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Exact periodic and localized solutions of a nonlocal Mel′nikov equation are derived by the Hirota bilinear method. Many
conventional nonlocal operators involve integration over a spatial or temporal domain. However, the present class of nonlocal
equations depends on properties at selected far field points which result in a potential satisfying parity time symmetry..e present
system of nonlocal partial differential equations consists of two dependent variables in two spatial dimensions and time, where the
dependent variables physically represent a wave packet and an auxiliary scalar field. .e periodic solutions may take the forms of
breathers (pulsating modes) and line solitons. .e localized solutions can include propagating lumps and rogue waves. .ese
nonsingular solutions are obtained by appropriate choice of parameters in the Hirota expansion. Doubly periodic solutions are
also computed with elliptic and theta functions. In sharp contrast with the local Mel′nikov equation, the auxiliary scalar field in the
present set of solutions can attain complex values..rough a coordinate transformation, the governing equation can reduce to the
Schrödinger–Boussinesq system.

1. Introduction

Nonlinear evolution equations (NLEEs) are widely ap-
plicable in a variety of intriguing phenomena in physical
sciences and engineering, e.g., biophysics, condensed
matter, fluids, optics, particle dynamics, and plasma
physics [1–8]. Searching for exact solutions of NLEEs is
critically important in these applications, as such solu-
tions offer rich knowledge and penetrating insight for the
phenomena being modelled by the NLEEs. Many inge-
nious methods have been devised to solve these NLEEs
analytically. Examples include, but are not limited to, the
Darboux transformation [9, 10], Hirota bilinear method
[11], homogeneous balance method [12, 13], inverse
scattering transform [14, 15], Lie group analysis [16, 17],
and many other schemes [18–20].

Most of the NLEEs studied in the literature are local
equations where the evolution depends only on the local

value of the dependent variable and its local space and time
derivatives. Nonlocal evolution equations arise in many
fields of applications too, where the nonlocal nature fre-
quently comes from a dependence on the global properties,
e.g., an integral of the dependent variable [21–23]. Physical
scenarios include modulation of nonlinear waves (Whith-
am’s equation) [21] and reaction diffusion systems [22, 23].
Aside from the global operator, the linear portion of the
differential equation may be of the forms of the Duffing,
heat, or inviscid Burgers equations. Here, we consider an-
other class of nonlocal evolution equations where the in-
tensity of the wave motion depends on values of the
dependent variable at points in the far field. Physically, the
significance is that this potential displays a parity time
symmetry property studied also intensively in quantum
mechanics. Recently, Ablowitz and Musslimani [24] have
introduced a nonlocal nonlinear Schrödinger (NLS)
equation:
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qt(x, t) − iqxx(x, t) ± 2iV(x, t)q(x, t) � 0,

V(x, t) � q(x, t)q
∗
(− x, t),

(1)

which incorporates a parity time (PT) symmetric potential
V. Fokas extended the nonlocal NLS equation into multi-
dimensional versions and proposed a new integrable non-
local Davey–Stewartson (DS) equation [25]:

iAt � Axx + Ayy +(ϵV − 2Q)A,

Qxx − Qyy � (ϵV)xx,
(2)

where

V � A(x, y, t)[A(− x, − y, t)]
∗
, ε � ±1,

orV � A(x, y, t)[A(− x, y, t)]
∗
, ε � ±1.

(3)

Subsequently, several new nonlocal integrable equations
were also investigated [26–43].

Here, the focus is on a set of nonlinear equations which
exhibits partial reverse space time in multidimensional
setting. Inspired by the works of Ablowitz, Mussliman, and
Fokas, we propose a partial reverse space-time nonlocal
Mel′nikov equation:

3uyy − uxt − 3u
2

+ uxx + κϕϕ∗(− x, y, − t)􏽨 􏽩
xx

� 0,

iϕy � uϕ + ϕxx,
(4)

where u and ϕ are functions of x, y, and t. Obviously, by
replacing ϕ∗(− x, y, − t) with ϕ∗(x, y, t), the nonlocal
Mel′nikov equation reduces to the usual Mel′nikov
equation:

3uyy − uxt − 3u
2

+ uxx + κ|ϕ|
2

􏼐 􏼑
xx

� 0,

iϕy � uϕ + ϕxx.
(5)

Here, real u is the long wave component and ϕ is the
complex valued short wave envelope. As noted by Mel′nikov
[44–47], this equation may describe an interaction of long
waves with short wave packets, and it could also be con-
sidered either as a generalization of the Kadomt-
sev–Petviashvili (KP) equation with the addition of a
complex scalar field or as a generalization of the nonlinear
Schrödinger (NLS) equation with a real scalar field [48].
High-order soliton solutions for this equation were calcu-
lated by Hase et al. [49]. Rogue wave solutions were derived
by Mu and Qin [50], and general N-dark soliton solutions of
the multicomponent Mel′nikov system were investigated by
Han et al. [51]. Under the variable transformations,

ξ � x + t,

η � y,

τ � t,

κ � − 1,

(6)

on neglecting the τ-dependence and rewriting
ξ⟶ x, η⟶ t, the nonlocal Mel′nikov equation reduces
to the nonlocal Schrödinger–Boussinesq equation:

3utt − uxx − 3u
2

+ uxx − ϕϕ∗(− x, t)􏽨 􏽩
xx

� 0,

iϕt � uϕ + ϕxx.
(7)

Rogue wave solutions of the conventional local
Schrödinger–Boussinesq equation have been studied by Mu
and Qin [52].

In recent works [37, 38], (2 + 1)-dimensional breather,
rational, and semirational solutions of the partially and
fully parity-time (PT) symmetric nonlocal DS equations
have been reported. .us, it is natural to seek exact so-
lutions for other partial reverse space-time nonlocal
equations too. In this work, we derive families of rational
and semirational solutions to the partial reverse space-
time nonlocal Mel′nikov equation (4) by using the Hirota
bilinear method.

.is paper is organized as follows. In Section 2, soliton
and breather solutions are derived by employing Hirota’s
bilinear method. .e unusual feature is that both de-
pendent variables are allowed to be complex valued,
leading to novel structures in the auxiliary scalar field. In
Section 3, the main theorem on the rational solutions is
established, and typical features of these rational solutions
are demonstrated. In Section 4, semirational solutions
consisting of lumps, breathers, and periodic line waves are
generated, and their novel dynamics is also elucidated. In
Section 5, doubly periodic solutions are computed in
terms of theta and elliptic functions. Our results are
summarized in Section 6.

2. Soliton and Breather Solutions of the
Nonlocal Mel9nikov Equation

To activate the Hirota bilinear method, we formulate the
following transformation and allow for nonzero asymptotic
condition (ϕ, u)⟶ (1, 0) as x, y, t⟶∞:

ϕ �
g

f
,

u � 2(logf)xx,

(8)

where f andg are functions with respect to three variables
x, y, and t, which satisfy the condition

f
∗
(− x, y, − t) � f(x, y, t). (9)

In other words, f can be complex. .is is in strong
contrast with the local Mel′nikov equation where the aux-
iliary scalar field must be real. Equation (4) is written in the
following bilinear form:

D
2
x − iDy􏼐 􏼑g · f � 0,

D
4
x + DxDt − 3D

2
y􏼐 􏼑f · f � κ f

2
− gg
∗
(− x, y, − t)􏽨 􏽩.

(10)

Here, the operator D is the Hirota bilinear differential
operator [11] defined by

2 Complexity



P Dx, Dy, Dt,􏼐 􏼑F(x, y, t, . . .) · G(x, y, t, . . .)

� P zx − zx′
, zy − zy′

, zt − zt′
, . . .􏼒 􏼓F(x, y, t, . . .)G x′, y′, t′, . . .( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌x′�x,y′�y,t′�t
,

(11)

where P is a polynomial of Dx, Dy, Dt, . . ..
Following a well-established procedure [11], to obtainN-

soliton solutions of the nonlocal Mel′nikov equation, we
expand g and f as power series of a small parameter ϵ:

g � 1 + εg1 + ε2g2 + ε3g3 + · · · + εN
gN,

f � 1 + εf1 + ε2f2 + ε3f3 + · · · + εN
fN,

(12)

with truncations leading to exact solutions:

f � 􏽘
μ�0,1

exp 􏽘
N

k<j
μkμjAkj + 􏽘

N

k�1
μkηk

⎛⎝ ⎞⎠,

g � 􏽘
μ�0,1

exp 􏽘
N

k<j
μkμjAkj + 􏽘

N

k�1
μk ηk + iϕk( 􏼁⎛⎝ ⎞⎠,

(13)

where

ηj � iPjx + Qjy + iΩjt + η0j ,

exp iϕj􏼐 􏼑 � −
P4

j − Q2
j

P4
j + Q2

j

+ i
2P2

jQj

P4
j + Q2

j

,

exp Ajk􏼐 􏼑 � −
κ − κ cos ϕj − ϕk􏼐 􏼑 + Pj − Pk􏼐 􏼑 Ωj − Ωk􏼐 􏼑 − Pj − Pk􏼐 􏼑

4
+ 3 Qj − Qk􏼐 􏼑

2

κ − κ cos ϕj + ϕk􏼐 􏼑 + Pj + Pk􏼐 􏼑 Ωj +Ωk􏼐 􏼑 − Pj + Pk􏼐 􏼑
4

+ 3 Qj + Qk􏼐 􏼑
2,

(14)

and the dispersion relation is

ΩjPj P
4
j + Q

2
j􏼐 􏼑 + P

4
j P

4
j − 2Q

2
j − 2κ􏼐 􏼑 − 3Q

4
j � 0. (15)

Here, Pj andQj are real parameters and η0k is an arbitrary
complex constant. .e notation 􏽐μ�0,1 indicates summation
over all possible combinations of μ1 � 0, 1, μ2 �

0, 1, . . . , μN � 0, 1; the 􏽐
N
j< k summation is over all possible

combinations of the N elements with the specific condition
j< k.

Soliton solutions of the nonlocal DS equations may have
singularities [37, 38]. Here, by suitable constraints on the
parameters Pj, Qj, and η0j in equation (13),

N � 2n,

Pn+j � − Pj,

Qn+j � Qj,

η0n+j � η0
∗

j .

(16)

General nonsingular n-breather solutions can be gen-
erated. For instance, with N � 2 and parameter choices,

P1 � − P2 � P,

Q1 � Q2 � Q,

η01 � η02 � η0,

(17)

where P, Q, and η0 are real, the one breather can be
expressed in terms of hyperbolic and trigonometric func-
tions as

ϕ �
g0

f0
,

u � 2 logf0( 􏼁xx,

(18)

where

f0 �
��
M

√
cos hΘ + cos(Px +Ωt),

g0 �
��
M

√
cos2 ψ cos hΘ + sin2 ψ sin hΘ􏽨

+ i cosψ sinψ(cos hΘ − sin hΘ)􏼃

+ cos(Px +Ωt)(cosψ + i sin).

(19)

M,Θ,ψ, and η0 are defined by

M � 1 +
P4

Q2,

exp η0( 􏼁 �
��
M

√
exp η0􏼐 􏼑,

exp(iψ) �
Q2 − P4

P4 + Q2 + i
2P2Q

P4 + Q2,

Θ � − Qy + η0( 􏼁,

Ω �
P4 − 2P4Q2 − 2κP4 − 3Q4

P P4 + Q2( )
.

(20)

.e period of |ϕ| or u is 2π/P along the x direction in the
(x, y)-plane (Figure 1). In particular, under the parameter
constraints,
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Ω � P, (21)

and the variable transformations defined in equation (6), the
one-breather solutions defined in equation (18) reduce to
one-breather solutions of the nonlocal Schrödin-
ger–Boussinesq equation. Moreover, the higher-order
breather solutions can also be generated from equation (13)
under the parameter constraints equation (16), which still
maintain the features of being periodic in the x direction and
localized in the y direction. For example, taking parameters
in equation (13) as

P1 � − P2,

P3 � − P4,

Q1 � Q2,

Q3 � Q4,

η01 � η∗02 ,

η03 � η∗04 ,

(22)

the second-order breather solutions ϕ, u can be generated
(Figure 2).

In addition to general breather solutions, mixed solu-
tions consisting of breathers and periodic line waves can also
be generated by taking parameters in equation (13) as

N � 2n + 1,

Pn+j � − Pj,

Qn+j � Qj,

Q2n+1 � 0,

η0n+j � η0
∗

j .

(23)

.is family of hybrid solutions is also nonsingular and
describes n-breather on a background of periodic line waves.
.e period of the periodic line waves is 2π/P2n+1. For ex-
ample, with N � 3 and parameter choices in equation (13) as
(P0, Q0, real),

P1 � − P2 � P0,

Q1 � Q2 � Q0,

Q3 � 0,

η01 � η02.

(24)

Amixed solution consisting of one breather and periodic
line waves is obtained (Figure 3). .e period of the one
breather is 2π/P0, while that of the line waves is 2π/P3. In
this case, u is a complex valued function, which is different
from the solutions of the local Mel′nikov equation, where
the scalar field must be real. Again, when one takes pa-
rameter constraints,

Ω1 � P0,

Ω2 � − P0,

Ω3 � P3,

(25)

and the variable transformations defined in equation (6),
the corresponding mixed solutions reduce to hybrid so-
lutions consisting of one-breather solutions and periodic
line waves to the nonlocal Schrödinger–Boussinesq
equation.

Another popular method to derive exact solutions to
soliton equation theoretically is the Darboux transforma-
tion [53–60], but we have demonstrated that the bilinear
method is a feasible scheme too. Examples of these solu-
tions include solitons, breathers, rogue waves, and many
other types of rational solutions. .is alternative is espe-
cially valuable as most soliton systems possess bilinear
forms.

3. Rational Solutions of the Nonlocal
Mel9nikov Equation

To generate rational solutions to the nonlocal Mel′nikov
equation, a long wave limit is now taken with the
provision

exp η0j􏼐 􏼑 � − 1, 1≤ j≤N. (26)

Indeed, under parameter constraints,

Qj � λjPj,

η0j � iπ, 1≤ j≤N,
(27)

and the limit Pj⟶ 0 in equation (13), rational solutions
can be obtained.

Theorem 1. <e partial reverse space-time nonlocal
Mel′nikov equation have Nth− order rational solutions:

ϕ �
gN

fN

, u � 2 logfN( 􏼁xx, (28)

where

fN � 􏽙
N

j�1
θj +

1
2

􏽘

N

j,k

αjk 􏽙

N

l≠j,k

θl + · · ·

+
1

M!2M
􏽘

N

j,k,...,m,n

︷αjkαsl · · · αmn

M
􏽙

N

p≠j,k,...m,n

θp + · · · ,

gN � 􏽙

N

j�1
θj + bj􏼐 􏼑 +

1
2

􏽘

N

j,k

αjk 􏽙

N

l≠j,k

θl + bl( 􏼁 + · · ·

+
1

M!2M
􏽘

N

j,k,...,m,n

︷αjkαsl · · · αmn

M
􏽙

N

p≠j,k,...m,n

θp + bp􏼐 􏼑 + · · · ,

(29)

with
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θj � ix + λjy − i 3λ2j +
2κ
λ2j

⎛⎝ ⎞⎠t,

bj �
2i

λj

,

ajk � −
4

λj − λk􏼐 􏼑
2,

(30)

where the two positive integers j and k are not larger than
N and λj and λk are arbitrary real constants. As example,
the first four terms of equation (29) can be written ex-
plicitly as

f1 � θ1,

f2 � θ1θ2 + a12,

f3 � θ1θ2θ3 + a12θ3 + a13θ2 + a23θ1,

f4 � θ1θ2θ3θ4 + a12θ3θ4 + a13θ2θ4
+ a14θ2θ3 + a23θ1θ4 + a24θ1θ3
+ a34θ1θ2 + a12a34 + a13a24 + a14a23,

g1 � θ1 + b1,

g2 � θ1 + b1( 􏼁 θ2 + b2( 􏼁 + a12,

g3 � θ1 + b1( 􏼁 θ2 + b2( 􏼁 θ3 + b3( 􏼁a12 θ3 + b3( 􏼁

+ a13 θ2 + b2( 􏼁 + a23 θ1 + b1( 􏼁,

g4 � θ1 + b1( 􏼁 θ2 + b2( 􏼁 θ3 + b3( 􏼁 θ4 + b4( 􏼁

+ a12 θ3 + b3( 􏼁 θ4 + b4( 􏼁 + a13 θ2 + b2( 􏼁 θ4 + b4( 􏼁

+ a14 θ2 + b2( 􏼁 θ3 + b3( 􏼁 + a23 θ1 + b1( 􏼁 θ4 + b4( 􏼁

+ a24 θ1 + b1( 􏼁 θ3 + b3( 􏼁

+ a34 θ1 + b1( 􏼁 θ2 + b2( 􏼁

+ a12a34 + a13a24 + a14a23.

(31)

<e abovementioned formulae for f and g will be used to
calculate explicit forms of rational solutions.

Remark 1. .ese rational solutions can be classified into two
patterns:

(1) By restricting the parameters,

N � 2n,

λn+j � − λj, j � 1, 2, 3, . . . , n,
(32)

in .eorem 1, the corresponding rational solutions
are nonsingular, which are nth-order lumps.

(2) When the parameters do not satisfy constraints
defined in equation (32), the corresponding solu-
tions have singularity at the point (x, y, t) � (0, 0, 0).
.us, hereafter, we just focus on the nonsingular
rational solutions.

To demonstrate their typical dynamics, we first consider
the first-order lump solutions obtained by taking in equation
(29)

N � 2,

λ2 � − λ1,

λ � λ.

(33)

In this case, u and ϕ can be expressed:

ϕ � 1 +
g0
2

f2

� 1 +
4iλ2y − 4

λx − 2κ/λ + 3λ3􏼐 􏼑t􏽨 􏽩
2

+ λ4y2 + 1
,

u � 2 logf2( 􏼁xx

� − 4
λ2x − 2k + 3λ4􏼐 􏼑t􏼐 􏼑

2
− λ6y2 − λ2

λx − (2k/λ) + 3λ3􏼐 􏼑t􏼐 􏼑
2

+ λ4y2 + 1􏼔 􏼕
2.

(34)

As discussed in Ref. [38], solutions ϕ and u are constant
along the [x(t), y(t)] trajectory, where

x −
2κ + λ4

2λ2
, t � 0, y � 0. (35)

Moreover, at any fixed time, (ϕ, u)⟶ (1, 0) when
(x, y) becomes unbounded. Hence, these rational solutions
are permanent lumps moving on the constant backgrounds.

Hence, we can discuss the patterns of the lump solutions
at t � 0 without loss of generality. In this case, the two
solutions ϕ and u have critical points:

A1(x, y) � (0, 0),

A2(x, y) �

�
3

√

λ
, 0􏼠 􏼡,

A3(x, y) � −

�
3

√

λ
, 0􏼠 􏼡,

(36)

on insisting the first derivatives to vanish
z|ϕ|/zx � z|ϕ|/zy � 0(zu/zx � zu/zy � 0). .e second de-
rivatives at these three critical points are given by

|ψ|xx

􏼌􏼌􏼌􏼌A1
� − 48λ2,

|ψ|xx|ψ|yy − |ψ|
2
xy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌A2
� |ψ|xx|ψ|yy − |ψ|

2
xy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌A3
� 768λ6,

uxx

􏼌􏼌􏼌􏼌A1
� − 24λ4,

uxxuyy − u
2
xy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌A2
� uxxuyy − u

2
xy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌A3
�
41
2
λ10.

(37)

Hence, A1 is the maximum point of solutions ϕ and u and
A2 andA3 are the minimum points. .us, there are only bright
lumps in the nonlocal Mel′nikov equation, a feature different
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from the local Mel′nikov equation [45] as the latter possesses
three patterns of lumps. Furthermore, by comparison with the
rational solutions of the localMel′nikov equation, the expression

of g0
2 in equation (34) only contains the variable y, but the

corresponding solutions of the localMel′nikov equation contain
all the variables x, y, and t (Figure 4). In particular, on taking
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Figure 1: .e one-breather solutions |ϕ| and u of the nonlocal Mel′nikov equation given by equation (18) with parameters
κ � 1/2, P � 2/3, Q � 1, η0 � 0, and t � 0.
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Figure 2: .e two-breather solutions |ϕ| and u of the nonlocal Mel′nikov equation with parameters N � 4, P1 � 1, P2 � − 1, P3 � 1,

P4 � − 1, κ � 1/2, Q2 � 2/3, Q3 � 1, Q4 � 1, η0j � 0(j � 1, 2, 3, 4), and t � 0.
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Figure 3: .e mixed solutions |ϕ| and |u| consisting of one breather and periodic line waves in the nonlocal Mel′nikov equation given by
equation (18) with parameters κ � 1, P0 � 1, Q0 � 2, P3 � 1, Q3 � 0, η01 � 0, η02 � 0, η03 � − π, and t � 0.
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λ �

�
6

√

3
,

κ � − 1,

(38)

in equations (6) and (34), the two-dimensional lump so-
lutions (34) reduce to the rogue waves of the nonlocal
Schrödinger–Boussinesq equation, which can be expressed
as

ψ � 1 −
24it + 36

6x2 + 4t2 + 9
,

u �
24 4t2 + 9 − 6x2( 􏼁

6x2 + 4t2 + 9( )
2 .

(39)

In terms of displacements, |ψ| reaches the maximum
amplitude of three (i.e., three times the background am-
plitude) at the point (0, 0), and the minimum amplitude of
zero at points (±3

�
2

√
/2, 0). u reaches the maximum am-

plitude of 8/3 at the point (0, 0), and the minimum am-
plitude of − (1/3) at points (±3

�
2

√
/2, 0). .e function u

tends to a zero background in the far field.
Higher-order lumps can be derived for larger

N � 2n(n≥ 2) and other parameters which meet the con-
straints defined in equation (32)..e solution then describes
the interaction of n fundamental lumps. For example, on
taking

N � 4,

λ1 � − λ3,

λ2 � − λ4,

(40)

the second-order lump solutions can be obtained from
equation (28), which is

ϕ �
�
2

√
g4/f4( 􏼁,

u � 2 logf4( 􏼁xx,
(41)

where g4 satisfies equation (31) and
f4 � 36x

4
− 1260tx

3
+ 15525t

2
+ 36y

2
+ 365􏼐 􏼑x

2

+ − 78750t
3

− 6590t − 2340ty
2

􏼐 􏼑x

+ 140625t
4

+ 25850t
2

+ 9225t
2
y
2

+ 144y
4

− 359y
2

+
5329
9

􏼒 􏼓.

(42)

Peculiar features occur during the interaction of fun-
damental lumps (Figure 5). When the two lumps get close to
each other, their shapes are deformed. .e amplitudes of
both entities decrease and remain less than three (the am-
plitude of the fundamental lump solution). .is feature
contrasts sharply with that of the nonlocal DSI equation
[38], which displays a higher intermediate amplitude during
interactions.

For still larger N and parameters satisfying parameters
constraints equation (32), higher-order lumps would be
obtained, e.g., for

N � 6,

λ1 � − λ2 � 2,

λ3 � − λ4 �
3
2
,

λ5 � − λ6 � 1,

κ � 1,

(43)

a three-lump solution can be derived:

ϕ � 1 +
g0
6

f6
,

u � 2 logf6( 􏼁xx,

(44)

where f6 and g0
6 are given by equations (A.1) and (A.2) in

Appendix A.
.ese third-order solutions consist of three lumps

(Figure 6). .e maximum value of |ϕ| stays below three at all
times.

4. Semirational Solutions of the Nonlocal
Mel9nikov Equation

To understand resonant behaviours for the nonlocal
Mel′nikov equation, we consider several types of semirational
solutions. Similar to the derivation of the rational solutions in
the last section, semirational solutions are also computed by
taking suitable long wave limits. More precisely, a coalescence
of wavenumbers at a finite value is taken, instead of the zero
wavenumber regime, which would generate purely rational
solutions previously. .ese semirational solutions describe
interactions among lumps, breathers, and periodic line waves.

Case 1. A combination of lumps and periodic line waves.
.e simplest semirational solutions consisting of a lump and
periodic line waves are generated from the third-order
soliton solutions. Indeed, taking parameters in (13) as

N � 3,

Q1 � λ1P1,

Q2 � λ2P2,

exp η01􏼐 􏼑 � exp η02􏼐 􏼑 � − 1,

Q3 � 0,

(45)

and taking a long wave limit,

P1, P2⟶ 0, (46)

the functions f and g are rewritten as

f � θ1θ2 + a12( 􏼁 + θ1θ2 + a12 + a13θ2 + a23θ1 + a12a23( 􏼁e
η3 ,

g � θ1 + b1( 􏼁 θ2 + b2( 􏼁 + a12 + θ1 + b1( 􏼁 θ2 + b2( 􏼁 + a12􏼂

+ a13 θ2 + b2( 􏼁 + a23 θ1 + b1( 􏼁 + a12a23]e
η3+iϕ3 ,

(47)
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where

as3 � −
4P2

3

P2
3 + λ2s

, s � 1, 2, (48)

and a12, bs,ϕs, η3 are given by (30) and (14). Furthermore, by
taking parameters as

λ1 � − λ2 � λ0, (49)

a semirational solution consisting of a lump and periodic line
waves is obtained (Figures 7 and 8). .e periodic line waves

coexisting with a fundamental lump are periodic in x direction
and localized in y direction and the period is 2π/P3. By com-
paring this type of semirational solutionswith that of the nonlocal
DSI equation in Ref. [38], the interaction between the lump and
periodic line waves can generate either much higher peaks or
lower peaks. In Figure 7, the maximum amplitude of the lump
can reach 4 (four times the constant background), and thus it is
higher than the fundamental lumps. However, in Figure 8, the
maximumamplitudes of the lumpdonot exceed 2 (two times the
constant background). In this case, the interaction between the
lump and periodic line waves will result in lower peaks.
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Figure 5: .e interaction of two fundamental lumps at different values in time: (a) t� − 2. (b) t� − 1. (c) t� 0. (d) t� 1/2. (e) t� 1. (f ) t� 2.
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Figure 4: .e one-lump solutions |ϕ| and |u| of the nonlocal Mel′nikov equation given by equation (34) with parameters
κ � 1, λ � 1, and t � 0.
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In particular, when one takes

λ �

�
6

√

3
,

κ � − 1,

Ω3 � P3,

(50)

in equations (6) and (47), we obtain one-dimensional mixed
solutions consisting of a fundamental rogue wave and pe-
riodic line waves for the nonlocal Schrödinger–Boussinesq
equation.

Semirational solutions consisting of more lumps and
periodic line waves can also be derived in a similar way
for larger N. As illustrative examples, we consider a
subclass of semirational solutions consisting of two
lumps and periodic line waves, which can be derived
from 5-soliton solutions. Indeed, setting the parameters
in equation (13) as

N � 5,

Qj � λjPj,

exp η0j􏼐 􏼑 � − 1,

Q5 � 0(j � 1, 2, 3, 4),

(51)

and then taking a long wave limit

Pj⟶ 0 (j � 1, 2, 3, 4), (52)

the functions f and g are changed from exponential
functions to a combination of rational and exponential
functions, which are explicitly expressed by equation (A.4)
in Appendix A. Under the parameter constraints,

λ1 � − λ2,

λ3 � − λ4,
(53)

a family of semirational solutions describing two lumps on a
background of periodic line waves is generated. For typical
parameters,

λ1 � − λ2 � 1,

λ3 � − λ4 � 4,

P5 � 1,

(54)

ϕ and u are shown in Figure 9..e period of these line waves
is 2π. .e maximum value of the solution ϕ can exceed 4.5
(4.5 times the constant background) at t � 0, while |u| can
reach 12. In other words, this interaction between these two
lumps and periodic line waves can create very high spikes
under proper parameter choices.

Case 2. A combination of breathers and periodic line waves
Another type of semirational solutions is a mixed mode

consisting of lumps and breathers. Here, we only consider
the simplest example, consisting of one lump and one
breather. We choose parameters in equation (13) as

N � 4,

Q1 � λ1P1,

Q2 � λ2P2,

exp η01􏼐 􏼑 � exp η02􏼐 􏼑 � − 1,

(55)

and take a limit of

P1, P2⟶ 0. (56)

.en, functions f and g of solutions to solve the
Mel′nikov equation can be rewritten as equation (A.6) in
Appendix A. Furthermore, on taking parameters

λ1 � − λ2,

P3 � − P4,

Q3 � Q4,

η03 � η0∗4 ,

(57)

semirational solutions consisting of a fundamental lump and
one breather are obtained (Figure 10). .e period of this
breather is 2π/P3. In this case, u is real. For fixed parameters
η03 and η

0
4, the distance between the lump and the breather is

not altered during their propagation in the (x, y)-plane. In

2.5

2

1.5|ϕ|

1

–40
–20

0
20

40 15
5 x

–5
–15

y

(a)

–40

2.5

u
1

–20
0

20
40 15

5 x
–5

–15

y

(b)

Figure 6: .e third-order lump solutions |ϕ| and u defined in equation (44).
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order to observe the interaction between the lump and
breather, we control the location of the breather by
adjusting the parameters η03, and η04. For |η03|⟶ 0, the
distance between the lump and the breather tends to zero
(Figure 11). .e lump immerses itself in the breather (see
the panel of η03 � 0). .e superposition of the lump and
breather excites a peak whose height is less than three times
the background amplitude. Moreover, the breather pos-
sesses a lower amplitude and a smaller period than the
previous example and it propagates stably. Apparently, the
wave structure of the lump is destroyed due to the inter-
action, and energy transfer has occurred between the lump
and the breather.

Higher-order semirational solutions consisting of
higher-order lumps and higher-order breathers can also be
calculated in a similar way with larger N and will be reported
in the future.

5. Doubly Periodic Solutions

In addition to breather (singly periodic) and rational
(algebraically localized) solutions, the evolution system
in one spatial dimension, namely, the Schrödin-
ger–Boussinesq equation (equation (7), also admits
doubly periodic solutions. .e wave profile will be pe-
riodic in x, but also possesses a distinct period in the t

direction as well. In terms of the mathematical tech-
niques employed, theta functions can be expressed as
Fourier series with exponentially decreasing coefficients,
while elliptic functions can be written as ratios of theta
functions. .e underlying principle is that the Hirota
bilinear derivatives of theta functions can be represented
in terms of theta functions themselves ([61, 62] and
Appendix B). Here, we first generalize equation (7) by
introducing the auxiliary function Φ and the real pa-
rameter σ:

3utt − uxx − 3u
2

+ uxx􏽨 􏽩
xx

� σ ΦΦ∗(− x, t)􏼂 􏼃xx, (58a)

iΦt +Φxx + uΦ � 0, (58b)

with (functions g complex and f real and Ω being the real
angular frequency)

u � 2(logf)xx,

Φ �
exp(− iΩt)g

f
.

(59)

.e bilinear form for equations (58a) and (58b) can be
obtained (C0 � a constant and D � the Hirota operator):
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Figure 7: Semirational solutions constituting of a lump and periodic line waves for the local Mel′nikov equation with parameters
λ0 � 1, P3 � 1, and η03 � − (π/6). .e panels (b) and (d) are the contour plots of the panels (a) and (c), respectively.
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iDt + D
2
x +Ω􏼐 􏼑g · f � 0,

3D
2
t − D

2
x − D

4
x − C0􏼐 􏼑f · f � σgg

∗
(− x, t).

(60)

Using combinations of theta functions of x and t with
different moduli τ and τ1 [62], solutions for equations (58a),
(58b), and (60) can be expressed as (A0 and Ω being real
constants to be determined)

Φ � A0
θ2 ωt, τ1( 􏼁θ4(αx, τ) + iθ1 ωt, τ1( 􏼁θ3(αx, τ)

θ3 ωt, τ1( 􏼁θ4(αx, τ) + θ4 ωt, τ1( 􏼁θ3(αx, τ)
􏼢 􏼣exp(− iΩt),

(61a)

f � θ3 ωt, τ1( 􏼁θ4(αx, τ) + θ4 ωt, τ1( 􏼁θ3(αx, τ),

g � θ2 ωt, τ1( 􏼁θ4(αx, τ) + iθ1 ωt, τ1( 􏼁θ3(αx, τ).
(61b)

From the first bilinear form of equation (60), the period
parameter ω and the angular frequency of the whole wave
packet, Ω, are defined in terms of the theta constants as

ω �
2α2θ23(0, τ)θ24(0, τ)

θ24 0, τ1( 􏼁
,

Ω � − 2α2
θ2″(0, τ)

θ2(0, τ)
.

(62)

One constraint relating the two different moduli τ and τ1
is

θ23 0, τ1( 􏼁

θ24 0, τ1( 􏼁
�
θ43(0, τ) + θ44(0, τ)

2θ23(0, τ)θ24(0, τ)
. (63)
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Figure 8: Semirational solutions constituting of a lump and periodic line waves for the nonlocal Mel′nikov equation with parameters
λ0 � 1, P3 � 1/3, and η03 � − (π/6). .e panels (b) and (d) are the contour plots of the panels (a) and (c), respectively.
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.e second bilinear form of equation (60) not only
defines the amplitude parameter A0 but also imposes ad-
ditional constraints in terms of the theta constants:

α2 θ43(0, τ) + θ44(0, τ)􏽨 􏽩 + α4
θ″″3 (0, τ)θ4(0, τ) + θ″″4 (0, τ)θ3(0, τ) + 6θ3″(0, τ)θ4″(0, τ)

θ3(0, τ)θ4(0, τ)

− α4
2θ″″2 (0, τ)θ2(0, τ) + 6 θ2″(0, τ)􏼁(

2
􏼔 􏼕

θ2(0, τ)( 􏼁
2 − 3ω2 θ43 0, τ1( 􏼁 + θ44 0, τ1( 􏼁􏽨 􏽩

� σA
2
0
θ23 0, τ1( 􏼁

θ22 0, τ1( 􏼁
,

(64)

2α2θ23(0, τ)θ24(0, τ) + 8α4
θ1′(0, τ)θ″″1 (0, τ)

θ22(0, τ)
− 6ω2θ23 0, τ1( 􏼁θ24 0, τ1( 􏼁

� σA
2
0
θ24 0, τ1( 􏼁

θ22 0, τ1( 􏼁
.

(65)

.e three constraints equations (63)–(65) then deter-
mine the parameter A2

0, τ, and τ1, assuming σ and α are given
(and ω through equation (62)). .e solution equation (61b)

can be expressed in terms of Jacobi elliptic function in a
slightly more condensed but less symmetric forms, with
again different k and k1:
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Figure 9: Semirational solutions constituting of two lumps and periodic line waves for the nonlocal Mel′nikov equation with parameters
κ � 1, λ1 � − λ2 � 1, λ3 � − λ4 � 2, P5 � 1, Q5 � 0, and η05 � − (π/6). .e panels (b) and (d) are the contour plots of the panels (a) and (c),
respectively.
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A � A0

��

k1

􏽱 cn st, k1( 􏼁 + i
�����
1 + k1

􏽰
sn st, k1( 􏼁dn(rx, k)

�����
1 + k1

􏽰
dn(rx, k) + dn st, k1( 􏼁

exp(− iΩt),

s �
2r2

1 + k1
,

k
2

�
2k1

1 + k1
.

(66)

.e advantage is that most computer algebra software can
handle Jacobi elliptic functions efficiently.

6. Discussion and and Conclusions

In this paper, we have introduced and investigated a non-
local Mel′nikov equation with partial reverse space time,
which constitutes a multidimensional version of the non-
local Schrödinger–Boussinesq equation with a parity-time-
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Figure 10: Semirational solutions |ϕ| and u consisting of a lump and one breather for the nonlocal Mel′nikov equation with parameters
κ � 1, λ1 � 1, λ2 � − 1, P3 � − P4 � 1, Q3 � Q4 � 1, η03 � η04 � − 2π, and t � 0.
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Figure 11: .e superposition of a lump and one breather with parameters κ � 1, λ1 � 1, λ2 � − 1, P3 � − P4 � 1, Q3 � Q4 � 1, and t � 0 for
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symmetric potential. By using the Hirota bilinear method,
soliton solutions are obtained. Although these soliton so-
lutions may have singularities, general n-breather solutions
andmixed solutions consisting of breathers and periodic line
waves can be derived under proper parameter constraints
and lead to nonsingular solutions. On taking a long wave
limit, nonsingular rational solutions or lumps can be gen-
erated. .e exact explicit lump solutions up to the third
order are presented, and properties of the dynamics of in-
teraction between lumps have been revealed. Furthermore,
by taking a coalescence of wavenumbers at a finite value, two
subclasses of semirational solutions are derived. One sub-
class of these semirational solutions describes lumps on a
background of periodic line waves. Another one highlights
interaction between lumps and breathers. In particular, two
solutions of the nonlocal Schrödinger–Boussinesq equation,
namely, fundamental rogue waves and mixed modes

consisting of a rogue wave and periodic line waves, are
obtained as reductions of the corresponding solutions of the
partial reverse space-time nonlocal Mel′nikov equation.
Finally, special classes of doubly periodic solutions are
presented too. We believe that similar techniques can be
applied to many nonlocal evolution equations being studied
in the literature. As nonlocal differential equations have been
amply demonstrated in the literature to be applicable to
many fields, e.g., population dynamics [25] and microelectro
mechanical system [63], further efforts will likely be fruitful.

Appendix

A: Higher oder partial solutions

.e functions f6 and g0
6 read as

f6 � y
6

+
29x2

4
−
173731727
176400

−
425 tx

4
+
6525t2

16
􏼠 􏼡y

4

+
61x4

4
−
1685 tx3

4
+

34675 t2

8
+
291073289
176400

􏼠 􏼡x
2

−
314125 t3x

16
􏼠

+
503447329781761

1944810000
+
870750371 t2

9408
+
2113125t4

64
􏼡y

2

+ 9x
6

−
705x5t

2
+

18149933
4900

+
90925 t2

16
􏼠 􏼡x

4
−
772625 t3x3

16

+
24747767333 t2

28224
+
19715017078429

54022500
+
14608125 t4

64
􏼠 􏼡x

2

+ −
231250057 ty2

8820
−
7239053785 t3

2016
−
18221875 t5

32
􏼠 􏼡x +

37515625 t6

64

+
1569350425t4

288
+
742769909281

1500625
+
3798316849584289t2

311169600

−
273805647604109tx

64827000
−
551823397tx3

5880
,

(A.1)

g
0
6 � A6 + iB6, (A.2)

A6 � − 261x
4

+
12795
2

tx
3

+ −
944525t2

16
−
3065y2

4
+
16054106
1225

􏼠 􏼡x
2

+
1936375t3

8
+ 9965ty

2
−
70472141t

735
􏼠 􏼡x + −

2970625t4

8
−
548225t2y2

16
+
617733841t2

3528
−
1329y4

4
􏼠

+
2329695913y2

22050
−
3199122765724

1500625
􏼡,

B6 � y 108x
4

− 2820tx
3

+ 122y
2

+
55225
2

t
2

− 1566􏼒 􏼓x
2

+ −
478625t3

4
− 1685ty

2
−
20569361tx

1470
􏼠 􏼡x􏼢

+
3093125t4

16
+
12275t2y2

2
+
691962241t2

7056
+ 29y

4
−
167205151y2

8820
+
22387448589829

13505625
􏼣.

(A.3)
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.e functions f and g generated from 5-soliton solution
of the nonlocal Mel′nikov equation are defined as

f � θ1θ2θ3θ4 + a12θ3θ4 + a13θ2θ4 + a14θ2θ3 + a23θ1θ4 + a24θ1θ3 + a34θ1θ2 + a12a34 + a13a24 + a14a23( 􏼁

+ e
η5 θ1θ2θ3θ4 + a45θ1θ2θ3 + a35θ1θ2θ4 + a25θ1θ3θ4 + a15θ2θ3θ4 + a35a45 + a34( 􏼁θ1θ2 + a25a45 + a24( 􏼁θ1θ3􏼂

+ a25a35 + a23( 􏼁θ1θ4 + a15a45 + a14( 􏼁θ2θ3 + a15a35 + a13( 􏼁θ2θ4 + a15a25 + a12( 􏼁θ3θ4
+ a25a35a45 + a23a45 + a25a34 + a24a35( 􏼁θ1 + a15a35a45 + a14a35 + a13a45 + a15a34θ2( 􏼁

+ a15a25a45 + a14a25 + a15a24 + a12a45( 􏼁θ3 + a15a25a35 + a15a23 + a13a25 + a12a35( 􏼁θ4
+ a12a34 + a13a24 + a14a23 + a12a35a45 + a13a25a45 + a14a25a35 + a15a24a35 + a15a25a34 + a15a23a45 + a15a25a35a45􏼃,

g � θ1 + b1( 􏼁 θ2 + b2( 􏼁 θ3 + b3( 􏼁 θ4 + b4( 􏼁 + a12 θ3 + b3( 􏼁 θ4 + b4( 􏼁 + a13 θ2 + b2( 􏼁 θ4 + b4( 􏼁 + a14 θ2 + b2( 􏼁 θ3 + b3( 􏼁􏼂

+ a23 θ1 + b1( 􏼁 θ4 + b4( 􏼁a24 θ1 + b1( 􏼁 θ3 + b3( 􏼁 + a34 θ1 + b1( 􏼁 θ2 + b2( 􏼁 + a12a34 + a13a24 + a14a23􏼃

+ e
η5+iϕ5 θ1 + b1( 􏼁 θ2 + b2( 􏼁 θ3 + b3( 􏼁 θ4 + b4( 􏼁 + a45 θ1 + b1( 􏼁 θ2 + b2( 􏼁 θ3 + b3( 􏼁􏼂

+ a35 θ1 + b1( 􏼁 θ2 + b2( 􏼁 θ4 + b4( 􏼁 + a25 θ1 + b1( 􏼁 θ3 + b3( 􏼁 θ4 + b4( 􏼁 + a15 θ2 + b2( 􏼁 θ3 + b3( 􏼁 θ4 + b4( 􏼁

+ a35a45 + a34( 􏼁 θ1 + b1( 􏼁 θ2 + b2( 􏼁 + a25a45 + a24( 􏼁 θ1 + b1( 􏼁 θ3 + b3( 􏼁 + a25a35 + a23( 􏼁 θ2 + b2( 􏼁 θ4 + b4( 􏼁

+ a15a45 + a14( 􏼁 θ2 + b2( 􏼁 θ3 + b3( 􏼁 + a15a35 + a13( 􏼁 θ2 + b2( 􏼁 θ4 + b4( 􏼁 + a15a25 + a12( 􏼁 θ3 + b3( 􏼁 θ4 + b4( 􏼁

+ a25a35a45 + a23a45( θ2 + b2( 􏼁 + a15a25a45 + a14a25 + a15a24 + a12a45( 􏼁 θ3 + b3( 􏼁

+ a15a25a35 + a15a23 + a13a25 + a12a35( 􏼁 θ4 + b4( 􏼁 + a12 a34 + a35a45( 􏼁 + a13 a24 + a25a45( 􏼁

+ a14 a23 + a25a35( 􏼁 + a15 a24a35 + a25a34 + a23a45 + a25a35a45( 􏼁􏼃,

(A.4)

where

aj5 � −
4P2

5

P2
5 + λ2j

, (A.5)

and θj, bj, aij(1≤ i< j≤ 4) are given by equation (30);
η5 andϕ5 are given by equation (14).

.e functions f and g generated from 4-soliton solution
of the Mel′nikov equation are written as

f � e
A34 a13a23 + a13a24 + a13θ2 + a14a23 + a14a24 + a14θ2 + a23θ1 + a24θ1 + θ1θ2 + a12e

η3+η4( 􏼁

+ a13a23 + a13θ2 + a23θ1 + θ1θ2 + a12( 􏼁e
η3

+ a14a24 + a14θ2 + a24θ1 + θ1θ2 + a12( 􏼁e
η4 + θ1θ2 + a12,

g � e
A34 a13a23 + a13a24 + a13 θ2 + b2( 􏼁 + a14a23 + a14a24 + a14 θ2 + b2( 􏼁 + a23 θ1 + b1( 􏼁 + a24 θ1 + b1( 􏼁􏼂

+ θ1 + b1( 􏼁 θ2 + b2( 􏼁 + a12􏼃e
η3+iϕ3+η4+iϕ4

+ a13a23 + a13 θ2 + b2( 􏼁 + a23 θ1 + b1( 􏼁 + θ1 + b1( 􏼁 θ2 + b2( 􏼁 + a12􏼂 􏼃e
η3+iϕ3

+ a14a24 + a14 θ2 + b2( 􏼁 + a24 θ1 + b1( 􏼁 + θ1 + b1( 􏼁 θ2 + b2( 􏼁 + a12􏼂 􏼃e
η4+iϕ4

+ θ1 + b1( 􏼁 θ2 + b2( 􏼁 + a12,

(A.6)

where

asl �
4P3

l

P4
l + λ2Pl − Ql( 􏼁

2 (s � 1, 2, l � 3, 4), (A.7)
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and a12, bs, ϕl, ηl, and eA34 are given by (30) and (14).

B: Elliptic and theta functions

.e four theta functions θn(x, τ)(n � 1, 2, 3, 4) and the
modulus parameters q (the nome) and τ (pure imaginary)
are given by

θ1(x, τ) � 2 􏽘
∞

n�0
(− 1)

n
q

(n+(1/2))2 sin(2n + 1)x

� − 􏽘
∞

n�− ∞
exp πiτ(m +(1/2))

2
􏼐

+ 2i m +
1
2

􏼒 􏼓 x +
π
2

􏼒 􏼓􏼓,

θ2(x, τ) � 2 􏽘
∞

n�0
q

(n+(1/2))2 cos(2n + 1)x

� 􏽘

∞

n�− ∞
exp πiτ m +

1
2

􏼒 􏼓
2

+ 2i m +
1
2

􏼒 􏼓x􏼠 􏼡,

θ3(x, τ) � 1 + 2 􏽘
∞

n�1
q

n2 cos(2nx)

� 􏽘
∞

n�− ∞
exp πiτm

2
+ 2im x +

π
2

􏼒 􏼓􏼒 􏼓,

θ4(x, τ) � 1 + 2 􏽘
∞

n�1
(− 1)

n
q

n2 cos(2nx)

� 􏽘
∞

n�− ∞
exp πiτm

2
+ 2im x +

π
2

􏼒 􏼓􏼒 􏼓,

0< q< 1, q � exp(πiτ) � exp −
πK′
K

􏼠 􏼡.

(B.1)

K andK′ are the complete elliptic integrals of the first kind
with parameters k and (1 − k2)1/2. θ1 is odd while the other
three are even. .e zeros of θ1, θ2, θ3, and θ4 are at Mπ +

Nπτ, (M + (1/2))π + Nπτ, (M + (1/2))π + (N + (1/2))πτ,

Mπ + (N + (1/2))πτ, respectively, (M, N integers). .e
pairs (θ1, θ2), (θ3, θ4) are related by phase shift of π/2. .e
dependence on the parameter may be dropped for sim-
plicity, and we shall just write θn(x, τ) ≡ θn(x). .eta and
elliptic functions are related by

sn(u) �
θ3(0)θ1(z)

θ2(0)θ4(z)
,

cn(u) �
θ4(0)θ2(z)

θ2(0)θ4(z)
,

dn(u) �
θ4(0)θ3(z)

θ3(0)θ4(z)
,

z �
u

θ23(0)
,

k �
θ22(0)

θ23(0)
,

k′ �
θ24(0)

θ23(0)
,

k
2

+ k′( 􏼁
2

� 1.

(B.2)

.eta functions possess a huge number of identities, e.g.,

θ3(x + y)θ3(x − y)θ22(0) � θ24(x)θ21(y) + θ23(x)θ22(y),

(B.3a)

θ4(x + y)θ4(x − y)θ22(0) � θ24(x)θ22(y) + θ23(x)θ21(y).

(B.3b)

On differentiating equations (B.3a) and (B.3b) with
respect to y, setting y � 0 will yield

D
2
xθ3(x) · θ3(x) �

2θ2″(0)23(x)

θ2(0)
+ 2θ23(0)θ24(0)θ24(x),

D
2
xθ4(x) · θ4(x) � 2θ23(0)θ24(0)θ23(x) +

2θ2″(0)θ24(x)

θ2(0)
,

(B.4)

by using θ1′(0) � θ2(0)θ3(0)θ4(0). Hence, formulae for
Dxθm · θn, D2

xθm · θn can be developed for m and n integers
using this line of reasoning.

Data Availability

.e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

Acknowledgments

.is work was sponsored by the National Natural Science
Foundation of China (no. 11571079, 11975131 and
11801321), Shanghai Pujiang Program (no. 14PJD007),
Natural Science Foundation of Shanghai (no. 14ZR1403500),
and Young Teachers Foundation (no. 1411018) of Fudan
University. WL wishes to thank Prof Jingsong He of Ningbo

16 Complexity



University and Dr Jiguang Rao of University of Science and
Technology of China for their many discussions and sug-
gestions on the paper. Partial support for KWC has been
provided by the Research Grants Council General Research
Fund Contract (no. HKU 17200815 and 17200718).

References

[1] C. Hamner, J. J. Chang, P. Engels, and M. A. Hoefer,
“Generation of dark-bright soliton trains in superfluid-su-
perfluid counterflow,” Physical Review Letters, vol. 106, no. 6,
Article ID 065302, 2011.

[2] L. Wang, J. H. Zhang, C. Liu, M. Li, and F. H. Qi, “Breather
transition dynamics, Peregrine combs and walls, and mod-
ulation instability in a variable-coefficient nonlinear
Schrödinger equation with higher-order effects,” Physical
Review E, vol. 93, no. 6, Article ID 062217, 2016.

[3] L. Wang, J. H. Zhang, Z. Q. Wang et al., “Breather-to-soliton
transitions, nonlinear wave interactions, and modulational
instability in a higher-order generalized nonlinear
Schrödinger equation,” Physical Review E, vol. 93, no. 1,
Article ID 012214, 2016.

[4] L. Wang, M. Li, F. H. Qi, and T. Xu, “Modulational instability,
nonautonomous breathers and rogue waves for a variable-
coefficient derivative nonlinear Schrödinger equation in the
inhomogeneous plasmas,” Physics of Plasmas, vol. 22, no. 3,
p. 520, 2015.

[5] D. Mihalache, “Multidimensional localized structures in
optics and Bose-Einstein condensates: a selection of recent
studies,” Rom. J. Phys.vol. 59, no. 3, pp. 295–312, 2014.

[6] V. S. Bagnato, D. J. Frantzeskakis, P. G. Kevrekidis,
B. A. Malomed, and D. Mihalache, “Comments: special
volume of Romanian reports in physics dedicated to Bose-
Einstein condensation,” Romanian Reports in Physics, vol. 67,
pp. 5–50, 2015.

[7] B. Malomed, L. Torner, F. Wise, and D. Mihalache, “On
multidimensional solitons and their legacy in contemporary
atomic, molecular and optical physics,” Journal of Physics B:
Atomic, Molecular and Optical Physics, vol. 49, no. 17,
p. 170502, 2016.

[8] P. G. Kevrekidis and D. J. Frantzeskakis, “Solitons in coupled
nonlinear Schrödinger models: a survey of recent develop-
ments,” Reviews in Physics, vol. 1, pp. 140–153, 2016.

[9] V. B. Matveev and A. M. Salle, Darboux Transformation and
Solitons, Springer, Berlin, Germany, 1991.

[10] C. H. Gu, H. S. Hu, and Z. X. Zhou, Darboux Transformation
in Soliton <eory and Geometric Applications, Shanghai Sci-
ence and Technology Press, Shanghai, China, 1999.

[11] R. Hirota, <e Direct Method in Soliton <eory, Cambridge
University Press, Cambridge, UK, 2004.

[12] V. A. Vladimirov and C. Mączka, “Exact solutions of gen-
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