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ABSTRACT We take a new perspective for the consensus in DeGroot-type social networks with antagonistic
interactions between some pairs of agents. We observe the analogies between social networks and electrical
networks. A line with positive (or negative) conductance in the electrical network well corresponds to the
cooperative (or antagonistic) interaction in the social network. Then, we introduce a refined definition of
effective conductance (EC), which comes from electrical networks, into social networks as a characterization
of the overall relationship between a pair of agents. The EC considers the effects of both direct and
indirect interactions between the agents. Some EC-based consensus criteria are established by analytical
and statistical approaches, showing that the sign of EC is a useful indicator of consensus. The opinion
consensus can be generally interpreted as every pair of agents being overall cooperative despite antagonistic
interactions, i.e., the corresponding EC being positive. The obtained results provide new insights into the
consensus mechanism with clear intuition. Case study of a 15-agent network is provided as an illustration.

INDEX TERMS Consensus, effective conductance, signed graph, social network.

I. INTRODUCTION
The DeGroot model, first proposed by DeGroot in 1970s [1],
is a representative social network model for a vari-
ety of sociological systems related to, e.g., politics [2],
economics [3], [4] and education [5]. In this model,
the agents in the society are connected via a certain inter-
action structure such that each agent iteratively updates its
opinion according to its interactions with the others. It has
now been developed into a family of DeGroot-type mod-
els, e.g., the consensus protocol considering time-varying
interactions [6], higher-order interactions [7], [8], communi-
cation noise [9], stubborn agents [10], [11], and nonlinear
opinion-making mechanisms [12]–[16]. The DeGroot-type
social networks exhibit rich collective behaviors, among
which the consensus problem is of the most fundamental
importance and receiving sustained interest.

Commonly, social network structure is described by a
graph with signed weighted lines, simply referred to as signed
graph in the literature [17]–[19]. In the signed graph, a line
with positive (or negative) weight represents a cooperative (or
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antagonistic) interaction between the corresponding pair of
agents. The location of those antagonistic interactions plays
an important role in reaching a consensus. So far exten-
sive results have been developed based on a well-known
graph concept namely structural balance. Structural balance
characterizes the spatial distribution feature of antagonistic
interactions in the network. A social network is said to be
structurally balanced if there exists a bipartition of agents
such that any two agents in the same subnetwork present
cooperativeness and any two agents in distinct subnetworks
present antagonism [20]. It has been revealed that structural
balance property is a key factor in causing the failure of con-
sensus, e.g., see [6], [14], [21]–[23]. The opinion disagree-
ment could be in form of bipartite/polarized consensus [14],
several clustered groups [15] or divergence [24] depending
on different dynamics adopted. However, structural balance
theory does not give a clear explanation of the opinion diver-
gence in structurally unbalanced social networks.

In addition to structural balance, some recent works inves-
tigated the consensus problem from a new perspective by
introducing the concept of effective conductance (EC) orig-
inated from electrical networks. An electrical network con-
sists of a set of nodes interconnected by electric lines, the
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structure of which is highly similar to a social network. The
EC is a common concept that measures the electrical coupling
strength between a pair of nodes. In [25], [26], some consen-
sus conditions for special-structured networks are established
in terms of EC, which give a fresh viewpoint and deserves
further exploration.

In this paper, we address the consensus problem of the
DeGroot-type model with the presence of antagonistic inter-
actions following the inspiration from electrical networks.We
propose a refined definition of EC to measure the total cou-
pling strength between a pair of nodes in electrical networks.
This definition performs better than the traditional definition
in describing the network with negative line conductances.
Then, we introduce the EC to social networks as a proper
characterization of the overall relationship between a pair
of agents, which considers the two agents’ direct interaction
and indirect interactions via other agents. The EC applies
to both structurally balanced and structurally unbalanced
social networks. Novel consensus criteria in terms of EC are
established by analytical and statistical approaches. It gener-
ally indicates that even if there are antagonistic interactions,
the opinion consensus can be reached when every pair of
agents has positive EC indicating overall cooperativeness.
We also design an EC-based iterative algorithm that checks
consensus quickly. These results provide a new and intuitive
viewpoint for the mechanism of consensus.

The remainder of the paper is organized as follows.
Section II formulates a DeGroot-type model with antago-
nistic interactions. In Section III, we discuss the analogies
between social networks and electrical networks, and refine
the definition of EC in the context of electrical networks. In
Section IV, we apply the EC to social networks and establish
some new results on consensus. Section V gives a case study
to illustrate the obtained results, and Section VI makes a
conclusion.
Notations: We introduce some notations that will be

frequently used in the paper. For simplicity, we use
x = [xi] ∈ Rn to denote an n-dimensional vector, and
A = [Aij] ∈ Rn×n to denote an n-by-n square matrix. The
notation In ∈ Rn×n denotes an identity matrix of order n,
and 1n ∈ Rn denotes an n-dimensional vector with all entries
being one. For a matrix A ∈ Rn×n, we use λi(A) to denote its
i-th eigenvalue.

II. FORMULATION OF OPINION DYNAMICS
Consider a connected social network with n agents. Let xi(t)
be the opinion of agent i (i = 1, 2, . . . , n) at time step t
(t = 0, 1, 2, . . .). We adopt the DeGroot-type model below
to describe the opinion evolution process [27]

xi(t + 1) = xi(t)+ κ
n∑

j=1,j6=i

wij(xj(t)− xi(t)) (1)

where κ > 0 is the step size, and wij is the weight that
agent i assigns to the opinion of agent j. In this model, each
agent takes a weighted average opinion to be its opinion at the

next time step. We consider a general case where the weight
wij can be positive, negative or zero. A positive wij indicates
that agent i tends to reach an agreement with agent j, and a
larger wij describes a stronger cooperativeness. A negative
wij indicates that agent i tends to be against agent j, and
a smaller wij describes a stronger antagonism. A zero wij
indicates that agent i has no direct interaction with agent j
and hence does not take the opinion of agent j into account.
In (1), we use a unified expression to describe the effects of
cooperative and antagonistic interactions, which is similar to
the models in [22], [25]. Also note that it has not yet reached
an agreement on the modeling of antagonistic interactions.
There are other types of models that use different functions
to describe the cooperative and antagonistic interactions, e.g.,
see [6], [13], [14].Moreover, wemake the following assump-
tion for the social network described by (1).
Assumption 1: wij = wji, ∀i, j = 1, 2, . . . , n, i 6= j.
Assumption 1 indicates that any pair of agents presents

symmetric attitude to each other, which is a rea-
sonable simplification of some real situations, e.g.,
see [4], [22], [25], [28]. With this property, the social net-
work can be represented by an undirected signed graph
G(V, E,w), where V = {1, 2, . . . , n} is the set of agents,
E = {(i, j)| wij 6= 0} is the set of interactions with (i, j)
denoting an unordered pair of agents, and w = [wij] ∈ Rl ,
∀(i, j) ∈ E is the vector of interaction weights between the
agents (assuming the total number of interactions is l).
We now introduce the Laplacian matrix of graph

G(V, E,w), say LG = [Lij] ∈ Rn×n, which is defined as
Lii =

∑n
j=1,j 6=i wij, and Lij = Lji = −wij, ∀(i, j) ∈ E and

Lij = 0 otherwise. Then, (1) can be re-expressed as

x(t + 1) = (In − κLG)x(t) (2)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn collect the agent
opinions at time step t .
System (2) reaches a consensus if lim

t→∞
x1(t) = x2(t) =

· · · = xn(t). Due to the symmetric interactions by Assump-
tion 1, the consensus will be an average consensus [27],
i.e., lim

t→∞
x1(t) = x2(t) = · · · = xn(t) = 1

n

∑n
i=1 xi(0), where

xi(0), i = 1, . . . , n are the initial opinions. Also note that sys-
tem (2) will not exhibit polarized consensus since it does not
contain the nonlinear opinion-making mechanism as in [14].
System (2) has divergent opinions once it fails to reach a con-
sensus. It is known that a consensus will be reached if all the
interaction weights are positive [27], however, it is generally
not the case if there are negative interaction weights. In the
following we summarize the definition of consensus and have
a basic result in terms of LG .
Definition 1: The system (2) reaches an opinion consensus

if lim
t→∞

x1(t) = x2(t) = · · · = xn(t) = 1
n

∑n
i=1 xi(0).

Assumption 2: For i = 1, 2, . . . , n, κ · λi(LG) < 2.
Lemma 1: The system (2) reaches an opinion consensus if

and only if the Laplacian matrix LG is positive semi-definite
and has only one zero eigenvalue.
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Proof: Since LG is real symmetric, we have uTi ui = 1
and uTi uj = 0, i 6= j, where ui denotes the eigenvector of
LG with respect to the eigenvalue λi(LG). It is trivial that LG
has a zero eigenvalue and the corresponding eigenvector is
1
√
n1n. Without loss of generality, we suppose λ1(LG) = 0

and u1 = 1
√
n1n.

It follows from (2) that x(t) = (In − κLG)tx(0). Applying
orthogonal decomposition to (In−κLG)t gives (In−κLG)t =∑n

i=1(1 − κλi(LG))
tuiuTi [29]. Hence, consensus is reached

if and only if 0 < κλi(LG) < 2, i = 2, . . . , n so that the
terms (1 − κλi(LG))tuiuTi , i = 2, . . . , n vanish as t → ∞.
Together with Assumption 2, we conclude that consensus is
reached if and only if λi(LG) > 0, i = 2, . . . , n, i.e., LG is
positive semi-definite and has only one zero eigenvalue.
Remark 1: Lemma 1 gives an algebraic condition

for consensus. As shown in the proof, the inequality
0 < κλi(LG) < 2, i = 2, . . . , n is required by reaching
a consensus. We note that κλi(LG) ≥ 2 is mainly caused
by the step size being too large, while κλi(LG) ≤ 0 is
caused by the presence of antagonistic interactions. The
aim of adopting Assumption 2 is to ensure that the step
size is sufficiently small so that we focus on the impact of
antagonistic interactions on consensus.

In the following sections, we will link the graph structure
of social networks to electrical networks, and explore the
consensus problem using the concept of EC from electrical
networks. With the help of EC, we will translate Lemma 1
into some intuitive criteria that further reveal the role of
antagonistic interactions.

III. ELECTRICAL NETWORKS & EFFECTIVE CONDUCTANCE
A. ANALOGIES BETWEEN SOCIAL NETWORKS AND
ELECTRICAL NETWORKS
We first introduce some preliminaries for electrical networks.
Consider an electrical network that has n nodes and l resistive
lines. We slightly abuse the notations (i, j) and wij for social
networks and electrical networks as it will be seen later that
these two types of networks share many similarities. Let the
unordered pair (i, j) denote the line connecting node i and
node j, and wij = wji denote the conductance of line (i, j),
i.e., the reciprocal of line resistance. The line conductances
are usually positive, while in special cases some lines may
present a negative conductance feature [30]. Then, the elec-
trical network can also be described by an undirected signed
graph G(V, E,w).

We observe close links between social networks and elec-
trical networks that are both built over graph structures. Given
a graph G(V, E,w), the notations V , E can be regarded as
agents and interactions in the context of social networks,
or nodes and lines in the context of electrical networks. In
addition, the line conductance describes the coupling condi-
tion between a pair of nodes in an electrical network, e.g.,
line (i, j) with positive (or negative) conductance indicates
that node i and node j are well connected (or abnormally
connected). The function of conductance is highly similar to

the function of weights in describing the interaction between
a pair of agents in the social network. Thus, the concepts
of ‘‘agent, interaction, weight’’ in social networks well cor-
respond to the concepts of ‘‘node, line, conductance’’ in
electrical networks. Henceforth we will use these two groups
of terminologies interchangeably and interpret the notation
G(V, E,w) as either a social network or the corresponding
electrical network.

B. EFFECTIVE CONDUCTANCE: DEFINITION & BASIC
PROPERTIES
For an electrical network G(V, E,w), let i, j ∈ V , i 6= j
be a pair of nodes, and Vr = V\{i, j} be the set of the
remaining nodes. Then, the Laplacian matrix of G(V, E,w)
can be written into the block form

LG =

Lrr Lri Lrj
LTri Lii Lij
LTrj Lij Ljj

 (3)

where Lri ∈ Rn−2 is the sub-matrix of LG whose rows and
columns are indexed by node set Vr and node i, respectively.
Similar interpretations apply to the other sub-matrices in (3).
Note that LG is also called conductance matrix in the context
of electrical networks [30], which is an important quantity in
Kirchhoff’s circuit law.

Assume node i is connected to a voltage source with unit
potential, and node j is grounded with zero potential. Apply-
ingKirchhoff’s circuit law to the electrical network gives [30] 0

I inji
I injj

 =
Lrr Lri Lrj
LTri Lii Lij
LTrj Lij Ljj

V r
Vi
Vj


=

Lrr Lri Lrj
LTri Lii Lij
LTrj Lij Ljj

V r
1
0

 (4)

where I inji , I
inj
j are the current injection at node i, j, respec-

tively, I inji = −I
inj
j since the total current injection must be

zero; and V r ∈ Rn−2 is the voltage potential vector of the
remaining nodes. By (4), the current injection at node i is

I inji =
[
1 0

] [I inji
I injj

]
=
[
1 0

]
Lredij

[
1
0

]
= Lii − LTriL

−1
rr Lri (5)

where

Lredij =
[
Lii − LTriL

−1
rr Lri Lij − LTriL

−1
rr Lrj

Lij − LTrjL
−1
rr Lri Ljj − LTrjL

−1
rr Lrj

]
∈ R2×2. (6)

Thus, the circuit between node i and node j can be equivalent
to a line with conductance being Lii − LTriL

−1
rr Lri, see Fig. 1.

This conductance is referred to as the EC between node i and
node j. We summarize it into the definition below.
Assumption 3: For any i, j ∈ V , i 6= j, Lrr is nonsingular

where Vr = V\{i, j}.
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FIGURE 1. Illustration of the EC in an electrical network.

Definition 2: Let i, j ∈ V , i 6= j be a pair of nodes in the
electrical network G(V, E,w), and Vr = V\{i, j}. Define

ceffij (G) = Lii − LTriL
−1
rr Lri (7)

as the effective conductance (EC) between node i and node j.
Assumption 3 is required by the expression of ceffij (G). If

this is not true, i.e., Lrr is singular, then the equality V r =

−L−1rr (LriVi + LrjVj) (an equivalent form of the first row
of (4)) becomes invalid. In this case, the circuit loses causality
as V r is no longer determined by Vi,Vj, which implies that
the circuit is unrealistic and needs a remodeling [30]. From
this viewpoint, we can safely apply Assumption 3 to realistic
physical networks. This claim is also numerically confirmed
by the statistical results in Section IV-B, where Lrr is nonsin-
gular for a large amount of tests (8 × 106 different network
scenarios in total).

From (5), a larger EC indicates that the voltage source
with unit potential at node i induces larger current flow from
node i to node j. In this sense, the EC concisely measures
the overall coupling strength considering the effects of all
possible connection paths between the two nodes. A large
positive ECmeans the corresponding pair of nodes are tightly
coupled, while a negative ECmeans the corresponding pair of
nodes are electrically antagonistic, which may lead to unde-
sirable consequences such as the electrical network losing
passivity [30]. The appearance of negative EC will also be
linked to consensus failure in social networks in the next
section.

Note that the conductance of a physical line (i, j) has the
‘‘non-directional’’ feature, i.e., the conductance keeps the
same whether the current flows from node i to node j or from
node j to node i. We show below that the defined EC preserves
this feature. First, it follows from the definition of LG that00

0

 =
Lrr Lri Lrj
LTri Lii Lij
LTrj Lij Ljj

1n−21
1

.
Eliminating the first row of this equation gives Lredij 12 = 0,
where Lredij is defined in (6). Further, by Lredij 12 = 0 and (7)
we have

Lredij =

[
ceffij (G) −ceffij (G)

−ceffij (G) ceffij (G)

]
(8)

FIGURE 2. A simple electrical network.

which indicates that ceffij (G) = Ljj − LTrjL
−1
rr Lrj. On the other

hand, Definition 2 gives that ceffji (G) = Ljj − LTrjL
−1
rr Lrj, and

thus we have ceffji (G) = ceffij (G). So the EC between node i and
node j is identical to the EC between node j and i, and we will
not distinguish them.

Moreover, the proposed definition of EC makes an
improvement over the traditional version shown
below [25], [31]

geffij =
1

(ei − ej)TL
†
G(ei − ej)

where the superscript † denotes Moore-Penrose inverse and
ei ∈ Rn denotes a vector with the entry indexed by node i
being one and the other entries being zero. The expressions of
ceffij (G) and g

eff
ij (G) are equivalent if all line conductances are

positive.When there are negative line conductances, we show
below that ceffij (G) has a better performance. Given the circuit
in Fig. 2, it is trivial to check that ceff12 = geff12 = 0.133 when
wij = 0.05. When w12 = −0.05, we have ceff12 = 0 but the
traditional definition gives geff12 = 0.2. On the other hand,
by simple circuit analysis, the EC between node 1 and node
2 should be w12+ (w−113 +w

−1
23 )
−1
= 0, which coincides with

the proposed definition. Hence, the proposed definition of EC
is more appropriate than the traditional one in describing the
network with negative line conductances.

IV. APPLICATION OF EFFECTIVE CONDUCTANCE TO
SOCIAL NETWORK CONSENSUS
A. THEORETICAL RESULTS
By the analogies between social networks and electrical net-
works, we now introduce the EC into social networks as a
proper characterization of the overall relationship between a
pair of agents. A positive EC indicates an overall cooperative
relationship between the two agents, while a negative EC
indicates that the two agents are overall antagonistic to each
other. We note that the EC takes into account both the pos-
sible direct interaction between the two agents and indirect
interactions via other agents. The EC is applicable to any
pair of agents whether they have direct interaction or not. In
addition, a pair of agents with positive (or negative) EC does
not necessarily mean their direction interaction is cooperative
(or antagonistic), and vice versa.

With the introduction of EC into social networks, we will
establish some new results for consensus. Let us begin with
a special case that leads to some inspiring observations. Sup-
pose all the agents except agent i, j have converged opinions,
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i.e., xk (t + 1) = xk (t), k ∈ Vr = V\{i, j}, then (2) becomes 0
xi(t + 1)− xi(t)
xj(t + 1)− xj(t)

 = −κ
Lrr Lri Lrj
LTri Lii Lij
LTrj Lij Ljj

xr (t)xi(t)
xj(t)

 .
Eliminating the first row of the above equation gives[
xi(t + 1)− xi(t)
xj(t + 1)− xj(t)

]
= −κLredij

[
xi(t)
xj(t)

]
= −κ

[
ceffij (G) −ceffij (G)
−ceffij (G) ceffij (G)

][
xi(t)
xj(t)

]
which is equivalent to

xi(t + 1)− xj(t + 1) = (1− 2κceffij (G))(xi(t)− xj(t)). (9)

It can be seen that the EC is directly linked to opinion
dynamics. The consensus of system (9) is determined by the
sign of ceffij (G)—agent i, j will separate (or synchronize) their
opinions if ceffij (G) < 0 (or ceffij (G) > 0). It clearly reveals
that consensus is equivalent to the overall cooperativeness
between the two agents. In the following, we extend the
analysis to general cases and show that similar criteria based
on the sign of EC still apply.

Lemma 2 [32]: Let H =
[
A BT

B C

]
be a real symmetric

matrix where A ∈ Rp×p is nonsingular, B ∈ Rq×p and C ∈
Rq×q. Then i−(H) = i−(H ′) + i−(A) and i0(H) = i0(H ′),
where H ′ = C − BA−1BT and i−, i0 denote the number
of negative eigenvalues and zero eigenvalues of a matrix,
respectively.
Proposition 1: If the system (2) reaches an opinion con-

sensus, then ceffij (G) > 0 for any pair of agents i, j ∈ V , i 6= j.
Proof: For any i, j ∈ V , i 6= j and Vr = V\{i, j},

by Lemma 2 we have

i0(LG) = i0(Lredij )

i−(LG) = i−(Lrr )+ i−(Lredij ).

If the system (2) reaches an opinion consensus, it follows
from Lemma 1 that i−(LG) = 0 and i0(LG) = 1, and hence
we have i−(Lredij ) = 0 and i0(Lredij ) = 1. So we can conclude
ceffij (G) > 0 by (8).
Let E− = {(i, j)| wij < 0, (i, j) ∈ E} be the set of antag-

onistic interactions. Let Gij denote the subnetwork obtained
by deleting the interaction (i, j) from the original network
G(V, E,w), and the Laplacianmatrix of Gij is denoted byLGij .
Then, we have another condition below.
Proposition 2: Suppose there exists an antagonistic inter-

action (i, j) ∈ E− such that LGij is positive semi-definite and
has only one zero eigenvalue. Then the system (2) reaches an
opinion consensus if and only if ceffij (G) > 0.

Proof: The Laplacian matrices LG and LGij can be
partitioned into

LG =

Lrr L0i L0j
LT0i Lii −wij
LT0j −wij Ljj



LGij =

Lrr L0i L0j
LT0i Lii − wij 0

LT0j 0 Ljj − wij

 .
If LGij is positive semi-definite and has only one zero eigen-
value, its principal submatrix Lrr satisfies i−(Lrr ) = 0 [29,
Observation 7.1.2]. Then, by applying Lemma 2 to LG we
have

i0(LG) = i0(Lredij )

i−(LG) = i−(Lrr )+ i−(Lredij ) = i−(Lredij ).

So we can conclude from (8) that i−(LG) = 0 and i0(LG) = 1
if and only if ceffij (G) > 0.We then complete the proof together
with Lemma 1.
Remark 2: Proposition 1 is a necessary condition for con-

sensus, and Proposition 2 further gives a necessary and
sufficient condition for consensus under some precondi-
tion, which show the role of positive EC (indicating overall
cooperativeness) in reaching a consensus. In addition,
Proposition 2 inspires an easy-to-implement approach for
checking consensus. Denote G+(V, E+,w+) as the positive
subnetwork of G(V, E,w), where E+ = E\E−. If G+ is
disconnected, LG must have negative eigenvalues [33] so that
consensus cannot be reached. If G+(V, E+,w+) is connected,
then the Laplacian matrix LG+ is positive semi-definite and
has only one zero eigenvalue since G+(V, E+,w+) has no
antagonistic interactions [27]. Hence, as inferred by Propo-
sition 2, each time after adding an antagonistic interaction to
G+(V, E+,w+), we can apply ceffij (G) > 0 as a necessary and
sufficient condition for consensus. We summarize this idea
into Algorithm 1.

Algorithm 1 (EC-Based Consensus Check)
1: Form the positive subnetwork G+(V, E+,w+).
2: Stop the algorithm if G+ is disconnected, the social net-

work fails to reach a consensus.
3: Find the most antagonistic interaction in E−, i.e.,

(i, j) = argmin(i,j)∈E− wij.
4: Add the interaction wij into G+(V, E+,w+), i.e.,

E+ ← E+ ∪ {(i, j)} and w+ ←
[
wT+ wij

]T . Update
E−← E−\{(i, j)}.

5: Calculate ceffij (G+) and make judgment:
Case A: ceffij (G+) ≤ 0. Stop the algorithm, the social
network fails to reach a consensus.
Case B: ceffij (G+) > 0 and E− = φ. Stop the algorithm,
the social network will reach a consensus.
Case C: ceffij (G+) > 0 and E− 6= φ. Go back to step 3.

We further explain Case A in the algorithm. In this case,
it follows from the proof of Proposition 2 that the current
LaplacianmatrixLG+ has a negative eigenvalue (if c

eff
ij (G+) <

0) or has two zero eigenvalues (if ceffij (G+) = 0). If E− = φ,
the current network G+ is identical to the original network G,
so the social network fails to reach a consensus by Lemma 1.
If E− 6= φ, by eigenvalue sensitivity [34], the negative
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FIGURE 3. An example of structurally unbalanced network.

FIGURE 4. Opinion dynamics under different weights of antagonistic
interaction.

eigenvalue or the two zero eigenvalues of LG+ will be non-
increasing after adding the remaining negative interactions
to G+ to form the original network G. So LG has negative
eigenvalues or more than one zero eigenvalue, and the social
network fails to reach a consensus.

Moreover, we note that these results require no assumption
on structural balance and hence apply to structurally balanced
or unbalanced networks. A structurally balanced networks
has such a property that the agents are divided into two sep-
arate groups after deleting all antagonistic interactions [20],
i.e., the corresponding G+ is disconnected. So a struc-
turally balanced social network fails to reach a consensus by
Algorithm 1.

For structurally unbalanced networks, consensus is deter-
mined by the placements and weights of antagonistic interac-
tions, where the obtained results can provide new viewpoints.
Let us consider a typical structurally unbalanced network
in Fig. 3 as an example, which is a undirected version of the
one studied in [35]. The blue and red lines in this figure refer
to cooperative and antagonistic interactions, respectively.
Then, we can analyze the impact of the antagonistic interac-
tion using Proposition 2. For simplicity, suppose the weights
of all cooperative interactions equal to one. By Proposition 2,
we only need to check the EC between node 2 and node 5,
leading to the conclusion that the network reaches a consen-
sus if and only if w25 > − 1

3 . For illustration, we choose
two values around the threshold − 1

3 , say w25 = −0.32 or
w25 = −0.34, and depict the opinion dynamics under the
two settings (step size κ = 0.2 in both cases) in Fig. 4. The
opinions get synchronized in case of w25 = −0.32 and go
divergent in case of w25 = −0.34, which coincides with the
expectation. In addition, we will see a comprehensive case
study on another structurally unbalanced network with more
complex topology in Section V.

FIGURE 5. An example small-world network used in the test.

FIGURE 6. An example scale-free network used in the test.

B. STATISTICAL RESULTS
In this subsection, we focus on the following hypothesis,
which is the inverse proposition of Proposition 1.
Hypothesis 1: If the system (2) fails to reach an opinion

consensus, then there exists a pair of nodes i, j ∈ V , i 6= j
such that ceffij (G) ≤ 0.

It should be noted that Hypothesis 1 is not rigorously true.
Nevertheless, we will show by Monte Carlo tests that it is
statistically valid.

Two representative types of social networks, namely small-
world network and scale-free network, are selected for test.
The network scenarios are constructed by the rules below.

1) Network topology: Assume each network to be tested
have 50 agents. We randomly generate 50 small-world
network topologies with the mean degree being 8 and
rewiring probability being 0.5, which are obtained from
the Watts-Strogatz model [36]. Also, we randomly gener-
ate 50 scale-free network topologies by using the Barabási-
Albert model [36]. The example small-world network and
scale-free network adopted in the test are shown in Fig. 5 and
Fig. 6, respectively.

2) Percentage of antagonistic interactions: For each of
the generated network topologies, a certain percentage of
interactions, say pant , are set to be antagonistic. We set pant
ranges from 1% to 40% with step size 1%. The cases where
pant > 40% are not the major concern in this paper. The sys-
tem with a majority of antagonisms almost surely diverges,
while the system behavior with a minority of antagonisms is
of more interest.

3) Interactionweights: For each of those generated network
topologies with a certain percentage of antagonistic interac-
tions pant , we create 2000 profiles of interaction weights such
that the Laplacian matrix LG in each profile has negative
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FIGURE 7. Statistics of Hypothesis 1 in small-world networks.

eigenvalues or more than one zero eigenvalue (implying the
failure of reaching a consensus by Lemma 1). This can be
done by randomly choosing round(l · pant ) interactions to
be antagonistic and the remaining interactions to be coop-
erative, where l denotes the total number of interactions
in the network and round() denotes the rounding function
to the nearest integer. The weight of each cooperative and
antagonistic interaction independently follows a uniform dis-
tribution over the interval [0,1] and [-1,0], respectively. If the
Laplacian matrix LG of a profile is positive semi-definite and
has only one zero eigenvalue, then this profile is discarded
and replaced by a newly generated one. The random gener-
ator keeps working until we obtain 2000 desired profiles of
interaction weights.

Hence, we obtain 2000 groups of scenarios for small-
world networks and scale-free networks, respectively. Each
group of scenarios have the same network topology and per-
centage of antagonistic interactions but different interaction
weight profiles (2000 profiles per group) where the Laplacian
matrices all have negative eigenvalues or more than one zero
eigenvalue. For each group, we count the number of scenarios
with the existence of nodes i, j ∈ V such that ceffij (G) ≤ 0,
which indicates Hypothesis 1 is true. The numerical accuracy
is set to be 10−6, i.e., we regard ceffij (G) (or λi(LG)) to be non-
positive if ceffij (G) < 10−6 (or λi(LG) < 10−6).
The statistical results are shown in Fig. 7 and Fig. 8 for

small-world networks and scale-free networks, respectively.
We observe that Hypothesis 1 fails in a very small number
of scenarios for a low percentage of antagonistic interac-
tions (pant < 10%) in small-world or scale-free networks.
In addition, Hypothesis 1 is almost always true for a higher
percentage of antagonistic interactions (pant > 10%). In total,
there are 7815 and 2055 scenarios where Hypothesis 1 fails
in the generated 4 × 106 small-world networks and scale-
free networks, respectively. Accordingly, the empirical prob-
abilities of Hypothesis 1 being true for small-world networks
and scale-free networks are 99.80% and 99.95%, respectively,
which are sufficiently high for practical use.

FIGURE 8. Statistics of Hypothesis 1 in scale-free networks.

Next we further analyze the accuracy and confidence level
of the obtained empirical probabilities. By the Chernoff-
Hoeffding bound [37], we need N ≥ 1

2ε2
lg 2

δ
scenarios to

achieve the following level of accuracy and confidence

Prob(|Pactual − Pemp| < ε) > 1− δ (10)

where ε is the desired accuracy level, δ is the desired con-
fidence level, Pactual is the actual probability of Hypothe-
sis 1 being true and Pemp is the empirical one. If we set
ε = δ = 0.10% for (10), then N ≥ 3.8 × 106 scenarios are
needed, which is satisfied by our tests. Therefore, we con-
clude the following statement:
With a 99.90% confidence level, there is at least 99.90%

accuracy such that Hypothesis 1 is true with a probability
of 99.80% and 99.95% for small-world networks and scale-
free networks, respectively.
Remark 3: Combining Proposition 1 and Hypothesis 1

leads to a practical criterion for consensus, that is, the opinion
consensus is almost equivalent to ceffij (G) > 0 for any agent
pair i, j ∈ V , which provides new insights into the mechanism
of consensus. Reaching a consensus can be interpreted as
every pair of agents presenting overall cooperativeness to
each other despite of the presence of antagonistic interactions.
In other words, the failure of consensus can be explained
by some antagonistic interactions inducing non-cooperative
relationship between some pairs of agents in the society.

V. CASE STUDY
We illustrate the application of EC to a 15-agent social
network in Fig. 9, where the blue and red lines refer to
the cooperative and antagonistic interactions, respectively.
Note that this network is structurally unbalanced as it is
still connected after deleting all red lines. It originates from
an ever-existed society in Chinese academic history and the
agents refer to the members of Academia Sinica in 1940s.
The following network settings coincide with the quali-
tative features of these academicians’ interpersonal rela-
tionships that are confirmed by textual research [38]. Let
V1 = {Hu, Zhao, Fu, Dong, Li, Xiao} and V2 be the set con-
sisting of the remaining agents. For cooperative interactions,
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FIGURE 9. The 15-agent network.

FIGURE 10. The opinion dynamics.

we set wij = 0.25 if i, j ∈ V1 or i, j ∈ V2, wij = 0.02 if i ∈ V1,
j ∈ V2. For antagonistic interactions, we set wij = −0.2 if
i, j ∈ V1, wij = −0.02 if i, j ∈ V2, and wij = −0.1 if i ∈ V1,
j ∈ V2. In addition, we set κ = 0.2 as the step size.

Under these settings, the corresponding Laplacian matrix
LG has a negative eigenvalue λ− = −0.133. The opinion
dynamics is plotted in Fig. 10, where the opinions diverge
and present the bipartite feature. In the camp consisting of V1,
the opinion values tend to increase, while the opinion values
in the other camp consisting of V2 tend to decrease.
We now look into the case from the perspective of EC. We

implement Algorithm 1 to check consensus. The associated
calculations are given in Table 1. A negative EC occurs
after iteratively adding two antagonistic interactions, which
quickly tells that the opinion consensus will not be reached.
In addition, we list the pairs of agents that have negative ECs
in Table 2. These negative ECs all appear between the agents
in different camps, which coincides with the fact that the two
camps present opposite opinions.

We have another interesting observation that the ECs
between some pairs of agents have the opposite signs to
the weights of their direct interactions. For instance, the EC
between Fu and Dong is positive (equals to 0.110) though
their direct interaction is highly antagonistic (the correspond-
ing wij = −0.2), indicating this antagonistic interaction does

TABLE 1. Iterative process to check consensus.

TABLE 2. Negative ECs between the agents.

not lead to opinion divergence. The positive EC is largely
due to Fu and Dong having many indirect cooperative links
via other agents. Also it provides a new viewpoint to explain
why these two agents stand in the same camp despite of high
antagonism in their direction interaction. In addition, Hu and
Jin have cooperative direct interaction, but their indirect links
via other agents induce the negative EC (equals to -1.202).
This negative EC coincides with that Hu and Jin eventually
stand in different camps, which is one of the causes for
opinion divergence according to Proposition 1.

The above discussion concludes that the proposed EC is a
more essential concept than the interaction weight in reveal-
ing the consensus mechanism.

VI. CONCLUDING REMARKS
We have investigated the consensus problem in social net-
works with antagonisms following the inspiration from elec-
trical networks. A refined definition of EC has been proposed
to measure the coupling strength between any pair of nodes in
electrical networks. The concept of EC is then introduced to
social networks to describe the overall relationship between a
pair of agents, which applies to both structurally balanced and
structurally unbalanced networks. Novel EC-based consensus
criteria have been established, showing that the EC between
any pair of agents being positive is the key to reaching a
consensus. From these criteria, the consensus can interpreted
as any pair of agents still presenting overall cooperativeness
even with antagonistic interactions. Also an EC-based algo-
rithm has been proposed that quickly checks consensus in an
iterative manner. The obtained results have twofold merits
over the existing ones in the literature. First, the proposed
EC works more properly than the traditional one in those
cases with negative line conductances. Second, the existing
EC-based consensus criteria work under some special cases,
e.g., when there is only one antagonistic interaction in the
network or there is no cycle containing two antagonistic
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interactions [25]. By comparison, it has been shown by ana-
lytical and statistical approaches that the proposed consensus
criteria havemore general applicability, which leads to amore
comprehensive and intuitive understanding of the consensus
mechanism.
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