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Abstract
Predicting how changes to the urban environment layout will affect the spatial distribu-
tion of pedestrian flows is important for environmental, social and economic sustainability. 
We present longitudinal evaluation of a model of the effect of urban environmental layout 
change in a city centre (Cardiff 2007–2010), on pedestrian flows. Our model can be classed 
as regression based direct demand using Multiple Hybrid Spatial Design Network Analysis 
(MH-sDNA) assignment, which bridges the gap between direct demand models, facility-
based activity estimation and spatial network analysis (which can also be conceived as a 
pedestrian route assignment based direct demand model). Multiple theoretical flows are 
computed based on retail floor area: everywhere to shops, shop to shop, railway stations to 
shops and parking to shops. Route assignment, in contrast to the usual approach of shortest 
path only, is based on a hybrid of shortest path and least directional change (most direct) 
with a degree of randomization. The calibration process determines a suitable balance of 
theoretical flows to best match observed pedestrian flows, using generalized cross-valida-
tion to prevent overfit. Validation shows that the model successfully predicts the effect of 
layout change on flows of up to approx. 8000 pedestrians per hour based on counts span-
ning a 1 km2 city centre, calibrated on 2007 data and validated to 2010 and 2011. This is 
the first time, to our knowledge, that a pedestrian flow model with assignment has been 
evaluated for its ability to forecast the effect of urban layout changes over time.

Keywords  City centre · Pedestrian modelling · Prediction · Spatial network analysis · 
Betweenness · Regularized regression

Introduction

Predicting how changes to the urban environment layout will affect the spatial distribu-
tion of pedestrian flows is important for numerous reasons. From a sustainable transport 
perspective, substitution of motorized trips with walking is not only beneficial for our eco-
logical and carbon footprint (Cervero and Kockelman 1997; Frank and Pivo 1994), but 
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also reduces congestion and air pollution, increases community cohesion (Cooper et  al. 
2014), and—in the face of an obesity crisis—improves public health (Handy 2005; Handy 
et al. 2002). Pedestrian footfall is also key to understanding town and city centre vitality 
and hence economic sustainability. UK policy (Department for Communities and Local 
Government 2009) stresses the importance of ‘linked trips’. The strengthening of retail 
planning policy and regulation in the decade that followed the National Planning Policy 
Framework (2012), resulted in retailer adaptation to ‘town centre first’ approaches. Since 
then academic research began to suggest a more positive impact for such developments 
than previously, and to show that such development can play an important positive role in 
anchoring small centres (Lambiri et al. 2017; Zacharias 1993) through enhancing vitality 
and viability. Viability relates to economic regeneration, the continuing ability of the town 
centre to attract new investment (Ravenscroft 2000) that demonstrates sustained profitabil-
ity, and as such can be monitored via vacancy rate. Vitality on the other hand relates to the 
intensity of activities at various times of the day, and is usually measured by pedestrian 
flows (Department for Communities and Local Government 2014 paragraph 5). To this 
end, town centres have audited pedestrian volumes and their changes over time. Viability 
and vitality are interrelated and define a complex index of attractiveness of the city cen-
tre along other indicators such as land use diversity and demographic profile (Guimarães 
2017). All of the above aims in public policy relate to complex phenomena in which spatial 
distribution of pedestrian flows constitutes only part of the picture, but an essential part 
nonetheless.

The effect of street space layout changes, such as space re-allocation and pedestriani-
sation, on pedestrian flows over time has been well documented (Gehl 2004). However, 
major changes in street layout such as urban block size/shape change and re-alignment are 
a rare and very costly occurrence in existing urban fabric, and their effects less well under-
stood. The ability to model such major changes and predict their consequences on pedes-
trian flow is of interest to the many town centre stakeholders involved, and helpful to assist 
in effective urban planning and design. Pedestrian flow in an urban centre can be visualized 
as a set of complex paths joining, separating, and intersecting over the available street lay-
out. Individual street links can experience higher or lower flow levels, as well as sedentary 
activity (Zacharias 2000). Pedestrian paths arise from a set of individual mental maps that 
unfold in the street layout, the individual traces aggregating to an emerging flow level pat-
tern at pedestrian link level. These emerging aggregated behaviour patterns have an itera-
tive effect on street layout design in the long term, since variable flow levels will contribute 
to vitality, land use change and vice versa—although in the current study we model only 
the shorter term effect of layout on flow.

Related work

The influence of generic street network layout properties such as number and type of inter-
sections has received a renewed attention in the past two decades. Vehicular street net-
works have elicited various quantitative descriptions capturing generic and distinctive 
topologies and geometries (Boeing 2019; Cardillo et  al. 2006; Newman 2006; Xie and 
Levinson 2007). Such network design characterisations have contributed to a quantitative 
understanding of urban network design and dependencies between topologies, intersec-
tions, urban densities and flow. For motorised vehicle travel time, speed and turn delays 
and resulting flow depend on network topology, intersection types and densities (Vitins 
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and Axhausen 2016). Street network design analysis focusing on pedestrian flow (Ewing 
and Cervero 2010) has shown the importance of higher street and intersection density and 
3-arm intersection shares (Vitins and Axhausen 2018). Strano et al. (2012) in a 200 year 
longitudinal study found that street layouts shift towards oblong and square parcel shapes 
in a dual process including network densification and four-arm intersection density which 
in turn would impact pedestrian flow level distribution.

The first attempts at town centre pedestrian modelling were proposed by Benham and 
Patel (1977) and Crask (1979). Town centre pedestrian models have since been developed 
in a variety of directions such as assuming or not a list to be bought (Borgers and Tim-
mermans 1986, 2012, 2015; Dijkstra et  al. 2009; Haklay et  al. 2001; Zachariadis 2007; 
Zhu and Timmermans 2009). There are difficulties in reviewing and categorising the works 
done on pedestrian modelling and forecasting due to the heterogeneity of the published 
works, the diversity of motivations and goals for the research and the scales of representa-
tion e.g. from regional planning scale to corridor and sub-area scale to facility and devel-
opment scale. Martinez-Gil et al. (2017), Kuzmyak et al. (2014), Aoun (2015)and Turner 
(2017) offer summaries of pedestrian demand modelling research approaches which 
broadly include three general categories: trip generation and flow, network simulation, and 
direct demand.

Direct demand models have the defining characteristic of substituting all four stages 
of a traditional transport model (trip generation, trip distribution, mode choice, route 
choice/assignment) with a single model attempting to explain flows as a function of soci-
odemographic and built environment variables. There is however, considerable variance 
within the literature on what this really means. Kuzmyak (2014) and Munira (2017), for 
example, review a number of models which predict flows on individual network links or 
intersections from these variables. Conversely, de Ortúzar and Willumsen (2011) applies 
a direct demand model to predict the inter-zonal flow matrix, including the inter-zonal 
cost and time matrices as independent variables as well as socio-demographics of each 
zone in each pair. The latter is therefore fundamentally different in that it includes a route 
assignment process in order to generate cost and time matrices; for the current paper we 
term this “direct demand (with) assignment”. Cooper (2017) makes the case that spatial 
network analysis based on betweenness (Freeman 1977) predicts flows which scale with 
urban density and can therefore be characterised as a direct demand model under Ortúzar’s 
definition, albeit extended to predict flows on links rather than inter-zonal matrices. The 
same can therefore be said of space syntax models based on choice (Hillier and Iida 2005; 
Raford and Ragland 2004).

Direct demand models without assignment, on the other hand, are now popular (Gris-
wold et al. 2019; Kuzmyak et al. 2014). Their rise parallels studies that have examined the 
determinants of walking behaviors, and the specific role of the built environment on pedes-
trian mobility and volume distribution. Principal determinants of walking include popula-
tion and employment density, land use diversity, design, distance to destinations, and dis-
tance to public transits; design measures include average block size, proportion of four-way 
intersections and intersections density, sidewalk coverage, average building setbacks, aver-
age street widths, numbers of pedestrian crossings, street trees or other physical variables 
that differentiate pedestrian-oriented environments from car-oriented ones (Ewing et  al. 
2014). These determinants have been successively conceptualized as the 3Ds (Cervero and 
Kockelman 1997) and the 5Ds (Ewing et  al. 2014; Ewing and Cervero 2001, 2010). A 
review of the dimensions used in pedestrian Direct Demand model studies (Munira and 
Sener 2017) shows that most of the significant variables used, when reported, fall within 
the 5Ds categories with additional categories such as shown in Table 1.
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Contribution and rationale

Absent of an assignment process, direct demand models do not capture a fundamental 
property of all network transportation: namely, that trips must necessarily proceed from an 
origin to a destination via a continuous chain of network links. Assignment models enforce 
this property by definition. Assignment-free direct demand models, by contrast, use spatial 
buffers to aggregate built environment characteristics of an area, which may mask the real 
environment that a pedestrian experiences when making a trip (Shatu et al. 2019). Hence, 
network characteristics such as improved pavement width, and sociodemographic charac-
teristics such as higher population in a spatial buffer, will always lead to higher flow pre-
dictions even on network links which do not form part of any useful route—a result which 
is intuitively incorrect.

We therefore take a direct demand with assignment approach in which, in contrast to 
assignment-free direct demand models, the only independent variables used are themselves 
the output of an assignment process, while other built environment and demographic char-
acteristics are incorporated as inputs to that assignment process. We achieve this using 
multiple variants of spatial network betweenness in a regression model, as per Cooper 
(2018) (discussed in detail in Methods, below). Yet, we still capture the strengths of assign-
ment-free direct demand models as a range of the popular ‘5D’ variables, including dis-
tance, block size, intersection connectivity and density, sidewalk coverage and pedestrian 
crossings, are implicit in modelling density and assignment on the detailed pedestrian net-
work used. Our purpose is to eschew use of abstracted design metrics such as urban block, 
face length and connectivity (Gärling and Gärling 1988), and replace them with reduction-
ist consideration of individual routes through the detailed pedestrian network layout (as 
Sevtsuk et al. 2016 did with Euclidean accessibility), thus retaining the geometric constitu-
ents of pedestrian intelligible navigation in open large scale urban environments (Montello 
1998, 2005). Our approach also addresses noted problems (Crane 2000; Frank and Engelke 
2001) with the covariance of urban design variables, by using ridge regression.

To capture the design component of the pedestrian network, this study also departs 
from previous direct demand assignment flow models based on the axial map (described as 
space syntax (Raford and Ragland 2006, 2004)—these studies also include variables out-
side of the assignment model, which we avoid as discussed above). Axial map approaches 
have been criticised for lack of transparency (Kuzmyak et  al. 2014; Raford 2010; Ratti 
2004; Turner 2017). Instead we use for the first time, to our knowledge, a standard detailed 
pedestrian path centre line (Chiaradia 2014; Sun et al. 2019, 2017; Zhang and Chiaradia 
2019). Pedestrian network mapping principles are given in the “Methods” section.

The principal ways in which our model diverges from existing literature, and hence its 
contribution, can therefore be viewed from multiple perspectives. From an assignment-
free direct demand perspective, the contribution is to enhance such models (1) by forcing 
all variables to act via an assignment process on a detailed pedestrian network to more 
accurately capture the nature of transport, and spatial locations of relevant variables, with 
greater accuracy; (2) by dropping abstracted variables such as block size and instead cap-
turing their effect via an assignment process on the detailed network. From a direct demand 
with assignment, or spatial network analysis perspective our contribution is to enhance 
existing pedestrian approaches by capturing a range of built environment variables more 
commonly associated with assignment-free direct demand modelling, but without violat-
ing the assignment paradigm, while also maintaining the computationally efficient cali-
bration of an assignment-free direct demand model. We also use more sophisticated route 
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assignment criteria than the pure angular or Euclidean metrics prevalent in that literature 
(Hillier and Iida 2005; Raford and Ragland 2004) and for the first time, an inelastic formu-
lation of betweenness. Finally, from an urban planning and design perspective, combin-
ing built environment characteristics with route assignment creates a bridge between these 
disciplines and transport modelling (Ewing and Clemente 2013; Stangl 2019; Stangl and 
Guinn 2011).

The other major contribution is a longitudinal evaluation of model accuracy. Few pub-
lished pedestrian models include an empirical test against observed pedestrian flow data, 
and those which do, invariably test model fit at a single point in time as a cross-sectional 
study. Longitudinal studies, which track response to changes over time, are considered 
more reliable (Greenhalgh 1997). A search of literature revealed two cases of models 
which track response of pedestrian flows to layout change over time (Borgers and Tim-
mermans 2015; Teklenburg et  al. 1993) yet neither of these attempt to predict post-lay-
out-change flows based on pre-layout-change data—i.e., what an urban planner modelling 
flows through a potential new development would in fact be trying to do (Borgers and Tim-
mermans is commendable in use of a hold-out data set for cross validation, but calibration 
is based on data from all years). The recording of pedestrian flows before and after a major 
change to the urban environment brings the opportunity to raise the bar to a natural experi-
ment. Natural experiments have various definitions, all based around the general concept of 
seeking out real-life situations that in some way emulate laboratory conditions (Leatherd-
ale 2019). The pre-post approach involves comparison of outcomes pre- and post-exposure 
to the intervention: although making the assumption that outcomes change only as a result 
of exposure to the intervention, the result is that the population partially serve as their own 
controls (Craig et al. 2017). We therefore seek to answer the question, “given a model cali-
brated on data prior to the change, can the effects of the change be predicted correctly?”. 
The study was conducted in simulated ex-ante fashion, in which we calibrated the model 
with reference only to data collected before the change, to mimic the working environment 
of live planning/design projects. Ex-post tests were used only for validation, not to revise 
the model. To our knowledge this is the first time any such model has been tested in this 
way. As well as testing the ability to predict changes over time, we also, using generalized 
cross-validation, test ability to extrapolate across space.

From a network analysis perspective, we can characterise our direct-demand-with-
assignment model as Multiple Hybrid Spatial Design Network Analysis (MH-sDNA) 
based on use of betweenness (discussed further in the Methods section) as structural flow 
analyses. This could also be described as a point-of-interest type model with individual 
heterogeneity, as it computes paths for the trips of numerous individuals through the net-
work with differing goals (trips to retail from various origins, and between retail) and vari-
ous route preferences (accounted for by Monte Carlo randomization). A final alternative 
characterisation is that this is an agent model but without interaction between agents.

Data

The modelled area is Cardiff, the capital and largest city in Wales, UK. Cardiff has a popu-
lation of around 350 thousand, or around 10% of the Welsh population. The population 
of Cardiff increased by 18% between 2001 and 2011. In terms of urban morphology and 
demographic characteristics it is typical of a medium size British city. Cardiff city centre 
(about 1 km2 in size) is bounded by urban morphology breaks, to the West, the river Taff, 
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to the north the Bute Park, Cardiff Castle and Cardiff University Campus, to the East, Car-
diff Bay to the valleys train tracks, to the south the London Swansea train track.

Cardiff’s capital city status and history means that it is a major top 15 retail and tour-
ist destination in the UK. Over the past 10  years the city centre has undergone a major 
regeneration programme. A new shopping mall, St David’s Centre opened in 2009, streets 
were re-aligned, urban block size and shape changed and the surrounding shopping streets 
were pedestrianised (Guy 2010). The city centre also includes pedestrian only Victorian 
and Edwardian shopping arcades and a civic centre to the north which hosts the University, 
Law Courts and Government buildings. To the south of the city centre is the main bus sta-
tion and Central railway station and there are a number of car parks to the north, east and 
south. Bordering the city centre to the south west is the national stadium for Wales, the 
Millennium Stadium, which opened in 1999.

Collection of pedestrian flow data was commissioned by Cardiff Council for most years 
between 1999 and 2011. This effort was commissioned for the purpose of examining retail 
footfall, meaning that pedestrian counting is limited to medium- to high-flow streets, up to 
approx. 8000 people per hour. Ideally to calibrate a footfall model, a stratified sample is 
required which also includes low-flow streets. By necessity we do without such data. We 
calibrate the pedestrian model to summer 2007, the last snapshot available before work on 
the St David’s Centre began in winter 2007. We test the model on the years 2010 and 2011, 
the only years available after completion of the development. Each year comprises data 
collected on Thursday evening, Friday, Saturday and Sunday daytimes (10 am–4 pm i.e. 
not including peak commuting times), between April and June, at 26–41 cordon points (the 
exact number varies each year and was 32, 37 in our calibration and test years respectively). 
The weather was recorded as warm and sunny for each year. As we focus on shopping 
counts, we model combined Friday and Saturday flows, excluding Thursday evening and 
Sunday as not being representative of typical optional city centre visit behaviour. The total 
number of pedestrians counted averaged approximately 45,000 on Fridays and 60,000 on 
Saturdays. In each year the trend over time of this data is shown in Fig. 1, and year-on-year 

Fig. 1   Cardiff city centre pedestrian survey data (only showing cordon points repeated across all years)
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correlations in Fig. 2. We take the year-on-year change in the mean to be caused by exoge-
nous factors such as the 2008 financial crash and subsequent recovery, and therefore do not 
try to model changes in the mean. As overall levels of demand vary with economic condi-
tions, we do not seek to model the overall level of demand but rather its spatial distribution, 
and thus we report success of model predictions as correlation (r2) which discards scale 
information, rather than mean square error which would preserve scale but principally be 
measuring factors external to the model. We can thus rule out an indirect linkage caused 
by external economic influence on both the overall levels of flow and the redevelopment 
project itself. As with any observational study, the possibility of other indirect dependen-
cies cannot be entirely ruled out, but in the current context the test of predictive ability is 
the key to evaluation.

Fig. 2   Correlations between counts of pedestrian behaviour year on year (for cordon points present in all 
years only). The pedestrian flow counts are stable over time with an overall average r = .90 despite succes-
sive changes to the town centre since 2000. This is the background pattern of correlation through which one 
year predicts another, which our model aims to improve on
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Methods

Pedestrian network encoding

A pedestrian network is a topological map that contains the connectivity, Euclidean and 
geometric relationship between pedestrian path segments (e.g., sidewalk, crosswalk, and 
footpath), as well as characteristics such as path width. Pedestrian networks are needed in 
a variety of applications such as pedestrian navigation systems/services, urban planning 
(Karimi and Kasemsuppakorn 2013) and urban design. Different approaches to develop 
pedestrian network maps have been attempted (Elias 2007; Karimi and Kasemsuppakorn 
2013). Given the reported effort, cost and complexity of automated generation in non-reg-
ular street patterns (Karimi and Kasemsuppakorn 2013), manual pedestrian network gen-
eration from digital maps with ground proofing is a popular approach (Chiaradia 2014; 
Sun et al. 2019). This method has been used in this paper with ArcGIS tools. A pedestrian 
centre path segment mapped as a link is any pathway between two junctions that allows 
pedestrians to pass and can be categorized into types such as: sidewalk, crosswalk, foot-
path, building public path (arcade, shopping mall main path), trail, pedestrian bridge, and 
tunnel. The vector data model maps complex spatial objects using simple graphical ele-
ments (points and lines) (Karimi and Kasemsuppakorn 2013), and is suitable for represent-
ing pedestrian networks. It is likely that in the future, crowdsourced pedestrian path centre 
line network map will become readily available (Bolten and Caspi 2019).

The authors used the GIS ready Historic OS Mastermap (Ordnance Survey 2017) in 
ArcGIS to re-draw the outdoor and indoor pedestrian network for 2007 and 2011. The net-
work extends into the surrounding area via a 1.2 km buffer to serve as source for trips from 
the surroundings (classed as ‘everywhere’ under the definition of variables in Table  2). 
Using the background vector map and available floor plans, links and nodes of the pedes-
trian network were constructed by manual drawing. The following assumptions guided the 
pedestrian network mapping:

1.	 Links were drawn with the assumption that path centreline is representative of pedestrian 
thoroughfare.

2.	 Gradients in paths were ignored as Cardiff city centre has very low gradient and can be 
considered as mainly flat terrain.

3.	 Given assumption 1, field surveys and publicly indoor displayed floor plans provide a 
fair indication of the real features of indoor pedestrian paths that function as quasi-public 
paths, such as traditional and new shopping arcades and malls.

4.	 In streets which do not have formalised crossings, such as in residential areas, the pedes-
trian network is mapped as street centre lines between junctions (Fig. 3a). In residential 
areas, streets without crossings receive low traffic, hence for pedestrians it is easy to 
cross anywhere from one sidewalk to the opposite sidewalk.

5.	 In pedestrianised streets, the pedestrian network is mapped as street centre line between 
junctions as in residential areas (Fig. 3b).

6.	 Streets with formalized crossings have sidewalks mapped individually. Linkage with 
streets mapped with road centre lines (from 4. above) is shown in Fig. 3a. The crossing 
is itself considered as a link because it is an area of interaction with vehicular traffic.

7.	 All links necessarily have the following attributes: length, angular curvature changes 
along the link.
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In city centres, consistent with the more recent 5Ds literature, Lausto and Murole (1974) 
showed the importance of retail and public transport service points; hence two nearby rail-
way stations (Cardiff Central and Queen Street) were added to the network along with esti-
mates of retail floor area.

Retail floor area was derived from business rates data. Business rates is the commonly 
used name in England and Wales of non-domestic rates, a tax on the occupation of non-
domestic property. Rates information is held by the Valuation Office Agency (VOA), and 
data is queryable online via the tax.service.gov.uk website for the period 2010-2016. Infor-
mation available includes the full address of the property, a free-text description of use of 
the property, the total taxable area (m2/unit), the price per area (m2/unit) and the current 
rateable value. Properties were extracted from the website for the Cardiff local authority 
area. Postcodes of properties were used in the Google Geocoding API address lookup ser-
vice to retrieve an address point; where this was unavailable, the OS Open data postcode 
midpoint was used. The properties for Cardiff city centre were then extracted using the 
point data. The description of the use of the property in the dataset was used to identify 
retail and leisure outlets. String “fuzzy matching”, utilising the Levenshtein (1965) dis-
tance algorithm, was used to discover similar description of strings for grouping into retail 
types e.g. “pubs, public houses, nightclubs”. The floor area for each address point was 
summed to compute a floor area attribute for each network link. Carparks exceeding capac-
ity of 500 spaces were also identified from the business rates data and added to the model.

The Business Rates data did not contain information on buildings that had been demol-
ished before 2010, which included the re-developed area. Here building layout and floor 
area were reconstructed via other data sources including historic OS Mastermap, historic 
Google Earth, aerial photographs and local knowledge. The majority of retail floor area 
data is nonetheless derived from business rates records for buildings unchanged over the 
time period: other sources combined account for 4.4% of the floor area, .8% of the network 
length and 1.2% of network links (excluding network length and links with no retail). Fig-
ure 4 shows the before (baseline) and after (future condition) model of the St David’s 2 
development.

Fig. 3   Principle of pedestrian network mapping—3a link and node: residential streets with low traffic and 
no formalised crossing linked to a street with formalised crossings; 3b link and node: pedestrianised streets 
linked to a street with formalised crossings
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Choice of distance metric

A wide variety of route assignment algorithms have been developed to represent route 
choice decision-making processes for pedestrians. Although route selection strategies are 
largely subconscious (Hill 1984), several researchers have formulated theories on this 
behaviour. Distance is not only an important factor on which route choice is based, it is 
also known to moderate the influences of other parameters on route choice (Ciolek 1978; 
Hill 1982). Khisty (1999) distinguishes between ‘perceived’ distance and ‘cognitive’ dis-
tance which include the assessment of the geometric complexity of the routes (directness). 
This is linked with the concept of visibility in that pedestrians tend to walk straight towards 
a visible destination, unless they are hindered by obstacles, other pedestrians, or diverted 
by other attractions. Verlander and Heydecker (1997) showed that 75% of pedestrians were 
taking the shortest path, but did not check whether the shortest Euclidean paths were also 
the paths showing least angular change (i.e. the shortest angular distance, or most direct 
paths) which is often the case (Zhang et  al. 2015). More recently Shatu et  al. (2019) 
showed in a route choice model that the least directional change route is a preferred option, 
and that pedestrians tend to minimise distance and maximise directness if they can. We 
therefore based our route assignment model on a hybrid of the shortest and most direct 
path, adding Monte Carlo randomization (de Ortúzar and Willumsen 2011, Sect. 10.4.1) to 
distribute assignment over paths of similar utility and hence account for variance caused by 
factors we are unable to measure.

Fig. 4   Summary of changes to network, retail area, car parks and pedestrian flow measurement cordon 
points 2007-2010. Brown bars show green and red overlap i.e. links with unchanged retail area over the 
study period
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Betweenness

The betweenness of a link, in simple terms, is a structural flow model obtained by sum-
ming the number of shortest paths from everywhere to everywhere that pass through 
that link (Freeman 1977). Originally developed for communication networks, it has been 
adapted to transport most notably by introducing a maximum distance constraint on the 
paths considered (Cooper 2015). Note that definitions of ‘shortest’ and ‘everywhere’ may 
vary according to the application. There is a history of using betweenness as a transport 
model to fit vehicle, pedestrian and cyclist flow data (Cooper 2018, 2017; Haworth 2014; 
Hillier and Iida 2005; Jayasinghe 2017; Law et al. 2014; Lowry 2014; Manum and Nord-
strom 2013; Omer et al. 2017; Patterson 2016; Raford et al. 2007; Serra and Hillier 2017; 
Turner 2007). However, from a transport modeller’s perspective, to do so embeds a number 
of implicit assumptions which are not usually voiced; indeed, to replace the usual models 
of trip generation, trip distribution and mode choice with a simpler assumption that people 
travel indiscriminately from everywhere to everywhere, seems somewhat rash. Much of 
the above literature justifies this approach purely on grounds that it seems to fit the data 
well, but fit to current data does not guarantee predictive ability; to be useful, a model must 
extrapolate, either in space or time, to predict data not available during the fitting process. 
Without understanding why betweenness might work as a transport model there is a sig-
nificant risk of misprediction.

Cooper (2017) noted that travel demand is correlated with network density (a relation-
ship mediated, moderated and amplified in some cases by land use intensity), hence if we 
are willing to assume efficient use of the network in both land use and trip generation, then 
we can replace explicit modelling of land use and travel demand with a betweenness model 
based on network analysis alone. This is because the “everywhere to everywhere” trips 
of a betweenness model are in fact “everywhere (on the network) to everywhere (on the 
network)”, thus, betweenness scales with the square of network density—paralleling the 
use of network density measures in assignment-free direct demand models. In contrast to 
both previous applications of betweenness and assignment-free models, however, Cooper 
(2017) also uses a definition of “shortest” appropriate to the transport mode e.g. in the case 
of cyclists, taking slope and motorized traffic into account as barriers. The use of multi-
ple factors to define distance rather than a simple angular (most direct) or network-Euclid-
ean metric (shortest) (Hillier and Iida 2005) is termed Hybrid Betweenness. Overall, the 
betweenness approach has the merit of simplifying models of an environment in which the 
network is usually the slowest aspect to change. Cooper (2018) notes a number of weak-
nesses with the standard formulations of betweenness, namely, lack of consideration of dis-
tance decay, elasticity of demand, historical land use and heterogeneity of user types; these 
are addressed by computing multiple betweenness variables to capture effects of the above 
and using said variables to predict flows using cross-validated multiple regression. This 
parallels the inclusion of further variables in direct demand models, and is termed Multiple 
Hybrid Betweenness, or more generally, Multiple Hybrid Spatial Design Network Analysis 
(MH-sDNA).

The current work takes a similar approach, albeit for a pedestrian shopping model, the 
set of betweenness variables computed naturally differs to those which are appropriate for 
an all-trip-purpose cyclist model. Also, in the current case mode choice is excluded, as 
changes to the total number of pedestrian trips in the city centre are considered exogenous; 
an effective mode choice model would also require inclusion of the public transport com-
ponent of journeys in this case. A similar model can, however, be used to capture unimodal 
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trip generation, which approximates mode choice under other circumstances (Cooper 
2018).

Multiple hybrid betweenness

The MH-sDNA approach constructs a multiple regression model, in which each variable 
is itself the output of a betweenness calculation, and fit these to data using linear methods. 
Our flow prediction is thus the weighted sum of multiple betweenness values. Cross-vali-
dation is used in two ways: first, to tune a ridge regression penalty parameter during train-
ing, and secondly, to measure the accuracy of our forecasts.

Recalling that the betweenness of a link is “the number of shortest paths from every-
where to everywhere that pass through the link”, we choose a distance metric to define 
“shortest” and a weighting to define “everywhere”. Our chosen distance metric is neither 
purely angular nor Euclidean, as with existing spatial network analysis frameworks (Hillier 
and Iida 2005), and instead is a hybrid of both distance types also including a random com-
ponent. We also restrict our consideration of “everywhere” to specific sets of origins and 
destinations, but repeat this process for multiple potential journey stages (shown below in 
Table 2).

We adopt the formula for Betweenness used by the sDNA software (see Software, 
below); shown in Eq. 1. Under condition that shortest paths are unique it is equivalent to 
the original multi-path formulation of Betweenness (Freeman 1977); this condition does 
not hold for mathematically precise urban grid structures however we also introduce Monte 
Carlo randomization to the distance metric which has the effect of distributing trips over 
similar paths, making this point moot.

where x, y and z are links in the network N, O is the set of links defined as origins, D is the 
set of links defined as destinations, and W(y, z) is the weighting of a trip from y to z. R(y, 
rmin, rmax, dradius) is the subset of the network closer to link y than a threshold radius rmax 
but further from y than rmin according to dradius.OD(y, z, x, drouting) is defined in Eq. 2:

where drouting and dradius are metrics defining what we mean by ‘distance’. dradius is con-
sulted when deciding whether a journey of a certain distance takes places at all and for the 
current study is defined as Network Euclidean distance i.e. the shortest possible distance 
measured along the network in metres. drouting is consulted to determine which route the 
journey will take; the definition is different and is given in the next section. Note that the 
different definitions of drouting and dradius mean that occasionally the routes taken by jour-
neys will be longer than the distance band they are supposed to represent. This seeming 
inconsistency does not cause problems in practice (Cooper 2015) and is chosen because the 
simple definition of dradius makes results easier to interpret.

The usual approach to defining the journey weighting function is to set W(y, z) in Eq. 1 
to equal W(y)W(z) where W(y) and W(z) are the weights of the origin and destination 

(1)

Betweenness
(
x, rmin, rmax, drouting, dradius

)
=
∑
y∈O

∑
z∈D∩R(y,rmin,rmax,dradius)

W(y, z)OD
(
y, z, x, drouting

)

(2)

OD(y, z, drouting) =

⎧⎪⎨⎪⎩

1 if x is the shortest path from y to z as defined bymetric drouting
1∕2 if x = y ≠ z or x = z ≠ y (partial contribution for end points)

1∕3 if x = y = z (partial contribution for self−−betweenss)

0 otherwise
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respectively (as defined in Table 2). Assuming uniform distribution of origins, destinations 
and weights across space this implies that total journey activity scales with the square of 
the average total weight within each radius (Eq. 3):

It is therefore a fully elastic measure of demand, at least with respect to distribution of 
opportunity across space, in that more opportunities for interaction generate more interac-
tion. Depending on how the analysis is weighted, the unit of opportunity can either be a 
defined land use type such as a shop, or alternatively represent the network itself: in both 
cases the implicit assumption is that interaction is increased by intensification of activity 
from a given land use (e.g. greater attractivity per square metre of retail floor area)—acces-
sibility models which assume a linear relationship between accessibility and travel demand, 
also embed this assumption. However, in the latter case of weights simply representing 
network length or quantity of links, this elasticity can also be considered to represent the 
intensification of land use (e.g. more floor area, possibly on multiple levels) in more acces-
sible locations.

In the current study we also introduce ‘Two Phase Betweenness’. As the name suggests 
this is computed in two phases; (1) determine total accessible destinations; (2) distribute 
origin weight across available destinations. It is thus a fully inelastic model of demand 
(with respect to distribution of opportunity across space) in which trip volume is limited by 
the weight of the origin. Combining this feature with a limited radius (as we do) can also 
be interpreted as a form of intervening opportunity model. The formula is given in Eq. 4, 
and implies that total trip activity scales with the average total weight in R rather than its 
square.

where R(..) is the R function appearing in Eq. 1. We also make use of Continuous Space 
Betweenness, which considers partial links where they exceed the radius (Cooper and Chi-
aradia, 2015) to improve accuracy for the smallest (200 m) trip distances. Where Between-
ness flows stem from a single origin, there is no variance of opportunity between origins, 
so the Betweenness type is not relevant.

Table  2 shows the multiple types of Betweenness combined to form the model. The 
maximum trip length we use is 1200 m, a realistic size for pedestrian catchments which 
corresponds to a 10–20 min walk for most people (Western Australian Planning Commis-
sion 2000). For the e2s variable which captures trips from everywhere (including homes) 
to shops, i.e. the further extent of the catchment, we split the 1200 m radius into three dis-
tance bands (0–400 m, 400–800 m, 800–1200 m). For endpoints of other transport modes, 
we assume that transit users will avoid walking so far as those on pure pedestrian trips, 
hence we split a 1000 m radius into two distance bands (0-600 m, 600-1000 m). For the 
inter-shop variable s2s we assume trip chaining behaviour based on shorter trips, and thus 
split a 400 m radius (3–7 min walk) into two bands.

(3)total trip activity =
�
y∈O

�
W(y)

�
z∈D∩R

W(z)

�
≈

�∑
y∈O

�
W(y)

∑
z∈D∩R W(z)

�
∑

y∈O (W(y))

�2

(4)Two phase (inelastic)W(y, z) =
W(y)W(z)∑
z∈D∩R(..) W(z)
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Calibration of distance metric

The distance metric drouting , used to define shortest paths (routes) through the network in 
Eqs. 1–2, is given in Eq. 5. The distance of any route through the network constitutes the 
sum of the link and junction distances on that route:

The calibration constant a specifies the relative importance of angular over Euclidean 
network distance (a = 1 gives pure angular, a = 0 pure Euclidean); ang is cumulative angu-
lar change along a link or turn at junction; euc is Euclidean distance measured along the 
path of the link; rand is a random sample drawn from a normal distribution with mean = 1. 
The standard deviation of this distribution σ is varied to obtain optimal fit to pedestrian 
behaviour, the presumption being that typical pedestrian behaviour may not be random, 
but depends on more factors than we can feasibly include, so we randomize behaviour 
somewhat to ensure that pedestrian flows are distributed over similar paths rather than 
all-or-nothing assignment to the shortest. de Ortúzar (2011, Sect.  10.4.1) classifies such 
approaches as Monte Carlo simulation assignment. Thus, for each origin–destination pair 
we draw multiple samples from the random distribution, 5 during the calibration of σ and 
50 for the final model. To avoid distances of zero and the opposite extreme, values drawn 
from rand are constrained to the range .1 ≤ x ≤ 10; values exceeding that range are moved 
to its nearest endpoint.

For calibration of the random factor we test a wide range of values of σ for their effect 
on e2s Betweenness as a predictor of pedestrian flow (e2s being the variable which carries 
most predictive power on its own). The metric is also calibrated by varying the value of a. 
In previous work exploring hybrids of angular and Euclidean analysis on pedestrian flows 
in London (publication pending) we tested a = 0, .25, .5, .75, 1, and found a = .25 and .5 to 
give the best fits, so tried both of these values during calibration of the current study.

Calibration and testing of multiple models

Statistical models are fitted to observed flows as per Cooper (2018), though we report R2 
rather than mean square error, because our intention is to model the spatial distribution 
of flows rather than overall levels of activity. Spatial Network Analyses in the literature 
are  typically univariate, that is, they involve only one Betweenness calculation, which is 
then calibrated against pedestrian flows through bivariate ordinary least squares linear 
regression. Existing models tend to report fit against data, but without validation against 
a test data set. Both Betweenness and flow variables are often transformed prior to regres-
sion, e.g. by cube root (e.g. Turner 2007) or Box Cox estimation (e.g. Cooper 2015)   to 
serve  the dual purpose both of taming outliers in the data and minimizing a trade-off of 
absolute and relative error.

These techniques are not suitable for a multiple regression analysis for two reasons: (1) 
variable transformations violate the physical interpretation of a linear additive assignment 
model in which each variable in isolation represents a count for a subgroup of pedestri-
ans, with subgroups summed to determine the total count. (While nonlinear models may 
achieve better fit, a model with a physical interpretation has less risk of underperform-
ing when extrapolating beyond the training set). (2) Ordinary least squares will tend to 

(5)
distance for link = (a × ang + (1 − a) × euc) × rand

distance for junction = a × ang × rand
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overfit data where the predictor variables are correlated. Such correlations are in general 
to be expected for minor variations in the definition of betweenness on the same network 
due to the restricted choice of paths realistically available in a real world setting (Cooper 
2018). We therefore replace variable transformations with weighting to achieve a similar 
effect, at the expense of some loss in model fit, but producing more credible models as 
they are structurally and behaviourally sound. Each data point y is weighted by y�∕y , with 
0 ≤ λ ≤ 1 (λ is set to 1 to minimize absolute error, 0 to minimize relative error, or any value 
in between for a trade-off).

In place of ordinary least squares regression we use Tikhonov regularization in the form 
of ridge regression (Amemiya 1985; Tikhonov 1943). This technique can be interpreted 
either as introducing a penalty term to prevent overfit, or as imposing a Bayesian prior on 
the likely values of the regression coefficients, forcing them towards zero. The optimum 
strength of the ridge penalty (or standard deviation of the prior) is determined by general-
ized cross-validation (GCV) with sevenfolds and 50 bootstrap repetitions. GCV repeatedly 
fits models on a random subset of the training data, then tests them on the remainder. This 
not only solves the problem of overfit, but also has the result of reporting the model’s abil-
ity to predict outside the training set, i.e. to extrapolate from cordon points in the training 
set to the rest of the network. For the ridge regression it was necessary to manually specify 
the ridge penalty λ as auto-selection of λ from the glmnet package used for model fitting 
(see Software section below) did not find the optimal value.

Three models are formed and tested against pedestrian flows in each year 2010 and 2011

1.	 The direct model predicts using regression in the conventional manner (Eq. 6): 

 where betweenness variables are given in the rows of Table 2. For calibration of � s, 
all variables are taken from 2007 data; for prediction, flow and betweenness variables 
are taken from years 2010 and 2011 respectively (based on the changed map data for 
2010 which added/removed links, altered floor area and car park locations) but retain-
ing � s from 2007. This is the most useful model in practice as it extrapolates data 
across both space and time. Baseline flow data is only used for calibration and not as 
an input to the prediction of each flow point. It is therefore tested on 5 additional cor-
don points added by Cardiff Council for 2011, for which the other models could not 
have produced predictions.

2.	 The null model assumes no change in pedestrian flow between years, i.e. predicts that 
flowyear = flow2007 , and is thus only applicable to cordon points where pedestrian counts 
have been recorded all years. Although not a useful model in practice the assumption of 
no change serves as a benchmark against which the direct and incremental models can 
be evaluated.

3.	 The incremental direct model works by adding predicted change between years of the 
direct model to flows for the baseline year, Eq. 7: 

 Like the null model, this cannot extrapolate from the cordon points to the rest of the 
network, where baseline flow data is not available. The incremental model is included 
to demonstrate that MH-sDNA adds useful extra information to the null model.

(6)predictedflowyear = �1betweenness
year

1
+ �2betweenness

year

2
+…

(7)incrementalflowyear = flow2007 + predictedflowyear − predictedflow2007
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Software

All network preparation (checking for errors), betweenness computations, regression and 
prediction is undertaken with the publicly available sDNA + toolbox for ArcGIS, QGIS, 
command line and Python (Cooper 2016; Cooper et al. 2011). The sDNA+ Integral Analy-
sis tool is used for the Betweenness models. Based on our work, the distance metric used in 
the current study has now been added to sDNA+ (without randomization) as the ‘PEDES-
TRIAN’ preset. Randomization was added using the linerand, juncrand and oversample 
keywords in sDNA advanced configuration. Calibration via ridge regression is conducted 
using the open source sDNA Learn and Predict tools which in turn make use of the glmnet 
R package (Friedman et al. 2009).

Results

Table 3 shows cross-correlation between the independent variables. This is in general high, 
especially (1) for different trip lengths under the same betweenness type (e.g. different 
lengths of n2s, p2s, sc2s, sq2s, e2s, s2s); (2) between the e2s and s2s variables (‘every-
where to retail’ and ‘retail to retail’ weighted betweenness), due to the wide prevalence of 
retail in the area with cordon counts. As noted above, these correlations are not unexpected 
and for this reason we follow Cooper (2018) in using ridge regression to handle collinear 
predictors.

During calibration to 2007 data we found setting the angular/Euclidean hybrid coeffi-
cient a = .5 to give better model fit than .25. For calibration of the random factor, Fig. 5 
shows the results obtained. Based on this we initially settled on σ = .5 as the lowest amount 
of randomization that reliably increased correlation with pedestrian flows. However, this 
led to predictions we considered unrealistic (such as all-or-nothing assignment to either 
side of a particular street when both were suitable), so we changed it to σ = 1.0. This 
change also increased overall fit for the 2007 model from .47 to .49.

For the overall 2007 model, we initially fitted the first 5 variable classes described in 
Table 2. Inspection of the initial model fit revealed a number of errors in the map (con-
nectivity and poor geocoding of retail floor areas), which were corrected. The final vari-
able (‘n2s’) was added after the first calibration attempt, as we suspected from examina-
tion of residuals that the model was not capturing the large volume of on-street parking 
to the north of the study area, which is captured elsewhere through the ‘e2s’ variable. 
Additionally, two outliers at a single intersection which appears unusually busy (near 
to Cardiff Castle, a popular tourist destination), caused problems fitting the data, so the 
model was fit with the weighting λ = .7 to reduce their effect (from previous work we 
have found values of λ in this region to improve GEH). The weighted, cross validated 
R2 for the 2007 model is .49 including outliers; unweighted fit improves to .60 if remov-
ing outliers to test the outlier-fitted model. Standardized coefficients for the variables 
are given in Table 4. Ridge regression drops the p2s variable at 600 m radius. Distance 
decay is evident in the coefficients (representing reduced tendency for individuals to 
travel further per opportunity), but not the standardized coefficients within the range of 
distances tested, as quantity of opportunities increases with distance.
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Figure 6 shows pedestrian flow counts fitted to the footfall count data for 2007. This 
reveals progressively higher pedestrian flows from the edge of the city to the centre with 
the highest flows occurring in and around the pedestrianised streets, as would be expected. 
It is also clear how side streets off busy streets can have much lower pedestrian flows 
despite linking streets with high levels of flows. The carparks and the Central station do not 
appear to influence larger flows, probably due to the former being quite evenly distributed 
around the periphery.

Figure 7 shows the predicted change in pedestrian flow counts between 2007 and 2011. 
The thick red lines show the greatest increase in flows with blue showing a decrease; white 
reveals no substantial change. What this predicts is the increase in flows to the new St 
David’s 2 development in the bottom centre of the map and in particular the importance of 
the direct East–West streets linking the new development to the two railway stations and 
bus station and also the main pedestrianised thoroughfare from the north of the city centre 
linking to the main Cardiff train station to the south of the city centre. The smaller side 
streets show no predicted change in flows except where close enough to the new develop-
ment (400 m) that they can capture ‘shop-to-shop’ traffic with their own retail area. The 
area to the north-east of the city centre sees slight predicted decline due to inelastic shop-
to-shop flows originating on Queen Street, being redistributed from this area to the new 
development. Note that as total volume of pedestrian activity is exogenous to the model, 

Fig. 5   Test of different levels of 
randomization on e2s variable, 
radius 800 m, 5 × sampling
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Table 4   Regression coefficients 
derived from 2007 data (common 
to models 2 and 3)

Variable Radius (m) Coeff Std StdCoeff

n2s 600 4.0E−03 2.6E+04 102
n2s 1000 3.7E−03 7.4E+04 270
p2s 1000 1.8E−03 1.0E+05 187
sc2s 600 3.5E−03 1.7E+04 59
sc2s 1000 1.2E−03 4.8E+04 60
sq2s 600 1.1E−02 1.1E+04 121
sq2s 1000 5.3E−03 3.8E+04 202
e2s 400 2.2E−04 1.1E+06 245
e2s 800 5.2E−05 6.5E+06 342
e2s 1200 2.8E−05 1.5E+07 417
s2s 200 4.0E−02 4.8E+03 193
s2s 400 1.9E−02 1.1E+04 207
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Fig. 6   Extrapolation across space: predicted flows for the 2007 map calibrated to 2007 counts 

Fig. 7   Extrapolation across time: predicted changes for the 2010 map based on calibration from 2007. Neg-
ative numbers where present show decline relative to other points in city centre (not necessarily an absolute 
decline in numbers)
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this predicted decline is relative to the rest of the city centre and may not represent an abso-
lute decline in pedestrian flows.

Table 5 shows model performance for each year. The null model reveals a substantial 
consistency for pedestrian flows between years, with the exception of 2011 which was hard 
to predict for all models including the null model due to a large reduction in footfall on the 
days sampled on the main road near the castle. This is likely due to 2011 flows having the 
least correlation with other years (see Fig. 2) although the ultimate reason for this remains 
unknown, possibly relating to events unique to the city centre on the day of recording. The 
incremental model outperforms the null model, showing that MH-sDNA adds meaningful 
information. The performance of the (most widely applicable) direct model is good at .72 
in 2010, though reduces to .45 in 2011. Figure 8 shows a scatter plot of 2010 counts against 
predictions with clear correlation; no pattern is immediately discernible in the residuals 
when mapped; the apparent increase of error for high flows relates to the outliers discussed 
above. The intercept is set at 0 as pedestrian count cannot be negative.

Following the forecasting exercise, we also tested a model based on choosing the best 
single variable in isolation. This reflects previous practice in using a single betweenness 
measure (possibly augmented by other variables) calibrated for optimal choice of radius 

Table 5   Performance 
(unweighted r2) of each model 
in prediction of flows for 
subsequent years

Year Null model r2 Incremental direct 
model r2

Direct model r2

2008 0.79 n/a n/a
2009 0.85 n/a n/a
2010 0.81 0.84 0.72
2011 0.63 0.73 0.45

Fig. 8   Scatter plot of 2011 counts against predictions from the direct model calibrated on 2007. Line shows 
diagonal (i.e. where predicted and actual flow are equal)
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(Cooper 2017; Jayasinghe 2017; Omer et al. 2017; Serra and Hillier 2017; Turner 2007) 
albeit in this case also making optimal choice of the available origin and destination 
weightings. During the calibration year, the best individual variable was e2s at 1200  m 
radius with cross-validated R2 = .32. During the test year this variable has R2 = .69 with 
measured flows. It is outperformed in the test year by another variable, e2s at 800 m radius 
which has R2 = .72 (matching the performance of the direct model), however, this informa-
tion would not have been available to a modeller during the calibration year. The ridge 
regression direct model has therefore been shown to provide a more robust forecast in the 
face of uncertainty.

Discussion

This study has tested the forecasting ability of Multiple Hybrid Spatial Design Network 
Analysis, which in contrast to traditional spatial network analysis attempts to explicitly 
capture a diverse array of behaviour. We have shown MH-sDNA to be capable of predict-
ing the effect of major changes in city centre street layout, including re-alignment and 
urban block size changes and re-allocation of street space, on pedestrian flow counts, by 
extrapolating from measured pedestrian flow data both across space and across time. In 
an incremental model of changes (model 3), we improve on the information provided by a 
null model of no change (model 2), however we expect the technique to be of greater use in 
direct form (model 1) where it is able to extrapolate to other points in space from the cor-
don counts used for training. Our approach combines a set of original features: hybrid road 
centre line and footpath centre line mapping of the pedestrian outdoor, indoor, public and 
quasi-public spaces, extended by 1.2 km buffer beyond the city centre to serve as source for 
trips from the surroundings, and a hybrid metric blending shortest and most direct path that 
best fits observed pedestrian route choice in the literature (Shatu et al. 2019) augmented by 
Monte Carlo random assignment. We also use regularized regression with built-in cross-
validation to enable multiple spatial network analysis.

This is the first time, to our knowledge, that such a pedestrian flow model has been 
evaluated for its ability to forecast the effect of major city centre changes over time. The 
model captures the street layout supply/demand effect of the replacement of a large urban 
block with smaller and more intelligible alignment of key north–south and east–west corri-
dor, by reductionist consideration of individual routes through the network following in the 
footsteps of Sevtsuk et al. (2016) rather than relying on the more abstract metric of block 
size. Yet to date no study involving empirical pedestrian movement observation and route 
assignment has been investigated. The natural experiment investigated in Cardiff city cen-
tre through pedestrian layout mapping, empirical pedestrian flow observation and pedes-
trian route assignment enables us to better understand the impacts, first of the major layout 
change and second of the “town centre first” retail-led urban regeneration policy, from the 
point of view of town centre vitality and pedestrian users rather than retailers alone (Kim 
and Jang 2017). The results and methodology are relevant for the preparation and evalua-
tion of plans, not only to planners and designers in the European context but also in US and 
Chinese cities which are known to suffer from very large urban block size (Sun et al. 2017). 
The model has since been used in a complex multi-level rail and property project (Zhang 
and Chiaradia 2019).
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This model can be applied (1) in the design and future planning of pedestrian environ-
ments as well as the improvement of current ones, (2) to simulate changes to an actual 
environment, (3) to predict behaviours in an existing or new layout, (4) to determine future 
need for an improvement in pedestrian layout, or (5) to measure the effect of the addition of 
new infrastructure or business.

A key limitation of the study is the methodology used for pedestrian counts, which were 
manual. Modern counting techniques including video analysis, WiFi or Bluetooth sensors 
can count passing pedestrians 24 h a day, 365 days a year, with the hope of producing more 
accurate data. There is also no pedestrian flow measurement from inside the new St Davids 
2 shopping centre, which would have been beneficial to include if present.

Two obvious options exist for improving the models outlined here. The first is the inclu-
sion of a pedestrian environment audit; this need not be as complex as mainstream audits 
(Transport for London, 2006); indeed it may suffice to have a simple means of classify-
ing streets e.g. as excellent/good/mediocre/poor—to feed into the route assignment model, 
likely yielding improvements without excessive cost. The second, as we start to model 
more congested urban environments, is to account for pedestrian congestion. In the con-
text of MH-sDNA this can be achieved in two ways: either linking to agent microsimula-
tion models at key congested locations, or by iterative modelling using a statistical physics 
approach (e.g. Osaragi 2004) that predicts deterrence from links based on their width and 
current level of pedestrian flow.

Finally it would be fruitful to employ MH-sDNA techniques to improve the accuracy of 
existing mode choice models (covering the decision to walk rather than drive e.g. Ewing 
et al. 2014), thus expanding the social/economic sustainability concern to incorporate the 
environmental as well.
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Appendix: Computation details

The sDNA Integral tool computes betweenness as outlined in Eqs. 1–2 by running Dijk-
stra’s (1959) algorithm once per origin and summing shortest paths that pass through 
each link. sDNA configurations for each group of variables shown in Table 2 are given in 
Table 6.

sDNA takes input data in the form of polylines, which depending on the input data, 
can each represent either a complete network link, or part of a link formed from several 
polylines. All analyses therefore use the ‘polyline weighting’ option which applies the pro-
vided weights directly to each polyline in the input data. This contrasts the default ‘link 
weighting’ option which in this case would inappropriately scale down retail floor areas for 
polylines which represent partial links.
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