al., 2016). To understand controls of SIF variations, estimating SIFyield 88 

apparent for each vegetation type is necessary because SIFyield apparent can vary substantially 89 
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between different vegetation types in this area. First, the SIFyield apparent of croplands is likely 90 

larger than that of non-croplands since SIF in the U.S. Corn Belt is remarkably high during crop 91 

growing season (Guanter et al., 2014). Second, within croplands, the GPP of corn is usually 92 

much larger than that of soybean (Joo et al., 2016; Suyker and Verma, 2012). This difference 93 

in photosynthesis could be attributed to canopy structure, for example, leaf area index (LAI) 94 

and leaf angle distribution (LAD), and plant physiology, both of which could potentially drive 95 

differences in SIFyield apparent (Frankenberg and Berry, 2018; Porcar-Castell et al., 2014). 96 

However, whether and how SIFyield apparent of corn and soybean differ is still not well studied. 97 

Finally, the non-crop vegetation types of forest and grass/pasture, for example, are also different 98 

in both physiological processes and canopy structures.  99 

This study aims to provide a comprehensive analysis of the spatio-temporal variability of 100 

SIFyield apparent of vegetation in the U.S. Midwest. The two newest satellite SIF datasets, i.e. 101 

OCO-2 and TROPOMI footprint SIF observations, are used to provide a more accurate 102 

estimation of SIFyield apparent of specific vegetation types. Specifically, we aim to address the 103 

following questions: How does SIFyield apparent of croplands differ from SIFyield apparent of non-104 

croplands during crop growing season? How does SIFyield apparent of corn (C4 crop) differ from 105 

SIFyield apparent of soybean (C3 crop)? What are seasonal and spatial patterns of SIFyield apparent of 106 

the four major vegetation types? What drives variability of SIFyield apparent in space, time, and 107 

across vegetation types?  108 

 109 

2. Data and Methodology 110 

2.1 Study region 111 
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The study region spans 15 states in the U.S. Midwest region (Fig. 1) including North 112 

Dakota, South Dakota, Nebraska, Kansas, Minnesota, Iowa, Missouri, Wisconsin, Illinois, 113 

Michigan, Indiana, Ohio, Kentucky, Wyoming (East to 107 °W), and Colorado (East to 114 

107 °W). Corn and soybean are the major crop types in this area. In addition to crops, forest 115 

and grass/pasture are also dominant vegetation types in the U.S. Midwest. Forests are mainly 116 

distributed in the northeast, southeast, and west of the study area and grass/pasture is mainly 117 

distributed in the west (Fig. 1). Most forests are temperate deciduous, except for Ponderosa 118 

Pine in the west and Spruce/Fir in the north. In this study, we focused on the four main 119 

vegetation types: corn, soybean, forest, and grass/pasture. 120 

 121 

2.2 Satellite SIF footprint data  122 

We primarily used the OCO-2 SIF Lite product (v. B8100r), which contains bias-corrected 123 

SIF and other related fields for individual footprints on a daily basis (Sun et al., 2018). The data 124 

were obtained from (ftp://fluo.gps.caltech.edu/data/OCO2/sif_lite_B8100/). The OCO-2 125 

spectrometer measures high-resolution spectra in O2-A band (757-775 nm, full width at half 126 

maximum = 0.042 nm) with a local overpass time at about 1:30 pm, which was utilized for 127 

ftp://fluo.gps.caltech.edu/data/OCO2/sif_lite_B8100/
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OCO-2 SIF retrievals at 757 nm (SIF757) and 771 nm (SIF771) based on in-filling of solar 128 

Fraunhofer lines (Frankenberg et al., 2014). SIF values used here were calculated as 129 

(SIF757+1.5×SIF771)/2 because SIF771 is typically ~1.5 times lower than SIF757 (Sun et al., 130 

2018). The nominal spatial resolution of a footprint is 1.3×2.25 km2, with eight footprints along-131 

track covering a 10.6 km-wide swath and a repeat cycle of approximately 16 days. SIF 132 

observations depend on viewing geometry (Z. Zhang et al., 2018) which for OCO-2 alternates 133 

mainly between nadir mode and glint mode. We only used measurements from nadir mode 134 

because of slightly higher spatial resolution, a better signal-to-noise ratio over land and more 135 

useful soundings in regions impacted by clouds and topography (Sun et al., 2018). We used 136 

only data during the crop growing season (May - September) from 2015 to 2018. Fig. 2a and 137 

2b show a summary of the spatial and temporal coverage of OCO-2 footprints used in the study. 138 

Fig. 1 Main vegetation types (i.e. corn, soybean, grass/pasture, and forest) in the U.S. 

Midwest, derived from Cropland Data Layer of 2015 for illustration. 
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The footprints were distributed along separated tracks with high data density in the west; fewer 139 

data were available in August and September in 2017. 140 

 

Fig. 2 Illustration of availability of OCO-2 and TROPOMI footprint data in both space and 

time. Panels (a) and (b) respectively represent the spatial coverage and frequency of 

observations over time for OCO-2 data from 2015 to 2018. Panels (c) and (d) are the spatial 

and temporal distributions of the number of the footprint of TROPOMI data in 2018. (e) 

shows three examples of the footprint of OCO-2 and TROPOMI. The color background 

shown in (a) and (c) represents the density of the footprint observations. 
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In addition to OCO-2, we also used the latest released TROPOMI SIF footprint data 141 

(ftp://fluo.gps.caltech.edu/data/tropomi/). The TROPOMI onboard Sentinel 5 Precursor 142 

satellite has a local overpass time at about 1:30 pm and a repeat cycle of 17 days, and provides 143 

spectra measurements in the near-infrared band (band 6, 727-775 nm, full width at half 144 

maximum = 0.38 nm), which makes SIF retrieval possible. A data-driven approach similar to 145 

previous studies (Guanter et al., 2015; Köhler et al., 2015) was employed to extract the SIF 146 

signal using spectral measurements ranging from 743 nm to 758 nm (Köhler et al., 2018). The 147 

nominal spatial resolution of a TROPOMI footprint is 7 km along track and 3.5-15 km across 148 

track, with a wide swath width of approximately 2,600 km. This wide swath allows almost daily 149 

global observations. We used available data from May to September in 2018 with cloud cover 150 

less than 0.3 and view zenith angle less than 10 degrees. Fig. 2e shows some examples of the 151 

selected TROPOMI footprints. Fig. 2c and 2d show a summary of the spatial and temporal 152 

availability of the total TROPOMI footprint observations used in the current study. 153 

2.3 Estimating SIFyield apparent, ΦF and fesc at the satellite footprint level 154 

In this section, we describe ancillary data and how we process these data to estimate 155 

SIFyield apparent, ΦF, and fesc at the satellite footprint level. SIFyield apparent at the satellite footprint 156 

level is calculated according to Equation 2. 157 

Estimating fesc and ΦF over a large scale is challenging. In this study, we employed the 158 

following equations according to a newly developed algorithm (Zeng et al, 2019): 159 

𝑓𝑒𝑠𝑐 ≈
𝑁𝐼𝑅𝑣

𝑓𝑃𝐴𝑅
                   (3) 160 

Φ𝐹 ≈
𝑆𝐼𝐹

𝑃𝐴𝑅×𝑁𝐼𝑅𝑣
                  (4) 161 

NIR𝑣 = 𝑁𝐼𝑅 × 𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅 ×
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
            (5) 162 

http://fluo.gps.caltech.edu/data/tropomi/
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where NIRv is near-infrared reflectance of vegetation, NIR and Red are reflectances of near-163 

infrared and red bands. To calculate these variables, SIF data were obtained from OCO-2 and 164 

TROPOMI datasets as described in Section 2.2. Instantaneous PAR is the output product from 165 

Ryu et al., (2018). An artificial neural network surrogate model (Ryu et al., 2018), trained from 166 

a Monte Carlo ray-tracing model (Kobayashi and Iwabuchi, 2008) was used to produce the 167 

product. The model was driven by MODIS cloud optical thickness (3 km resolution), aerosol 168 

optical depth (1 km resolution), total water vapor (1 km resolution), total ozone (5 km 169 

resolution), and shortwave albedo products (1 km resolution), as well as GMTED2010 170 

elevation product (1 km resolution). Detailed information about the model and data processing 171 

can be found in Ryu et al. (2018). Four fPAR datasets were used to estimate SIFyield apparent. 172 

MCD15A2H from MODIS (Myneni et al., 2002) and VNP15A2H from VIIRS (Myneni and 173 

Knyazkhin 2018) are 8-day composite datasets with a spatial resolution of 500 m. PROBA-V 174 

GEOV1 fPAR data are delivered every 10 days with a spatial resolution of 300 m (Baret et al 175 

2013). We calculated daily fPAR from the three temporal composited fPAR datasets using a 176 

simple linear interpolation. MCD43A4 provides daily Nadir Bidirectional Reflectance 177 

Distribution Function (BRDF)-Adjusted Reflectance data at a 500-meter resolution which were 178 

used to calculate NDVI. A simple NDVI-fPAR model was employed to generate the fourth 179 

fPAR estimation (Peng et al., 2012, Text S1). Only footprints with all the four fPAR values 180 

larger than 0.1 were included. SIFyield apparent was calculated independently with the four fPAR 181 

estimations. The averaged SIFyield apparent from the four estimations was finally used in the 182 

analysis. MCD43A4 was also used to calculate NIRV. 183 

2.4 Data analysis 184 
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We performed the following analysis to address the scientific questions raised in the 185 

introduction section. First, to detect the difference of SIFyield apparent between croplands (corn and 186 

soybean) and non-croplands, we examined relationships between the land cover fraction of 187 

croplands and SIFyield apparent at the satellite footprint level for both OCO-2 and TROPOMIover 188 

the entire study domain. The land cover fraction of different vegetation types was calculated 189 

from the USDA NASS Cropland Data Layer (CDL) dataset. A linear regression analysis was 190 

conducted for each month from May to September. The slope of the regression indicates a 191 

difference of SIFyield apparent between croplands and non-croplands; a positive slope means that 192 

SIFyield apparent of croplands is larger than that of non-croplands. We performed this analysis 193 

rather than directly comparing pure croplands and non-croplands footprints because most 194 

footprints contain mixed vegetation types.  195 

Second, we selected cropland dominated footprints, defined as those footprints with a 196 

fraction of croplands greater than 80%. We then examined relationships between corn fraction 197 

of the total area in a footprint and SIFyield apparent to detect the difference of SIFyield apparent between 198 

corn and soybean. An increasing trend of SIFyield apparent with the increase of corn fraction 199 

indicates that the SIFyield apparent of corn is larger than soybean. The analysis was performed over 200 

the entire study area and also over three small sub-regions. 201 

Spatial-temporal patterns of SIFyield apparent of different vegetation types were explored. 202 

Both fesc and ΦF can contribute to the spatial-temporal patterns and differences among 203 

vegetation types. We collected SIFyield apparent of OCO-2 footprints for which the fraction of a 204 

specific vegetation type is larger than 80%. For TROPOMI data, the threshold value of the 205 

fraction was set to 50% for corn and soybean because few footprints remained when the 206 
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threshold value was set to 80%. The spatial patterns of SIFyield apparent of different vegetation 207 

types for each month were smoothed by averaging all available SIFyield apparent of the specific 208 

vegetation type within a 0.5°×0.5° grid. Seasonal patterns of SIFyield apparent were examined. The 209 

study area was divided into three sub-regions for each vegetation type according to spatial 210 

distributions of the footprints, and temporal dynamics of monthly mean SIFyield apparent were 211 

plotted for the three sub-regions. 212 

Variability of SIFyield apparent could be driven by several potential factors. First, we examined 213 

impacts of air temperature and precipitation on SIFyield apparent, because these climate variables 214 

could affect SIFyield apparent through either fesc or ΦF. We plotted SIFyield apparent of each vegetation 215 

type in each growing season month within a climate space built by a multi-year average of 216 

monthly mean air temperature and monthly total precipitation. Mean air temperature and total 217 

precipitation for May to September were calculated from monthly PRISM Climate data with a 218 

spatial resolution of 4 km from 2015 to 2018 (http://prism.oregonstate.edu/, Daly et al., 2008). 219 

Second, we examined differences in SIFyield apparent between grass and pasture, and among 220 

different forest types which could also arise from fesc and ΦF. The USGS National Land Cover 221 

Database (NLCD) in 2016 was used to identify grass (Grassland/Herbaceous in NLCD land 222 

cover classification) and pasture (Pasture/Hay in NLCD land cover classification, Homer, 223 

2015). Forest types were identified according to the Conus Forest Group dataset downloaded 224 

from USDA Forest Service (https://data.fs.usda.gov/geodata/rastergateway/forest_type/). This 225 

dataset is created by the USFS Forest Inventory and Analysis program and the Remote Sensing 226 

Application Center. Third, the start of the growing season (SOS) of the four vegetation types 227 

was examined based on the Normalized Difference Phenology Index (Wang et al., 2017, Text 228 

http://prism.oregonstate.edu/
https://data.fs.usda.gov/geodata/rastergateway/forest_type/
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S2). Finally, variabilities of fesc and ΦF can help explain the variabilities of SIFyield apparent. We 229 

examined the differences of fesc and ΦF between croplands and non-croplands, and between 230 

corn and soybean. We also explored the spatial and temporal patterns of fesc and ΦF. The same 231 

analysis as for SIFyield apparent was conducted.  232 

 233 

3. Results 234 

3.1 Difference of SIFyield apparent between croplands and non-croplands  235 

The relationship between OCO-2 SIFyield apparent and cropland fraction in different growing 236 

months from 2015 to 2018 (Fig. 3) showed a clear seasonal pattern. In May, SIFyield apparent 237 

decreased with the cropland fraction, implying that SIFyield apparent of croplands was lower than 238 

non-croplands in the early growing season. In July and August, SIFyield apparent showed an 239 

increasing trend with the increase of the cropland fraction (all statistically significant with 240 

P<0.001). These results indicated that during the peak growing season, cropland SIFyield apparent 241 

was higher than non-cropland SIFyield apparent.  242 
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Since we have SIF footprint observations from TROPOMI in 2018, we applied the same 243 

analysis as above (Fig. S1). Generally, the results from TROPOMI observations were similar 244 

to those from OCO-2 observations, despite the different magnitudes of the slopes between 245 

SIFyield apparent and the cropland fraction. We further conducted the same analysis for SIFinst 246 

(instantaneous SIF) and SIFpar (SIF normalized by PAR, Fig. S2). The difference between 247 

croplands and non-croplands in SIFinst and SIFpar showed a similar seasonal pattern to that of 248 

SIFyield apparent. 249 

 250 

 251 

  252 

Fig. 3 Relationship between SIFyield apparent calculated from OCO-2 SIF and the fraction of 

croplands (corn and soybean). The linear fits and the equations are shown when the 

regression is significant (p<0.001). Only footprints with a cropland fraction larger than 10% 

are included. 
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 253 

254 

 

 

Fig. 4 Relationship between SIFyield apparent and the fraction of the OCO-2 footprint covered 

by corn. The upper panel illustrates the three regions that are labeled in the bottom panel. 

The linear fits and the equations in the bottom panel are shown only when the regression is 

significant (p<0.001). Only footprints with a cropland fraction larger than 80% were 

included. 
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3.2 Difference of SIFyield apparent between Corn (C4) and Soybean (C3) 255 

The relationship between OCO-2 SIFyield apparent and corn fraction for the cropland-256 

dominated footprints during different growing season months from 2015 to 2018 for different 257 

regions (Fig. 4) generally showed a weak linear relationship between SIFyield apparent and corn 258 

fraction, implying that SIFyield apparent of corn was similar to that of soybean. For the entire study 259 

domain, the relationship between SIFyield apparent and corn fraction was positively significant 260 

(P<0.001) in August and September but was not significant in the other three months. We also 261 

performed a linear regression between SIFyield apparent and corn fraction in three sub-regions 262 

(northern area, middle area, and eastern area) and in five growing season months respectively, 263 

with a total of 15 cases (Fig. 4). The relationship was significant (P<0.001) only in three out of 264 

the 15 cases: the northern area in July, the middle area in September, and the eastern area in 265 

September. Compared with SIFyield apparent, the difference of SIFinst and SIFpar between corn and 266 

soybean appeared to be similar (Fig. S3-S4). SIFinst and SIFpar of corn were significantly larger 267 

than soybean from June to September for the entire area. However, this difference was weak 268 

when the analysis was restricted to a small sub-region, with the exception of SIFinst in the 269 

northern area. 270 

 271 

3.3 Spatial and temporal patterns of SIFyield apparent 272 

3.3.1 Spatial pattern and potential drivers of SIFyield apparent 273 

SIFyield apparent of corn and soybean calculated from the OCO-2 footprint data showed clear 274 

spatial patterns (Fig. 5). In May and June, the spatial difference of SIFyield apparent was low for 275 
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both corn and soybean because it is the beginning of the growing season for those crops (Fig. 276 

S5). From July to August, SIFyield apparent of corn in the central Corn Belt (Iowa, Illinois, and 277 

Indiana) was higher than SIFyield apparent of corn in the northern and the western parts of the Corn 278 

Belt. SIFyield apparent of soybean showed a similar pattern to corn, despite there were fewer 279 

available observations defined as the fraction of soybean >80% of the footprint in the west.  280 

This spatial pattern of SIFyield apparent for both corn and soybean can be partly explained by 281 

precipitation (Fig. 6). During the peak growing season, SIFyield apparent was, in general, higher in 282 

areas with higher precipitation. SIFyield apparent in July was significantly (P<0.01) correlated with 283 

precipitation when the temperature was fixed to a small range. The response of SIFyield apparent to 284 

Fig. 5 Spatial distributions of SIFyield apparent of corn, soybean, forest, and grassland calculated 

from the OCO-2 data. The average of all the available SIFyield apparent values within a 0.5°×0.5° 

grid was assigned to all the footprints within the grid. 
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temperature was not clear. The linear correlation between SIFyield apparent in July and temperature 285 

was not significant when precipitation was fixed to a small range. In September, except for a 286 

small region in the central Corn Belt with high values of SIFyield apparent of corn, SIFyield apparent of 287 

the two crop types started to decrease, possibly because both crops matured. 288 

Spatial patterns of SIFyield apparent of forest and grass/pasture differed from those of corn and 289 

soybean (Fig. 5). In general, Forest SIFyield apparent in the west was much lower than in other 290 

regions during the growing season. Forest SIFyield apparent in the northeast and southeast were 291 

comparable. Two factors could potentially account for the observed spatial patterns. First, high 292 

SIFyield apparent was associated with high temperature and precipitation (Fig. 6). Second, the 293 

spatial distribution of the forest types and the differences of SIFyield apparent among these types 294 

could explained the spatial pattern of SIFyield apparent. Among all forest types, SIFyield apparent of the 295 

dominant forest type in the west (Ponderosa Pine) was the lowest, and SIFyield apparent of the 296 

dominant forest type in the southeast (Oak/Hickory) was the highest (Fig. 7). In addition to the 297 

general spatial pattern, a decreasing pattern of SIFyield apparent from the southeast to the northeast 298 

was observed in May. A potential explanation for this observation is that the SOS of forest in 299 

the northeast was in early May or late April, whereas the SOS of forest in the southeast was in 300 

March or April (Fig. S5).   301 
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 302 

Fig. 6 a, Distributions of SIFyield apparent of corn, soybean, forest, and grass/pasture within a 

2-D space jointly determined by monthly mean temperature (℃) and precipitation (mm). 

The SIFyield apparent was calculated from the OCO-2 footprint data from 2015 to 2018. The 

meteorological variables are multi-year mean values. SIFyield apparent was smoothed by 

averaging SIFyield within a 10 mm×0.5 ℃ window. b, Scatter plots of SIFyield apparent versus 

mean temperature used data in the vertical box shown in a. c, Scatter plots of SIFyield apparent 

versus total precipitation used data in the horizontal box shown in a. The linear fits are shown 

only when the regression is significant (p<0.01). 
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 303 

The spatial pattern of SIFyield apparent in grass/pasture demonstrated a clear gradient of 304 

increase from west to east. This pattern was consistent across different growing months. 305 

Fig. 7 Boxplots of SIFyield apparent of grass, pasture and different forest types for different 

months. Shaded areas are forest types. SIFyield apparent was calculated from OCO-2 footprint 

data from 2015 to 2018.  
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Grass/pasture is mainly distributed in the western part of the U.S. Midwest. SIFyield apparent of 306 

grass/pasture appeared to be lower than other vegetation types, which may also contribute to a 307 

lower spatial variability. Similar to the forest, the spatial variability could potentially be 308 

explained by two factors. First, SIFyield apparent of pasture was higher than that of grassland while 309 

pasture was mainly distributed in the east and grassland was distributed in the west. However, 310 

this may only account for a small portion of the spatial pattern of SIFyield apparent, because the 311 

number of footprints in pasture areas was limited. Second, high SIFyield apparent was observed in 312 

the wet-warm region (Fig. 6), implying the impact of meteorological factors on SIFyield apparent. 313 

SIFyield apparent in July was positively correlated with temperature (or precipitation) after fixing 314 

precipitation (or temperature, Fig. 6). 315 

To further corroborate our findings, we examined the spatial pattern of SIFyield apparent for 316 

the four vegetation types in 2018 using TROPOMI footprint data, as Fig. S6. Compared with 317 

the results from OCO-2, the spatial pattern of SIFyield apparent of corn from TROPOMI showed 318 

high values in eastern Nebraska, southern Iowa, and Illinois in June. For soybean, SIFyield apparent 319 

was high in the southern region. Despite these slight differences, results from the two datasets 320 

were similar. We also explored spatial patterns of SIFpar and SIFinst and found similar spatial 321 

patterns to SIFyield apparent (Fig. S7-S8). 322 

3.3.2 Temporal (Seasonal) pattern of SIFyield apparent  323 

SIFyield apparent of corn, soybean, grass/pasture, and forest had different temporal variabilities 324 

from May to September (Fig. 8). Seasonal patterns of SIFyield apparent of corn and soybean showed 325 

a ‘bell’ shape. SIFyield apparent of corn and soybean increased from May onward, reaching the 326 
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highest values in July or August, before decreasing to a lower value in September when crops 327 

Fig. 8 Seasonal patterns of SIFyield apparent of corn, soybean, forest, and grassland in different 

regions, from OCO-2 footprint data (a-d). Each line was calculated as the median value of 

all footprints and all years within a specific region. Shading indicates one standard deviation. 

e-h show the definitions of the different regions in a-d. 
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began to senesce. Despite differences in the magnitude of SIFyield apparent, this seasonal pattern 328 

was consistent across different sub-regions.  329 

For grass/pasture, the seasonal pattern of SIFyield apparent in the west was remarkably 330 

different from that in the east (Fig. 8). SIFyield apparent in the west showed a slightly decreasing 331 

trend from May to September, while in the east, SIFyield apparent decreased from May to September 332 

with a higher magnitude of SIFyield apparent during the growing season. Notably, there was a rapid 333 

decrease in SIFyield apparent from May to June. This may indicate that the seasonal pattern of 334 

SIFyield apparent of grass, which dominates in the west, differs from that of pasture, which 335 

dominates in the east (Fig. 7).  336 

 For forest distributed in different sub-regions, there was a lack of a universal temporal 337 

pattern, possibly due to the different dominant forest types in these sub-regions (Fig. 7). In the 338 

west, SIFyield apparent of forest started increasing in May, peaked in July and then decreased until 339 

September. In the southeast, SIFyield apparent showed a decreasing trend from May to September. 340 

In the northeast, SIFyield apparent of the forest showed a very large increase from May to June. 341 

possibly because the growing season of the forests in this area starts in May after which time 342 

SIFyield apparent decreases until September.  343 

We further examined seasonal patterns of SIFyield apparent derived from TROPOMI in 2018 344 

(Fig S9.). As expected, the monthly dynamics of SIFyield apparent from May to September derived 345 

from the two satellite observations were similar, except for grass/pasture in the east where 346 

SIFyield apparent from TROPOMI did not show a clear decreasing trend from May to September 347 

as OCO-2. In addition, the seasonal patterns of SIFpar and SIFinst were similar to those of SIFyield 348 

apparent (Fig. S10-S11).  349 
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  350 

3.4 Variability of fesc and ΦF 351 

The density plots showing the relationships between ΦF or fesc and croplands fraction (Fig. 352 

S12) suggested that both ΦF and fesc contributed to the observed difference of SIFyield apparent 353 

between croplands and non-croplands. fesc had a strong linear relationship with crop fraction 354 

during different growing months, while the relationship between ΦF and crop fraction was 355 

relatively weak compared with the relationship between fesc and crop fraction. The seasonal 356 

dynamics of the slope between fesc and crop fraction were similar to those observed between 357 

SIFyield apparent and crop fraction. These results imply that fesc may dominate the observed 358 

differences in SIFyield apparent between croplands and non-croplands. 359 

Differences of ΦF or fesc between corn and soybean can be detected during some months 360 

(Fig. S13-S14), although SIFyield apparent of corn and soybean were not significantly different 361 

across the three sub-regions (Fig 5). For example, in August, the ΦF of corn was larger than that 362 

of soybean, while the fesc of corn was smaller than that of soybean in the three sub-regions or 363 

over the whole study domain. In September, corn fesc was significantly lower than soybean fesc 364 

while the ΦF of corn was larger than that of soybean in the east and middle sub-regions or over 365 

the whole domain. 366 

Fig. S15 and Fig S16 showed spatial patterns of fesc and ΦF.
 The spatial pattern of fesc was 367 

similar to that of SIFyield apparent. On the other hand, the spatial pattern of ΦF contained more noise. 368 

No clear spatial pattern was found except that ΦF of grass/pasture increased from the west to 369 

the east, which matched with the pattern of SIFyield apparent. Fig. 9 showed the seasonal patterns 370 

of ΦF and fesc. ΦF generally remained stable during the growing season for all the four vegetation 371 
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types except for the increase from May to June for croplands. Conversely, fesc showed a strong 372 

seasonal variability which was similar to that of SIFyield apparent.   373 



 28  374 

Fig. 9 Seasonal patterns of ΦF and fesc of corn, soybean, forest, and grassland in different 

regions from OCO-2 footprint data. Each line was calculated as the median value of all 

footprints the regions defined in Fig. 8. Shading indicates one standard deviation. 
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4. Discussion 375 

4.1 Variability of SIFyield apparent  376 

Our study shows that SIFyield apparent of croplands is significantly larger than non-croplands 377 

during the peak growing season in the U.S. Midwest (July-August). This result is consistent 378 

with the spatial pattern of SIF during the same period in the U.S. Midwest observed in previous 379 

research which reveals much higher SIF values in the Corn Belt than in the surrounding regions 380 

(Guanter et al., 2014; Gentine and Alemohammad 2018; Joiner et al., 2013). The higher SIF of 381 

croplands compared with non-croplands is also supported by the OCO-2 footprint SIF data used 382 

in this study (Fig. S3). Our analysis of SIFyield apparent demonstrates that the differences in SIFyield 383 

apparent between croplands and non-croplands could partly contribute to the remarkably high SIF 384 

of the U.S. Corn Belt. APAR also contributes to the high SIF (Fig. S17) but is less important 385 

than SIFyield apparent. Because the ratio of croplands SIFyield apparent to non-croplands SIFyield apparent 386 

in peak season, which can be roughly estimated from equations in Fig. 3 when crop fraction is 387 

set as 1 and 0, is much higher than that of APAR (Fig. S17). 388 

The difference in SIFyield apparent between the C4 (corn) and C3 (soybean) crops is small 389 

(Fig. 4). In August and September, the ΦF of corn is larger than soybean, while the fesc of corn 390 

shows the opposite patterns which potentially explain the similar SIFyield apparent of corn and 391 

soybean in the two months (Fig. S13 and S14). For some other months, the similarities in fesc 392 

could possibly explain the similar patterns in SIFyield apparent given the small variation and 393 

differences in ΦF. Wood et al., (2017) examined OCO-2 footprint SIF retrievals in Iowa and 394 

southern Minnesota and found a similar magnitude of fluorescence (Fs, SIF normalized by the 395 

cosine of the solar zenith angle) from corn and soybean canopies. It is noteworthy that we also 396 
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do not find any significant difference in SIFpar (SIF normalized by PAR) between corn and 397 

soybean in a similar region (middle area in Fig. 5). Here SIFpar is a similar concept to Fs because 398 

the cosine of the solar zenith angle is a good proxy of PAR. However, when we focus on the 399 

whole Midwest region, both SIFinst and SIFpar of corn are larger than the counterparts of soybean 400 

during the peak season probably because of the different spatial distribution between corn and 401 

soybean.  402 

We present different spatial patterns of SIFyield apparent of different vegetation types using 403 

satellite footprint data. Previous studies have investigated spatial patterns of SIFyield apparent at 404 

regional or global scales (Joiner et al., 2011; Li et al., 2018b; Song et al., 2018) using coarse-405 

spatial-resolution SIF products. Our study confirms that meteorological variables (e.g. 406 

precipitation and temperature) play roles in determining SIFyield apparent within certain vegetation 407 

types. In general, more precipitation leads to higher SIFyield apparent for all the vegetation types, 408 

while the correlation between temperature and SIFyield apparent is weak. Considering that some 409 

croplands are irrigated and precipitation might not directly affect the observed SIF, we checked 410 

the impact of VPD (Fig. S18) on SIFyield apparent and found negative correlations between VPD 411 

and SIFyield apparent for most cases.  412 

The seasonal patterns of corn and soybean SIFyield apparent from May to September generally 413 

follow the growth cycle of crops in the U.S. Midwest. The ‘bell’ shape curve was also found 414 

for wheat in northwest India and crops in western Russia during the growing season, based on 415 

the GOME-2 gridded dataset (Song et al., 2018; Yoshida et al., 2015). However, we did not 416 

observe this bell shape of SIFyield apparent for forest and grass/pasture ecosystems, which is a 417 

departure from prior studies (Yoshida et al., 2015). By extending the growing season to include 418 
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April and October, we found that SIFyield apparent of forest and grass/pasture increased during the 419 

start of the growing season except for grass in the west and decreased during the end of the 420 

growing season, although the amplitude of the shift of SIFyield apparent was not large (Fig. S19). 421 

To confirm the results from satellite data, we also checked the seasonal pattern of SIFyield apparent 422 

using ground observations at two sites at Nebraska (Text S3). Fig. S20 showed that there was 423 

a decreasing trend of SIFyield apparent from peak season to September for corn in 2017 and soybean 424 

in 2018 which is consistent with the satellite observation. Currently, we cannot provide a more 425 

detailed comparison because the ground data only cover the second half of the growing season 426 

and there are not enough OCO-2 footprints that cover the field sites. The factors that we 427 

observed to correlate with the spatial pattern of SIFyield apparent, such as precipitation and 428 

temperature, may influence the seasonal cycle of SIFyield apparent (Li et al., 2018b). We also 429 

recognize that the seasonal cycle of plant growth usually resembles the seasonal cycle of 430 

environmental factors, which makes it difficult to fully disentangle the influences of abiotic 431 

factors (environmental factors) and physical factors (e.g. canopy structure, leaf optical property) 432 

on SIFyield apparent.  433 

 434 

4.2 Variabilities of fesc and ΦF 435 

The apparent canopy SIF yield is a product of fesc and ΦF. Our results suggest that fesc may 436 

be a major driver of the observed seasonal dynamic of SIFyield apparent. The seasonal pattern of 437 

fesc is similar to that of SIFyield apparent for all the four vegetation types. We also notice that some 438 

results are not as expected. For example, the seasonal pattern of fesc of crops shows a large 439 

increase from June to July. At first sight, we might expect that fesc should decrease with the 440 
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rapid increase of LAI during the early growing season because the fraction of canopy gaps for 441 

SIF to escape will decrease. However, for far-red SIF, previous studies based on the Soil 442 

Canopy Observation, Photochemistry and Energy (SCOPE) model reported a contrary result 443 

(Fournier et al., 2012; Du et al., 2017; Yang and Van der Tol, 2018). Escaping ratio increases 444 

with LAI due to multiple scattering. LAD can also influence fesc. Some simulation analyses 445 

show that escaping ratio with planophile or spherical LAD is much higher than that of 446 

erectophile vegetation (Migliavacca et al., 2017; Zeng et al., 2019), and experimental data also 447 

support this argument (Du et al., 2017). However, more field observations are needed to address 448 

whether there is a shift of erectophile canopy to planophile canopy for crops during the early 449 

season. Another possible cause of the observed pattern is the increasing canopy cover in spring 450 

in driving the increasing fesc estimation. LAI and LAD could also be used to explain the low 451 

value of fesc of grassland in the west because the grass in arid and semi-arid regions usually has 452 

low LAI and erectophile LAD (Diana et al., 2000; Holder et al., 2012). Compared to fesc, the 453 

monthly median value of ΦF remains stable. However, the high variance of ΦF within a month 454 

implies that ΦF may play an important role at small time scales. With regard to the spatial 455 

pattern, we find a clear spatial pattern of fesc, while the spatial pattern of ΦF has more noise. A 456 

probable explanation is that fesc is determined by the canopy structure and leaf optical properties, 457 

which are stable during specific time periods, whereas ΦF reflects the physiology of vegetation 458 

which can be influenced by more rapidly varying environmental conditions. Another simple 459 

explanation is that the estimation of SIF contains more noise than the estimation of fesc.  460 

The impact of meteorological factors on SIFyield apparent could be attributable at least in part 461 

to both fesc and ΦF. The spatial pattern of fesc can be influenced by meteorological factors. For 462 
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example, the LAD of soybeans is controlled by leaf water potential, and under water stress 463 

conditions, soybean leaves tend to be more vertical (Oosterhuis et al., 1985). Additionally, 464 

plants in arid areas may have steeper leaf angles to reduce rainfall interception by leaves and 465 

increase soil infiltration (Holder, 2012) or to minimize light interception and leaf temperature 466 

which is usually in excess in those regions. Similarly, LAI of grass has been reported to increase 467 

with precipitation (Diana et al., 2000), which could also change fesc. ΦF reflects the distribution 468 

of the absorbed energy, which is likely also sensitive to meteorological conditions through the 469 

dynamics changes of non-photochemical quenching (NPQ) and photochemical quenching (PQ) 470 

in relation to various plant abiotic stresses (Cendrero-mateo et al., 2015; Frankenberg and Berry, 471 

2018; Xu et al., 2018). 472 

4.3 Uncertainties and Limitations 473 

Quantifying fesc and ΦF over large scales is a challenging but important task. A handful of 474 

methods have been developed (Liu et al., 2018; Romero et al., 2018; Yang and van der Tol, 475 

2018; Zeng et al., 2019). We adopt a method developed recently by Zeng et al. (2019), which 476 

can be easily applied over large spatial scales. The approach is demonstrated to be effective by 477 

simulation analysis using the SCOPE model and the Discrete Anisotropic Radiative Transfer 478 

(DART) model. But some uncertainties are introduced during the application of the approach. 479 

First, wavelengths of SIF (771nm and 757 nm for OCO-2, 740 nm for TROPOMI) are not 480 

consistent with the MODIS NIR band (858 nm) which is used to calculate fesc. However, this 481 

impact is small in practice, as assessed by Zeng et al., (2019). Second, the sun-canopy-sensor 482 

geometry of SIF is different from that of MODIS. To minimize this effect, we only used OCO-483 

2 observations taken in ‘nadir’ mode, TROPOMI data with view zenith angle less than 10 484 
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degrees, and MODIS Nadir BRDF-Adjusted Reflectance data. The uncertainty caused by sun-485 

canopy-sensor geometry could also influence the seasonal pattern of SIFyield apparent due to the 486 

varying solar zenith angle for different seasons. Third, when vegetation cover is extremely low, 487 

this approach can break down (Zeng et al., 2019). Although there are some potential 488 

uncertainties in the analysis, it is an important step toward decomposing SIFyield apparent into f
esc 489 

and ΦF, which represents a necessary advancement toward fully interpreting observed SIF 490 

signals. 491 

Accurate estimation of SIFyield apparent depends on reliable fPAR datasets. There are several 492 

fPAR products available. These datasets are produced from measurements from different 493 

instruments using different retrieval algorithms which potentially generate discrepancies 494 

among fPAR datasets. For example, inter-comparisons with other fPAR products show that 495 

there is an overestimation of the retrievals at low fPAR values in MODIS fPAR products (Yan 496 

et al., 2016). In this study, we used four approaches to estimate fPAR. Fig. S21 showed the 497 

standard deviation (SD) of SIFyield apparent calculated from the four fPAR values. The results 498 

demonstrated that the SD was much lower than the corresponding mean SIFyield apparent (Fig. 5) 499 

for most cases, while for corn and soybean in May, the SD could be higher. This is probably 500 

because the relative uncertainties of all terms in SIFyield apparent and fesc are higher for low fPAR 501 

values. 502 

Although this study used state-of-the-art satellite-based SIF products, these SIF products 503 

still have limitations. First, SIF is a weak signal consisting of 1%-5% of the total absorbed 504 

energy (Frankenberg et al., 2018), and satellite-based SIF measurements still contain possibly 505 

uncertainties. Sun et al., (2017) compared OCO-2 retrievals with airborne measurements of SIF 506 
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with the Chlorophyll Fluorescence Imaging Spectrometer (CFIS) and found R2 between OCO-507 

2 and CFIS SIF was 0.71. Second, OCO-2 footprint observations are discrete samples, and they 508 

are not spatially and temporally continuous. We also used TROPOMI footprint data which 509 

provides better spatial and temporal details due to the greatly improved spatio-temporal 510 

coverage of the dataset compared with OCO-2. However, we found some areas with lower valid 511 

data coverage, for example, soybean crops in Iowa. This is probably because the spatial 512 

resolution of TROPOMI is not fine enough to get enough pure footprints. The readers should 513 

be aware that there is a consistent difference in the absolute value of SIF between OCO-2 and 514 

TROPOMI because the wavelength of the two SIF retrievals is not the same. An alternative 515 

method would be to use downscaled (Duveiller and Cescatti, 2016) or reconstructed (Gentine 516 

and Alemohammad, 2018; Li and Xiao, 2019; Y. Zhang et al., 2018) gridded SIF data. However, 517 

we purposely decided not to use any of these SIF products here, as these downscaled or 518 

reconstructed data include assumptions that could skew our findings. Third, the temporal 519 

frequency (monthly) in our analysis offers only a coarse view of seasonal patterns. Especially 520 

during the period from May to June for crops and forests in the northeast when the plants start 521 

to grow and the canopy structures and physiology status change rapidly. This could potentially 522 

be solved with TROPOMI data with high temporal frequency in the future. New measurements 523 

from the site level scale could provide more information. Finally, SIFyield apparent should be 524 

wavelength dependent since both the emitted SIF spectrum and the reflectance at leaf level are 525 

wavelength-dependent (Verrelst et al., 2015). However, the OCO-2 footprint dataset provides 526 

SIF at 771 nm and 757 nm, while TROPOMI SIF is only available at 740 nm. 527 

4.4 Contribution to understand SIF and the SIFyield apparent: LUE relationship 528 
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This study’s findings have many important implications. Most importantly, APAR and 529 

SIFyield apparent jointly determine variability in SIF. APAR correlates more with plant structural 530 

properties and pigment content, while SIFyield apparent is likely to carry both canopy structure and 531 

plant physiology signals. Leaf-level and canopy-level studies have found evidence of potential 532 

effects from plant physiological such as Vcmax etc. (Zhang et al., 2014), stomatal conductance 533 

(Flexas et al., 2002), and electron transport rate (Guan et al., 2016), as well as canopy structure 534 

(Fournier et al., 2012) such as LAD (Du et al., 2017; Zhang et al., 2016) and LAI (Du et al., 535 

2017; Yang and van der Tol, 2018). Our regional-level study reveals differences in SIFyield 536 

apparent across space and time and between vegetation cover types implying the importance of 537 

SIFyield apparent in driving the variability of canopy SIF. The findings further emphasize the 538 

important role of the escaping ratio (canopy structure). 539 

The significant variations of SIFyield apparent revealed in this study may help foster modeling 540 

of GPP at large scales. Similarities between the GPP and SIF equations (Equation 1 and 2) lead 541 

to a formal equivalence between GPP: SIF and LUE: SIFyield apparent. The equivalence of the two 542 

equations could help to estimate GPP directly from satellite SIF observation and to better 543 

understand what determines the GPP: SIF slope but only when a mechanistic relationship 544 

between LUE and SIFyield apparent is established. Physiologically, there is a complicated coupling 545 

between LUE and ΦF under various light and plant stress conditions (Schlau-Cohen and Berry 546 

2015, Van Der Tol et al., 2014). In addition to ΦF, f
esc and LUE may also casually covary due to 547 

temporal covariation between plant structure and plant function. The near-infrared reflectance 548 

is related to leaf nitrogen content and the ratio of sun-exposed leaf area to total leaf area which 549 

are determinants of photosynthetic capacity (Ollinger et al., 2008, Knyazikhin et al., 2013). 550 
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Meanwhile, the near-infrared reflectance is also supposed to be correlated to fesc (Yang and van 551 

der Tol, 2018). Thus the variability of fesc may be associated with the variability of LUE. Studies 552 

using field-level observations have intended to provide an empirical estimation of the LUE: 553 

SIFyield apparent relationship (Damm et al., 2010; Miao et al., 2018; Verma et al., 2017; Yang et 554 

al., 2018; Yang et al., 2015). However, the relationship varies across different seasons and 555 

environmental conditions. Further efforts are required by combining field-level observations, 556 

especially long-term observations (Miao et al., 2018; Yang et al., 2018), and satellite 557 

observations to constrain these relationships and advance understanding of the underlying 558 

controlling factors. 559 

 560 

5. Conclusions  561 

In this study, we conducted a systematic assessment of the spatio-temporal variability of 562 

SIFyield apparent of corn, soybean, forest, and grass/pasture in the U.S. Midwest during the crop 563 

growing season. The state-of-the-art satellite-based SIF products from OCO-2 and TROPOMI 564 

footprint retrievals were used to estimate SIFyield apparent of specific vegetation types. The high 565 

spatial resolution of the footprints enables accurate estimation of SIFyield apparent for each 566 

vegetation type by reducing the intra-pixel mixture effects. Our analysis leads to four main 567 

conclusions: 1) SIFyield apparent of croplands (i.e. corn and soybean) was higher than that of non-568 

croplands during the peak growing season (July and August) which contributed to the high SIF 569 

observed in the U.S. Corn Belt in the summer. 2) SIFyield apparent of corn and soybean did not 570 

show significant differences. 3) Different seasonal and spatial patterns of SIFyield apparent were 571 

observed among the four vegetation types, which can be partially explained by meteorological 572 
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factors (i.e. precipitation and temperature) and intra-vegetation type variability (i.e. among 573 

different forest types, and between grass and pasture). 4) The escaping ratio may be the major 574 

driver of the observed variability of SIFyield apparent. 575 

 576 
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SIFinst: instantaneous solar-induced chlorophyll fluorescence  869 

SIFpar: SIFinst normalized by PAR 870 

SIFyield apparent: apparent canopy SIF yield, defined as SIF observed in the direction of the 871 

sensor per PAR absorbed by canopies, is a product of fluorescence yield and the escaping 872 

ratio.  873 

ΦF: fluorescence yield 874 

fesc: the escaping ratio, which can be calculated as NIRv/fPAR  875 

GPP: gross primary production 876 

LUE: light use efficiency of GPP 877 

PAR: photosynthetically active radiation 878 

fPAR: the fraction of absorbed photosynthetically active radiation 879 

APAR: absorbed photosynthetically active radiation 880 

NIRv: the near-infrared reflectance of vegetation, which can be calculated as NDVI*NIR 881 

NIR: the reflectance of near-infrared band 882 

NDVI: normalized difference vegetation index 883 

LAI: leaf area index 884 

LAD: leaf angle distribution 885 
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